JP2013134061A - High-concentration 99mtc recovery method and high-concentration 99mtc recovery device - Google Patents

High-concentration 99mtc recovery method and high-concentration 99mtc recovery device Download PDF

Info

Publication number
JP2013134061A
JP2013134061A JP2011282471A JP2011282471A JP2013134061A JP 2013134061 A JP2013134061 A JP 2013134061A JP 2011282471 A JP2011282471 A JP 2011282471A JP 2011282471 A JP2011282471 A JP 2011282471A JP 2013134061 A JP2013134061 A JP 2013134061A
Authority
JP
Japan
Prior art keywords
activated carbon
solution
concentration
tank
recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011282471A
Other languages
Japanese (ja)
Other versions
JP5916082B2 (en
Inventor
Koji Ishikawa
幸治 石川
Kenichi Kato
剣一 加藤
Akira Tsuguchi
明 津口
Yuko Komatsuzaki
優子 小松崎
Mutsu Tanaka
睦 田仲
Kiyoko Kurosawa
きよ子 黒澤
Yumi Suzuki
祐未 鈴木
Katsuyoshi Tadenuma
克嘉 蓼沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaken Co Ltd
Original Assignee
Kaken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaken Co Ltd filed Critical Kaken Co Ltd
Priority to JP2011282471A priority Critical patent/JP5916082B2/en
Publication of JP2013134061A publication Critical patent/JP2013134061A/en
Application granted granted Critical
Publication of JP5916082B2 publication Critical patent/JP5916082B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nuclear Medicine (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To recoverTc at a high recovery rate and to condensate and recover a radioactive nucleus ofTc in which the quantity ofTc solution in the case whereTc is recovered is reduced as much as possible.SOLUTION: As an activated carbon, a spherical activated carbon is used which is composed of a composite body and has a uniform shape, of which the average particle size is desirably 0.2 to 0.4 mm or less and which is filled in a filling density greater than that of an activated carbon from coconut shell of 0.37 to 0.46 g/ml. The spherical activated carbon is used to performTc elution conditioning treatment in whichTc is selectively adsorbed, aMo solution being residual in a spherical activated carbon layer is eluted by dipping water, and a high-concentration alkali liquid is absorbed in the spherical activated carbon adsorbingTc, thereby forming a high-concentration liquid alkalinity. The adsorbedTc for which an alkaline concentration gradient is formed by a low-concentration alkaline liquid and water or by water with respect to the high-concentration liquid alkalinity is recovered as aTc elution liquid. The recoveredTc solution is purified and conditioned, and the purified and conditionedTc is recovered.

Description

本発明は、99mTcの高濃度回収方法及び99mTcの高濃度回収装置に関する。 The present invention relates to a 99m Tc high concentration recovery method and a 99m Tc high concentration recovery apparatus.

中性子照射法によって中性子が照射されて製造された99Moを溶解して、放射性医薬品原料としての放射性核種99Moを含む高濃度Mo溶液を形成し、99Mo娘核種である99mTcを生成して回収することが行われる。この方法は、(n、γ)99Moを原料として99mTcを回収方法として知られている。 99 Mo produced by neutron irradiation by neutron irradiation method is dissolved to form a high-concentration Mo solution containing the radionuclide 99 Mo as a radiopharmaceutical raw material, and 99m Tc which is a 99 Mo daughter nuclide is generated. Recovery is performed. This method is known as a method for recovering 99m Tc using (n, γ) 99 Mo as a raw material.

特許文献1には、放射性医薬品およびその標識化合物原料としての99mTcを、その親核種である放射性核種99Moを含む高濃度Mo溶液を形成し、放射平衡状態になる性質を利用して99mTcを生成して放射性核種99Moおよび99mTcを含む高濃度Mo(99Mo)溶液を生成し、当該高濃度Mo(99Mo)溶液を活性炭を内蔵する吸着カラムへ通液して該活性炭に当該溶液中の99mTcを選択的に吸着させ、99mTcを吸着した活性炭から脱着剤による99mTcの脱着精製処理を行って、高純度の99mTcを回収することが記載されている。 Patent Document 1, a 99m Tc as a radiopharmaceutical and its labeled compound precursor, to form a high concentration Mo solution containing radionuclide 99 Mo its parent nuclide, 99m by utilizing the property that becomes radioactive equilibrium state Tc to generate a generate a high concentration Mo (99 Mo) solution containing radionuclide 99 Mo and 99m Tc, the high concentration Mo (99 Mo) solution was passed through the adsorption column having a built-in active carbon the to the activated carbon It is described that 99m Tc in a solution is selectively adsorbed, and 99m Tc is desorbed and purified from activated carbon that has adsorbed 99m Tc by a desorbing agent to recover high-purity 99m Tc.

特開2011−2370号公報JP 2011-2370 A

特許文献1に記載してあるように、本件特許出願人等は、活性炭に99mTcを吸着させ、濃縮した99mTcを回収することで、中性子照射法による99mTc回収方法を鋭意研究している。 As described in Patent Document 1, the applicants of the present patent and the like have been diligently researching a 99m Tc recovery method using a neutron irradiation method by adsorbing 99m Tc to activated carbon and recovering the concentrated 99m Tc. .

放射性医薬品の放射性核種99mTcの半減期は6時間であり、活性炭に99mTcを吸着させた時点から99mTcを回収する時点までの工程における時間を極力少なくして、望ましくは1時間半以内にすること、並びに99mTcを高回収率で回収し、99mTcを回収した時の99mTc溶液の量を極力少なくして放射性医薬品として提供することが重要である。 The half-life of the radionuclide 99m Tc of the radiopharmaceutical is 6 hours, and the time from the time when 99m Tc is adsorbed to the activated carbon to the time when 99m Tc is recovered is minimized, and preferably within 1 and a half hours to it, as well as 99m Tc was recovered at a high recovery rate, it is important that as much as possible reduce the amount of 99m Tc solution when recovered 99m Tc provides a radiopharmaceutical.

本発明は、かかる点に鑑みて99mTcを吸着するに際して活性炭を用いながらも、活性炭に99mTcを吸着させた時点から99mTcを回収する時点までの工程における時間を極力少なくし、並びに99mTcを高回収率で回収し、99mTcを回収した時の99mTc溶液の量を極力少なくした、99mTcである放射性核種濃縮を回収することを目的とする。 The present invention, while using the activated carbon when adsorbing the 99m Tc in view of such points, and minimize the time in the step from the time of adsorbing the 99m Tc to the activated carbon until the time to recover 99m Tc, and 99m Tc It was collected with a high recovery rate, and minimize the amount of 99m Tc solution when recovered 99m Tc, an object of recovering the radionuclide concentration is 99m Tc.

本発明は、活性炭として、合成体からなり、均一形体で平均粒径がヤシ殻系活性炭に
比べて平均粒径が小さく、比表面積が大きな球状活性炭を用いて99mTcを吸着させることを1つの特徴とする。
According to the present invention, the activated carbon is composed of a synthetic material, has a uniform shape, has an average particle size smaller than that of coconut shell activated carbon, and adsorbs 99m Tc using spherical activated carbon having a large specific surface area. Features.

本発明は、具体的には、中性子照射法によって中性子を照射して製造された、親核種の放射性核種99Moが溶解されて形成された高濃度Mo溶液であって、生成された娘核種の99mTcを含んだ高濃度Mo溶液をMoタンクに貯蔵し、
当該高濃度Mo溶液を、活性炭を活性炭層として内蔵する活性炭カラムへ通液して該活性炭に当該高濃度Mo溶液中の99mTcを選択的に吸着させ、
活性炭層に滞留するMoを溶脱して除去し、活性炭に吸着された99mTcを活性炭からの99mTcの脱着処理を行って濃縮された99mTcを回収する99mTcの高濃縮回収方法において、
活性炭として、合成体から成り、均一形体で平均粒径が0.60mm以下でヤシ殻活性炭の充填密度0.37〜0.46g/mlよりも大きな充填密度で充填された球状活性炭を用いて、99mTcを選択的に吸着させ、
球状活性炭層に滞留した99Moを洗浄溶液の通液によって溶脱させ、
99mTcを吸着する該球状活性炭に高濃度アルカリ液を吸蔵させて、高濃度アルカリ液性を呈する99mTc溶出コンディショニング処理を行い、前記高濃度アルカリ液性に対して水の通液によってアルカリ濃度勾配を生じさせて、吸着された99mTcを脱着させ、99mTc溶出液として回収し、
回収した99mTc溶液を精製調整し、精製調整された99mTc液を回収すること
を特徴とする99mTcの高濃度回収方法を提供する。
Specifically, the present invention is a high-concentration Mo solution produced by irradiating neutrons by a neutron irradiation method and formed by dissolving the radionuclide 99 Mo of the parent nuclide, and the generated daughter nuclide. A high-concentration Mo solution containing 99m Tc is stored in a Mo tank,
The high-concentration Mo solution is passed through an activated carbon column containing activated carbon as an activated carbon layer to selectively adsorb 99m Tc in the high-concentration Mo solution to the activated carbon.
The Mo staying in the activated carbon layer is removed by leaching, the high concentration recovery method of 99m Tc to the 99m Tc adsorbed by the activated carbon to recover the 99m Tc 99m Tc enriched performs desorption processing of activated carbon,
As the activated carbon, a spherical activated carbon made of a synthetic material, having a uniform shape and an average particle size of 0.60 mm or less and filled with a packing density of coconut shell activated carbon larger than 0.37 to 0.46 g / ml, 99m Tc is selectively adsorbed,
99 Mo retained in the spherical activated carbon layer is leached by passing a cleaning solution,
The spherical activated carbon that adsorbs 99m Tc is occluded with a high-concentration alkaline solution, and is subjected to a 99m Tc elution conditioning treatment exhibiting a high-concentration alkaline liquid property. The adsorbed 99m Tc is desorbed and recovered as a 99m Tc eluate,
A 99m Tc high concentration recovery method is provided, wherein the recovered 99m Tc solution is purified and adjusted, and the purified and adjusted 99m Tc solution is recovered.

本発明は、また、前記回収した99mTc溶液に酸性溶液を添加することを行なうことなく、前記アルミナカラムに通液することで中和調整することを特徴とする99mTcの高濃度回収方法を提供する。 The present invention also provides a high concentration recovery method of 99m Tc, characterized in that neutralization is adjusted by passing through the alumina column without adding an acidic solution to the recovered 99m Tc solution. provide.

