WO2012039038A1 - Method for production/extraction of tc-99m utilizing mo-99, and mo-99/tc-99m liquid generator - Google Patents

Method for production/extraction of tc-99m utilizing mo-99, and mo-99/tc-99m liquid generator Download PDF

Info

Publication number
WO2012039038A1
WO2012039038A1 PCT/JP2010/066435 JP2010066435W WO2012039038A1 WO 2012039038 A1 WO2012039038 A1 WO 2012039038A1 JP 2010066435 W JP2010066435 W JP 2010066435W WO 2012039038 A1 WO2012039038 A1 WO 2012039038A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
solution
tank
extracting
producing
Prior art date
Application number
PCT/JP2010/066435
Other languages
French (fr)
Japanese (ja)
Inventor
恵子 田上
弘太郎 永津
滋夫 内田
利光 福村
康久 藤林
Original Assignee
独立行政法人放射線医学総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人放射線医学総合研究所 filed Critical 独立行政法人放射線医学総合研究所
Priority to PCT/JP2010/066435 priority Critical patent/WO2012039038A1/en
Publication of WO2012039038A1 publication Critical patent/WO2012039038A1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/001Recovery of specific isotopes from irradiated targets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • B01D15/363Anion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/05Processes using organic exchangers in the strongly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/20Anion exchangers for chromatographic processes
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/001Recovery of specific isotopes from irradiated targets
    • G21G2001/0042Technetium

Definitions

  • the present invention relates to a method for producing and extracting Tc-99m using Mo-99, and a Mo-99 / Tc-99m liquid generator, and in particular, technetium 99m, which is in great demand as a radiopharmaceutical, with a small amount of solvent and treatment.
  • the present invention relates to a method for producing and extracting Tc-99m using Mo-99, and a Mo-99 / Tc-99m liquid generator, which can be repeatedly produced remotely over time.
  • Technetium 99m (Tc-99m, half-life 6 hours), which is used worldwide in the fields of nuclear medicine and diagnostic imaging, is the leading role of over 70% of the radioisotopes used in nuclear medicine.
  • Molybdenum 99 (Mo-99, half-life 66 hours) is a radioisotope called Tc-99m parent nuclide because Tc-99m is generated with the decay of Mo-99.
  • An apparatus (Mo-99 / Tc-99m generator) capable of selectively recovering the generated Tc-99m by adsorbing Mo-99 onto a support such as alumina is commercially available (see Non-Patent Document 1, for example). ).
  • a raw material (Mo-99) to be adsorbed on a column has a very high specific activity (carrier-free Mo-99).
  • the manufacturing method capable of supplying such Mo-99 was limited to the 235 U (n, f) method derived from a nuclear reactor.
  • a technique for producing Mo-99 by the (n, ⁇ ) method or (p, x) method using Mo-98 or Mo-100 as a target material is about to be put into practical use. Since Mo-99 obtained by these methods coexists with Mo-98 or Mo-100 as the target material, the specific radioactivity is remarkably reduced (supported Mo-99). It is impossible to use.
  • Non-Patent Document 2 discloses a Dowex (registered trademark) -1 column from a Na 2 [ 99 Mo] MoO 4 solution obtained from (n, ⁇ ) 99 Mo produced in a nuclear reactor. Is used to collect Tc-99m using an alumina column and tandem, and Non-Patent Document 3 describes a technique for isolating Tc-99m by solution extraction from Mo-99 derived from highly concentrated uranium. Yes.
  • Patent Document 1 uses an alumina column for the adsorption of Mo-99, but the amount of Mo that can be adsorbed by the alumina column is not large. Introducing Mo-99 containing a large amount of Mo-98 or Mo-100 into an alumina column not only increases the amount of alumina but also when Tc-99m is to be recovered (eluted) from the column. A large amount of eluate is required. Therefore, in order to maintain stable Mo-99, for example, in a method in which zirconium and molybdenum are combined to prepare a column, a long processing time of about half a day or more is required to prepare the column. There is an operational problem.
  • Non-Patent Document 2 requires irritating and hygroscopic tetrabutylammonium bromide and toxic methyl chloride that needs to be careful of fire, and is inconvenient to handle. There is also a problem from the viewpoint of waste. Further, since MoO 4 2 ⁇ moves together with Na + , it is necessary to remove Na in the next use of Mo. In particular, when Mo-100 is used as a target material (Mo-99 raw material), the presence of Na is undesirable.
  • Non-Patent Document 3 is used when obtaining Tc-99m from Mo-99 derived from highly enriched uranium, but has versatility applicable even when non-radioactive Mo is mixed.
  • MLK methyl ethyl ketone
  • the oxidizing agent hydrogen peroxide which is used when dissolving Mo of the target material
  • the production of ketone peroxide is generated.
  • the risk of explosions is increased.
  • Mo-99 may be mixed into the Tc-99m solution.
  • the nuclide that the user wants to use is Tc-99m.
  • the amount of Tc-99m present in the solution is much smaller than that of the raw materials (Mo-100 and Mo-98) used to produce Mo-99.
  • the present invention has been made to solve the above-mentioned conventional problems.
  • the amount of the Tc-99m carrier can be reduced, and not only the size of the apparatus can be reduced. It is an object of the present invention to make it possible to significantly reduce the amount of solvent and processing time required for separation and purification and to collect Tc-99m multiple times.
  • the present invention has been made on the basis of the above knowledge, and after extracting and purifying Tc-99m by passing a Mo-99 solution containing Tc-99m through a first column packed with extraction chromatographic resin, A process for producing and extracting Tc-99m using Mo-99, characterized in that Tc-99m is extracted and purified again by the first column after waiting for the production of Tc-99m in the Mo-99 solution. .
  • a plurality of the first columns can be provided.
  • the plurality of first columns can be used sequentially.
  • the Mo-99-containing solution can be subdivided and the plurality of first columns can be used simultaneously.
  • the extraction chromatographic resin can be TEVA (registered trademark) resin.
  • the effluent from the first column can be passed through a second column packed with a 4-fold cross-linked anion exchange resin to separate and purify Tc-99m.
  • the effluent from the first column can be neutralized and then passed through the second column.
  • the 4-fold cross-linked anion exchange resin can be Dowex (registered trademark) 1 ⁇ 4 resin.
  • the present invention also provides a storage tank for a Mo-99 solution containing Tc-99m; A first column packed with extraction chromatographic resin; The Mo-99 solution is passed through the first column to extract and purify Tc-99m, and after waiting for the production of Tc-99m in the Mo-99 solution, Tc-99m is extracted again from the first column.
  • the present invention provides a Mo-99 / Tc-99m liquid generator characterized by being purified.
  • a second column packed with a 4-fold cross-linked anion exchange resin can be further provided downstream of the first column, through which the effluent from the first column passes.
  • the amount of Tc-99m present is very small, so that the amount of Tc-99m carrier can be reduced. This not only reduces the size of the apparatus, but also enables a significant reduction in the amount of solvent and processing time required for separation and purification.
  • the carrier (ion exchange resin) used in the present invention can be used a plurality of times, and so-called radioactive substance handling work can be performed remotely, so that the exposure problem of workers does not occur.
  • a plurality of processing systems can be prepared. For example, by preparing three independent processing systems, it is possible to insure against possible failures (for example, leakage of connection parts or malfunction of valves), and even if one processing system fails, The remaining two processes can reduce the damage to 1/3. Since each system is independent, the time required for the treatment is not extended, and the increase in the amount of solvents to be used is very small because the original amount used is small.
  • Mo-99-containing solutions main components are raw materials for producing Mo-99, such as Mo-98 and Mo-100), which have been used as generator nucleophilic solutions, are subjected to an appropriate cooling period. Can be reused. Therefore, especially expensive expensive isotopes such as Mo-100 can be used for the next Mo-99 production, and as a result, the cost required for the production of Tc-99m can be greatly reduced. . Supports (columns) used for separation and purification are originally one-time-use consumables and can be reused. However, even when discarded, the total cost can be ignored.
  • each radioactivity attenuates as shown in FIG. Fig. 1 (B) shows that Tc-99m is squeezed (collected) every day (every 24 hours).
  • Daughter nuclide Tc-99m is gradually produced from the Mo-99 containing solution, and the radioactivity of Tc-99m increases with time, but after 23 hours, the radioactivity of Mo-99 and Tc-99m is balanced. Reach the state. Therefore, Tc-99m can be efficiently obtained by introducing Mo-99 containing Tc-99m into the column and separating it.
  • Tc-99m can be obtained again by introducing Tc-99m-containing Mo-99 into the column again after 23 hours and separating the two. it can. Reprocessing is possible until the required radioactivity is obtained.
  • the recovery time for each Tc-99m is 23 hours, it is not limited. For example, if Tc-99m is recovered every 6 hours, which is the half-life of Tc-99m, about 42% of the radioactivity of Mo-99 present at the start is obtained.
  • Pipeline diagram showing effects of the present invention Pipeline diagram showing the configuration of the first embodiment of the generator section which is the main part of the present invention
  • a flow chart showing the processing procedure of the generator unit Similarly time chart of generator section Pipe diagram showing Tc separation and purification unit Similarly time chart of Tc separation and purification section Pipeline diagram showing the overall configuration of the second embodiment of the present invention
  • First embodiment of the generator unit 200 is a main portion of the present invention, as shown in FIG. 2, is supplied from Mo-99 production section 100 as shown in FIG. 3, from accelerator Mo-99, 100 Mo ( p, pn) 99 Mo, neutron-derived Mo-99, 100 Mo (n, 2n) 99 Mo, neutron-derived Mo-99, 98 Mo (n, ⁇ ) 99 Mo, reactor-derived Mo-99, 235
  • a Tc-containing Mo solution tank 132 in which a Tc-containing Mo solution of U (n, f) 99 Mo or Mo-99, 100 Mo ( ⁇ , n) 99 Mo derived from a photonuclear reaction is stored;
  • the TEVA resin packed in the first column 210 of the generator unit 200 is a tertiary amine due to its chemical structure, reacts with technetium to become a quaternary ammonium salt, and the adsorption becomes stronger.
  • a tertiary amine organic solvent has the ability to adsorb Tc, but back extraction from the organic solvent is difficult.
  • TEVA resin is preferred because it is infiltrated with a tertiary amine in a silica base and can be used like solid phase extraction.
  • Mo-99 derived from the accelerator is Mo-99 obtained by causing the charged particles to directly collide with the target material (Mo-100) by the accelerator.
  • the neutron-derived Mo-99 collides charged particles with a neutron generation target such as Be using an accelerator, and collides the obtained neutrons with target materials (Mo-98, Mo-100). Obtained and requires an accelerator, a neutron generation target, and a neutron irradiation port.
  • a neutron generation target such as Be using an accelerator
  • target materials Mo-98, Mo-100
  • Mo-99 derived from photonuclear reaction is obtained by colliding an electron of about 60 MeV with target material Mo-100 to obtain Mo-99, and an electron beam generator and an irradiation port are required.
  • the irradiated target is decomposed after being removed from the irradiation site, subjected to chemical treatment (Mo dissolution), and a large amount of non-radioactive Mo except for those using U-235 as a raw material.
  • the solution contains a small amount of Mo-99 (radionuclide).
  • the Mo-99 manufacturing unit 100 includes a target container 110 to which a charged particle (for example, proton) beam from an irradiation port 108 of an accelerator is irradiated, for example, vertically, and a target material dissolved or suspended in a liquid (referred to as a target solution).
  • a charged particle for example, proton
  • a target solution a target material dissolved or suspended in a liquid
  • An inert gas for drying also serving as a pressure source for liquid transport
  • a mixed solvent (H 2 O 2 + NH 4 OH) tank 122 for storing the recovery solvent, irradiation of the proton beam
  • the recovery solvent is introduced into the target container 110 through the pipe 114 by the pressure of the He gas supplied from the He tank 126, and the recovery solvent is re-dissolved.
  • a Tc-containing Mo recovery tank 132 that is introduced from the valve V6 to the target container 110 via the pipe 116, cleans the target container 110, takes out the liquid, and recovers it without discarding, and valves V1 to V8. And pipes 114, 126, and 128.
  • 124 is a solution trap disposed in the middle of the pipe 126 for allowing overflow of the solution from the target container 110
  • 130 is a filter for preventing the clogging of the downstream pipe due to the solid content of Mo. It is.
  • valves V2 and V4 are opened, and the target solution is injected into the target container 110.
  • the target container 110 is heated by the heater H1, and the valve V5 is opened and sucked by the pump P. Further, the valve V7a side is opened and He gas is introduced for drying to dry the target solution.
  • valve V8 is opened, exhausted through the trap 124, and the proton beam R1 is irradiated from the irradiation port 108.
  • valve V3 is opened, the solvent is supplied from the H 2 O 2 + NH 4 OH tank 122, the He gas is continuously supplied for stirring, and the heater H1 is turned on to form a solution.
  • the valve V8 is opened to exhaust from the trap side.
  • valves V1 and V7b are opened, and the Tc-containing Mo is recovered in the recovery tank 132.
  • valve V4 and V6 opening the valve V4 and V6, to supply H 2 O 2 + NH 4 OH from H 2 O 2 + NH 4 OH tank 122 to the target vessel 110, while washing the target container 110, opening the valve V1 and V7b side He gas is then flowed to recover the remaining portion.
  • the molybdenum solution used as the target solution is obtained by dissolving molybdenum oxide (MoO 3 is desirable) in 10 to 30% ammonia water.
  • MoO 3 molybdenum oxide
  • 10 to 30% hydrogen peroxide water may be added.
  • the above target solution is introduced from the bottom or side of the target container 110.
  • a pump or a cylinder can be used.
  • the amount of the solution introduced is determined in advance so that the thickness of the molybdenum compound after crystallization is 0.1 to 5 mm, but the area density of molybdenum is about 450 mg / cm 2 or more. .
  • heating is performed by the heater H1 fixed to the outer periphery of the target container 110.
  • the set temperature at this time is about 100 to 700 ° C., but 200 to 650 ° C. is desirable.
  • a gas here, helium gas
  • helium gas is sent into the target container to promote the release of the evaporated water.
  • ammonia gas and water are released together with the introduced gas to the outside of the target container.
  • only molybdenum oxide crystals exist on the bottom surface of the target container.
  • helium gas As the introduced gas, which is caused by not giving a nuclear reaction product when remaining in the target container 110.
  • the target substance introduced as a liquid inside the target container is prepared as a solid by drying and solidifying, whereby efficient irradiation becomes possible.
  • the target container 110 may be a sealed system or an open system. If it is an open system, it becomes possible to prevent the pressure rise resulting from the heat_generation
  • ammonia water or a mixed solution of ammonia water and hydrogen peroxide solution is introduced into the target container 110, and the irradiated molybdenum oxide is dissolved again for about 5 to 10 minutes.
  • warming and mixing by introducing gas are performed.
  • ammonia water is used at a concentration of 10 to 30% by weight
  • hydrogen peroxide water is used at a concentration of 10 to 30% by weight.
  • the amount of the liquid depends on the shape of the target container, but is 20 to 20% by volume.
  • a liquid volume corresponding to 80% is introduced. As the number of solutions increases, the efficiency with which Tc-99m and Mo-99 that may adhere to a wide range of the target container wall surface can be dissolved and recovered increases.
  • the molybdenum oxide redissolved solution in which Tc-99m or Mo-99 is dissolved is transferred to the outside of the target container by pumping helium gas or the like.
  • molybdenum oxide that could not be completely dissolved in the above-described process may block the recovery pipe. Therefore, by providing the filter 130 immediately after the target container and excluding them, stable solution transfer becomes possible.
  • the filter 130 provided in the middle of the pipe can be a commercially available product having a hole diameter of 0.22 ⁇ m or more, and the hole diameter is not limited unless the pipe is blocked.
  • quartz, polypropylene or Teflon registered trademark
  • Teflon registered trademark
  • the storage of the Tc-containing Mo solution in Step 1000 shown in FIG. 6, the TEVA process in Step 1010, the Mo recovery in Step 1020, and the Tc recovery in Step 1030 are performed.
  • valves V11 and V16 are opened, ultrapure water is supplied from the ultrapure water tank 211 to the TEVA column 210 and discarded from the drain, and then the valve V12 is opened. Then, 8N nitric acid is supplied from the first nitric acid tank 212 to the TEVA column 210 and discarded from the drain, and then the valve V13 is opened to supply 0.1N nitric acid from the second nitric acid tank 214 to the TEVA column 210. Pretreatments 1 to 4 are performed by discarding from the drain.
  • the reason for washing with 8N nitric acid is that, since 8N nitric acid is finally passed, substances that are likely to come out with 8N nitric acid in the final solution are excluded in advance.
  • the reason why 0.1N nitric acid is flowed is to prevent a vigorous neutralization reaction when a target solution containing a mixed solution of alkaline ammonia water and hydrogen peroxide water is added next.
  • valves V10 and V11 are opened, the Tc-containing Mo solution in the tank 132 is supplied to the TEVA column 210, the Tc is adsorbed on the TEVA column 210, and the Mo solution is recovered in the Mo recovery tank 132.
  • the water flow rate at this time can be set to, for example, 1-2 mL / min.
  • valve V14 is opened and about 4 mL of dilute NH 4 OH (about 0.01-1%) is supplied, and Mo remaining in the TEVA column 210 is recovered in the tank 132.
  • the water flow rate at this time can be set at, for example, 2 mL / min.
  • the solution recovered with dilute NH 4 OH is used for recovery and reuse of Mo.
  • cleaning with dilute ammonia water may be performed with ultrapure water.
  • the next cleaning with 1.5N nitric acid can be omitted.
  • 1.5N nitric acid is to remove as much Mo as possible by the TEVA column 210, and if there is Dowex 1 ⁇ 4, it can be omitted.
  • valve V13 is opened, and 4 mL of 0.1N nitric acid is passed through the second nitric acid tank 214 to wash the residual Mo.
  • the water flow rate at this time can be set at, for example, 2 mL / min.
  • valves V12 and V17 are opened, and, for example, 6 mL of 8N nitric acid is passed through the first nitric acid tank 212, and Tc is eluted from the TEVA resin and recovered.
  • the water flow rate can be set to, for example, 1-2 mL / min.
  • the 8N nitric acid used here is an appropriate concentration / amount that can recover a small amount of liquid and most of Tc, and does not extremely increase the amount of solution when neutralized with sodium hydroxide next time.
  • the recovery rate of technetium was 99% or more, and the residual rate of Mo was less than 0.1%.
  • the Tc-containing Mo generated by the generator unit 200 is separated and purified by, for example, a Tc separation and purification unit 300 as shown in FIG.
  • This Tc separation and purification unit 300 includes, for example, a second column (also referred to as a Dowex column) 320 packed with 0.75 mL of Dowex 1 ⁇ 4, a Tc recovery tank 330, a sodium hydroxide (NaOH) tank 340, It has a pure water tank 342, a first hydrochloric acid (HCl) tank 344, a second hydrochloric acid tank 346, valves V18 to V24, and piping.
  • Dowex 1 ⁇ 4 is a strongly basic anion exchange resin, and therefore technetium, an anion, is strongly adsorbed.
  • the valves V20 and V23 are opened, and the ultrapure water in the ultrapure water tank 342 is caused to flow into the Dowex column 320, and the pretreatment 5 is performed.
  • the valve 18 is opened and, for example, 6 mL of 8N NaOH in the NaOH tank 340 is supplied to the tank 220.
  • water is cooled because neutralization heat is generated.
  • 8N sodium hydroxide is used, but if the specified number is decreased, the amount of liquid increases for neutralization, so that it takes time for separation. Although neutralized with sodium hydroxide, it is made slightly alkaline.
  • valves V19 and V23 are opened and supplied to the Dowex column 320 to adsorb Tc and discharged from the drain.
  • the water flow rate at this time can be set to, for example, 1-2 mL / min.
  • ultrapure water is supplied from the ultrapure water tank 342 at 5 mL, for example, at a water flow rate of 1-2 mL / min to wash the Dowex column 320, and the washing solution is discarded.
  • ultrapure water is used because hydrochloric acid is continuously poured in, so washing the alkaline column with pure water causes changes in conditions such as generation of neutralization heat when hydrochloric acid is added. It is difficult.
  • valve V21 is opened, 1N hydrochloric acid in the first hydrochloric acid tank 344 is supplied at, for example, 5 mL (water flow rate is 2 mL / min), the Dowex column 320 is washed, and the washing solution is discarded. This is to remove Mo eluted from the column by hydrochloric acid treatment before adding 6N hydrochloric acid next time. In addition, if it is okay to overlook mixing of Mo, cleaning with 1N hydrochloric acid can be omitted.
  • valves V22 and V24 are opened, and 6N hydrochloric acid is supplied from the second hydrochloric acid tank 346 at, for example, 20 mL (water flow rate is 2 mL / min) to elute Tc from the Dowex 1 ⁇ 4 resin, and the Tc recovery tank Collect at 330. Even if the specified number is increased from that of 6N hydrochloric acid, the recovery rate is lowered rather than increased. If the specified number is lower than this, more solution is required to recover Tc.
  • post-processing 2 is performed by opening valves V20 and V23 and filling the ultrapure water tank 342 with ultrapure water. This is to prevent Dowex from drying, and instead of ultrapure water, a solvent having a reduced salt concentration may be filled.
  • the recovery rate of Tc was 85-88%, and the residual amount of Mo was 1 ⁇ g or less.
  • the resulting hydrochloric acid solution is provided after concentration by distillation or neutralization or dilution after neutralization. Even if the total amount of the solution finally reached 0.5 mL, the European Medicines Agency EMA announced on February 21, 2008. It can be less than 2.5 ppm, which is the upper limit of parenteral administration of Mo shown in the published guideline EMEA / CHMP / SWP / 4446/2000.
  • the recovered Mo-100 solution is left for one day, and if the process after TEVA is performed again, Tc can be purified again.
  • the TEVA column 210 is a single system, but a plurality of TEVA columns may be provided.
  • step 1002 for determining reuse and step 1004 for selecting a column when not reused are different from the procedure of the first embodiment shown in FIG.
  • the column line A is selected in step 1004
  • all the valves Va shown in FIG. 10 are opened and the pipe line to the column line A is connected.
  • the column line B is selected, all the valves Vb shown in FIG. 10 are opened and the pipe line to the column line B is connected.
  • This embodiment is effective for recovery of Tc particularly considering hygiene when there is a problem with repeated use of the ion exchange resin.
  • FIG. 12 shows a procedure for further separating and purifying Tc in the second embodiment.
  • step 1022 for performing Dowex processing is added.
  • a column is selected in step 1004
  • a TEVA column and a Dowex column are selected in pairs.
  • the third embodiment shown in FIG. 13 is provided with a plurality of TEVA columns and Dowex columns and a syringe S2 for subdivision, thereby limiting the amount of Mo-99-containing solution flowing into each column.
  • the load on each column is reduced.
  • the syringe S2 can also be used to weigh the minimum amount necessary to obtain the Tc to be used.
  • This third embodiment is effective for reducing the load on each resin when there is a concern about the radiation resistance of the resin, or for minimizing damage to a failure.
  • the resin packed in the first column 210 is not limited to TEVA, and the resin packed in the second column 320 is not limited to Dowex 1 ⁇ 4.
  • tanks for storing the same substances for example, helium tanks 116 and 222, mixed solvent (H 2 O 2 + NH 4 OH) tanks 122 and 134, ultrapure water tanks 211 and 342, HNO 3 tanks 212, 214 and 216, HCl tanks. 344, 346, etc. are not separate but common, and may have a predetermined concentration by adjusting the dilution amount as necessary.
  • Mo-99 production unit 112 target solution (Mo) Tank 116,222 ... helium (He) Tank 122,134 ... mixed solvent (H 2 O 2 + NH 4 OH) tank 132 ... Mo-99 Containing Mo solution tank 200 ... Generator section 210 ... First column (TEVA column) 211, 342 ... Ultrapure water tank ... 212,214,218 ... nitric acid (HNO 3) Tank 216 ... ammonia water (NH 4 OH) tank 300 ... technetium separation purification unit 320 ... second column (Dowex column) 330 ... Recovery solution tank 340 ... Sodium hydroxide (NaOH) tank 344, 346 ... Hydrochloric acid (HCl) tank

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Tc-99m produced from Mo-99 can be collected several times by passing an Mo-99 solution containing Tc-99m through a first column filled with an extraction chromatographic resin to extract and purify Tc-99m and extracting and purifying Tc-99m again using the first column after Tc-99m is generated in the Mo-99 solution.