本発明は、また、上述した精製調整を室温で行うことを特徴とする99mTcの高濃度回収方法を提供する。 The present invention also provides a high concentration recovery method of 99m Tc, wherein the purification adjustment described above is performed at room temperature.

本発明は、また、上述したいずれかにおいて、球状活性炭層に滞留した99Mo溶液を水のみの通液によって溶脱させ、室温で行うことを特徴とする99mTcの高濃度回収方法を提供する。 The present invention is also characterized in that, in one described above, the 99 Mo solution staying in the spherical activated carbon layer was leached by passing liquid water only, to provide a high concentration recovery method of 99m Tc, which comprises carrying out at room temperature.

本発明は、また、上述したMoタンクへの高濃度Mo溶液の送液及び該Moタンクから前記活性炭カラムへの高濃度Mo溶液の送液が、送液システム部の減圧ラインを介して減圧フローによってなされることを特徴とする99mTcの高濃度回収方法を提供する。 In the present invention, the high-concentration Mo solution feeding to the Mo tank and the high-concentration Mo solution feeding from the Mo tank to the activated carbon column are performed under a reduced pressure flow through the decompression line of the liquid feeding system unit. A method for recovering a high concentration of 99m Tc is provided.

本発明は、また、中性子照射法によって中性子を照射して製造された、親核種の放射性核種99Moが溶解されて形成された高濃度Mo溶液であって、生成された娘核種である99mTcを含んだ高濃度Mo溶液を貯蔵する高濃度Mo溶液貯蔵手段、
当該高濃度Mo溶液を、活性炭を活性炭層として内蔵する活性炭カラムへ通液して該活性炭に当該高濃度Mo溶液中の99mTcを選択的に吸着させ、及び99Mo溶液を滞留させる99mTc吸着手段、を備えて、活性炭に99mTcを吸着し濃縮して回収する99mTcの高濃縮回収装置において、
活性炭として、合成体から成り、均一形体で平均粒径が0.60mm以下で、ヤシ殻活性炭の充填密度0.37〜0.46g/mlよりも大きな充填密度で充填された、99mTcが選択的に吸着する球状活性炭を内蔵する活性カラムと、
球状活性炭層に滞留した99Moを水の通液によって洗浄、溶脱させるMo溶脱手段、
該球状活性炭に高濃度アルカリ液を吸蔵させて、高濃度アルカリ液性を形成して99mTc溶出コンディショニング処理を行う99mTc溶出コンディショニング処理手段、
前記高濃度アルカリ液性に対して水によってアルカリ濃度匂配を形成した、吸着された99mTcを99mTc溶出液として回収する99mTc溶出液回収手段、
回収した99mTc溶液精製調整する99mTc溶出液精製調整手段、及び
精製調整された99mTc溶出液から99mTcを回収する99mTc回収手段、
を有すること特徴とする99mTcの高濃度回収装置を提供する。
本発明は、また、上述した99mTc溶出液精製調整が、酸性溶液を添加することなく、前記アルミナカラムに通液されることで該アルミナカラムが99mTc溶出液精製調整作用をなすことを特徴とする99mTcの高濃度回収装置を提供する。
The present invention is also a high-concentration Mo solution formed by dissolving the parent nuclide radionuclide 99 Mo produced by neutron irradiation by the neutron irradiation method, and the daughter nuclide produced is 99m Tc. High concentration Mo solution storage means for storing a high concentration Mo solution containing
The high-concentration Mo solution is passed through an activated carbon column containing activated carbon as an activated carbon layer, 99m Tc in the high-concentration Mo solution is selectively adsorbed on the activated carbon, and 99m Tc adsorption is performed to retain the 99 Mo solution. A 99m Tc highly concentrated recovery device that adsorbs 99m Tc to activated carbon and concentrates and recovers it.
99m Tc is selected as the activated carbon, which is composed of a synthetic material, and has a uniform shape and an average particle size of 0.60 mm or less, and is filled at a packing density greater than 0.37 to 0.46 g / ml of coconut shell activated carbon. An active column containing spherical activated carbon that adsorbs automatically,
Mo leaching means for washing and leaching 99 Mo retained in the spherical activated carbon layer by passing water.
Spherical activated carbon with a high concentration alkaline solution is occluded, 99m Tc elution conditioning processing means for 99m Tc elution conditioning process to form a high-concentration alkaline solution resistance,
99m Tc eluate recovery means for recovering adsorbed 99m Tc as 99m Tc eluate, in which an alkali concentration scent is formed by water with respect to the high concentration alkali liquidity;
99m Tc eluate purification adjustment means for adjusting the recovered 99m Tc solution purification, and 99m Tc recovery means for recovering 99m Tc from the purified 99m Tc eluate,
The high concentration collection | recovery apparatus of 99mTc characterized by having this.
The present invention is also characterized in that the 99m Tc eluate purification adjustment described above is passed through the alumina column without adding an acidic solution, whereby the alumina column has a 99m Tc eluate purification adjustment action. 99m Tc high concentration recovery device is provided.

本発明は、また、上述したいずれかにおいて、前記Mo溶脱手段が、球状活性炭層に滞留する99Mo溶液を通液によって溶脱させ、99mTc回収手段が、球状活性炭層に滞留した99Mo溶液の溶脱に水を通液することを特徴とする99mTcの高濃度回収装置を提供する。 According to the present invention, in any of the above, the Mo leaching means is leached by passing a 99 Mo solution staying in the spherical activated carbon layer, and 99m Tc recovery means is used for the 99 Mo solution staying in the spherical activated carbon layer. Provided is a 99m Tc high concentration recovery device characterized by passing water through leaching.

本発明は、また、上述した99mTcを含んだ高濃度Mo溶液を貯蔵するMoタンクを備えて、高レベル鉛遮蔽Moタンクユニットを形成し、前記活性炭カラムを備えて99mTcを回収する99mTc回収の時に生成される廃液を貯蔵する廃液タンクを備えて、中レベル鉛遮蔽Tc回収ユニットを形成し、これらのユニットを分離可能にして前記Moタンクと前記活性炭カラムとを配管で接続したことを特徴とする99mTcの高濃度回収装置を提供する。 The present invention is also, 99m Tc which comprise Mo tank for storing a high concentration Mo solution containing 99m Tc as described above, to form a high-level lead shielding Mo tank unit, to recover the 99m Tc provided with the activated charcoal column A waste liquid tank for storing the waste liquid generated at the time of recovery is provided, a medium level lead shielded Tc recovery unit is formed, and these units can be separated and the Mo tank and the activated carbon column are connected by piping. A 99m Tc high concentration recovery device is provided.

本発明は、活性炭として、合成体からなり、均一形体で平均粒径が0.40mm以下の球状活性炭を用いることで、比表面積を大きく確保し、球状活性炭に99mTcを吸着させた時点から99mTcを回収する時点までの行程における時間を少なくすることができ、並びに99mTcを高回収率で回収し、99mTcを回収した時の99mTc溶液の量を少なくした、99mTcである放射性核種を濃縮回収することができる。 The present invention uses a spherical activated carbon made of a synthetic material and having a uniform shape and an average particle size of 0.40 mm or less as the activated carbon, thereby ensuring a large specific surface area and 99 m from the time when 99 m Tc is adsorbed on the spherical activated carbon. The radionuclide which is 99m Tc, which can reduce the time in the process until the time of recovering Tc, and recovers 99m Tc at a high recovery rate and reduces the amount of 99m Tc solution when 99m Tc is recovered. Can be concentrated and recovered.

本発明の実施例の実施形態を示す構成図。The block diagram which shows embodiment of the Example of this invention. 本実施例のフローを示す図。The figure which shows the flow of a present Example. 使用した活性炭の比較を示す図。The figure which shows the comparison of the used activated carbon. 活性炭法実施例を示す図。The figure which shows the activated carbon method Example.

以下、本発明の実施例を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下、本発明の実施例を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施例である99mTcの高濃度回収装置の実施形態を示す図である。
図1において、99mTcの高濃度回収装置100は、Moタンク部1、Tc回収部2、送液システム部3及び試薬供給部4から構成される。
FIG. 1 is a diagram showing an embodiment of a high concentration recovery apparatus of 99m Tc which is an example of the present invention.
In FIG. 1, a 99m Tc high concentration recovery apparatus 100 is composed of a Mo tank unit 1, a Tc recovery unit 2, a liquid feeding system unit 3, and a reagent supply unit 4.

Moタンク部1、Tc回収部2及び送液システム部3は、ホットセル5内の製造室に配設され、試薬供給部4及び制御部(図示せず)はホットセル外の操作室に配設される。   The Mo tank unit 1, the Tc recovery unit 2, and the liquid feeding system unit 3 are arranged in a manufacturing chamber inside the hot cell 5, and the reagent supply unit 4 and a control unit (not shown) are arranged in an operation chamber outside the hot cell. The

Moタンク部1は、Moタンク11、Moタンク12及びMo廃液タンク13を備える。Moタンク11、Moタンク12には、前もって原子炉で中性子照射されて99Moが作製され、含まれるMoOをアルカリ溶液(NaOH)で溶解して生成されたNo 99MoO溶液が供給される。すなわち、放射性医薬品原料としての放射性核種99Moを含んだMo溶液がMoタンク11、Moタンク12どちらかに供給され、貯蔵される。99MoOがアルカリ溶液で溶解されると、pH中性のNa 99MoO溶液が形成される。 The Mo tank unit 1 includes a Mo tank 11, a Mo tank 12, and a Mo waste liquid tank 13. The Mo tank 11 and the Mo tank 12 are preliminarily irradiated with neutrons in a nuclear reactor to produce 99 Mo, and supplied with a No 2 99 MoO 4 solution generated by dissolving the contained MoO 3 with an alkaline solution (NaOH). The That is, a Mo solution containing radionuclide 99 Mo as a radiopharmaceutical raw material is supplied to and stored in either the Mo tank 11 or the Mo tank 12. When 99 MoO 3 is dissolved in an alkaline solution, a pH neutral Na 2 99 MoO 4 solution is formed.

放射性99Moを含むMo溶液は、例えば2L中に500gのMoを含む高い濃度のMo溶液とされる。 The Mo solution containing radioactive 99 Mo is, for example, a high concentration Mo solution containing 500 g of Mo in 2 L.

Moタンク11及びMoタンク12の底部には弁14、弁15が設けられた配管16、17が設けられて、Mo廃液タンク13からの配管18に弁19を介して接続される。配管18は、99mTcジェネレータ31を構成する活性炭カラム32に接続される。廃液タンク13は配管17´を介して弁19に接続される。 Pipings 16 and 17 provided with a valve 14 and a valve 15 are provided at the bottom of the Mo tank 11 and the Mo tank 12, and are connected to a pipe 18 from the Mo waste liquid tank 13 via a valve 19. The pipe 18 is connected to an activated carbon column 32 constituting the 99m Tc generator 31. The waste liquid tank 13 is connected to a valve 19 through a pipe 17 '.

Moタンク11、Moタンク12は、圧力検出計23を備え、液面調整機構としての機能を備える。   The Mo tank 11 and the Mo tank 12 include a pressure detector 23 and have a function as a liquid level adjustment mechanism.

外部の溶解したMoの供給源からのMo溶液送給ライン41がMoタンク11、Moタンク12に接続され、Mo溶液の再循環配管20がMoタンク11、Moタンク12及びMo廃液タンク13に接続される。再循環配管20は、廃液排出管41に接続されて、Mo廃液タンク13からの排出にも使用される。廃液タンク13は、配管21を介して送液ライン部3に接続され、廃液タンク13内を減圧し、Moタンク11、Moタンク12からの残留Mo溶液が導入される。Moタンク11、Moタンク12及びMo廃液タンク13の上部にそれぞれ接続された液圧ライン21が送液システム部3の減圧ラインに接続される。送給ライン20及び液圧ライン21には図示するように接続弁が設けられる。試薬供給部4の送給ラインからのアルカリ溶液あるいはHOの供給が配管22、配管48を介して、Moタンク11、Moタンク12、活性炭カラム32に、そして配管44を介して調整タンク33を介してなされ得る。 An Mo solution supply line 41 from an external dissolved Mo supply source is connected to the Mo tank 11 and the Mo tank 12, and a Mo solution recirculation pipe 20 is connected to the Mo tank 11, the Mo tank 12, and the Mo waste liquid tank 13. Is done. The recirculation pipe 20 is connected to a waste liquid discharge pipe 41 and is also used for discharge from the Mo waste liquid tank 13. The waste liquid tank 13 is connected to the liquid feeding line unit 3 via the pipe 21 to depressurize the waste liquid tank 13 and the residual Mo solution from the Mo tank 11 and the Mo tank 12 is introduced. The hydraulic pressure lines 21 connected to the upper portions of the Mo tank 11, the Mo tank 12, and the Mo waste liquid tank 13 are connected to the decompression line of the liquid feeding system unit 3. The supply line 20 and the hydraulic pressure line 21 are provided with connection valves as illustrated. The supply of the alkaline solution or H 2 O from the supply line of the reagent supply unit 4 is supplied to the Mo tank 11, the Mo tank 12, the activated carbon column 32 through the pipe 22 and the pipe 48, and the adjustment tank 33 through the pipe 44. Can be done through.

Moタンク部1は、鉛遮蔽され、全体として高レベル鉛遮蔽ユニットのMoタンクユニット24とされる。   The Mo tank unit 1 is shielded from lead, and serves as a Mo tank unit 24 of a high level lead shielding unit as a whole.

Tc回収部2は、活性炭カラム32、調整タンク33、アルミナカラム(1)34、アルミナカラム(2)35、Tc回収器38、廃液タンク(1)37、廃液タンク(2)36、ラインヒータ39及びカラムヒータ40から構成され、中レベル鉛遮蔽のTc回収ユニット25とされる。   The Tc recovery unit 2 includes an activated carbon column 32, a conditioning tank 33, an alumina column (1) 34, an alumina column (2) 35, a Tc recovery unit 38, a waste liquid tank (1) 37, a waste liquid tank (2) 36, and a line heater 39. And the column heater 40, which is a medium level lead shielded Tc recovery unit 25.

Moタンク11あるいはMoタンク12からの流量、流速が制御された99Mo溶液は、配管18を介しての活性炭カラム32に導入される。活性炭カラム32は、その底部が配管20に接続され、配管20は弁45を介して配管42に分岐される。配管18には弁46、弁47が設けられる。 The 99 Mo solution in which the flow rate and flow rate from the Mo tank 11 or Mo tank 12 are controlled is introduced into the activated carbon column 32 via the pipe 18. The activated carbon column 32 is connected to the pipe 20 at the bottom, and the pipe 20 is branched to the pipe 42 via the valve 45. The pipe 18 is provided with a valve 46 and a valve 47.

活性炭カラム32には、合成体からなり、均一形体で平均粒径が、例えば0.4mm以下で、ヤシ殻活性炭の平均細孔径よりも小さな平均細孔径の球状活性炭が充填される。   The activated carbon column 32 is made of a synthetic material, and is packed with spherical activated carbon having a uniform shape and an average particle diameter of 0.4 mm or less and an average pore diameter smaller than that of coconut shell activated carbon.

活性炭カラム32は、また弁47に接続された配管48から加熱されたHOが投入される形態とされる。配管48には、ラインヒーター40が設けられて送液ラインから送られて来たHOあるいはアルカリ溶液を加熱する。このようにして加熱された溶液が活性炭カラム32に投入される。 The activated carbon column 32 is configured such that heated H 2 O is supplied from a pipe 48 connected to the valve 47. The pipe 48 is provided with a line heater 40 to heat the H 2 O or alkali solution sent from the liquid feed line. The solution heated in this way is put into the activated carbon column 32.

Moタンク中で99Mo溶液中の99Moが崩壊し、99mTcは時間の増加とともに生成する。99Moと99mTcは24時間程度で過平衡状態に達する性質がある。99Mo崩壊で生成された99mTcはMoタンクの中で共存化している。
その放射平衡状態の99Mo溶液を活性炭カラム32に通液する。99mTcは球状活性炭に吸着される。球状活性炭は、99mTcを吸着するが、99Moは吸着しない性質を備える。このため、導入された99Mo溶液は、活性炭カラム32を通過しMoタンク11あるいはMoタンク12に速やかに戻される。
And 99 Mo collapse of 99 Mo solution in Mo tank, 99m Tc is generated with increasing time. 99 Mo and 99m Tc have the property of reaching an over-equilibrium state in about 24 hours. 99m Tc produced by 99 Mo decay coexists in the Mo tank.
The 99 Mo solution in the radiation equilibrium state is passed through the activated carbon column 32. 99m Tc is adsorbed on the spherical activated carbon. Spherical activated carbon has the property of adsorbing 99m Tc but not 99 Mo. For this reason, the introduced 99 Mo solution passes through the activated carbon column 32 and is quickly returned to the Mo tank 11 or the Mo tank 12.

しかし極少量の99Mo溶液は、球状活性炭層に残留する。活性炭層に残留した99Mo溶液及び99mTc以外の不純物を洗浄して除外するために配管48からHO(純水)が通液される。活性炭カラム32からの洗浄水は、配管20、弁49、配管50を介して、廃液タンク(1)37に導出され、貯蔵される。 However, a very small amount of 99 Mo solution remains in the spherical activated carbon layer. H 2 O (pure water) is passed through the pipe 48 to remove impurities other than the 99 Mo solution and 99m Tc remaining in the activated carbon layer. The washing water from the activated carbon column 32 is led out to the waste liquid tank (1) 37 through the pipe 20, the valve 49, and the pipe 50 and stored.

次いで、上述したHO供給に引き続いて送液ラインを介して送出された高濃度アルカリ液を配管48、配管18から活性炭カラム32に導入し、球状活性炭に通液し、吸蔵させ、高濃度アルカリ液による99mTc溶出前コンディショニングを行う。 Subsequently, the high-concentration alkaline liquid sent through the liquid feed line following the above-mentioned H 2 O supply is introduced into the activated carbon column 32 from the pipe 48 and the pipe 18, passed through the spherical activated carbon, occluded, and concentrated. Condition before 99m Tc elution with alkaline solution.

カラムヒータ39Aは、活性炭カラム32を加熱することができる。   The column heater 39A can heat the activated carbon column 32.

上述したコンディショニング後の活性炭カラム32を加熱する。
次いで、加熱状態の活性炭カラム32にHOを球状活性炭に通液する。このように前工程の高アルカリに対して濃度匂配をつくり出すこと、かつ加熱することで99mTcを球状活性炭から容易に溶出させる。
The activated carbon column 32 after the conditioning described above is heated.
Next, H 2 O is passed through the spherical activated carbon through the activated carbon column 32 in a heated state. Thus, 99m Tc is easily eluted from the spherical activated carbon by creating a concentration odor with respect to the high alkali in the previous step and heating.

活性炭カラム32からの廃液は、配管20、弁49、配管50を介して廃液タンク(1)37に導出され、貯蔵される。   The waste liquid from the activated carbon column 32 is led out to the waste liquid tank (1) 37 via the pipe 20, the valve 49, and the pipe 50 and stored.

溶出した99mTcは、配管42を介して液圧ラインの作用によって調整タンク33に導出され、滞留される。ここで溶液の液性(NaCl濃度)の調整がなされる。この調整には送液ライン、配管44を介して導入された6%NaClが用いられる。 The eluted 99m Tc is led out to the adjustment tank 33 by the action of the hydraulic pressure line through the pipe 42 and is retained. Here, the liquidity (NaCl concentration) of the solution is adjusted. For this adjustment, 6% NaCl introduced through the liquid feed line and the pipe 44 is used.

99mTc液性調整に、本例では6%NaClを用いて、回収液を0.9%NaClに調整している。従来は、調整タンク33で、HClを用いてpH調整する必要があったが、球状活性炭を用いて99mTcの溶出のためのアルカリ量を少なくすることで、次のステップの精製で酸性アルミナ通液することで充分にpH調整することができる。よって、調整タンク33でpH調製しないで済む。 In this example, 6% NaCl is used for 99m Tc liquidity adjustment, and the recovered liquid is adjusted to 0.9% NaCl. Conventionally, it has been necessary to adjust the pH using HCl in the adjustment tank 33, but by reducing the amount of alkali for elution of 99m Tc using spherical activated carbon, it is possible to pass acidic alumina through purification in the next step. By adjusting the pH, the pH can be adjusted sufficiently. Therefore, it is not necessary to adjust the pH with the adjustment tank 33.