Description

Mo-99を利用するTc-99mの製造・抽出方法、及び、Mo-99/Tc-99m液体ジェネレータMethod for producing and extracting Tc-99m using Mo-99, and Mo-99 / Tc-99m liquid generator
 本発明は、Mo-99を利用するTc-99mの製造・抽出方法、及び、Mo-99/Tc-99m液体ジェネレータに係り、特に、放射性薬剤として需要の大きいテクネチウム99mを、少ない溶媒量及び処理時間で遠隔的に繰り返し製造することが可能な、Mo-99を利用するTc-99mの製造・抽出方法、及び、Mo-99/Tc-99m液体ジェネレータに関する。 The present invention relates to a method for producing and extracting Tc-99m using Mo-99, and a Mo-99 / Tc-99m liquid generator, and in particular, technetium 99m, which is in great demand as a radiopharmaceutical, with a small amount of solvent and treatment. The present invention relates to a method for producing and extracting Tc-99m using Mo-99, and a Mo-99 / Tc-99m liquid generator, which can be repeatedly produced remotely over time.
 世界的に核医学、画像診断分野で利用されているテクネチウム99m(Tc-99m,半減期6時間)は、核医学において利用される放射性同位元素のうち、7割以上を占める主役である。モリブデン99(Mo-99,半減期66時間)は、Mo-99の崩壊に伴ってTc-99mが生成することから,上記Tc-99mの親核種とよばれる放射性同位元素である。Mo-99をアルミナなどの担持体へ吸着させるなどして、生成したTc-99mを選択的に回収できる装置(Mo-99/Tc-99mジェネレータ)が市販されている(例えば非特許文献1参照)。 Technetium 99m (Tc-99m, half-life 6 hours), which is used worldwide in the fields of nuclear medicine and diagnostic imaging, is the leading role of over 70% of the radioisotopes used in nuclear medicine. Molybdenum 99 (Mo-99, half-life 66 hours) is a radioisotope called Tc-99m parent nuclide because Tc-99m is generated with the decay of Mo-99. An apparatus (Mo-99 / Tc-99m generator) capable of selectively recovering the generated Tc-99m by adsorbing Mo-99 onto a support such as alumina is commercially available (see Non-Patent Document 1, for example). ).
 市販される一般的なMo-99/Tc-99mジェネレータにおいて、カラムへ吸着させる原料物質(Mo-99)は、極めて高い比放射能を持つものが利用される(無担体Mo-99)。このようなMo-99を供給できる製造手法は、原子炉由来の235U(n,f)法に限られていた。しかしながら、近年、Mo-98やMo-100をターゲット物質として、(n,γ)法あるいは(p,x)法によりMo-99を製造する手法が実用化されようとしている。これら手法で得られるMo-99は、ターゲット物質であるMo-98、あるいはMo-100と共存するため、比放射能が著しく低下し(担体添加Mo-99)、従来利用されるジェネレータの原料として利用することが不可能である。この理由は、ジェネレータに用いるカラム(通常、アルミナが用いられる)へMo-99を吸着させるとき、周囲に存在する大量の非放射性Mo(Mo-98あるいはMo-100)も同じように親和性があることから、目的とするMo-99を高効率で吸着させることができないことによる。従って、この解決のために、大量のMoを吸着できるアルミナを準備するか、Moに対して親和性及び吸着量の高い、別の材料で構成されるカラムを用いる手法が考えられる。 In a general Mo-99 / Tc-99m generator that is commercially available, a raw material (Mo-99) to be adsorbed on a column has a very high specific activity (carrier-free Mo-99). The manufacturing method capable of supplying such Mo-99 was limited to the 235 U (n, f) method derived from a nuclear reactor. However, in recent years, a technique for producing Mo-99 by the (n, γ) method or (p, x) method using Mo-98 or Mo-100 as a target material is about to be put into practical use. Since Mo-99 obtained by these methods coexists with Mo-98 or Mo-100 as the target material, the specific radioactivity is remarkably reduced (supported Mo-99). It is impossible to use. The reason is that when Mo-99 is adsorbed to a column used for a generator (usually alumina is used), a large amount of non-radioactive Mo (Mo-98 or Mo-100) present in the surrounding area has an affinity as well. This is because the target Mo-99 cannot be adsorbed with high efficiency. Therefore, in order to solve this problem, it is conceivable to prepare alumina capable of adsorbing a large amount of Mo, or use a column made of another material having high affinity and adsorption amount to Mo.
 液体を使ったジェネレータとして、非特許文献2には、原子炉で製造された(n,γ)99Moから得られたNa2[99Mo]MoO4溶液から、Dowex(登録商標)-1カラムをアルミナカラムとタンデムで用いてTc-99mを回収する技術が記載され、非特許文献3には、高濃縮ウラン由来のMo-99から溶液抽出によってTc-99mを単離する技術が記載されている。 As a generator using liquid, Non-Patent Document 2 discloses a Dowex (registered trademark) -1 column from a Na 2 [ 99 Mo] MoO 4 solution obtained from (n, γ) 99 Mo produced in a nuclear reactor. Is used to collect Tc-99m using an alumina column and tandem, and Non-Patent Document 3 describes a technique for isolating Tc-99m by solution extraction from Mo-99 derived from highly concentrated uranium. Yes.
 カラムへ吸着される物質をTc-99mではなく、Mo-99として、Tc-99mを、いわゆるジェネレータ手法によって製造する報告では、通常、Mo-99を何らかの担持体へ吸着・保持させ、その状態でTc-99mを製造する(Mo-99の減衰を待つ)。一定時間経過後(約1日)、生成したTc-99mが当該担持体に吸着性を示さないことを利用して、生理食塩液等の溶媒を用いて、Tc-99mのみを選択的に溶出させる手段が採られる。担持体(カラム)に親和性があるものはMo-99であり、Tc-99mをカラムへ保持させてからTc-99mを得る手法は、現在まで非特許文献2を除き、報告されていない。 In the report that the substance adsorbed to the column is not Tc-99m but Mo-99, and Tc-99m is produced by the so-called generator method, normally, Mo-99 is adsorbed and held on some support, and in that state Manufacture Tc-99m (wait for Mo-99 decay). After elapse of a certain time (about 1 day), using the fact that the produced Tc-99m does not adsorb to the carrier, only Tc-99m is selectively eluted using a solvent such as physiological saline. Measures are taken. Mo-99 has an affinity for the support (column), and no method for obtaining Tc-99m after holding Tc-99m on the column has been reported, except for Non-Patent Document 2.
 特許文献1に記載の技術は、Mo-99の吸着にアルミナカラムを用いているが、アルミナカラムが吸着できるMoの量は多くない。Mo-98やMo-100を大量に含むMo-99をアルミナカラムへ導入することは、アルミナ量を増加させるだけでなく、当該カラムからTc-99mを回収(溶出)させようとした場合に、大量の溶出液を必要とする。従って、安定したMo-99の保持を行うために、例えばジルコニウムとモリブデンを結合させ、カラムとして調製した手法では、当該カラムを調製するために、およそ半日以上の長い処理時間を必要とするといった、運用上の問題がある。結果として大量の非放射性Moが混在する原料を用いる製法には、Moを吸着させることを特徴とする手法は応用できない。特に、放射性物質を扱う以上、その物理的減衰を抑えるためにも、処理時間の延長は望ましくない。従って、具体的に本手法が適用可能となるMo-99は、高濃縮ウラン由来で得たものに限られるという問題点を有する。 The technique described in Patent Document 1 uses an alumina column for the adsorption of Mo-99, but the amount of Mo that can be adsorbed by the alumina column is not large. Introducing Mo-99 containing a large amount of Mo-98 or Mo-100 into an alumina column not only increases the amount of alumina but also when Tc-99m is to be recovered (eluted) from the column. A large amount of eluate is required. Therefore, in order to maintain stable Mo-99, for example, in a method in which zirconium and molybdenum are combined to prepare a column, a long processing time of about half a day or more is required to prepare the column. There is an operational problem. As a result, a method characterized by adsorbing Mo cannot be applied to a manufacturing method using a raw material in which a large amount of non-radioactive Mo is mixed. In particular, as long as radioactive materials are handled, it is not desirable to extend the processing time in order to suppress physical attenuation. Therefore, Mo-99, to which this method can be specifically applied, has a problem that it is limited to those obtained from highly enriched uranium.
 又、非特許文献2に記載の技術は、刺激性、吸湿性のある臭化テトラブチルアンモニウムや、毒性を有し、火気に注意する必要がある塩化メチルを必要とし、取扱が不便であるだけでなく、廃棄物の観点からも問題がある。又、MoO4 2-がNa+と共に移動するため、次回のMo利用において、Naの除去が必要となる。特にMo-100をターゲット物質(Mo-99原料)とする場合、Naの存在は望ましくないという問題点を有する。 In addition, the technique described in Non-Patent Document 2 requires irritating and hygroscopic tetrabutylammonium bromide and toxic methyl chloride that needs to be careful of fire, and is inconvenient to handle. There is also a problem from the viewpoint of waste. Further, since MoO 4 2− moves together with Na + , it is necessary to remove Na in the next use of Mo. In particular, when Mo-100 is used as a target material (Mo-99 raw material), the presence of Na is undesirable.
 更に、非特許文献3に記載の技術は、高濃縮ウラン由来のMo-99からTc-99mを得る場合に利用されているが、非放射性Moが混在する場合も適用可能な汎用性を持つ。但し,処理にメチルエチルケトン(MEK)を用いるため、酸化剤である過酸化水素(手法によっては、ターゲット物質のMoを溶解するときに利用される)が混入するMo溶液中では、過酸化ケトンの生成が懸念され、爆発等の危険性が高まる。また、溶液の移動において細かな制御を必要とし、まれにTc-99m溶液中にMo-99が混入する場合があるという問題点を有する。 Furthermore, the technique described in Non-Patent Document 3 is used when obtaining Tc-99m from Mo-99 derived from highly enriched uranium, but has versatility applicable even when non-radioactive Mo is mixed. However, since methyl ethyl ketone (MEK) is used for the treatment, in the Mo solution in which the oxidizing agent hydrogen peroxide (which is used when dissolving Mo of the target material) is mixed, the production of ketone peroxide is generated. The risk of explosions is increased. Further, there is a problem that fine control is required in the movement of the solution, and in some rare cases, Mo-99 may be mixed into the Tc-99m solution.
 使用者が利用したい核種はTc-99mである。Tc-99mの溶液中存在量は、Mo-99を製造するために利用する原料(Mo-100やMo-98)と比較するとはるかに微量である。 The nuclide that the user wants to use is Tc-99m. The amount of Tc-99m present in the solution is much smaller than that of the raw materials (Mo-100 and Mo-98) used to produce Mo-99.
 従来法のように、Mo-99に着目して吸着を行おうとする場合、Mo同位体すべてが吸着対象になるため、Mo-99原料由来の非放射性同位体Moの混入が避けられず、結果として大量の担持体を必要とし、長時間の処理が必要であった。また、その大量の担持体から、目的とするTc-99mを溶出する場合、大量の溶出液が必要であり、溶出した液に対して必要となる濃縮処理にも長時間を要していた。長時間処理は、放射性核種の物理的減衰(Tc-99mの半減期=6時間)の結果、製造量低下の原因となり、製造効率を著しく低下させる。 When adsorption is performed focusing on Mo-99 as in the conventional method, all the Mo isotopes become objects to be adsorbed, so the contamination of non-radioactive isotope Mo derived from the Mo-99 raw material is inevitable. A large amount of support was required, and a long-time treatment was required. In addition, when eluting the target Tc-99m from the large amount of the carrier, a large amount of the eluent is required, and the concentration process required for the eluted liquid also takes a long time. Long-term treatment causes a decrease in the production amount as a result of the physical decay of the radionuclide (Tc-99m half-life = 6 hours), and significantly reduces the production efficiency.
 本発明は、前記従来の問題点を解消するべくなされたもので、Tc-99mを選択的に吸着させることにより、Tc-99m担持体を少量にすることができ、装置の小型化だけでなく、分離精製に要する溶媒量や処理時間の大幅な削減を可能とすると共に、Tc-99mを複数回採取可能とすることを課題とする。 The present invention has been made to solve the above-mentioned conventional problems. By selectively adsorbing Tc-99m, the amount of the Tc-99m carrier can be reduced, and not only the size of the apparatus can be reduced. It is an object of the present invention to make it possible to significantly reduce the amount of solvent and processing time required for separation and purification and to collect Tc-99m multiple times.
 本発明は、上記知見に基いてなされたもので、Tc-99mを含有するMo-99溶液を抽出クロマトグラフィック樹脂を詰めた第1のカラムに通してTc-99mを抽出・精製後、
 Mo-99溶液でのTc-99mの生成を待って第1のカラムによりTc-99mを再び抽出・精製することを特徴とする、Mo-99を利用するTc-99mの製造・抽出方法である。
The present invention has been made on the basis of the above knowledge, and after extracting and purifying Tc-99m by passing a Mo-99 solution containing Tc-99m through a first column packed with extraction chromatographic resin,
A process for producing and extracting Tc-99m using Mo-99, characterized in that Tc-99m is extracted and purified again by the first column after waiting for the production of Tc-99m in the Mo-99 solution. .
 ここで、前記第1のカラムを複数設けることができる。 Here, a plurality of the first columns can be provided.
 又、前記複数の第1のカラムを順次利用することができる。 Also, the plurality of first columns can be used sequentially.
 又、前記Mo-99含有溶液を小分けして、前記複数の第1のカラムを同時に利用することができる。 In addition, the Mo-99-containing solution can be subdivided and the plurality of first columns can be used simultaneously.
 又、前記抽出クロマトグラフィック樹脂をTEVA(登録商標)レジンとすることができる。 Also, the extraction chromatographic resin can be TEVA (registered trademark) resin.
 又、前記第1のカラムからの流出液を、4倍架橋の陰イオン交換樹脂を詰めた第2のカラムに通して、Tc-99mを分離・精製することができる。 Further, the effluent from the first column can be passed through a second column packed with a 4-fold cross-linked anion exchange resin to separate and purify Tc-99m.
 又、前記第1のカラムからの流出液を中和した後、前記第2のカラムに通すことができる。 Alternatively, the effluent from the first column can be neutralized and then passed through the second column.
 又、前記4倍架橋の陰イオン交換樹脂を、Dowex(登録商標)1×4レジンとすることができる。 Further, the 4-fold cross-linked anion exchange resin can be Dowex (registered trademark) 1 × 4 resin.