液性(NaCl濃度)の調整された99mTc溶液は、液圧ラインの作用によって配管42、46を介してアルミナカラム(1)34に導出される。アルミナカラムは酸性アルミナカラムの性能を呈する。99mTc溶液をアルミナカラム(1)34に通液することで99mTc溶液を精製する。この精製は、更にアルミナカラム(2)35でなされる。再度、それらのアルミナカラムを少量の生理食塩水で洗浄する。 The 99m Tc solution with the adjusted liquidity (NaCl concentration) is led to the alumina column (1) 34 through the pipes 42 and 46 by the action of the hydraulic pressure line. The alumina column exhibits the performance of an acidic alumina column. By passing the 99m Tc solution through the alumina column (1) 34, the 99m Tc solution is purified. This purification is further performed with an alumina column (2) 35. Again, the alumina columns are washed with a small amount of physiological saline.

精製した99mTc溶液は、配管46、配管47を介してTc回収容器38に回収される。洗浄のために使用された生理食塩水は、配管47を介してTc回収容器38に回収される。配管42は、配管43を介して減圧ラインに接続される。廃液タンク(1)37、廃液タンク(2)36は、外部に取り出し可能とされる。 The purified 99m Tc solution is recovered in the Tc recovery container 38 via the piping 46 and the piping 47. The physiological saline used for washing is collected in the Tc collection container 38 through the pipe 47. The pipe 42 is connected to the decompression line via the pipe 43. The waste liquid tank (1) 37 and the waste liquid tank (2) 36 can be taken out to the outside.

送液システム部3は、大型シリンダ−61及び前述した減圧ライン62及びこれらを結ぶ配管63、63Aを備える。   The liquid feeding system unit 3 includes a large cylinder 61, the above-described decompression line 62, and pipes 63 and 63A connecting these.

試薬供給部4は、試薬1.3M−NaOH、0.9%−NaCl、6%−NaCl及びHO供給装置64、各種弁65を制御してこれらの供給制御手段66、前述した供給ライン67及びこれらを結ぶ配管68を備える。 The reagent supply unit 4 controls the reagent 1.3M-NaOH, 0.9% -NaCl, 6% -NaCl and H 2 O supply device 64 and various valves 65 to control these supply control means 66 and the supply line described above. 67 and a pipe 68 connecting them.

この例によれば、Moタンク部1を高レベル鉛遮蔽ユニット24として構成し、Tc回収部2を中レベル鉛遮蔽ユニット25として構成し、Moタンク部1あるいはTc回収部2を構成するための各種機器・装置を各ユニット内に配置するようにしているので、放射能レベル毎に操作ユニットが分けら、レイアウトの自由度を高くすることができる。   According to this example, the Mo tank unit 1 is configured as a high level lead shielding unit 24, the Tc recovery unit 2 is configured as a medium level lead shielding unit 25, and the Mo tank unit 1 or the Tc recovery unit 2 is configured. Since various devices and devices are arranged in each unit, the operation unit is divided for each radioactivity level, so that the degree of freedom in layout can be increased.

そして、本実施例によれば、中性子法である(n、γ)法で作製され、比放射能の低い(fission法の1万分の1)99Moから99mTcを放射性医薬品及び標識化合物原料として用いるに際して、高濃度Mo(99Mo)中の微量の99mTcを99Moの混入が無く高収率、迅速精製をすることができ、半減期の短い放射性核種99mTc回収のための操作性に優れた装置、方法が提供される。 And according to the present Example, it is produced by the (n, γ) method which is a neutron method, and has a low specific activity (1 / 10,000 of the fission method) 99 Mo to 99m Tc as a radiopharmaceutical and a labeled compound raw material When used, a very small amount of 99m Tc in high-concentration Mo ( 99 Mo) can be purified with high yield without rapid mixing of 99 Mo, and the operability for recovering radionuclide 99m Tc with a short half-life can be achieved. An excellent apparatus and method are provided.

この実施例によれば、中性子照射法によって中性子を照射して製造された、親核種の放射性核種99Moが溶解されて形成された高濃度Mo溶液に娘核種である99mTcを含んだ高濃度Mo溶液を貯蔵する高濃度Mo溶液貯蔵手段としてのMoタンク部1が形成される。 According to this example, the high concentration Mo solution formed by irradiating neutrons by the neutron irradiation method and formed by dissolving the parent nuclide radionuclide 99 Mo contains the daughter nuclide 99m Tc. Mo tank part 1 as a high concentration Mo solution storage means for storing Mo solution is formed.

また、活性炭として、合成体からなり、均一形体で平均粒径が0.60mm以下で、望ましくは0.4mm以下でヤシ殻活性炭の充填密度0.37〜0.46g/mlよりも大きな充填密度で充填可能な球状活性炭を用いて、99mTcを99Moから選択的に吸着される活性炭カラム32を備えたが構成される。 Further, the activated carbon is made of a synthetic material, and has a uniform shape and an average particle size of 0.60 mm or less, preferably 0.4 mm or less, and a packing density larger than 0.37 to 0.46 g / ml of coconut shell activated carbon. It is provided with an activated carbon column 32 that selectively adsorbs 99m Tc from 99 Mo using spherical activated carbon that can be packed with

この活性炭カラム32には、球状活性炭層に、99mTcを吸着する球状活性炭に高濃度アルカリ液を吸蔵させて、高濃度アルカリ液性を形成して99mTc溶出コンディション処理を行う99mTc溶出コンディション処理手段、高濃度アルカリ液性に対してアルカリ濃度匂配を形成する水によって、吸着された99mTcを99mTc溶出液として回収する99mTc溶出液回収手段が含まれる。 This activated charcoal column 32 the spherical activated carbon layer, by storing a high concentration alkali solution spherical activated carbon to adsorb 99m Tc, 99m Tc elution condition processing for 99m Tc elution condition processing to form a high-concentration alkali solution of means, by the water to form the alkali concentration odor distribution for the high-concentration alkaline solution resistance include 99m Tc eluate collecting means for collecting the adsorbed 99m Tc as 99m Tc eluent.

上記によって、回収した99mTc溶液の液性・液量を調整する99mTc溶出液調整手段としての調整タンク33、及び調整された99mTc溶出液を通液するアルミナカラム(1)34、アルミナカラム(2)35が接続される、これらのアルミナカラムで最終的な99mTc溶出液の中和調整がなされて精製され、生理食塩水と同等とされる。 According to the above, the adjustment tank 33 as 99m Tc eluate adjusting means for adjusting the liquidity / liquid amount of the recovered 99m Tc solution, the alumina column (1) 34 through which the adjusted 99m Tc eluate is passed, the alumina column (2) The final 99m Tc eluate is neutralized and purified with these alumina columns to which 35 is connected, and is made equivalent to physiological saline.

精製された99mTc溶出液が取り出されて回収され、放射性医薬品としての調整がなされ、医療機関に供給されることになる。 The purified 99m Tc eluate is taken out and collected, adjusted as a radiopharmaceutical, and supplied to a medical institution.

図2は、99mTcの回収工程を示す。
99mTcの高濃度回収は、99Mo溶液の取り入れ(S1)を第1のステップとする。99Mo溶液は、中性子照射法によって中性子を照射して製造された、親核種の放射性核種99Moが溶解されて形成される。
FIG. 2 shows a process for recovering 99m Tc.
99m Tc high concentration recovery is the first step with 99 Mo solution uptake (S1). The 99 Mo solution is formed by dissolving the radionuclide 99 Mo of the parent nuclide, which is produced by irradiating neutrons by the neutron irradiation method.

99Moは、99Moの崩壊によって生成される99mTcと放射平衡状態を形成する性質を持つ。この(n、γ)法によって形成された99Mo溶液がMoタンクに取り入れられ、貯蔵される。 99 Mo has a property of forming a radiation equilibrium state with 99m Tc generated by the decay of 99 Mo. The 99 Mo solution formed by this (n, γ) method is taken into the Mo tank and stored.

99mTc吸着捕集工程がなされる(S2)。この工程は、球状活性炭を備えた活性炭カラムによる吸着捕集工程である。 A 99m Tc adsorption and collection step is performed (S2). This step is an adsorption collection step using an activated carbon column equipped with spherical activated carbon.

Moタンク11中には99Mo溶液が格納されており、最大2リットル格納可能である。
Moタンク11中には放射平衡状態になっている99mTcが共存する。この時、もう一方のMoタンク12は空の状態である。このように、必ず一方のタンクは空とされている。
A 99 Mo solution is stored in the Mo tank 11, and a maximum of 2 liters can be stored.
In the Mo tank 11, 99m Tc in a radiation equilibrium state coexists. At this time, the other Mo tank 12 is empty. Thus, one of the tanks is always empty.

Moタンク11の99Mo溶液は、活性炭カラム32を通液し、Moタンク12に移送&格納される。この時、99Mo溶液は活性炭には滞留せずに、そのまま活性炭を通過してMoタンク12に移送される。 The 99 Mo solution in the Mo tank 11 passes through the activated carbon column 32 and is transferred and stored in the Mo tank 12. At this time, the 99 Mo solution does not stay in the activated carbon but passes through the activated carbon as it is and is transferred to the Mo tank 12.

99mTcのみが活性炭に吸着し99Moは吸着せずに通過し、もう一方のタンクに移送される。 Only 99m Tc is adsorbed on the activated carbon and 99 Mo passes without adsorbing and is transferred to the other tank.

活性炭が使用されているので、その孔等にMoが少量残留してしまう。そのMoを少量のHOで洗浄し、先のMoタンク12に回収する。
99Mo溶液の大半は活性炭を通過し別のタンクに回収される。
翌日(24時間以降)に、Moタンク12から始まり、99mTcの回収操作を行う。
フローで示せば、Moタンク12→活性炭カラム32→Moタンク11となる。
Since activated carbon is used, a small amount of Mo remains in the holes. The Mo is washed with a small amount of H 2 O and collected in the previous Mo tank 12.
Most of the 99 Mo solution passes through activated carbon and is collected in a separate tank.
The next day (after 24 hours), starting from the Mo tank 12, a 99m Tc recovery operation is performed.
In the flow, Mo tank 12 → activated carbon column 32 → Mo tank 11

この様に、99Mo量の許容範囲まで、交互のMoタンクを使用して99mTc回収操作を行う。 In this way, 99m Tc recovery operation is performed using alternating Mo tanks up to the allowable range of 99 Mo amount.