 本発明は、又、Tc-99mを含有するMo-99溶液の貯蔵タンクと、
 抽出クロマトグラフィック樹脂を詰めた第1のカラムとを備え、
 前記Mo-99溶液を該第1のカラムに通してTc-99mを抽出・精製後、該Mo-99溶液でのTc-99mの生成を待って第1のカラムによりTc-99mを再び抽出・精製することを特徴とするMo-99/Tc-99m液体ジェネレータを提供するものである。
The present invention also provides a storage tank for a Mo-99 solution containing Tc-99m;
A first column packed with extraction chromatographic resin;
The Mo-99 solution is passed through the first column to extract and purify Tc-99m, and after waiting for the production of Tc-99m in the Mo-99 solution, Tc-99m is extracted again from the first column. The present invention provides a Mo-99 / Tc-99m liquid generator characterized by being purified.
 ここで、前記第1のカラムの下流に、更に、該第1のカラムからの流出液が通される、4倍架橋の陰イオン交換樹脂を詰めた第2のカラムを備えることができる。 Here, a second column packed with a 4-fold cross-linked anion exchange resin can be further provided downstream of the first column, through which the effluent from the first column passes.
 Tc-99mを選択的に吸着させる本発明は、Tc-99mの存在量が微量であることから、Tc-99m担持体を少量にすることが可能となる。これは装置の小型化だけに留まらず、分離精製に要する溶媒量や処理時間の大幅な削減を可能にする。 In the present invention in which Tc-99m is selectively adsorbed, the amount of Tc-99m present is very small, so that the amount of Tc-99m carrier can be reduced. This not only reduces the size of the apparatus, but also enables a significant reduction in the amount of solvent and processing time required for separation and purification.
 更に、Mo-99溶液でのTc-99mの生成を待って、Tc-99mを複数回採取可能とする。 Furthermore, after waiting for the generation of Tc-99m in the Mo-99 solution, it is possible to collect Tc-99m multiple times.
 また、本発明で利用する担持体(イオン交換樹脂)は、複数回利用可能であり、いわゆる放射性物質取扱い作業は、遠隔的に実施できるため、作業者の被ばく問題は起こらない。 In addition, the carrier (ion exchange resin) used in the present invention can be used a plurality of times, and so-called radioactive substance handling work can be performed remotely, so that the exposure problem of workers does not occur.
 さらに、分離精製に要する主要な部品類が小型のものであることから、複数の処理系統を準備することもできる。例えば3つの独立した処理系統を準備することで、万一の故障(例えば、接続部分の漏れや、バルブ類の機能不全)に対する保険をかけることができ、1つの処理系統が故障した場合でも、残り2つの処理により、被害を1/3に軽減することも可能になる。各系統が独立しているため、処理に要する時間は延長せず、使用する溶媒類などの増加も、もともとの使用量が少ないことから微小なものである。 Furthermore, since the main parts required for separation and purification are small, a plurality of processing systems can be prepared. For example, by preparing three independent processing systems, it is possible to insure against possible failures (for example, leakage of connection parts or malfunction of valves), and even if one processing system fails, The remaining two processes can reduce the damage to 1/3. Since each system is independent, the time required for the treatment is not extended, and the increase in the amount of solvents to be used is very small because the original amount used is small.
 ジェネレータ親核種溶液として使用用途を終えたMo-99含有溶液(主成分は、Mo-99を製造するための原料である、Mo-98やMo-100など)は、適度な冷却期間を経た後、再利用することが可能である。従って、特に高価な濃縮同位体であるMo-100などは、次回のMo-99製造に利用でき、結果的にTc-99mの製造に必要とする費用を、大幅に削減することが可能になる。分離・精製に利用した担持体(カラム)類は、元来1回使い捨ての消耗品であり、再利用することも可能であるが、廃棄した場合でも、総費用は無視できる。 Mo-99-containing solutions (main components are raw materials for producing Mo-99, such as Mo-98 and Mo-100), which have been used as generator nucleophilic solutions, are subjected to an appropriate cooling period. Can be reused. Therefore, especially expensive expensive isotopes such as Mo-100 can be used for the next Mo-99 production, and as a result, the cost required for the production of Tc-99m can be greatly reduced. . Supports (columns) used for separation and purification are originally one-time-use consumables and can be reused. However, even when discarded, the total cost can be ignored.
 Mo-99及びTc-99mを放置していると、各々の放射能は図1(A)のように減衰する。1日(24時間毎)にTc-99mを搾り出す(回収する場合)を図1(B)に示す。Mo-99含有溶液から娘核種のTc-99mが徐々に生成され、そのTc-99mの放射能は時間の経過と共に増加するが、23時間後にはMo-99とTc-99mの放射能が平衡状態に達する。そこで、Tc-99m含有Mo-99をカラムに導入し分離処理することで、Tc-99mを効率よく得ることができる。 If Mo-99 and Tc-99m are left unattended, each radioactivity attenuates as shown in FIG. Fig. 1 (B) shows that Tc-99m is squeezed (collected) every day (every 24 hours). Daughter nuclide Tc-99m is gradually produced from the Mo-99 containing solution, and the radioactivity of Tc-99m increases with time, but after 23 hours, the radioactivity of Mo-99 and Tc-99m is balanced. Reach the state. Therefore, Tc-99m can be efficiently obtained by introducing Mo-99 containing Tc-99m into the column and separating it.
 一方、分離したMo-99から依然とTc-99mの生成が続くので、再び23時間後にTc-99m含有Mo-99をカラムに導入し両者を分離することで、再度Tc-99mを得ることができる。必要とする放射能量が得られるまで、再処理が可能である。 On the other hand, since the production of Tc-99m continues from the separated Mo-99, Tc-99m can be obtained again by introducing Tc-99m-containing Mo-99 into the column again after 23 hours and separating the two. it can. Reprocessing is possible until the required radioactivity is obtained.
 なお、毎回のTc-99mの回収時間を23時間としたが、限定されない。例えば、Tc-99mの半減期である6時間毎にTc-99mの回収を行う場合、開始時に存在していたMo-99の放射能の約42%が得られる。 Although the recovery time for each Tc-99m is 23 hours, it is not limited. For example, if Tc-99m is recovered every 6 hours, which is the half-life of Tc-99m, about 42% of the radioactivity of Mo-99 present at the start is obtained.
本発明の効果を示す管路図Pipeline diagram showing effects of the present invention 本発明の要部であるジェネレータ部の第1実施形態の構成を示す管路図Pipeline diagram showing the configuration of the first embodiment of the generator section which is the main part of the present invention 同じくMo-99供給部の例を示す図The figure which similarly shows the example of Mo-99 supply section 同じく加速器由来のMo-99製造部の構成を示す管路図Pipe diagram showing the structure of the Mo-99 production department, also from the accelerator 同じくMo-99製造部のタイムチャートSimilarly time chart of Mo-99 manufacturing department 同じくジェネレータ部の処理手順を示す流れ図A flow chart showing the processing procedure of the generator unit 同じくジェネレータ部のタイムチャートSimilarly time chart of generator section 同じくTc分離精製部を示す管路図Pipe diagram showing Tc separation and purification unit 同じくTc分離精製部のタイムチャートSimilarly time chart of Tc separation and purification section 本発明の第2実施形態の全体構成を示す管路図Pipeline diagram showing the overall configuration of the second embodiment of the present invention 同じくジェネレータ部の処理手順を示す流れ図A flow chart showing the processing procedure of the generator unit 同じくTc分離精製部を加えた場合の流れ図Flow chart when adding Tc separation and purification unit 本発明の第3実施形態の全体構成を示す管路図Pipeline diagram showing the overall configuration of the third embodiment of the present invention
 以下図面を参照して、本発明の実施形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 本発明の要部であるジェネレータ部200の第1実施形態は、図2に示す如く、図3に示すようなMo-99製造部100から供給される、加速器由来のMo-99,100Mo(p,pn)99Mo、中性子由来のMo-99,100Mo(n,2n)99Mo、中性子由来のMo-99,98Mo(n,γ)99Mo、原子炉由来のMo-99,235U(n,f)99Mo、光核反応由来のMo-99,100Mo(γ,n)99MoのいずれかのTc含有Mo溶液が貯蔵されるTc含有Mo溶液タンク132と、該タンク132に例えば混合溶媒H22+NH4を供給するためのシリンジS1及び混合溶媒(H22+NH4)タンク134と、TEVAレジンが例えば2mL充填された第1のカラム(TEVAカラムとも称する)210と、超純水タンク211と、例えば8Nの硝酸HNOが充填された第1の硝酸(HNO)タンク212と、例えば0.1Nの硝酸が充填された第2の硝酸タンク214と、希アンモニア水が充填されたアンモニア水(NHOH)タンク216と、1.5Nの硝酸が充填された第3の硝酸タンク218と、Tc含有溶液回収タンク220と、液を送給するためのヘリウムガスが貯蔵されたヘリウム(He)タンク222と、バルブV9~V17及び配管を有する。 First embodiment of the generator unit 200 is a main portion of the present invention, as shown in FIG. 2, is supplied from Mo-99 production section 100 as shown in FIG. 3, from accelerator Mo-99, 100 Mo ( p, pn) 99 Mo, neutron-derived Mo-99, 100 Mo (n, 2n) 99 Mo, neutron-derived Mo-99, 98 Mo (n, γ) 99 Mo, reactor-derived Mo-99, 235 A Tc-containing Mo solution tank 132 in which a Tc-containing Mo solution of U (n, f) 99 Mo or Mo-99, 100 Mo (γ, n) 99 Mo derived from a photonuclear reaction is stored; For example, a syringe S1 for supplying a mixed solvent H 2 O 2 + NH 4 and a mixed solvent (H 2 O 2 + NH 4 ) tank 134 and a first column (also referred to as a TEVA column) filled with, for example, 2 mL of TEVA resin 210, ultrapure water tank 211, and example For example, a first nitric acid (HNO 3 ) tank 212 filled with 8N nitric acid HNO 3, a second nitric acid tank 214 filled with 0.1N nitric acid, for example, and ammonia water ( (NH 4 OH) tank 216, a third nitric acid tank 218 filled with 1.5N nitric acid, a Tc-containing solution recovery tank 220, and helium (He) in which helium gas for supplying the liquid is stored. It has a tank 222, valves V9 to V17, and piping.
 前記ジェネレータ部200の第1のカラム210に充填されるTEVAレジンは化学構造から第三級アミンであり、テクネチウムと反応して第4級アンモニウム塩になり、吸着が強くなる。第三級アミンの有機溶媒であれば、Tcを吸着する能力はあるが、有機溶媒から逆抽出してくるのが大変である。TEVAレジンは第三級アミンをシリカベースに浸潤させているものであり、固相抽出のように用いることができるので好ましい。 The TEVA resin packed in the first column 210 of the generator unit 200 is a tertiary amine due to its chemical structure, reacts with technetium to become a quaternary ammonium salt, and the adsorption becomes stronger. A tertiary amine organic solvent has the ability to adsorb Tc, but back extraction from the organic solvent is difficult. TEVA resin is preferred because it is infiltrated with a tertiary amine in a silica base and can be used like solid phase extraction.
 ここで、加速器由来のMo-99は、加速器によって荷電粒子を直接ターゲット物質(Mo-100)に衝突させ、得られたMo-99である。 Here, Mo-99 derived from the accelerator is Mo-99 obtained by causing the charged particles to directly collide with the target material (Mo-100) by the accelerator.
 又、中性子由来のMo-99は、加速器によって荷電粒子をBeなどの中性子発生ターゲットに衝突させ、得られた中性子をターゲット物質(Mo-98、Mo-100)に衝突させて、Mo-99を得たものであり、加速器と、中性子発生ターゲットと、中性子照射ポートが必要である。 In addition, the neutron-derived Mo-99 collides charged particles with a neutron generation target such as Be using an accelerator, and collides the obtained neutrons with target materials (Mo-98, Mo-100). Obtained and requires an accelerator, a neutron generation target, and a neutron irradiation port.
 又、原子炉由来のMo-99は、炉内部で発生した中性子がU-235と衝突し、その結果、核分裂生成物として、Mo-99が得られたものである。U-235の濃縮度は関係ないが、原子炉内燃料棒相当の寸法をもったターゲット、あるいは炉内外周での照射などが必要である。 In addition, in the case of Mo-99 derived from a nuclear reactor, neutrons generated inside the reactor collide with U-235, and as a result, Mo-99 was obtained as a fission product. Irrespective of the enrichment of U-235, it is necessary to irradiate a target having a size equivalent to a fuel rod in the reactor, or irradiation on the outer periphery of the reactor.
 又、光核反応由来のMo-99は、60MeV程度の電子をターゲット物質Mo-100に衝突させて、Mo-99を得たものであり、電子線発生装置と、照射ポートが必要である。 Also, Mo-99 derived from photonuclear reaction is obtained by colliding an electron of about 60 MeV with target material Mo-100 to obtain Mo-99, and an electron beam generator and an irradiation port are required.
 いずれの手法にせよ、照射したターゲットは、照射部位から取り外した後分解され、化学処理(Moの溶解)が行われ、U-235を原料としたものを除き,大量の非放射性Moの中に、僅かなMo-99(放射性核種)が存在する溶液になっている。 Regardless of the method, the irradiated target is decomposed after being removed from the irradiation site, subjected to chemical treatment (Mo dissolution), and a large amount of non-radioactive Mo except for those using U-235 as a raw material. The solution contains a small amount of Mo-99 (radionuclide).
 加速器由来のMo-99製造部100の一例を図4に示す。このMo-99製造部100は、加速器の照射口108からの荷電粒子(例えば陽子)ビームが例えば垂直に照射されるターゲット容器110と、液体(ターゲット溶液と称する)に溶解又は懸濁したターゲット物質(Mo-100)を前記ターゲット容器110に供給するためのターゲット溶液(Mo)タンク112と、前記ターゲット容器110中でターゲット溶液中の液体部分を減少させて固形化するための、加熱用ヒーターH1、乾燥用(液体輸送の圧力源も兼ねる)の不活性ガス、例えばヘリウムガスを供給するためのヘリウム(He)タンク116、流量制御計118及び蒸発・排気促進用の減圧ポンプ(例えば真空ポンプ)Pと、回収用溶媒を貯えるための混合溶媒(H22+NH4OH)タンク122と、陽子ビームの照射終了後、前記Heタンク126から供給されるHeガスの圧力により回収用溶媒を配管114を介してターゲット容器110の内部へ導入し、ターゲット物質を再び溶解させるためのバルブV3と、回収用溶媒をバルブV6から配管116を介して前記ターゲット容器110に導入し、該ターゲット容器110を洗浄すると共に、液体を取り出して、廃棄せずに回収するためのTc含有Mo回収タンク132と、バルブV1~V8及び配管114、126、128を備えている。図において、124は、ターゲット容器110からの溶液のオーバーフローを許容するための、配管126の途中に配設された溶液トラップ、130は、Moの固形分による下流配管の閉塞を防止するためのフィルタである。 An example of an accelerator-derived Mo-99 manufacturing unit 100 is shown in FIG. The Mo-99 manufacturing unit 100 includes a target container 110 to which a charged particle (for example, proton) beam from an irradiation port 108 of an accelerator is irradiated, for example, vertically, and a target material dissolved or suspended in a liquid (referred to as a target solution). A target solution (Mo) tank 112 for supplying (Mo-100) to the target container 110, and a heater H1 for reducing and solidifying the liquid portion in the target solution in the target container 110 , An inert gas for drying (also serving as a pressure source for liquid transport), for example, a helium (He) tank 116 for supplying helium gas, a flow controller 118, and a vacuum pump for promoting evaporation and exhaust (for example, a vacuum pump) and P, a mixed solvent (H 2 O 2 + NH 4 OH) tank 122 for storing the recovery solvent, irradiation of the proton beam After the completion, the recovery solvent is introduced into the target container 110 through the pipe 114 by the pressure of the He gas supplied from the He tank 126, and the recovery solvent is re-dissolved. A Tc-containing Mo recovery tank 132 that is introduced from the valve V6 to the target container 110 via the pipe 116, cleans the target container 110, takes out the liquid, and recovers it without discarding, and valves V1 to V8. And pipes 114, 126, and 128. In the figure, 124 is a solution trap disposed in the middle of the pipe 126 for allowing overflow of the solution from the target container 110, and 130 is a filter for preventing the clogging of the downstream pipe due to the solid content of Mo. It is.
 この加速器由来のMo-99製造部100では、図5に示すタイムチャートの如く、先ず、バルブV2とV4を開いて、ターゲット溶液をターゲット容器110に注入する。 In the accelerator-derived Mo-99 manufacturing unit 100, as shown in the time chart of FIG. 5, first, the valves V2 and V4 are opened, and the target solution is injected into the target container 110.
 次いで、ヒーターH1でターゲット容器110を加熱すると共に、バルブV5を開いて、ポンプPにより吸引し、更に、バルブV7a側を開いて乾燥用にHeガスを導入して、ターゲット溶液を乾燥する。 Next, the target container 110 is heated by the heater H1, and the valve V5 is opened and sucked by the pump P. Further, the valve V7a side is opened and He gas is introduced for drying to dry the target solution.
 次いで、バルブV8を開き、トラップ124を介して排気すると共に、照射口108から陽子ビームR1を照射する。 Next, the valve V8 is opened, exhausted through the trap 124, and the proton beam R1 is irradiated from the irradiation port 108.
 次いで、バルブV3を開いて、H22+NH4OHタンク122から溶媒を供給し、続けて撹拌用にHeガスを供給すると共に、ヒーターH1をオンとして溶液化する。この間バルブV8を開いてトラップ側から排気する。 Next, the valve V3 is opened, the solvent is supplied from the H 2 O 2 + NH 4 OH tank 122, the He gas is continuously supplied for stirring, and the heater H1 is turned on to form a solution. During this time, the valve V8 is opened to exhaust from the trap side.
 次いで、バルブV1及びV7b側を開いて、回収タンク132にTc含有Moを回収する。 Next, the valves V1 and V7b are opened, and the Tc-containing Mo is recovered in the recovery tank 132.
 更に、バルブV4とV6を開き、H22+NH4OHタンク122からターゲット容器110にH22+NH4OHを供給して、ターゲット容器110を洗浄しつつ、バルブV1とV7b側を開いてHeガスを流して残留部分を回収する。 Further, opening the valve V4 and V6, to supply H 2 O 2 + NH 4 OH from H 2 O 2 + NH 4 OH tank 122 to the target vessel 110, while washing the target container 110, opening the valve V1 and V7b side He gas is then flowed to recover the remaining portion.
 ここでターゲット溶液として用いるモリブデン溶液は、酸化モリブデン(MoO3が望ましい)を10~30%のアンモニア水に溶解して得られる。溶解を促進させるために、10~30%の過酸化水素水を加えてもよく、この場合の溶液組成は、25%アンモニア水:30%過酸化水素水=1:1から1:2が望ましい。 Here, the molybdenum solution used as the target solution is obtained by dissolving molybdenum oxide (MoO 3 is desirable) in 10 to 30% ammonia water. In order to promote dissolution, 10 to 30% hydrogen peroxide water may be added. In this case, the solution composition is preferably 25% ammonia water: 30% hydrogen peroxide water = 1: 1 to 1: 2. .
 ターゲット容器110底部あるいは側面から、上記したターゲット溶液を導入する。溶液の導入にあたり、ポンプやシリンダーなどを用いることができる。溶液の導入量は、結晶後のモリブデン化合物の厚みが0.1~5mmとなる量をあらかじめ決定しておくこととするが、モリブデンの面積密度は、約450mg/cm2以上になるものとする。 The above target solution is introduced from the bottom or side of the target container 110. In introducing the solution, a pump or a cylinder can be used. The amount of the solution introduced is determined in advance so that the thickness of the molybdenum compound after crystallization is 0.1 to 5 mm, but the area density of molybdenum is about 450 mg / cm 2 or more. .
 当該溶液の乾燥にあたり、ターゲット容器110の外周へ固定したヒーターH1によって加熱を行う。このときの設定温度は約100~700℃とするが、200~650℃が望ましい。さらに、ターゲット容器内部に気体(ここではヘリウムガス)を送り、蒸発した水分の放出を促進させる。水分の放出が終わると、モリブデン酸アンモニウム塩の析出が起こるが、さらに加熱を続けることにより、当該化合物は、酸化モリブデンと、アンモニアガス、水に分解する。このとき、アンモニアガス及び水は、導入気体とともにターゲット容器外へ放出される結果、ターゲット容器底面には酸化モリブデンの結晶のみが存在する。 In drying the solution, heating is performed by the heater H1 fixed to the outer periphery of the target container 110. The set temperature at this time is about 100 to 700 ° C., but 200 to 650 ° C. is desirable. Further, a gas (here, helium gas) is sent into the target container to promote the release of the evaporated water. When the release of moisture is finished, precipitation of ammonium molybdate occurs, but the compound decomposes into molybdenum oxide, ammonia gas, and water by further heating. At this time, ammonia gas and water are released together with the introduced gas to the outside of the target container. As a result, only molybdenum oxide crystals exist on the bottom surface of the target container.
 導入気体は、ヘリウムガスを用いることが望ましく、これはターゲット容器110内部に残留した際、核反応生成物を与えないことに起因する。あるいは、水素あるいは一酸化炭素を導入し、上記酸化モリブデンの還元を行うことも好まれる。なぜなら、還元によって得られる結晶について、単位体積あたりのモリブデン含有量を増加させることが可能になり、核反応効率が上昇する結果、得られるTc-99mあるいはMo-99の収量を増加させることが可能になるためである。 It is desirable to use helium gas as the introduced gas, which is caused by not giving a nuclear reaction product when remaining in the target container 110. Alternatively, it is also preferable to reduce the molybdenum oxide by introducing hydrogen or carbon monoxide. This is because it is possible to increase the molybdenum content per unit volume of the crystals obtained by reduction, and increase the yield of Tc-99m or Mo-99 as a result of increasing the nuclear reaction efficiency. Because it becomes.
 上記のとおり、ターゲット容器内部に液体として導入したターゲット物質を、乾燥固化によって固体として調製したことで、効率的な照射が可能になる。 As described above, the target substance introduced as a liquid inside the target container is prepared as a solid by drying and solidifying, whereby efficient irradiation becomes possible.
 照射中、ターゲット容器110は密封系としても開放系としても構わない。開放系であれば、照射時の発熱に起因する圧力上昇を防ぐことが可能になり、ターゲット容器を破損させることのない照射が可能になる。 During irradiation, the target container 110 may be a sealed system or an open system. If it is an open system, it becomes possible to prevent the pressure rise resulting from the heat_generation | fever at the time of irradiation, and irradiation without damaging a target container is attained.
 照射終了後、ターゲット容器110内部にアンモニア水あるいは、アンモニア水+過酸化水素水混合溶液を導入し、約5~10分間かけて照射した酸化モリブデンを再溶解させる。溶解促進のため、加温、気体の導入による混和などを行う。 After completion of irradiation, ammonia water or a mixed solution of ammonia water and hydrogen peroxide solution is introduced into the target container 110, and the irradiated molybdenum oxide is dissolved again for about 5 to 10 minutes. In order to promote dissolution, warming and mixing by introducing gas are performed.
 導入する液として、アンモニア水は10~30%重量パーセント濃度、過酸化水素水は10~30%重量パーセント濃度を用いることとし、その液量は、ターゲット容器形状に依存するが、容積の20~80%に相当する液量を導入する。溶液の増加に伴い、ターゲット容器壁面に広範囲に付着している可能性があるTc-99mやMo-99を溶解、回収できる効率が上がる。 As liquids to be introduced, ammonia water is used at a concentration of 10 to 30% by weight, and hydrogen peroxide water is used at a concentration of 10 to 30% by weight. The amount of the liquid depends on the shape of the target container, but is 20 to 20% by volume. A liquid volume corresponding to 80% is introduced. As the number of solutions increases, the efficiency with which Tc-99m and Mo-99 that may adhere to a wide range of the target container wall surface can be dissolved and recovered increases.
 次に、Tc-99mあるいはMo-99が溶解した酸化モリブデン再溶解液を、ヘリウムガス等の圧送によって、ターゲット容器外部へ移送する。このとき、前述の工程で溶解しきれなかった酸化モリブデンが回収配管を閉塞させる恐れがあるため、ターゲット容器直後にフィルタ130を設け、それらを除外することで、安定した溶液の移送が可能になる。この配管途中に設けるフィルタ130は0.22μm以上の孔径を持つ市販品とすることができ、配管の閉塞をおこさなければ孔径に制限は無い。フィルタ材質としては、特に石英、ポリプロピレンあるいはテフロン(登録商標)が望ましいが、材質に制限はない。 Next, the molybdenum oxide redissolved solution in which Tc-99m or Mo-99 is dissolved is transferred to the outside of the target container by pumping helium gas or the like. At this time, molybdenum oxide that could not be completely dissolved in the above-described process may block the recovery pipe. Therefore, by providing the filter 130 immediately after the target container and excluding them, stable solution transfer becomes possible. . The filter 130 provided in the middle of the pipe can be a commercially available product having a hole diameter of 0.22 μm or more, and the hole diameter is not limited unless the pipe is blocked. As a filter material, quartz, polypropylene or Teflon (registered trademark) is particularly desirable, but the material is not limited.
 前記ジェネレータ部200では、図6に示すステップ1000のTc含有Mo溶液の貯蔵、ステップ1010のTEVA処理、ステップ1020のMo回収、ステップ1030のTc回収が行われる。 In the generator unit 200, the storage of the Tc-containing Mo solution in Step 1000 shown in FIG. 6, the TEVA process in Step 1010, the Mo recovery in Step 1020, and the Tc recovery in Step 1030 are performed.
 具体的には、図7に示すタイムチャートの如く、まずバルブV11とV16を開いて超純水タンク211から超純水をTEVAカラム210に供給してドレインから廃棄し、次いで、バルブV12を開いて第1の硝酸タンク212から8Nの硝酸をTEVAカラム210に供給してドレインから廃棄し、次いでバルブV13を開いて第2の硝酸タンク214から0.1Nの硝酸をTEVAカラム210に供給してドレインから廃棄することにより、前処理1~4を行う。ここで、8Nの硝酸で洗浄するのは、最終的に8N硝酸を流すので、最終の溶液に8N硝酸で出てきてしまいそうな物質を予め排除しておくためである。又、0.1N硝酸を流すのは、次にアルカリ性のアンモニア水と過酸化水素水の混合溶液を含むターゲット溶液を入れた際の激しい中和反応を防止するためである。 Specifically, as shown in the time chart of FIG. 7, first, valves V11 and V16 are opened, ultrapure water is supplied from the ultrapure water tank 211 to the TEVA column 210 and discarded from the drain, and then the valve V12 is opened. Then, 8N nitric acid is supplied from the first nitric acid tank 212 to the TEVA column 210 and discarded from the drain, and then the valve V13 is opened to supply 0.1N nitric acid from the second nitric acid tank 214 to the TEVA column 210. Pretreatments 1 to 4 are performed by discarding from the drain. Here, the reason for washing with 8N nitric acid is that, since 8N nitric acid is finally passed, substances that are likely to come out with 8N nitric acid in the final solution are excluded in advance. The reason why 0.1N nitric acid is flowed is to prevent a vigorous neutralization reaction when a target solution containing a mixed solution of alkaline ammonia water and hydrogen peroxide water is added next.
 次いで、バルブV10とV11を開いてTEVAカラム210にタンク132中のTc含有Mo溶液を供給し、TEVAカラム210にTcを吸着させると共に、Mo溶液をMo回収タンク132に回収する。この際の通水速度は、例えば1-2mL/分とすることができる。 Next, the valves V10 and V11 are opened, the Tc-containing Mo solution in the tank 132 is supplied to the TEVA column 210, the Tc is adsorbed on the TEVA column 210, and the Mo solution is recovered in the Mo recovery tank 132. The water flow rate at this time can be set to, for example, 1-2 mL / min.
 次いで、バルブV14を開いて希NH4OH(0.01-1%程度)を4mL程度供給し、TEVAカラム210内に残留したMoをタンク132に回収する。この際の通水速度は、例えば2mL/分とすることができる。 Next, the valve V14 is opened and about 4 mL of dilute NH 4 OH (about 0.01-1%) is supplied, and Mo remaining in the TEVA column 210 is recovered in the tank 132. The water flow rate at this time can be set at, for example, 2 mL / min.