99Mo量が低くなると廃液タンク(Mo用)13に廃棄・保管する。そして新たな99Mo溶液をMoタンクの一方に供給する。 When 99 Mo amount becomes low, it is discarded and stored in the waste liquid tank (for Mo) 13. Then, a new 99 Mo solution is supplied to one of the Mo tanks.

廃液タンク13は、各種の形体のものが使用可能である。
Moタンク内で、ある一定の期間まで保管して放射能を減衰させ、最終的に廃棄する。
Various types of waste liquid tanks 13 can be used.
Store in a Mo tank for a certain period to attenuate the radioactivity and finally discard it.

99mTc溶出前処理工程がなされる(S3)。この工程は、球状活性炭に付着した99Mo洗浄工程と、高濃度アルカリ溶液を球状活性炭に吸蔵させて、高濃度アルカリ液性状を形成する、99mTc溶出コンディション処理である、活性炭コンディショニング処理からなる。 A 99m Tc elution pretreatment step is performed (S3). This process consists of a 99 Mo cleaning process adhering to the spherical activated carbon and an activated carbon conditioning process, which is a 99m Tc elution conditioning process in which the spherical activated carbon is occluded into the spherical activated carbon to form a highly concentrated alkaline liquid property.

99Mo洗浄操作して、少量のHOでMo洗浄・回収後に、未だ残留するMoの洗浄操作を行う。 99 Mo cleaning operation is performed, and after Mo cleaning / recovery with a small amount of H 2 O, the remaining Mo cleaning operation is performed.

室温でHOを100mlでカラム中に残留する99Moを洗浄し廃液タンク(1)38に廃棄する。
この操作では、加温(85℃)条件であったが室温に変わり、試薬の種類および液量が改善された。
At room temperature, 100 Mo of H 2 O is used to wash 99 Mo remaining in the column, and the waste liquid tank (1) 38 is discarded.
In this operation, although it was a heating (85 degreeC) condition, it changed to room temperature and the kind and liquid volume of the reagent were improved.

・活性炭コンディショニング操作(アルカリ吸蔵)
Tc溶脱しやすい様に、Tc吸着した活性炭にアルカリ(1.3M−NaOH)を通液し活性炭のコンディショニングを行う。
-Activated carbon conditioning operation (alkali occlusion)
In order to facilitate Tc leaching, the activated carbon is conditioned by passing an alkali (1.3 M NaOH) through the activated carbon adsorbed on Tc.

通過液は廃液タンク(1)38に廃棄する。
この操作では使用するアルカリ溶液は同じである。カラム温度条件が加温条件から室温に改善された。
The passing liquid is discarded in the waste liquid tank (1) 38.
In this operation, the alkaline solution used is the same. The column temperature condition was improved from the warming condition to room temperature.

99mTc溶出工程がなされる(S4)。この工程は、加温操作80℃でなされる。高濃度アルカリ液性の球状活性炭に対して、アルカリ濃度匂配を形成するために、水が溶出液として用いられる。(従来は、低濃度アルカリ液としての0.1M−NaOHが通液され、次いで水が通液されていたが、低濃度アルカリ液を通液することなく水のみを通液してもアルカリ濃度匂配が高く、99mTcを溶出させることができる。)水のみの通液による99mTcの溶出は、次工程における液性調整は、pH調製を必要とせず、NaCl濃度の調製だけで可能となる。 A 99m Tc elution step is performed (S4). This step is performed at a heating operation of 80 ° C. Water is used as the eluent to form an alkali concentration scent for high concentration alkaline liquid spherical activated carbon. (Conventionally, 0.1M NaOH as a low-concentration alkaline solution was passed, and then water was passed, but even if only water was passed without passing the low-concentration alkaline solution, the alkali concentration odor distribution is high, it is possible to elute the 99m Tc.) elution of 99m Tc by passing liquid water alone, humoral adjustment in the next step does not require pH adjustment, allows only the preparation of NaCl concentration Become.

アルカリコンディショニングした活性炭カラム32は最良条件下ではHOのみで99mTcが溶出することが可能となる。 The alkali-conditioned activated carbon column 32 can elute 99m Tc with only H 2 O under the best conditions.

指定の流速でHOを通液することで、アルカリ濃度勾配により、吸着した99mTcが溶離される。 By passing H 2 O at a specified flow rate, the adsorbed 99m Tc is eluted by an alkali concentration gradient.

溶出液(99mTc含む)は調整タンク33に回収される。
球状活性炭の大きな特徴として80℃(低温加熱)および少量で99mTcが溶出が可能であることが挙げられる。試薬についてもHOのみで溶出が可能で、低濃度アルカリ溶液を用いなくても十分回収が可能であった。液量についても少量に改善された。
The eluate (containing 99m Tc) is collected in the adjustment tank 33.
A major characteristic of the spherical activated carbon is that 99m Tc can be eluted at 80 ° C. (low temperature heating) and in a small amount. Reagents could also be eluted with H 2 O alone, and sufficient recovery was possible without using a low-concentration alkaline solution. The liquid volume was also improved to a small amount.

99mTc液性調整工程がなされる(S5)。この工程では、アルカリ性を示す99mTc溶出液の液性(生理食塩水濃度:0.9%NaCl)調整がなされる。高濃度(6%)NaClを使用して、極力99mTc回収液の液量を増やさないようにする。 A 99m Tc liquidity adjustment step is performed (S5). In this step, the liquidity (physiological saline concentration: 0.9% NaCl) of the 99m Tc eluate showing alkalinity is adjusted. Use high-concentration (6%) NaCl so as not to increase the amount of 99m Tc recovery liquid as much as possible.

調整タンク33に回収した溶出液に、約6%NaCl溶液を少量添加し塩濃度調整を行う。   A small amount of about 6% NaCl solution is added to the eluate collected in the adjustment tank 33 to adjust the salt concentration.

この調整タンク33に回収したTc溶出液はアルカリ性である。しかし活性炭の体積や以前の条件で使用したアルカリ溶液の量が少ないため、改善前のヤシ殻活性炭使用の溶出液よりアルカリ濃度(絶対量)が非常に少量となった。
この液量とアルカリ量であればアルミナ(酸性)5gで十分に緩衝し中性付近溶液が可能となった。
The Tc eluate collected in the adjustment tank 33 is alkaline. However, since the volume of the activated carbon and the amount of the alkaline solution used under the previous conditions were small, the alkali concentration (absolute amount) was much smaller than the eluate using the coconut shell activated carbon before the improvement.
With this liquid amount and alkali amount, 5 g of alumina (acidic) was sufficiently buffered, and a neutral solution was possible.

使用するアルミナはHClでコンディショニングしてあり酸性となっている。
しかし使用しているアルミナはHOや塩濃度の低い溶液を通液すると、構造体であるアルミニウム(AL)が溶解して最終のTc精製した回収液まで混入してしまうことがあるので、溶解したALは回収する。
The alumina used is conditioned with HCl and is acidic.
However, if the alumina used is passed through H 2 O or a solution with a low salt concentration, aluminum (AL), which is a structure, may be dissolved and mixed into the final Tc-purified recovered liquid. The dissolved AL is collected.

そこで溶出液を最終Tc回収液と同じ生理食塩水(0.9%−NaCl)と同等の塩濃度に高めて、アルミナカラムに通液することとした。   Therefore, the eluate was increased to a salt concentration equivalent to the same physiological saline (0.9% -NaCl) as the final Tc recovery solution and passed through the alumina column.

通過液はALの溶解も無く、pH5〜6となり、薬事法のpH4.5〜7の範囲に十分適合可能であった。   The passing liquid had no dissolution of AL and had a pH of 5 to 6, which was well suited to the pH range of 4.5 to 7 in the Pharmaceutical Affairs Law.

この時の塩濃度を高める操作に、約6%NaCl溶液を添加し、塩濃度の調整を行う操作を加えた。   An operation of adjusting the salt concentration by adding an approximately 6% NaCl solution was added to the operation of increasing the salt concentration at this time.

液量もアルカリ量も多いため酸溶液(1.0M−HCl)でpH調整操作を行って、pH調整および塩濃度調整を行っていた操作に比べて、本例による操作が改善されたことで、pHセンサー、試薬ライン、試薬供給装置等が無くなり、システム的に大きく改善された。   Since the amount of liquid and the amount of alkali are large, the pH adjustment operation is performed with an acid solution (1.0 M HCl), and the operation according to this example is improved compared to the operation where pH adjustment and salt concentration adjustment are performed. In addition, the pH sensor, reagent line, reagent supply device, etc. were eliminated and the system was greatly improved.

99mTc精製工程がなされる(S6)。この工程は、アルミナカラムによって精製となる。アルカリ性状を示す99mTc回収液は、アルミナカラムの持つ酸性性状によって中和される。従って、この段落では、もはやHClによる中和工程を設けることを要しない。 A 99m Tc purification step is performed (S6). This process is purified by an alumina column. The 99m Tc recovery liquid showing alkaline properties is neutralized by the acidic properties of the alumina column. Therefore, in this paragraph, it is no longer necessary to provide a neutralization step with HCl.

・溶出液pH調整および精製工程
調整タンク33にて調整した溶出液は、Tc回収容器38を減圧にすることで、アル
ミナカラム34、35を通過し、Tc回収容器38に回収される。
この操作でTc溶出液はpH調整され回収される。しかしアルミナにはTc溶液が残
留している。
精製された99mTc溶液は、99mTc高濃度溶液として回収される(S7)。
-Eluate pH adjustment and purification step The eluate adjusted in the adjustment tank 33 passes through the alumina columns 34 and 35 by reducing the pressure of the Tc recovery container 38, and is recovered in the Tc recovery container 38.
By this operation, the pH of the Tc eluate is adjusted and recovered. However, Tc solution remains in alumina.
The purified 99m Tc solution is recovered as a 99m Tc high-concentration solution (S7).