 希NH4OHで回収された溶液は、Moの回収、再利用に供される。ここで、希アンモニア水による洗浄は、超純水で行っても良い。この場合は、次の1.5N硝酸による洗浄を省略することができる。1.5N硝酸の目的は、TEVAカラム210で最大限Moを除去するためであり、次にDowex 1×4があれば省略できる。 The solution recovered with dilute NH 4 OH is used for recovery and reuse of Mo. Here, cleaning with dilute ammonia water may be performed with ultrapure water. In this case, the next cleaning with 1.5N nitric acid can be omitted. The purpose of 1.5N nitric acid is to remove as much Mo as possible by the TEVA column 210, and if there is Dowex 1 × 4, it can be omitted.
 次いで、バルブV13を開いて第2の硝酸タンク214から0.1Nの硝酸を例えば4mL通水して残留Moを洗浄する。この際の通水速度は、例えば2mL/分とすることができる。 Next, the valve V13 is opened, and 4 mL of 0.1N nitric acid is passed through the second nitric acid tank 214 to wash the residual Mo. The water flow rate at this time can be set at, for example, 2 mL / min.
 次いで、バルブV12とV17を開いて第1の硝酸タンク212から8Nの硝酸を例えば6mL通水し、TcをTEVAレジンから溶出させて回収する。ここで通水速度は、例えば1-2mL/分とすることができる。ここで用いる8N硝酸は、少ない液量且つ殆どのTcを回収でき、更に、次に水酸化ナトリウムで中和する時に極端に溶液量が増加しない適切な濃度/量である。 Next, the valves V12 and V17 are opened, and, for example, 6 mL of 8N nitric acid is passed through the first nitric acid tank 212, and Tc is eluted from the TEVA resin and recovered. Here, the water flow rate can be set to, for example, 1-2 mL / min. The 8N nitric acid used here is an appropriate concentration / amount that can recover a small amount of liquid and most of Tc, and does not extremely increase the amount of solution when neutralized with sodium hydroxide next time.
 次いで、バルブV13とV16を開いて第2の硝酸タンク214から0.1Nの硝酸を流して、後処理1を行う。 Next, after the valves V13 and V16 are opened, 0.1N nitric acid is allowed to flow from the second nitric acid tank 214, and post-treatment 1 is performed.
 実施例におけるテクネチウムの回収率は99%以上、Moの残存率は0.1%未満であった。 In the examples, the recovery rate of technetium was 99% or more, and the residual rate of Mo was less than 0.1%.
 前記ジェネレータ部200で生成されたTc含有Moは、例えば図8に示すようなTc分離精製部300で分離精製される。 The Tc-containing Mo generated by the generator unit 200 is separated and purified by, for example, a Tc separation and purification unit 300 as shown in FIG.
 このTc分離精製部300は、Dowex 1×4が例えば0.75mL充填された第2のカラム(Dowexカラムとも称する)320と、Tc回収タンク330と、水酸化ナトリウム(NaOH)タンク340と、超純水タンク342と、第1の塩酸(HCl)タンク344と、第2の塩酸タンク346と、バルブV18~V24及び配管を有する。 This Tc separation and purification unit 300 includes, for example, a second column (also referred to as a Dowex column) 320 packed with 0.75 mL of Dowex 1 × 4, a Tc recovery tank 330, a sodium hydroxide (NaOH) tank 340, It has a pure water tank 342, a first hydrochloric acid (HCl) tank 344, a second hydrochloric acid tank 346, valves V18 to V24, and piping.
 Dowex 1×4は、強塩基性陰イオン交換樹脂であり、そのため陰イオンであるテクネチウムが強く吸着される。 Dowex 1 × 4 is a strongly basic anion exchange resin, and therefore technetium, an anion, is strongly adsorbed.
 このTc分離精製部300で、図9のタイムチャートに示す如く、バルブV20とV23を開いて超純水タンク342の超純水をDowexカラム320に流して、前処理5を行う。次いで、バルブ18を開いてNaOHタンク340の例えば8NのNaOHを例えば6mL、タンク220に供給する。この際、中和熱が発生するため水冷する。ここで、8N水酸化ナトリウムを用いているが、規定数を落とせば、それだけ中和するのに液量が増えるので、その分、分離に時間がかかることになる。なお、水酸化ナトリウムで中和するが、ややアルカリ性にしておく。 In the Tc separation and purification unit 300, as shown in the time chart of FIG. 9, the valves V20 and V23 are opened, and the ultrapure water in the ultrapure water tank 342 is caused to flow into the Dowex column 320, and the pretreatment 5 is performed. Next, the valve 18 is opened and, for example, 6 mL of 8N NaOH in the NaOH tank 340 is supplied to the tank 220. At this time, water is cooled because neutralization heat is generated. Here, 8N sodium hydroxide is used, but if the specified number is decreased, the amount of liquid increases for neutralization, so that it takes time for separation. Although neutralized with sodium hydroxide, it is made slightly alkaline.
 次いで、バルブV19とV23を開いてDowexカラム320に供給してTcを吸着させ、ドレインから排出する。この際の通水速度は、例えば1-2mL/分とすることができる。 Next, the valves V19 and V23 are opened and supplied to the Dowex column 320 to adsorb Tc and discharged from the drain. The water flow rate at this time can be set to, for example, 1-2 mL / min.
 次いで、超純水タンク342から超純水を例えば5mL、通水速度1-2mL/分で供給してDowexカラム320を洗浄し、洗浄液は廃棄する。ここで、超純水を用いるのは、引き続き塩酸を流し込むからで、アルカリ性であったカラムを純水で洗うことで、塩酸を入れた際に中和熱が発生するなどのコンディションの変化を起こりにくくしている。 Next, ultrapure water is supplied from the ultrapure water tank 342 at 5 mL, for example, at a water flow rate of 1-2 mL / min to wash the Dowex column 320, and the washing solution is discarded. In this case, ultrapure water is used because hydrochloric acid is continuously poured in, so washing the alkaline column with pure water causes changes in conditions such as generation of neutralization heat when hydrochloric acid is added. It is difficult.
 次いで、バルブV21を開いて第1の塩酸タンク344の1N塩酸を例えば5mL(通水速度は2mL/分)で供給して、Dowexカラム320を洗浄し、洗浄液は廃棄する。これは、次に6N塩酸を入れる前に、塩酸処理によってカラムから溶出するMoを除去するためである。なお、Moの混入を若干見逃してもいいのであれば、1N塩酸での洗浄を省略することもできる。 Next, the valve V21 is opened, 1N hydrochloric acid in the first hydrochloric acid tank 344 is supplied at, for example, 5 mL (water flow rate is 2 mL / min), the Dowex column 320 is washed, and the washing solution is discarded. This is to remove Mo eluted from the column by hydrochloric acid treatment before adding 6N hydrochloric acid next time. In addition, if it is okay to overlook mixing of Mo, cleaning with 1N hydrochloric acid can be omitted.
 次いで、バルブV22とV24を開いて第2の塩酸タンク346から6N塩酸を例えば20mL(通水速度は2mL/分)で供給して、TcをDowex 1×4レジンから溶出させて、Tc回収タンク330に回収する。6N塩酸よりも規定数を上げても、回収率は高くなるどころか低くなる。又、これよりも規定数が低いと、Tcを回収するためにもっと溶液が必要になる。 Next, the valves V22 and V24 are opened, and 6N hydrochloric acid is supplied from the second hydrochloric acid tank 346 at, for example, 20 mL (water flow rate is 2 mL / min) to elute Tc from the Dowex 1 × 4 resin, and the Tc recovery tank Collect at 330. Even if the specified number is increased from that of 6N hydrochloric acid, the recovery rate is lowered rather than increased. If the specified number is lower than this, more solution is required to recover Tc.
 次いで、バルブV20とV23を開いて超純水タンク342から超純水を充填することで、後処理2を行う。これはDowexの乾燥を防ぐためのものであり、超純水の代わりに塩濃度を低下させた溶媒を充填しても良い。 Next, post-processing 2 is performed by opening valves V20 and V23 and filling the ultrapure water tank 342 with ultrapure water. This is to prevent Dowex from drying, and instead of ultrapure water, a solvent having a reduced salt concentration may be filled.
 実施例では、Tcの回収率は85-88%、Moの残存量は1μg以下であった。得られた塩酸溶液は蒸留濃縮後中和または中和後希釈を行って供されるが、最終的に溶液総量が0.5mLになったとしても、欧州医薬品庁EMAが2008年2月21日発行のガイドラインEMEA/CHMP/SWP/4446/2000で示しているMoの腸管外投与上限濃度である2.5ppmを下回ることができる。 In the examples, the recovery rate of Tc was 85-88%, and the residual amount of Mo was 1 μg or less. The resulting hydrochloric acid solution is provided after concentration by distillation or neutralization or dilution after neutralization. Even if the total amount of the solution finally reached 0.5 mL, the European Medicines Agency EMA announced on February 21, 2008. It can be less than 2.5 ppm, which is the upper limit of parenteral administration of Mo shown in the published guideline EMEA / CHMP / SWP / 4446/2000.
 このようにして、照射を1回した後、回収したMo-100溶液を1日おいて、再びTEVA以降の工程を経れば、またTcを精製することが可能となる。 In this way, after one irradiation, the recovered Mo-100 solution is left for one day, and if the process after TEVA is performed again, Tc can be purified again.
 なお、前記実施形態においては、TEVAカラム210が一系統とされていたが、TEVAカラムを複数系統設けることも可能である。 In the embodiment, the TEVA column 210 is a single system, but a plurality of TEVA columns may be provided.
 図10に示す第2実施形態は、TEVAカラムを210A、210B・・・の複数系統設けて、順次交換して使い捨てにするようにしたものである。 In the second embodiment shown in FIG. 10, a plurality of TEVA columns 210A, 210B,...
 本実施形態の処理手順を図11に示す。再利用を判定するステップ1002と再利用しない場合にカラムを選択するステップ1004が加えられている点が、図6に示した第1実施形態の手順と異なる。ステップ1004に於いて例えばカラムラインAを選択すると、図10に示すバルブVaを全て開いてカラムラインAへの管路を接続する。又、カラムラインBを選択すると、図10に示すバルブVbを全て開いてカラムラインBへの管路を接続する。) The processing procedure of this embodiment is shown in FIG. Step 1002 for determining reuse and step 1004 for selecting a column when not reused are different from the procedure of the first embodiment shown in FIG. When, for example, the column line A is selected in step 1004, all the valves Va shown in FIG. 10 are opened and the pipe line to the column line A is connected. When the column line B is selected, all the valves Vb shown in FIG. 10 are opened and the pipe line to the column line B is connected. )
 本実施形態は、イオン交換樹脂の繰り返し使用に問題のある場合、特に衛生面に配慮したTcの回収に有効である。 This embodiment is effective for recovery of Tc particularly considering hygiene when there is a problem with repeated use of the ion exchange resin.
 第2実施形態で更に、Tcを分離精製する場合の手順を図12に示す。Dowex処理を行うステップ1022が加えられている点が図11に示した第2実施形態の手順と異なる。本実施形態では、ステップ1004でカラムを選択すると、TEVAカラムとDowexカラムが対で選択される。 FIG. 12 shows a procedure for further separating and purifying Tc in the second embodiment. The difference from the procedure of the second embodiment shown in FIG. 11 is that step 1022 for performing Dowex processing is added. In this embodiment, when a column is selected in step 1004, a TEVA column and a Dowex column are selected in pairs.
 また、図13に示す第3実施形態は同様に複数のTEVAカラム及びDowexカラムを設けると共に小分け用のシリンジS2を設けて、各カラムに流入するMo-99含有溶液の量を制限することにより、各カラムの負荷を低減させるようにしたものである。シリンジS2は、使用するTcを得るに必要な最小量を計量するのに使用することもできる。 Similarly, the third embodiment shown in FIG. 13 is provided with a plurality of TEVA columns and Dowex columns and a syringe S2 for subdivision, thereby limiting the amount of Mo-99-containing solution flowing into each column. The load on each column is reduced. The syringe S2 can also be used to weigh the minimum amount necessary to obtain the Tc to be used.
 この第3実施形態は、樹脂の耐放射線性が懸念されるとき、各樹脂の負荷を下げるため、あるいは万一の故障に対する被害を最小とすることに有効である。 This third embodiment is effective for reducing the load on each resin when there is a concern about the radiation resistance of the resin, or for minimizing damage to a failure.
 なお、第1のカラム210に充填するレジンはTEVAに限定されず、第2のカラム320に充填するレジンもDowex 1×4に限定されない。 The resin packed in the first column 210 is not limited to TEVA, and the resin packed in the second column 320 is not limited to Dowex 1 × 4.
 又、同じ物質を入れるタンク、例えばヘリウムタンク116、222、混合溶媒(H22+NH4OH)タンク122、134、超純水タンク211、342、HNO3タンク212、214、216、HClタンク344,346などは、別体でなく、それぞれ共通とし、必要に応じて稀釈量を調整することで所定の濃度としても良い。 In addition, tanks for storing the same substances, for example, helium tanks 116 and 222, mixed solvent (H 2 O 2 + NH 4 OH) tanks 122 and 134, ultrapure water tanks 211 and 342, HNO 3 tanks 212, 214 and 216, HCl tanks. 344, 346, etc. are not separate but common, and may have a predetermined concentration by adjusting the dilution amount as necessary.
 放射性薬剤として需要の大きいテクネチウム99mやモリブデン99を、少ない溶媒量及び処理時間で遠隔的に繰り返し製造することが可能となる。 Technetium 99m and molybdenum 99, which are in great demand as radiopharmaceuticals, can be repeatedly produced remotely with a small amount of solvent and processing time.
 100…(加速器由来の)Mo-99製造部
 112…ターゲット溶液(Mo)タンク
 116,222…ヘリウム(He)タンク
 122,134…混合溶媒(H22+NH4OH)タンク
 132…Mo-99含有Mo溶液タンク
 200…ジェネレータ部
 210…第1のカラム(TEVAカラム)
 211、342…超純水タンク…
 212、214、218…硝酸(HNO)タンク
 216…アンモニア水(NH4OH)タンク
 300…テクネチウム分離精製部
 320…第2のカラム(Dowexカラム)
 330…回収溶液タンク
 340…水酸化ナトリウム(NaOH)タンク
 344、346…塩酸(HCl)タンク
100 (from the accelerator) Mo-99 production unit 112 ... target solution (Mo) Tank 116,222 ... helium (He) Tank 122,134 ... mixed solvent (H 2 O 2 + NH 4 OH) tank 132 ... Mo-99 Containing Mo solution tank 200 ... Generator section 210 ... First column (TEVA column)
211, 342 ... Ultrapure water tank ...
212,214,218 ... nitric acid (HNO 3) Tank 216 ... ammonia water (NH 4 OH) tank 300 ... technetium separation purification unit 320 ... second column (Dowex column)
330 ... Recovery solution tank 340 ... Sodium hydroxide (NaOH) tank 344, 346 ... Hydrochloric acid (HCl) tank

Claims (10)

  1.  Tc-99mを含有するMo-99溶液を抽出クロマトグラフィック樹脂を詰めた第1のカラムに通してTc-99mを抽出・精製後、
     Mo-99溶液でのTc-99mの生成を待って第1のカラムによりTc-99mを再び抽出・精製することを特徴とする、Mo-99を利用するTc-99mの製造・抽出方法。
    The Mo-99 solution containing Tc-99m was passed through the first column packed with extraction chromatographic resin to extract and purify Tc-99m.
    A method for producing and extracting Tc-99m using Mo-99, comprising waiting for the production of Tc-99m in a Mo-99 solution and extracting and purifying Tc-99m again with the first column.
  2.  前記第1のカラムを複数設けたことを特徴とする請求項1に記載のMo-99を利用するTc-99mの製造・抽出方法。 The method for producing and extracting Tc-99m using Mo-99 according to claim 1, wherein a plurality of the first columns are provided.
  3.  前記複数の第1のカラムを順次利用することを特徴とする請求項2に記載のMo-99を利用するTc-99mの製造・抽出方法。 The method for producing / extracting Tc-99m using Mo-99 according to claim 2, wherein the plurality of first columns are sequentially used.
  4.  前記Mo-99含有溶液を小分けして、前記複数の第1のカラムを同時に利用することを特徴とする請求項2に記載のMo-99を利用するTc-99mの製造・抽出方法。 3. The method for producing and extracting Tc-99m using Mo-99 according to claim 2, wherein the Mo-99-containing solution is subdivided and the plurality of first columns are used simultaneously.
  5.  前記抽出クロマトグラフィック樹脂がTEVA(登録商標)レジンであることを特徴とする請求項1乃至4のいずれかに記載のMo-99を利用するTc-99mの製造・抽出方法。 5. The method for producing and extracting Tc-99m using Mo-99 according to any one of claims 1 to 4, wherein the extraction chromatographic resin is TEVA (registered trademark) resin.
  6.  前記第1のカラムからの流出液を、4倍架橋の陰イオン交換樹脂を詰めた第2のカラムに通して、Tc-99mを分離・精製することを特徴とする、請求項1乃至5のいずれかに記載のMo-99を利用するTc-99mの製造・抽出方法。 6. The Tc-99m is separated and purified by passing the effluent from the first column through a second column packed with 4-fold cross-linked anion exchange resin. A method for producing and extracting Tc-99m using Mo-99 according to any one of the above.
  7.  前記第1のカラムからの流出液を中和した後、前記第2のカラムに通すことを特徴とする請求項6に記載のMo-99を利用するTc-99mの製造・抽出方法。 The method for producing and extracting Tc-99m using Mo-99 according to claim 6, wherein the effluent from the first column is neutralized and then passed through the second column.
  8.  前記4倍架橋の陰イオン交換樹脂が、Dowex(登録商標)1×4レジンであることを特徴とする請求項6又は7に記載のMo-99を利用するTc-99mの製造・抽出方法。 The method for producing and extracting Tc-99m using Mo-99 according to claim 6 or 7, wherein the 4-fold cross-linked anion exchange resin is Dowex (registered trademark) 1 x 4 resin.
  9.  Tc-99mを含有するMo-99溶液の貯蔵タンクと、
     抽出クロマトグラフィック樹脂を詰めた第1のカラムとを備え、
     前記Mo-99溶液を該第1のカラムに通してTc-99mを抽出・精製後、該Mo-99溶液でのTc-99mの生成を待って第1のカラムによりTc-99mを再び抽出・精製することを特徴とするMo-99/Tc-99m液体ジェネレータ。
    A storage tank of Mo-99 solution containing Tc-99m;
    A first column packed with extraction chromatographic resin;
    The Mo-99 solution is passed through the first column to extract and purify Tc-99m, and after waiting for the production of Tc-99m in the Mo-99 solution, Tc-99m is extracted again from the first column. A Mo-99 / Tc-99m liquid generator characterized by being purified.
  10.  前記第1のカラムの下流に、更に、該第1のカラムからの流出液が通される、4倍架橋の陰イオン交換樹脂を詰めた第2のカラムを備えたことを特徴とする請求項9に記載のMo-99/Tc-99m液体ジェネレータ。 A second column packed with a 4-fold cross-linked anion exchange resin is further provided downstream of the first column, through which an effluent from the first column passes. 9. The Mo-99 / Tc-99m liquid generator according to 9.
PCT/JP2010/066435 2010-09-22 2010-09-22 Method for production/extraction of tc-99m utilizing mo-99, and mo-99/tc-99m liquid generator WO2012039038A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/066435 WO2012039038A1 (en) 2010-09-22 2010-09-22 Method for production/extraction of tc-99m utilizing mo-99, and mo-99/tc-99m liquid generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/066435 WO2012039038A1 (en) 2010-09-22 2010-09-22 Method for production/extraction of tc-99m utilizing mo-99, and mo-99/tc-99m liquid generator