・アルミナカラム洗浄&Tc回収
アルミナカラム34、35中に残留するTcが多いため回収する。
調整タンク33に0.9%NaCl溶液を入れる。再度アルミナカラム34、35に
通過し、残存TcをTc回収容器38に回収する。
-Alumina column cleaning & Tc recovery Since there is much Tc remaining in the alumina columns 34 and 35, recovery is performed.
The adjustment tank 33 is filled with 0.9% NaCl solution. It passes through the alumina columns 34 and 35 again, and the remaining Tc is recovered in the Tc recovery container 38.

図3に、使用した活性炭の比較を示す。比較のためヤシ殻活性炭として白鷲(登録商標)及びクレハA−BAC(登録商標)が用いられた。   FIG. 3 shows a comparison of the activated carbon used. For comparison, Shirakaba (registered trademark) and Kureha A-BAC (registered trademark) were used as coconut shell activated carbon.

本実施例では、上述したように、合成体からなり、均一形状で平均粒径が0.6mm以下で、ヤシ殻活性炭の充填密度0.37〜0.4g/lよりも大きな充填密度、例えば0.6g/mlで充填された球状活性炭が用いられる。   In the present embodiment, as described above, it is made of a composite, has a uniform shape and an average particle size of 0.6 mm or less, and has a packing density higher than the packing density of coconut shell activated carbon of 0.37 to 0.4 g / l, for example, Spherical activated carbon filled at 0.6 g / ml is used.

平均粒径は、0.2〜0.6mm、望ましくは0.2〜0.4mmのものが好ましく用いられる。
●球状活性炭の種類
球状活性炭は、メーカが同じ方法で合成し、ふるいにかけて単純に粒径によって分けられており、細孔分布等の性状は同様の性状を示す。
The average particle diameter is preferably 0.2 to 0.6 mm, and more preferably 0.2 to 0.4 mm.
● Types of spherical activated carbon Spherical activated carbon is synthesized by the same method by the manufacturer, and is simply divided according to particle size by sieving, and the properties such as pore distribution show similar properties.

表1は、クレハの球状活性炭である99mTc(Re)吸着、溶離特性試験結果を示す。

Figure 2013134061
Table 1 shows the results of 99m Tc (Re) adsorption and elution characteristic test, which is Kureha's spherical activated carbon.
Figure 2013134061

試験結果から、99mTcの吸着、溶離に差が出るのはSP<MP<LP<Gと粒径が大きいと活性炭カラムに充填した時に、充填空隙に差が生じ、接触効率に差が生じることによるものと推定される。 From the test results, the difference in adsorption and elution of 99m Tc is that SP <MP <LP <G and the particle size is large. When the activated carbon column is packed, there will be a difference in the packing voids and a difference in the contact efficiency. It is estimated that

最大径のG−BAC G70RでもSV(空間速度:活性炭と通過液との接触時間の関係)を小さくすれば、99mTc吸着率は一定以上確保することができる。 Even with the largest diameter G-BAC G70R, 99m Tc adsorption rate can be secured above a certain level by reducing SV (space velocity: relationship between contact time between activated carbon and passing liquid).

クレハA−BAC SPは、平均粒径が0.2〜0.4mm、充填密度0.6g/mlを示して、99mTcの吸着、溶離についてヤシ殻活性炭に比較して最良の試験結果を示す。クレハA−GBAC G70Rは、平均粒径は0.6mmとなるが、充填密度は、ヤシ殻活性炭の0.37〜0.46g/mlに比べれば、この値以上にすることができ、ヤシ殻活性炭以上の性能を示す。
●球状活性炭とヤシ殻活性炭(粒状活性炭)の比較
Kureha A-BAC SP has an average particle size of 0.2 to 0.4 mm, a packing density of 0.6 g / ml, and shows the best test results for 99m Tc adsorption and elution compared to coconut shell activated carbon. . Kureha A-GBAC G70R has an average particle size of 0.6 mm, but the packing density can be higher than this value compared to 0.37 to 0.46 g / ml of coconut shell activated carbon. Shows performance over activated carbon.
● Comparison of spherical activated carbon and coconut shell activated carbon (granular activated carbon)

(1)不純物含有
球状活性炭もヤシ殻活性炭も99mTc吸着、溶離能力を有する。
球状活性炭を活性炭カラムに使用することの1つのメリットに、球状活性炭は、工業的に作製されるために不純物を少なくすることがある。
800℃灰化試験において試験後の灰分が球状活性炭に比べて10倍以上不純物を含む。これは、ヤシ殻活性炭がヤシ殻のためどうしても土壌ミネラルが残留してしまうことによる。BACの原料は石油ピッチのため、含まれるミネラル分がヤシ殻に比べれば少ない。
不純物の少なさは、放射性薬品とする放射性核種の製造工程が有利となる。
(1) Impurity content Both spherical activated carbon and coconut shell activated carbon have 99m Tc adsorption and elution ability.
One merit of using spherical activated carbon in the activated carbon column is that spherical activated carbon is produced industrially and therefore has less impurities.
In the 800 ° C. ashing test, the ash content after the test contains impurities 10 times or more compared to the spherical activated carbon. This is due to the fact that the coconut shell activated carbon is inevitably soil minerals remain for the coconut shell. Since the raw material for BAC is petroleum pitch, it contains less mineral than coconut shell.
For the small amount of impurities, the radionuclide production process as a radiopharmaceutical is advantageous.

(2)活性炭構造に伴う吸着性能
一般的に、活性炭の吸着は、主にミクロポア(小さな孔)で起き、輸送はマクロポア(大きな孔)でなされる。いわゆるサイズ効果である。
BACは、マクロポアをほとんどもたないという性状を示す。
BACは、マクロポアをほとんどないため、99mTcが直接ミクロポアに達し、吸着促進するものと考えられる。この性質は、溶離の際にも有利に働く。
(2) Adsorption performance associated with activated carbon structure Generally, adsorption of activated carbon occurs mainly in micropores (small pores), and transport is made in macropores (large pores). This is a so-called size effect.
BAC has the property of having few macropores.
Since BAC has almost no macropore, it is considered that 99m Tc directly reaches the micropore and promotes adsorption. This property also works favorably during elution.

ヤシ殻活性炭のように、植物系の活性炭は、SEM像などから分るように、マクロポアとミクロポアが網目状に複雑に入り組んでいるため、液だまりのような部分ができてしまい、吸着性能を悪くし、脱着の際の洗浄効果が悪くなるものと推定される。   Like coconut shell activated carbon, plant-based activated carbon has a complex network of macropores and micropores, as can be seen from the SEM image, etc., creating a puddle-like part and improving the adsorption performance. It is estimated that the cleaning effect at the time of desorption is deteriorated.

球状活性炭は、当然であるが形状が球状であり、充填密度を高めるのに有利になる。球状活性炭は、通液性がよく、接触効率向上に有利である。このため、密度を高め、充填密度が高くすることができる。このことは、同じ体積であれば、充填量を増やして、単位重量当たりの99mTc飽和吸着量をヤシ殻活性炭に比べて増やすことができ、装置を小型化にするのに有利である。 Naturally, the spherical activated carbon has a spherical shape, which is advantageous for increasing the packing density. Spherical activated carbon has good liquid permeability and is advantageous for improving contact efficiency. For this reason, a density can be raised and a packing density can be made high. If this is the same volume, the filling amount can be increased and the 99m Tc saturated adsorption amount per unit weight can be increased as compared with the coconut shell activated carbon, which is advantageous for downsizing the apparatus.

ヤシ殻活性炭は、破砕状で、しかも表面積を多くするために高賊活化するために、どうしても粉化物が生じやすく、形状は球状とはされ得ない。このことのために、上述したように、単位重量当たり99mTc飽和吸着量を増やすには、球状活性炭が有利である。 Coconut shell activated carbon is crushed and highly activated to increase the surface area. Therefore, powdered products are apt to be produced, and the shape cannot be made spherical. For this reason, as described above, spherical activated carbon is advantageous for increasing the 99m Tc saturated adsorption amount per unit weight.

球状活性炭は、球状のため、ヤシ殻活性炭に比べて強度が強く、かつ溶離性についても有利である。   Since spherical activated carbon is spherical, it has higher strength than coconut shell activated carbon and is advantageous in terms of elution.

図4は、活性炭実施例を示し、比較例と本発明の実施例を示す。各ステップは、図3におけるステップを示す。   FIG. 4 shows an activated carbon example, showing a comparative example and an example of the present invention. Each step indicates a step in FIG.

図4において、球状活性炭として、クレハ球状活性炭BACが用いられる。クレハ球状活性炭BACは、石油系ピッチを原料として、バインダーを使用することなく球状化し、炭化、賊活(細孔形成)した球状の均一形体の活性炭として知られている。ヤシ殻活性炭としては、日本エンバイロケミカルズのヤシ殻高腑活炭、ヤシ殻系普通賊活性が知られている。   In FIG. 4, Kureha spherical activated carbon BAC is used as the spherical activated carbon. Kureha Spherical Activated Carbon BAC is known as a spherical uniform shaped activated carbon that is spheroidized without using a binder, carbonized, and bandited (pore formation) using petroleum pitch as a raw material. As coconut shell activated carbon, Nippon Envirochemicals' coconut shell high-altitude activated charcoal and coconut shell ordinary bandit activity are known.

S2ステップにおいて、球状活性炭を採用することによって、上述した性質を生かすことで、ダウンフロー方式が好ましく用いられる。すなわち、各種溶液を緩和するのに加圧操作でなく、減圧操作する事で安全性を高めることができる。   In step S2, the downflow method is preferably used by utilizing spherical activated carbon to take advantage of the above-described properties. That is, safety can be improved by reducing pressure instead of pressurizing to relax various solutions.

S3ステップにおいて、洗浄は室温で良く(加温機器が不要)、装置をシンプルにすることができる。   In step S3, the cleaning may be performed at room temperature (no heating device is required), and the apparatus can be simplified.

S3ステップにおいて、好ましくは、NaHCOの加温発泡を利用した洗浄操作不要とすることができ、操作フローがシンプルとすることができる。 In the S3 step, it is possible to eliminate the need for a washing operation using NaHCO 3 warming foaming, and the operation flow can be simplified.

S3ステップにおいて、球状活性炭の粒径、充填容積が小さくなったため、液速度が1/2になっても液量を1/3に減少することができ、操作時間が短縮できた。   In step S3, since the particle size and filling volume of the spherical activated carbon were reduced, the liquid volume could be reduced to 1/3 even when the liquid speed was reduced to 1/2, and the operation time could be shortened.

S4ステップにおいて、ヤシ殻活性炭法において130℃だった加温温度が、好ましくは80℃でも可能となり、操作条件が緩和された。   In step S4, the heating temperature, which was 130 ° C. in the coconut shell activated carbon method, was preferably 80 ° C., and the operating conditions were relaxed.

S4ステップにおいて、前工程で使用したNaOHは、活性炭カラム内に保持した保持量のみで、追加することなく、99mTc溶出が可能となった。また好ましくは、HOの通液で99mTcの溶出が可能となり、操作フローがシンプルとなった。 In step S4, the NaOH used in the previous step can be eluted with 99m Tc without adding only the amount retained in the activated carbon column. Preferably, 99m Tc can be eluted by passing H 2 O, and the operation flow is simplified.

S4ステップにおいて、球状活性炭の充填容積が小さくすることができたため、溶出液量が少量となり、操作フローが軽減された。   In step S4, since the volume of spherical activated carbon could be reduced, the amount of the eluate was reduced and the operation flow was reduced.

S5ステップにおいて、上述した工程の改善によって99mTc溶液のアルカリ濃度が小さくなったため、中和操作を行わなくても後工程のアルミナの入ったカラムであるアルミナカラム(酸性アルミナ)への通液のみで、中和調整、すなわちpH調整が可能となった。 In step S5, since the alkali concentration of the 99m Tc solution has been reduced by the above-described process improvement, only the flow to an alumina column (acidic alumina), which is a column containing alumina in the subsequent process, is performed without performing a neutralization operation. Thus, neutralization adjustment, that is, pH adjustment became possible.

S6ステップにおいて、99mTc回収液をアルミナカラムに通すことで99Moなどの不純物を除去して、純粋な製品とする。 In S6 step, the 99m Tc recovering solution to remove impurities such as 99 Mo by passing an alumina column, and the pure product.

図4において、球状活性炭を用いることで、S2−S7の全工程に要する時間は比較例に比べて半分の2時間とすることができる。99mTcの半減期が6時間であることを考慮すると、全工程時間の半減期は放射性核種の注射液としての供給上大きなメリットとなる。また、99mTc溶液の回収量の低減は、注射液としての量の減少につながり、大きなメリットとなる。 In FIG. 4, by using spherical activated carbon, the time required for all steps S2-S7 can be reduced to 2 hours, which is half that of the comparative example. Considering that the half-life of 99m Tc is 6 hours, the half-life of the entire process time is a great merit in supplying the radionuclide as an injection solution. Moreover, the reduction of the recovery amount of the 99m Tc solution leads to a reduction of the amount as an injection solution, which is a great merit.

1…Moタンク部、2…Tc回収部、3…送液システム部、4…試薬供給部、11、12、13…Moタンク、32…活性炭カラム、33…調整タンク、34…アルミナカラム(1)、35…アルミナカラム(2)、38…Tc回収容器、39、40…ヒータ、100…99mTc高濃度回収装置。 DESCRIPTION OF SYMBOLS 1 ... Mo tank part, 2 ... Tc collection | recovery part, 3 ... Liquid feeding system part, 4 ... Reagent supply part, 11, 12, 13 ... Mo tank, 32 ... Activated carbon column, 33 ... Adjustment tank, 34 ... Alumina column (1 ), 35 ... alumina column (2), 38 ... Tc recovery container, 39, 40 ... heater, 100 ... 99m Tc high concentration recovery device.

Claims (9)

中性子照射法によって中性子を照射して製造された、親核種の放射性核種99Moが溶解されて形成された高濃度Mo溶液であって、娘核種の99mTcを含んだ高濃度Mo溶液をMoタンクに貯蔵し、
当該高濃度Mo溶液を、活性炭を活性炭層として内蔵する活性炭カラムへ通液して該活性炭に当該高濃度Mo溶液中の99mTcを選択的に吸着させ、
活性炭層に残留するMoを溶脱して除去し、活性炭に吸着された99mTcを活性炭からの99mTcの脱着処理を行って濃縮された99mTcを回収する99mTcの高濃縮回収方法において、
活性炭として、合成体から成り、均一形体で平均粒径が0.60mm以下でヤシ殻活性炭の充填密度0.37〜0.46g/mlよりも大きな充填密度で充填された球状活性炭を用いて、99mTcを選択的に吸着させ、
球状活性炭層に残留した99Mo溶液を洗浄溶液の通液によって溶脱させ、
99mTcを吸着する該球状活性炭に高濃度アルカリ液を吸蔵させて、高濃度アルカリ液性を呈する99mTc溶出コンディショニング処理を行い、前記高濃度アルカリ液性に対して、低濃度アルカリ液及び水、または水によってアルカリ濃度匂配を形成させることで吸着された99mTcを99mTc溶出液として回収し、
回収した99mTc溶液を精製調整し、精製調整された99mTc液を回収すること
を特徴とする99mTcの高濃度回収方法。
A high-concentration Mo solution produced by dissolving the parent nuclide radionuclide 99 Mo produced by neutron irradiation by a neutron irradiation method, and containing a daughter nuclide 99m Tc in a Mo tank Stored in
The high-concentration Mo solution is passed through an activated carbon column containing activated carbon as an activated carbon layer to selectively adsorb 99m Tc in the high-concentration Mo solution to the activated carbon.
The Mo remaining in the activated carbon layer is removed by leaching, the high concentration recovery method of 99m Tc to the 99m Tc adsorbed by the activated carbon to recover the 99m Tc 99m Tc enriched performs desorption processing of activated carbon,
As the activated carbon, a spherical activated carbon made of a synthetic material, having a uniform shape and an average particle size of 0.60 mm or less and filled with a packing density of coconut shell activated carbon larger than 0.37 to 0.46 g / ml, 99m Tc is selectively adsorbed,
The 99 Mo solution remaining in the spherical activated carbon layer is leached by passing a cleaning solution,
The spherical activated carbon that adsorbs 99m Tc is occluded with a high-concentration alkaline liquid, and is subjected to a 99m Tc elution conditioning process that exhibits high-concentration alkaline liquidity. Alternatively, 99m Tc adsorbed by forming an alkali concentration scent with water is recovered as a 99m Tc eluate,
Recovered 99m Tc solution was adjusted purification, high concentration recovery method of 99m Tc, which comprises recovering the 99m Tc solution purified adjusted.
請求項1において、回収した99mTc溶液に酸性溶液を添加することを行なうことなく、前記アルミナカラムに通液することで中和調整することを特徴とする99mTcの高濃度回収方法。 The method for recovering a high concentration of 99m Tc according to claim 1, wherein neutralization is adjusted by passing through the alumina column without adding an acidic solution to the recovered 99m Tc solution. 請求項1または2において、球状活性炭層に残留した99Mo溶液を水の通液によって溶脱させ、かつ球状活性炭層に滞留した99Mo溶液の溶脱に水を通液することを特徴とする99mTcの高濃度回収方法。 According to claim 1 or 2, 99m Tc, characterized in that the 99 Mo solution remaining on spherical activated carbon layer was leached by passing liquid water, and passing liquid water leaching 99 Mo solution staying in the spherical activated carbon layer High concentration recovery method. 請求項1において、前記Moタンクへの高濃度Mo溶液の送液及び該Moタンクから前記活性炭カラムへの高濃度Mo溶液の送液が、送液システム部の減圧ラインを介して減圧フローによってなされることを特徴とする99mTcの高濃度回収方法。 2. The high concentration Mo solution feeding to the Mo tank and the high concentration Mo solution feeding from the Mo tank to the activated carbon column according to claim 1 are performed by a decompression flow through a decompression line of a liquid feeding system unit. 99m Tc high concentration recovery method characterized by the above-mentioned. 中性子照射法によって中性子を照射して製造された、親核種の放射性核種99Moが溶解されて形成された高濃度Mo溶液であって、娘核種である99mTcを含んだ高濃度Mo溶液を貯蔵する高濃度Mo溶液貯蔵手段、
当該高濃度Mo溶液を、活性炭を活性炭層として内蔵する活性炭カラムへ通液して該活性炭に当該高濃度Mo溶液中の99mTcを選択的に吸着させる99mTc吸着手段、を備えて、活性炭に99mTcを吸着し濃縮して回収する99mTcの高濃縮回収装置において、
活性炭として、合成体から成り、均一形体で平均粒径が0.60mm以下で、ヤシ殻活性炭の充填密度0.37〜0.46g/mlよりも大きな充填密度で充填された、99mTcが選択的に吸着する球状活性炭を内蔵する活性カラムと、
球状活性炭層に残留した99Mo溶液を水の通液によって洗浄、溶脱させるMo溶脱手段、
該球状活性炭に高濃度アルカリ液を吸蔵させて、高濃度アルカリ液性を形成して99mTc溶出コンディショニング処理を行う99mTc溶出コンディショニング処理手段、
前記高濃度アルカリ液性に対して、低濃度アルカリ液及び水、または水によってアルカリ濃度匂配を形成させることで吸着された99mTcを99mTc溶出液として回収する99mTc溶出液回収手段、
回収した99mTc溶液精製調整する99mTc溶出液精製調整手段、及び
調整された99mTc溶出液から99mTcを回収する99mTc回収手段、
を有すること特徴とする99mTcの高濃度回収装置。
A high-concentration Mo solution formed by dissolving the radionuclide 99 Mo, the parent nuclide, produced by neutron irradiation by the neutron irradiation method, and storing the high-concentration Mo solution containing 99m Tc as the daughter nuclide High concentration Mo solution storage means,
The high concentration Mo solution, activated carbon provided with, 99m Tc suction means for selectively adsorbing 99m Tc of the high concentration Mo solution to the activated carbon passed through the activated charcoal column which incorporates as active carbon layer, the activated carbon In 99m Tc highly concentrated recovery equipment that absorbs 99m Tc, concentrates and recovers it,
99m Tc is selected as the activated carbon, which is composed of a synthetic material, and has a uniform shape and an average particle size of 0.60 mm or less, and is filled at a packing density greater than 0.37 to 0.46 g / ml of coconut shell activated carbon. An active column containing spherical activated carbon that adsorbs automatically,
Mo leaching means for washing and leaching 99 Mo solution remaining in the spherical activated carbon layer by passing water through,
Spherical activated carbon with a high concentration alkaline solution is occluded, 99m Tc elution conditioning processing means for 99m Tc elution conditioning process to form a high-concentration alkaline solution resistance,
The high relative density lye resistance, low concentration alkali solution, and water 99m Tc eluate collecting means for collecting the 99m Tc adsorbed by the formation of alkali concentration odor distribution as 99m Tc eluate with water,
99m Tc eluate purification adjustment means for adjusting the recovered 99m Tc solution purification, and 99m Tc recovery means for recovering 99m Tc from the adjusted 99m Tc eluate,
99m Tc high concentration recovery apparatus characterized by having.
請求項5において、前記99mTc溶出液精製調整が、アルカリ溶液を通液することなく、前記アルミナカラムに通液されることで該アルミナカラムが99mTc溶出調整作用をなすことを特徴とする99mTcの高濃度回収装置。 According to claim 5, wherein the 99m Tc eluate purification adjustment without passing liquid alkaline solution, the alumina column by being passed through the alumina column is characterized by forming the 99m Tc elution modulating effects 99m High concentration recovery device for Tc. 請求項5において、カラム中のMo溶脱手段および99mTc溶出コンディショニング処理が、室温で行われることを特徴とする99mTcの高濃度回収装置。 The high concentration recovery apparatus for 99m Tc according to claim 5, wherein the Mo leaching means in the column and the 99m Tc elution conditioning treatment are performed at room temperature. 請求項5から7のいずれかにおいて、前記Mo溶脱手段が、球状活性炭層に残留した99Mo溶液を通液によって溶脱させ、99mTc回収手段が、球状活性炭層に残留した99Mo溶液の溶脱に水を通液することを特徴とする99mTcの高濃度回収装置。 The Mo leaching means in any one of claims 5 to 7 is leached by passing 99 Mo solution remaining in the spherical activated carbon layer, and 99m Tc recovery means is used for leaching the 99 Mo solution remaining in the spherical activated carbon layer. 99m Tc high concentration recovery device characterized by passing water. 請求項5において、99mTcを含んだ高濃度Mo溶液を貯蔵するMoタンクを備えて、高レベル鉛遮蔽Moタンクユニットを形成し、前記活性炭カラムを備えて99mTcを回収する99mTcジェネレータ及び99mTc回収の時に生成される廃液を貯蔵する廃液タンクを備えて、中レベル鉛遮蔽Tc回収ユニットを形成し、これらのユニットを分離可能にして前記Moタンクと前記99mTcジェネレータとを配管で接続したことを特徴とする99mTcの高濃度回収装置。 According to claim 5, provided with a Mo tank for storing a high concentration Mo solution containing 99m Tc, to form a high-level lead shielding Mo tank unit, to recover the 99m Tc includes the activated carbon column 99m Tc generators and 99m A waste liquid tank for storing the waste liquid generated at the time of Tc recovery is provided to form a medium level lead shielded Tc recovery unit, and these units can be separated and the Mo tank and the 99m Tc generator are connected by piping. 99m Tc high concentration recovery device characterized by the above.
JP2011282471A 2011-12-23 2011-12-23 99mTc recovery method and 99mTc recovery device Active JP5916082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011282471A JP5916082B2 (en) 2011-12-23 2011-12-23 99mTc recovery method and 99mTc recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011282471A JP5916082B2 (en) 2011-12-23 2011-12-23 99mTc recovery method and 99mTc recovery device

Publications (2)

Publication Number Publication Date
JP2013134061A true JP2013134061A (en) 2013-07-08
JP5916082B2 JP5916082B2 (en) 2016-05-11

Family

ID=48910867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011282471A Active JP5916082B2 (en) 2011-12-23 2011-12-23 99mTc recovery method and 99mTc recovery device

Country Status (1)

Country Link
JP (1) JP5916082B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017935A (en) * 2014-07-11 2016-02-01 株式会社化研 DEVICE FOR RECOVERING 99mTc FOR MEDICAL DIAGNOSIS
CN106995882A (en) * 2017-01-16 2017-08-01 原子高科股份有限公司 A kind of method that use absorbent charcoal material extracts technetium from molybdenum solution
JP2018091708A (en) * 2016-12-02 2018-06-14 日本メジフィジックス株式会社 Technetium production device, technetium production method and radioactive medicine production method
CN113168929A (en) * 2019-03-11 2021-07-23 新华锦集团有限公司 99mTc separation and purification system and99mtc separation and purification method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118031A (en) * 1981-01-12 1982-07-22 Johoku Kagaku Kogyo Kk Separating, concentrating and recovering method for molybdenum from aqueous solution containing molybdenum
JPH08309182A (en) * 1995-05-22 1996-11-26 Japan Atom Energy Res Inst Molybdenum adsorbent for 99mo-99mtc generator, and preparation thereof
JP2004150977A (en) * 2002-10-31 2004-05-27 Kaken:Kk NEUTRON IRRADIATION NATURAL MOLYBDENUM TYPE TECHNETIUM 99m GENERATOR SYSTEM UTILIZING SELECTIVE MOLYBDENUM ADSORBENT USING ZIRCONIUM-BASED INORGANIC POLYMER, AND ITS MANUFACTURING DEVICE
JP2008102078A (en) * 2006-10-20 2008-05-01 Japan Atomic Energy Agency Method and device for manufacturing radioactive molybdenum and radioactive molybdenum manufactured by this method and this device
JP2011002370A (en) * 2009-06-19 2011-01-06 Kaken:Kk Method and system for concentration and elution recovery of radioactive technetium as material for radiopharmaceutical medicine and labeled compound of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118031A (en) * 1981-01-12 1982-07-22 Johoku Kagaku Kogyo Kk Separating, concentrating and recovering method for molybdenum from aqueous solution containing molybdenum
JPH08309182A (en) * 1995-05-22 1996-11-26 Japan Atom Energy Res Inst Molybdenum adsorbent for 99mo-99mtc generator, and preparation thereof
JP2004150977A (en) * 2002-10-31 2004-05-27 Kaken:Kk NEUTRON IRRADIATION NATURAL MOLYBDENUM TYPE TECHNETIUM 99m GENERATOR SYSTEM UTILIZING SELECTIVE MOLYBDENUM ADSORBENT USING ZIRCONIUM-BASED INORGANIC POLYMER, AND ITS MANUFACTURING DEVICE
JP2008102078A (en) * 2006-10-20 2008-05-01 Japan Atomic Energy Agency Method and device for manufacturing radioactive molybdenum and radioactive molybdenum manufactured by this method and this device
JP2011002370A (en) * 2009-06-19 2011-01-06 Kaken:Kk Method and system for concentration and elution recovery of radioactive technetium as material for radiopharmaceutical medicine and labeled compound of the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017935A (en) * 2014-07-11 2016-02-01 株式会社化研 DEVICE FOR RECOVERING 99mTc FOR MEDICAL DIAGNOSIS
JP2018091708A (en) * 2016-12-02 2018-06-14 日本メジフィジックス株式会社 Technetium production device, technetium production method and radioactive medicine production method
CN106995882A (en) * 2017-01-16 2017-08-01 原子高科股份有限公司 A kind of method that use absorbent charcoal material extracts technetium from molybdenum solution
CN113168929A (en) * 2019-03-11 2021-07-23 新华锦集团有限公司 99mTc separation and purification system and99mtc separation and purification method
CN113168929B (en) * 2019-03-11 2024-04-19 新华锦集团有限公司 99mTc separation and purification system99mTc separation and purification method

Also Published As

Publication number Publication date
JP5916082B2 (en) 2016-05-11

Similar Documents

Publication Publication Date Title
Jiménez-Reyes et al. Radioactive waste treatments by using zeolites. A short review
JP5427483B2 (en) Concentration, elution recovery method, and system of radiotechnetium as a raw material for radiopharmaceuticals and their labeled compounds
JP5916082B2 (en) 99mTc recovery method and 99mTc recovery device
KR102416164B1 (en) In particular a method for producing an iodine radioisotope fraction of I-131, in particular an iodine radioisotope fraction of I-131
EP3174068B1 (en) New method and apparatus for the production of high purity radionuclides
WO2006135374A2 (en) Rubidium-82 generator based on sodium nonatitanate support, and improved separation methods for the recovery of strontium-82 from irradiated targets
KR20030067476A (en) Inorganic sorbent for molybdenum-99 extraction from irradiated uranium solutions and its method of use
EP3992988A1 (en) Radionuclide production method and radionuclide production system
JP2014001952A (en) Radionuclide decontamination system and radionuclide decontamination method
Jiang et al. Cesium removal from wastewater: High-efficient and reusable adsorbent K1. 93Ti0. 22Sn3S6. 43
WO2013095108A1 (en) A column material and a method for adsorbing mo-99 in a 99mo/99mtc generator
JPWO2012039037A1 (en) Method and apparatus for separating and purifying technetium from molybdenum containing technetium, and method and apparatus for recovering molybdenum
JP6240382B2 (en) Radioactive cesium adsorbent and method for recovering radioactive cesium using the same
JP5916083B2 (en) 99mTc recovery device
JP2014224696A (en) Radioactive contamination water decontamination method
JP5175997B1 (en) Method and apparatus for treating radioactive cesium-containing water
AU2018207260B2 (en) Alternating flow column chromatography apparatus and method of use
Tatenuma et al. A mass-production process of a highly pure medical use 99mTc from natural isotopic Mo (n, γ) 99Mo without using uranium
WO2012039038A1 (en) Method for production/extraction of tc-99m utilizing mo-99, and mo-99/tc-99m liquid generator
KR20180052135A (en) Method of Preparing Silver-coated Alumina Adsorbents for the Separation of Fission Iodine from Fission Products and Silver-coated Alumina Adsorbents Prepared Therefrom
JP6355462B2 (en) 99mTc recovery device for medical diagnosis
JP6211639B2 (en) 99mTC formulation and 99mTC generator production method, 99mTC formulation and 99mTC generator production apparatus, and 99mTC generator column from low specific activity 99Mo using uranium as a raw material
KR101590941B1 (en) The method of adsorption and recovery of gas phase iodine generated in fission molybdenum production process
KR101401373B1 (en) a radioisotope producing device for both diagnossis and treatment and the method using thereof
Said et al. Fixation of radioactive isotopes on bentonite as radioactive waste treatment step

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160401

R150 Certificate of patent or registration of utility model

Ref document number: 5916082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250