Publications (1)

Publication Number Publication Date
WO2012039038A1 true WO2012039038A1 (en) 2012-03-29

Family

ID=45873552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066435 WO2012039038A1 (en) 2010-09-22 2010-09-22 Method for production/extraction of tc-99m utilizing mo-99, and mo-99/tc-99m liquid generator

Country Status (1)

Country Link
WO (1) WO2012039038A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013210226A (en) * 2012-03-30 2013-10-10 Sumitomo Heavy Ind Ltd Method for manufacturing 99mtc
JP2020073717A (en) * 2012-04-27 2020-05-14 トライアンフTriumf Process, system and device for cyclotron production of technetium-99m
WO2020202726A1 (en) * 2019-03-29 2020-10-08 国立研究開発法人量子科学技術研究開発機構 Radiolabeled compound production method and production device, radio-labeled compound, and radioisotope production device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516866A (en) * 1974-07-08 1976-01-20 Pentel Kk Ionkokanjushinyoru kuromusanhaiekino shorihoho
JP2005500518A (en) * 2001-06-22 2005-01-06 ピージー リサーチ ファンデーション,インコーポレーテッド Automatic radionuclide separation system and method
JP2006075820A (en) * 2004-08-10 2006-03-23 Kobelco Eco-Solutions Co Ltd Method and apparatus for treating waste water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516866A (en) * 1974-07-08 1976-01-20 Pentel Kk Ionkokanjushinyoru kuromusanhaiekino shorihoho
JP2005500518A (en) * 2001-06-22 2005-01-06 ピージー リサーチ ファンデーション,インコーポレーテッド Automatic radionuclide separation system and method
JP2006075820A (en) * 2004-08-10 2006-03-23 Kobelco Eco-Solutions Co Ltd Method and apparatus for treating waste water

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013210226A (en) * 2012-03-30 2013-10-10 Sumitomo Heavy Ind Ltd Method for manufacturing 99mtc
JP2020073717A (en) * 2012-04-27 2020-05-14 トライアンフTriumf Process, system and device for cyclotron production of technetium-99m
JP2022063838A (en) * 2012-04-27 2022-04-22 トライアンフ インコーポレイテッド Process, system and device for cyclotron production of technetium-99m
JP7080873B2 (en) 2012-04-27 2022-06-06 トライアンフ インコーポレイテッド Processes, systems, and equipment for the production of Technetium-99M cyclotrons
JP7210648B2 (en) 2012-04-27 2023-01-23 トライアンフ インコーポレイテッド Process, system and apparatus for cyclotron production of technetium-99M
WO2020202726A1 (en) * 2019-03-29 2020-10-08 国立研究開発法人量子科学技術研究開発機構 Radiolabeled compound production method and production device, radio-labeled compound, and radioisotope production device
JPWO2020202726A1 (en) * 2019-03-29 2020-10-08
JP7339692B2 (en) 2019-03-29 2023-09-06 国立研究開発法人量子科学技術研究開発機構 Manufacturing method and manufacturing apparatus for radiolabeled compound
US12102694B2 (en) 2019-03-29 2024-10-01 National Institutes for Quantum Science and Technology Radiolabeled compound producing method and producing apparatus, radiolabeled compound and radioisotope producing apparatus

Similar Documents

Publication Publication Date Title
JP5427483B2 (en) Concentration, elution recovery method, and system of radiotechnetium as a raw material for radiopharmaceuticals and their labeled compounds
JP6478558B2 (en) Radiopharmaceutical manufacturing system, radiopharmaceutical manufacturing apparatus and radiopharmaceutical manufacturing method
Lambrecht Radionuclide generators
EP2715739B1 (en) General radioisotope production method employing pet-style target systems
McAlister et al. Automated two column generator systems for medical radionuclides
US5409677A (en) Process for separating a radionuclide from solution
JP2022538732A (en) Method for producing 225 actinium from 226 radium
WO2006028620A2 (en) Medical radioisotopes and methods for producing the same
MX2012012669A (en) Isotope production method.
JP7312621B2 (en) Radionuclide production method and radionuclide production system
JP5294180B2 (en) Method and apparatus for separating and purifying technetium from molybdenum containing technetium, and method and apparatus for recovering molybdenum
JP2014525038A (en) Method for generating Tc-99m
JP5322071B2 (en) Radionuclide production method and apparatus using accelerator
Saptiama et al. The Use of Sodium Hypochlorite Solution for (n, γ) 99 Mo/99m Tc Generator Based on Zirconium-Based Material (ZBM)
WO2012039038A1 (en) Method for production/extraction of tc-99m utilizing mo-99, and mo-99/tc-99m liquid generator
Chattopadhyay et al. A novel 99mTc delivery system using (n, γ) 99Mo adsorbed on a large alumina column in tandem with Dowex-1 and AgCl columns
JP5817977B2 (en) Method for producing technetium-99m solution having high concentration and high radioactivity
Wojdowska et al. Studies on the separation of 99mTc from large excess of molybdenum
Chakravarty et al. An electro-amalgamation approach to produce 175Yb suitable for radiopharmaceutical applications
JP2023550075A (en) How to generate scandium-44
Jang et al. A quantitative description of the compatibility of technetium-selective chromatographic technetium-99m separation with low specific activity molybdenum-99
Tatenuma et al. Generator of Highly Concentrated Pure 99mTc from Low Specific Activity 99Mo Produced by Reactor and/or Electron Linear Accelerator
Mushtaq et al. Separation of fission Iodine-131
Ashhar et al. Mat Ail, N.; Abd Rahman, SF Cyclotron Production of Gallium-68 Radiopharmaceuticals Using the 68Zn (p, n) 68Ga Reaction and Their Regulatory Aspects. Pharmaceutics 2023, 15, 70
Ruiz Quiros A Chromatographic Method to Separate Sc (III) from Zn (II) Ions: A Step in the Purification of Sc-44 (an isotope of medical interest)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10857532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP