JP2013210226A - Method for manufacturing 99mtc - Google Patents

Method for manufacturing 99mtc Download PDF

Info

Publication number
JP2013210226A
JP2013210226A JP2012079200A JP2012079200A JP2013210226A JP 2013210226 A JP2013210226 A JP 2013210226A JP 2012079200 A JP2012079200 A JP 2012079200A JP 2012079200 A JP2012079200 A JP 2012079200A JP 2013210226 A JP2013210226 A JP 2013210226A
Authority
JP
Japan
Prior art keywords
solution
anion exchange
column
exchange column
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012079200A
Other languages
Japanese (ja)
Other versions
JP6000600B2 (en
Inventor
Tomoya Iwata
知也 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2012079200A priority Critical patent/JP6000600B2/en
Publication of JP2013210226A publication Critical patent/JP2013210226A/en
Application granted granted Critical
Publication of JP6000600B2 publication Critical patent/JP6000600B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for refiningTc for reducing the residual amounts of a solvent to be used in a refining process, and for improving a yield.SOLUTION: A refining method ofTc includes: a dissolution process of dissolving and pH-adjustingMo/Tc target 10 to obtain an alkaline solution; an anion-exchange column absorption process of introducing the solution to an anion-exchange column 13 to absorbMo andTc; aMo removal process of removing the absorbedMo with the solution; aTc extraction process of extracting the absorbedTc with the solution; aTc solution preparation process of drying and solidifying extract, and adding water to obtain aTc solution; an acid alumina column absorption process of introducing the solution containingTc to an acid alumina column 15 to make the acid alumina column 15 absorbTc; and aTc recovery process of extracting and recoveringTc absorbed by the acid alumina column 15 with a saline solution.

Description

本発明は、99Mo/99mTcターゲットから99mTcを精製する99mTcの精製方法に関するものである。 The present invention relates to a 99m Tc purification method for purifying 99m Tc from a 99 Mo / 99m Tc target.

従来、このような分野の技術として、下記非特許文献1に記載の99mTcの精製方法が知られている。この精製方法は、次のようなものである。まず、99Mo/99mTcターゲットをH2O2溶液等で溶解しpH2〜3の溶解液を得る(工程a)。この溶解液を陰イオン交換カラムに導入すると、99Moと99mTcとが陰イオン交換カラムに捕集される(工程b)。その後、陰イオン交換カラムにNaCl水溶液を導入し99Moをカラムから脱離させ除去する(工程c)。更にその後、陰イオン交換カラムにTBAB/CH2Cl2を導入することで、陰イオン交換カラムから脱離した99mTcの溶液が得られる(工程d)。その後、この溶液をアルミナカラムに導入すると、99mTcがアルミナカラムに吸着される(工程e)。その後、このアルミナカラムに生理食塩水を導入すると、酸性アルミナカラムから脱離した99mTcの溶液が最終的に得られる(工程f)。 Conventionally, a 99m Tc purification method described in Non-Patent Document 1 below is known as a technique in such a field. This purification method is as follows. First, 99 Mo / 99m Tc target is dissolved with an H 2 O 2 solution or the like to obtain a solution having a pH of 2 to 3 (step a). When this solution is introduced into the anion exchange column, 99 Mo and 99m Tc are collected in the anion exchange column (step b). Thereafter, an aqueous NaCl solution is introduced into the anion exchange column, and 99 Mo is desorbed and removed from the column (step c). Thereafter, TBAB / CH 2 Cl 2 is introduced into the anion exchange column to obtain a 99m Tc solution desorbed from the anion exchange column (step d). Thereafter, when this solution is introduced into an alumina column, 99m Tc is adsorbed onto the alumina column (step e). Thereafter, when physiological saline is introduced into the alumina column, a 99m Tc solution desorbed from the acidic alumina column is finally obtained (step f).

Sankha Chattopadhyay,Malay KantiDas, "A novel technique for the effective concentration of 99mTcfrom a large alumina column loaded with law specific-actovity (n,γ)-produced 99Mo", Applied Radiation and Isotopes,ELSEVIER, 2008, 66, p.1295-1299Sankha Chattopadhyay, Malay KantiDas, "A novel technique for the effective concentration of 99mTcfrom a large alumina column loaded with law specific-actovity (n, γ) -produced 99Mo", Applied Radiation and Isotopes, ELSEVIER, 2008, 66, p.1295 -1299

しかしながら、上記の精製方法では、上記の工程dで使用したCH2Cl2(ジクロロメタン)が最終生成物の99mTcの溶液中に僅かに残留する。最終的に得られた99mTcが放射性医薬品として用いられる場合には特に、CH2Cl2のような有機溶媒の残留量は可能な限り小さいことが望まれる。また、この種の精製方法にあっては、99mTcの収率の向上も望まれる。 However, in the purification method described above, the CH 2 Cl 2 (dichloromethane) used in step d above remains slightly in the final product 99m Tc solution. In particular, when the finally obtained 99m Tc is used as a radiopharmaceutical, the residual amount of an organic solvent such as CH 2 Cl 2 is desired to be as small as possible. In this type of purification method, it is also desired to improve the yield of 99m Tc.

そこで本発明は、精製過程で使用する溶媒の残留量を低減すると共に収率の向上を図ることができる99mTcの精製方法を提供することを目的とする。 Accordingly, an object of the present invention is to provide a method for purifying 99m Tc that can reduce the residual amount of the solvent used in the purification process and improve the yield.

本発明の99mTcの精製方法は、99Mo/99mTcターゲットから99mTcを精製する99mTcの精製方法であって、前記99Mo/99mTcターゲットを溶解して溶解液を得る溶解工程と、前記溶解液を陰イオン交換カラムに導入し前記陰イオン交換カラムに99Moと99mTcとを吸着させる陰イオン交換カラム吸着工程と、前記陰イオン交換カラムに吸着された99Moを溶媒で除去する99Mo除去工程と、前記陰イオン交換カラムに吸着された99mTcを溶媒で抽出する99mTc抽出工程と、前記99mTc抽出工程で得られた抽出液に所定の処理を施して99mTcを含む溶液を得る99mTc溶液調製工程と、前記99mTcを含む溶液を酸性アルミナカラムに導入し前記酸性アルミナカラムに99mTcを吸着させる酸性アルミナカラム吸着工程と、前記酸性アルミナカラムに吸着された99mTcを食塩水で抽出し回収する99mTc回収工程と、を備え、前記溶解工程の前記溶解液をアルカリ性とし、99mTc溶液調製工程における前記所定の処理は、前記抽出液から溶媒を蒸発させて除去した後、水を加えて99mTc水溶液とする処理であることを特徴とする。 Purification method of 99m Tc of the present invention, a melting step of obtaining a method of purifying a 99m Tc purifying the 99m Tc from 99 Mo / 99m Tc target solution by dissolving the 99 Mo / 99m Tc target, removing the solution and an anion exchange column adsorption step a of adsorbing and introduced to an anion exchange column wherein the anion exchange column 99 Mo and 99m Tc, and the 99 Mo adsorbed on the anion exchange column with a solvent 99 Mo removal step, 99m Tc extraction step for extracting 99m Tc adsorbed on the anion exchange column with a solvent, and 99m Tc containing 99m Tc by performing a predetermined treatment on the extract obtained in the 99m Tc extraction step and 99m Tc solution preparation step of obtaining a solution, the 99m acidic alumina column adsorption step a of adsorbing 99m Tc solution to the acidic alumina column and introduced into an acidic alumina column containing Tc, 99m Tc adsorbed on the acidic alumina column Extract with salt water and collect Comprising a 99m Tc recovery step, and the solution of the dissolving process was made alkaline, the predetermined processing in the 99m Tc solution preparation step, after removal of the solvent by evaporation from the extract by adding water 99m It is the process made into Tc aqueous solution.

この精製方法では、溶解工程の溶解液をアルカリ性とし、陰イオン交換カラム吸着工程では、このアルカリ性の溶解液をカラムに導入する。このように、陰イオン交換カラムに導入する溶解液をアルカリ性にすることで、陰イオン交換カラムへの99mTcの吸着率が向上する。その結果、最終的に得られる99mTcが増加し、99mTcの収率が向上する。この精製方法では、99mTc溶液調製工程において、99mTc分離工程で得られた抽出液から溶媒を蒸発させて除去した後、水を加えて99mTc水溶液とする処理を行っている。この処理により、99mTc分離工程で使用した溶媒が除去され水に置換されるので、最終的に得られる99mTcにおいて、溶媒の残留量を低減することができる。また酸性アルミナカラム吸着工程において、酸性アルミナカラムに導入する溶液を99mTc水溶液としたので、99mTcのC2H2溶液を導入する場合に比べて、カラムへの吸着率が向上し、その結果、最終的に得られる99mTcが増加し、99mTcの収率が向上する。 In this purification method, the dissolution solution in the dissolution step is made alkaline, and in the anion exchange column adsorption step, this alkaline solution is introduced into the column. Thus, by making the solution introduced into the anion exchange column alkaline, the adsorption rate of 99m Tc on the anion exchange column is improved. As a result, 99m Tc finally obtained is increased, and the yield of 99m Tc is improved. In this purification method, in the 99m Tc solution preparation step, the solvent is evaporated and removed from the extract obtained in the 99m Tc separation step, and then water is added to obtain a 99m Tc aqueous solution. By this treatment, the solvent used in the 99m Tc separation step is removed and replaced with water, so that the residual amount of the solvent can be reduced in the finally obtained 99m Tc. In addition, in the acidic alumina column adsorption process, the solution to be introduced into the acidic alumina column was 99m Tc aqueous solution, so the adsorption rate to the column was improved compared to the case of introducing 99m Tc C 2 H 2 solution. 99m Tc finally obtained is increased, and the yield of 99m Tc is improved.

本発明の99mTcの精製方法は、99Mo/99mTcターゲットから99mTcを精製する精製方法であって、前記99Mo/99mTcターゲットを溶解して溶解液を得る溶解工程と、前記溶解液を陰イオン交換カラムに導入し前記陰イオン交換カラムに99Moと99mTcとを吸着させる陰イオン交換カラム吸着工程と、前記陰イオン交換カラムに吸着された99mTcを取得する99mTc取得工程と、を備え、前記溶解工程の前記溶解液をアルカリ性とすることを特徴とする。 Purification method of 99m Tc of the present invention, 99 from Mo / 99m Tc targets a purification method for purifying a 99m Tc, a melting step of obtaining a solution by dissolving the 99 Mo / 99m Tc target, the solution And an anion exchange column adsorption step for adsorbing 99 Mo and 99m Tc to the anion exchange column, and a 99m Tc acquisition step for obtaining 99m Tc adsorbed on the anion exchange column; The solution in the dissolving step is made alkaline.

この精製方法では、溶解工程の溶解液をアルカリ性とし、陰イオン交換カラム吸着工程では、このアルカリ性の溶解液をカラムに導入する。このように、陰イオン交換カラムに導入する溶解液をアルカリ性にすることで、陰イオン交換カラムへの99mTcの吸着率が向上する。その結果、最終的に得られる99mTcが増加し、99mTcの収率が向上する。 In this purification method, the dissolution solution in the dissolution step is made alkaline, and in the anion exchange column adsorption step, this alkaline solution is introduced into the column. Thus, by making the solution introduced into the anion exchange column alkaline, the adsorption rate of 99m Tc on the anion exchange column is improved. As a result, 99m Tc finally obtained is increased, and the yield of 99m Tc is improved.

本発明の99mTcの精製方法は、99Mo/99mTcターゲットから99mTcを精製する精製方法であって、99Mo/99mTcターゲットの溶解液を吸着させたカラムから溶媒にて99mTcを分離抽出した抽出液を準備する工程と、抽出液に所定の処理を施して99mTcを含む溶液を得る99mTc溶液調製工程と、を備え、99mTc溶液調製工程における所定の処理は、抽出液から溶媒を蒸発させて除去した後、水を加えて99mTcを含む水溶液とする処理であることを特徴とする。 Purification method of 99m Tc of the present invention, 99 from Mo / 99m Tc targets a purification method for purifying a 99m Tc, separated 99m Tc in the solvent from the column was adsorbed lysates of 99 Mo / 99m Tc Target A step of preparing an extracted extract, and a 99m Tc solution preparation step for obtaining a solution containing 99m Tc by subjecting the extract to a predetermined treatment, and the predetermined treatment in the 99m Tc solution preparation step is performed from the extract solution. The method is characterized in that after removing the solvent by evaporation, water is added to obtain an aqueous solution containing 99m Tc.

この精製方法では、99mTc溶液調製工程において、抽出液から溶媒を蒸発させて除去した後、水を加えて99mTcを含む水溶液とする処理を行っている。この処理により、抽出液に含まれる溶媒が除去され水に置換されるので、最終的に得られる99mTcにおいて、溶媒の残留量を低減することができる。 In this purification method, in the 99m Tc solution preparation step, after removing the solvent from the extract by evaporation, water is added to obtain an aqueous solution containing 99m Tc. By this treatment, the solvent contained in the extract is removed and replaced with water, so that the residual amount of the solvent can be reduced in the finally obtained 99m Tc.

本発明によれば、精製過程で使用する溶媒の残留量を低減すると共に収率の向上を図ることができる99mTcの精製方法を提供することができる。 According to the present invention, it is possible to provide a 99m Tc purification method capable of reducing the residual amount of solvent used in the purification process and improving the yield.

本発明の一実施形態に係る精製方法の各工程を順に示す図である。It is a figure which shows each process of the purification method which concerns on one Embodiment of this invention in order. 本発明の一実施形態に係る精製方法の各工程を順に示す図である。It is a figure which shows each process of the purification method which concerns on one Embodiment of this invention in order. 本発明の一実施形態に係る精製方法の各工程を順に示す図である。It is a figure which shows each process of the purification method which concerns on one Embodiment of this invention in order. 本発明者らが行った実験1の分離条件と分離精製効率とを示す表である。It is a table | surface which shows the isolation | separation conditions and isolation | separation purification efficiency of Experiment 1 which the present inventors conducted. 本発明者らが行った実験2の分離条件と分離精製効率とを示す表である。It is a table | surface which shows the isolation | separation conditions and isolation | separation purification efficiency of Experiment 2 which the present inventors conducted.

以下、図面を参照しつつ本発明に係る99mTcの精製方法の一実施形態について詳細に説明する。 Hereinafter, an embodiment of a method for purifying 99m Tc according to the present invention will be described in detail with reference to the drawings.

本実施形態に係る99mTc(99m-テクネチウム)の精製方法は、以下に説明する溶解工程、陰イオン交換カラム吸着工程、99Mo除去工程、99mTc抽出工程、99mTc溶液調製工程、酸性アルミナカラム吸着工程、及び99mTc回収工程を含んでいる。 The purification method of 99m Tc ( 99m- technetium) according to this embodiment includes a dissolution step, an anion exchange column adsorption step, a 99 Mo removal step, a 99m Tc extraction step, a 99m Tc solution preparation step, an acidic alumina column, which will be described below. Includes adsorption process and 99m Tc recovery process.

(溶解工程)
まず、99Mo/99mTcターゲットを準備する。99Mo/99mTcターゲットは、例えば、金属Mo(モリブデン)ターゲットに、サイクロトロンで中性子線を照射し、Moの一部を放射化させることで生成される。次に、図1(a)に示すように、準備した99Mo/99mTcターゲット11に、塩酸、過酸化水素水を加えて溶解する。更にNaOH水溶液を加えて溶解液のpHを調整する。溶解液は、アルカリ性(pH7.0以上)とする。好ましくは、溶解液のpHをpH11以上とする。なお、NaOH水溶液を加えて溶解液を最終的にpH7.0以上とすればよいので、上記の過酸化水素水の濃度を高くすることも可能である。その結果、99Mo/99mTcターゲット11の溶解速度が向上し、溶解工程の時間を短縮することもできる。
(Dissolution process)
First, prepare a 99 Mo / 99m Tc target. The 99 Mo / 99m Tc target is generated, for example, by irradiating a metal Mo (molybdenum) target with a neutron beam with a cyclotron and activating a part of Mo. Next, as shown in FIG. 1A, hydrochloric acid and hydrogen peroxide solution are added and dissolved in the prepared 99 Mo / 99m Tc target 11. Further, an aqueous NaOH solution is added to adjust the pH of the solution. The solution should be alkaline (pH 7.0 or higher). Preferably, the pH of the solution is adjusted to pH 11 or higher. It should be noted that the concentration of the hydrogen peroxide solution can be increased because the aqueous solution of NaOH may be finally adjusted to pH 7.0 or higher by adding NaOH aqueous solution. As a result, the dissolution rate of the 99 Mo / 99m Tc target 11 is improved, and the time for the dissolution process can be shortened.

(陰イオン交換カラム吸着工程)
次に、図1(b)に示すように、陰イオン交換樹脂を充填したカラム(陰イオン交換カラム)13を準備する。陰イオン交換樹脂としては、例えば、ダウ・ケミカル社製のDowex 1X8 等が好適に用いられる。準備した陰イオン交換カラム13に、上記溶解工程で得られた溶解液を導入する。そうすると、陰イオン交換カラム13内に99Moと99mTcとが吸着される。
(Anion exchange column adsorption process)
Next, as shown in FIG. 1B, a column (anion exchange column) 13 filled with an anion exchange resin is prepared. As the anion exchange resin, for example, Dowex 1X8 manufactured by Dow Chemical Co., etc. is preferably used. The lysate obtained in the lysis step is introduced into the prepared anion exchange column 13. Then, 99 Mo and 99m Tc are adsorbed in the anion exchange column 13.

99Mo除去工程)
次に、図1(c)に示すように、上記陰イオン交換カラム13にMo脱離液として0.9wt%のNaCl水溶液(生理食塩水)を導入する。そうすると、陰イオン交換カラム13に吸着されていた99Moが脱離し除去される。ここでは、陰イオン交換カラム13に吸着された99mTcは、ほとんど脱離せずに陰イオン交換カラム13内に留まる。
( 99 Mo removal process)
Next, as shown in FIG. 1 (c), 0.9 wt% NaCl aqueous solution (physiological saline) is introduced into the anion exchange column 13 as a Mo desorption solution. Then, 99 Mo adsorbed on the anion exchange column 13 is desorbed and removed. Here, 99m Tc adsorbed on the anion exchange column 13 remains in the anion exchange column 13 with almost no desorption.

99mTc抽出工程)
次に、図2(a)に示すように、上記陰イオン交換カラム13に、Tc脱離液としてTBAB(テトラブチルアンモニウムブロマイド)/CH2Cl2を導入する。そうすると、陰イオン交換カラム13に留まっていた99mTcが抽出され、CH2Cl2と一緒に陰イオン交換カラム13から排出される。すなわち、陰イオン交換カラム13の出口からは、99mTcのCH2Cl2溶液が、抽出液として排出される。また、抽出液には、TBABが僅かに混入している。なお、ここで用いる溶媒TBAB/CH2Cl2のTBAB濃度を適切に調整することにより、陰イオン交換カラム13に吸着されていた99mTcの脱離能を向上させ、抽出液中に回収される99mTcの量を増加させることができる。
( 99m Tc extraction process)
Next, as shown in FIG. 2A, TBAB (tetrabutylammonium bromide) / CH 2 Cl 2 is introduced into the anion exchange column 13 as a Tc desorbing solution. Then, 99m Tc remaining in the anion exchange column 13 is extracted and discharged from the anion exchange column 13 together with CH 2 Cl 2 . That is, from the outlet of the anion exchange column 13, a 99m Tc CH 2 Cl 2 solution is discharged as an extract. In addition, TBAB is slightly mixed in the extract. In addition, by appropriately adjusting the TBAB concentration of the solvent TBAB / CH 2 Cl 2 used here, the ability to desorb 99m Tc adsorbed on the anion exchange column 13 is improved and recovered in the extract. The amount of 99m Tc can be increased.

99mTc溶液調製工程)
次に、図2(b)に示すように、上記99mTc抽出工程で得られた抽出液からCH2Cl2を蒸発させ除去することで、抽出液を乾固させる。その後、この乾固物に水を加えて99mTc水溶液とする。この水溶液には、TBABと99mTcとが含まれている。
( 99m Tc solution preparation process)
Next, as shown in FIG. 2B, CH 2 Cl 2 is evaporated and removed from the extract obtained in the 99m Tc extraction step to dry the extract. Thereafter, water is added to the dried product to make a 99m Tc aqueous solution. This aqueous solution contains TBAB and 99m Tc.

(酸性アルミナカラム吸着工程)
次に、図3(a)に示すように、酸性アルミナ粉末を充填したカラム(酸性アルミナカラム)15を準備する。酸性アルミナ粉末としては、例えば、和光純薬工業(株)製の「Alumina A」等が好適に用いられる。準備した酸性アルミナカラム15に、上記99mTc溶液調製工程で得られた99mTc水溶液を導入する。そうすると、酸性アルミナカラム15に99mTcが吸着される。ここでは、99mTcの水溶液が用いられているので99mTcがより陽イオン化し易く、酸性アルミナカラムに対して99mTcが吸着され易いと考えられる。
(Acid alumina column adsorption process)
Next, as shown in FIG. 3A, a column (acidic alumina column) 15 filled with acidic alumina powder is prepared. As the acidic alumina powder, for example, “Alumina A” manufactured by Wako Pure Chemical Industries, Ltd. is preferably used. The prepared acidic alumina column 15, to introduce the 99m Tc aqueous solution obtained in the above 99m Tc solution preparation step. Then, 99m Tc is adsorbed on the acidic alumina column 15. Here, since an aqueous solution of 99m Tc is used, it is considered that 99m Tc is more easily cationized and 99m Tc is easily adsorbed to the acidic alumina column.

99mTc回収工程)
次に、図3(b)に示すように、上記酸性アルミナカラム15に、0.9wt%のNaCl水溶液(生理食塩水)を導入する。そうすると、酸性アルミナカラム15中の99mTcが抽出され、最終的に精製された99mTcが生理食塩水に溶解した状態で回収される。
( 99m Tc recovery process)
Next, as shown in FIG. 3 (b), a 0.9 wt% NaCl aqueous solution (physiological saline) is introduced into the acidic alumina column 15. Then, 99m Tc in the acidic alumina column 15 is extracted, and finally purified 99m Tc is recovered in a state dissolved in physiological saline.

続いて、以上説明した精製方法による作用効果について説明する。この精製方法では、溶解工程の溶解液をアルカリ性とし、陰イオン交換カラム吸着工程では、このアルカリ性の溶解液をカラムに導入する。このように、陰イオン交換カラムに導入する溶解液をアルカリ性にすることで、陰イオン交換カラムへの99mTcの吸着率が向上する。その結果、最終的に得られる99mTcが増加し、99mTcの収率が向上する。 Then, the effect by the purification method demonstrated above is demonstrated. In this purification method, the dissolution solution in the dissolution step is made alkaline, and in the anion exchange column adsorption step, this alkaline solution is introduced into the column. Thus, by making the solution introduced into the anion exchange column alkaline, the adsorption rate of 99m Tc on the anion exchange column is improved. As a result, 99m Tc finally obtained is increased, and the yield of 99m Tc is improved.

また酸性アルミナカラム吸着工程において、酸性アルミナカラムに導入する溶液を99mTc水溶液としたので、99mTcのC2H2溶液を導入する場合に比べて、カラムへの吸着率が向上し、その結果、最終的に得られる99mTcが増加し、99mTcの収率が向上する。すなわち、99mTc水溶液が用いられているので99mTcがより陽イオン化し易く、酸性アルミナカラムに対して99mTcが吸着され易いと考えられる。 In addition, in the acidic alumina column adsorption process, the solution to be introduced into the acidic alumina column was 99m Tc aqueous solution, so the adsorption rate to the column was improved compared to the case of introducing 99m Tc C 2 H 2 solution. 99m Tc finally obtained is increased, and the yield of 99m Tc is improved. That is, since 99m Tc aqueous solution is used, it is considered that 99m Tc is more easily cationized and 99m Tc is easily adsorbed to the acidic alumina column.

また、この精製方法では、99mTc抽出工程においてCH2Cl2といった有機溶媒が使用される。精製工程で使用されるこの種の有機溶媒は、最終的には可能な限り除去されることが望まれる。すなわち、最終的に得られる精製済みの99mTcは放射性医薬品として使用されるものであるので、CH2Cl2のような有機溶媒の残留量は可能な限り小さいことが望まれる。これに対して、上記の本実施形態の精製方法では、99mTc溶液調製工程において、抽出液からCH2Cl2を蒸発させて除去した後、水を加えて99mTc水溶液とする処理を行っている。この処理により、99mTc分離工程で使用したCH2Cl2が除去され水に置換されるので、最終的に得られる99mTcにおいて、CH2Cl2の残留量を低減することができる。 In this purification method, an organic solvent such as CH 2 Cl 2 is used in the 99m Tc extraction step. It is desired that this type of organic solvent used in the purification process is finally removed as much as possible. That is, since the purified 99m Tc finally obtained is used as a radiopharmaceutical, the residual amount of an organic solvent such as CH 2 Cl 2 is desired to be as small as possible. In contrast, in the purification method of the present embodiment described above, in the 99m Tc solution preparation step, CH 2 Cl 2 is removed from the extract by evaporation, and then water is added to form a 99m Tc aqueous solution. Yes. By this treatment, CH 2 Cl 2 used in the 99m Tc separation step is removed and replaced with water, so that the residual amount of CH 2 Cl 2 can be reduced in the finally obtained 99m Tc.

以上、本発明の一実施形態について説明したが、本発明は、上記実施形態に限られるものではなく、各請求項に記載した要旨を変更しない範囲で変形したものであってもよい。   Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and may be modified without changing the gist described in each claim.

続いて、本発明者らが行った実験について説明する。   Subsequently, an experiment conducted by the present inventors will be described.

〔実験1〕
実験1では、本実施形態の精製方法に従って、99mTcの精製を行った。そして、各工程の分離前と分離後の99mTcの放射能をGe検出器で測定し、分離後/分離前の値を「分離精製効率」(%)として表した。実験1には、下に説明する実験1−1〜実験1−3が含まれる。
[Experiment 1]
In Experiment 1, 99m Tc was purified according to the purification method of this embodiment. Then, the radioactivity of 99m Tc before and after separation in each step was measured with a Ge detector, and the value after / before separation was expressed as “separation purification efficiency” (%). Experiment 1 includes Experiments 1-1 to 1-3 described below.

(実験1−1)
実験1−1では、各工程の分離条件を次の通りとした。
溶解工程で準備した99Mo/99mTcターゲット11は、金属Moターゲット(寸法:20mmx20mmx1mmを1枚、質量:0.7g)に、サイクロトロンの中性子線を照射して得られたものである。中性子線の照射条件は、照射電流=1μA、照射時間=10分である。
(Experiment 1-1)
In Experiment 1-1, the separation conditions in each step were as follows.
The 99 Mo / 99m Tc target 11 prepared in the melting process is obtained by irradiating a metal Mo target (dimensions: 20 mm × 20 mm × 1 mm, mass: 0.7 g) with cyclotron neutrons. The irradiation conditions of the neutron beam are irradiation current = 1 μA and irradiation time = 10 minutes.

溶解工程では、99Mo/99mTcターゲット11に対し、1Nの塩酸2mLと過酸化水素水0.4mLとを加えてターゲットを溶解し、更に5NのNaOH水溶液2mLを加えて溶解液のpHをpH11以上とした。
陰イオン交換カラム吸着工程で用いた陰イオン交換樹脂は、ダウ・ケミカル社製のDowex1X8であり、この陰イオン交換樹脂0.4gを容器に充填して陰イオン交換カラム13とした。カラムの前処理として、生理食塩水5mLと純水5mLを通過させた。
99Mo除去工程では、99Mo 脱離液として0.9wt%のNaCl水溶液3mLを用いた。
99mTc抽出工程では、99mTc 脱離液としてTBAB/CH2Cl2を5mL用いた。TBAB濃度は0.2mg/mlとした。
酸性アルミナカラム吸着工程で用いた酸性アルミナ粉末は、和光純薬工業(株)製の「AluminaA」であり、この酸性アルミナ粉末1.5gを容器に充填して酸性アルミナカラム15とした。
99mTc回収工程では、0.9wt%のNaCl水溶液5mLを用いた。
In the dissolution process, 2 mL of 1N hydrochloric acid and 0.4 mL of hydrogen peroxide solution are added to the 99 Mo / 99m Tc target 11 to dissolve the target, and then 2 mL of 5N NaOH aqueous solution is added to bring the pH of the solution to pH 11 or higher. It was.
The anion exchange resin used in the anion exchange column adsorption step was Dowex 1X8 manufactured by Dow Chemical Co., Ltd., and 0.4 g of this anion exchange resin was filled in a container to form an anion exchange column 13. As pretreatment of the column, 5 mL of physiological saline and 5 mL of pure water were passed.
In the 99 Mo removal process, 3 mL of 0.9 wt% NaCl aqueous solution was used as the 99 Mo desorption solution.
In the 99m Tc extraction step, 5 mL of TBAB / CH 2 Cl 2 was used as the 99m Tc desorption solution. The TBAB concentration was 0.2 mg / ml.
The acidic alumina powder used in the acidic alumina column adsorption step was “Alumina A” manufactured by Wako Pure Chemical Industries, Ltd., and 1.5 g of this acidic alumina powder was filled in a container to obtain an acidic alumina column 15.
In the 99m Tc recovery step, 5 mL of 0.9 wt% NaCl aqueous solution was used.

(実験結果1−1)
続いて、実験1−1の結果を説明する。
陰イオン交換カラム吸着工程における分離精製効率は、95%であった。すなわち、陰イオン交換カラム吸着工程においては、溶解液に含まれる99mTcの95%が陰イオン交換カラム13に吸着された。
99Mo除去工程における分離精製効率は、95%以上であった。すなわち、99Mo除去工程においては、陰イオン交換カラム13に吸着されていた99mTcの95%以上が脱離せずに陰イオン交換カラム13内に留まった。
99mTc抽出工程における分離精製効率は、84%であった。すなわち、99mTc抽出工程においては、陰イオン交換カラム13に留まっていた99mTcの84%が抽出され、CH2Cl2と一緒に陰イオン交換カラム13から排出された。
酸性アルミナカラム吸着工程における分離精製効率は、95%であった。すなわち、酸性アルミナカラム吸着工程においては、99mTc溶液調製工程で得られた99mTc水溶液中の99mTcのうち95%が、酸性アルミナカラム15に吸着された。
99mTc回収工程における分離精製効率は93%であった。すなわち、99mTc回収工程においては、酸性アルミナカラム15に吸着されていた99mTcの93%が生理食塩水と一緒に酸性アルミナカラム15から排出された。
(Experimental result 1-1)
Then, the result of Experiment 1-1 is demonstrated.
Separation and purification efficiency in the anion exchange column adsorption step was 95%. That is, in the anion exchange column adsorption step, 95% of 99m Tc contained in the solution was adsorbed on the anion exchange column 13.
Separation and purification efficiency in the 99 Mo removal step was 95% or more. That is, in the 99 Mo removal step, 95% or more of 99m Tc adsorbed on the anion exchange column 13 remained in the anion exchange column 13 without desorption.
The separation and purification efficiency in the 99m Tc extraction step was 84%. That is, in the 99m Tc extraction step, 84% of 99m Tc remaining on the anion exchange column 13 was extracted and discharged from the anion exchange column 13 together with CH 2 Cl 2 .
Separation and purification efficiency in the acidic alumina column adsorption step was 95%. That is, in the acidic alumina column adsorption step, 95% of 99m Tc in the 99m Tc aqueous solution obtained in the 99m Tc solution preparation step was adsorbed on the acidic alumina column 15.
Separation and purification efficiency in the 99m Tc recovery step was 93%. That is, in the 99m Tc recovery step, 93% of 99m Tc adsorbed on the acidic alumina column 15 was discharged from the acidic alumina column 15 together with the physiological saline.

(実験1−2及び実験1−3)
続いて、実験1−2では、溶解工程において加えるNaOH水溶液の量を変えて溶解液のpHをpH7.0とした。それ以外の分離条件は実験1−1と同様である。同様にして、溶解液のpHを変えながら実験1−3を行った。
(Experiment 1-2 and Experiment 1-3)
Subsequently, in Experiment 1-2, the pH of the solution was adjusted to pH 7.0 by changing the amount of NaOH aqueous solution added in the dissolution step. The other separation conditions are the same as in Experiment 1-1. Similarly, Experiment 1-3 was performed while changing the pH of the solution.

実験1(実験1−1〜実験1−3)の分離条件は、まとめて表1(図4)に示す。   The separation conditions of Experiment 1 (Experiment 1-1 to Experiment 1-3) are collectively shown in Table 1 (FIG. 4).

〔実験2〕
続いて、本実施形態の精製方法と比較するため、実験2では、前述の非特許文献1に記載の精製方法に従って、99mTcの精製を行った。そして、実験1と同様に、各工程の分離前と分離後の99mTcの放射能をGe検出器で測定し、分離後/分離前の値を「分離精製効率」(%)として表した。実験2には、下に説明する実験2−1及び実験2−2が含まれる。
[Experiment 2]
Subsequently, in order to compare with the purification method of the present embodiment, 99m Tc was purified according to the purification method described in Non-Patent Document 1 described above in Experiment 2. Then, as in Experiment 1, the radioactivity of 99m Tc before and after separation in each step was measured with a Ge detector, and the value after / before separation was expressed as “separation purification efficiency” (%). Experiment 2 includes Experiment 2-1 and Experiment 2-2 described below.

(実験2−1)
実験2−1では、各工程の条件を次の通りとした。
工程aで準備した99Mo/99mTcターゲットは、金属Moターゲット(寸法:20mmx20mmx1mm、質量:0.07g)に、サイクロトロンの中性子線を照射して得られたものである。中性子線の照射条件は、照射電流=1μA、照射時間=10分である。
工程aでは、99Mo/99mTcターゲットに対し、1Nの塩酸2mLと過酸化水素水0.4mLとを加えてターゲットを溶解し、更に5NのNaOH水溶液2mLを加えて溶解液のpHをpH2.0とした。
工程bで用いた陰イオン交換樹脂は、ダウ・ケミカル社製のDowex1X8であり、この陰イオン交換樹脂0.4gを容器に充填して陰イオン交換カラムとした。カラムの前処理として、生理食塩水5mLと純水5mLを通過させた。
工程cでは、0.9wt%のNaCl水溶液3mLを用いた。
工程dでは、TBAB/CH2Cl2を5mL用いた。TBAB濃度は0.2mg/mlとした。
工程eで用いたアルミナ粉末は、中性アルミナ粉末であり、和光純薬工業(株)製の「AluminaN」であり、このアルミナ粉末1.5gを容器に充填してアルミナカラムとした。
99mTc回収工程では、0.9wt%のNaCl水溶液5mLを用いた。
(Experiment 2-1)
In Experiment 2-1, the conditions for each step were as follows.
The 99 Mo / 99m Tc target prepared in step a is obtained by irradiating a metal Mo target (dimensions: 20 mm × 20 mm × 1 mm, mass: 0.07 g) with a cyclotron neutron beam. The irradiation conditions of the neutron beam are irradiation current = 1 μA and irradiation time = 10 minutes.
In step a, 2 mL of 1N hydrochloric acid and 0.4 mL of hydrogen peroxide are added to the 99 Mo / 99m Tc target to dissolve the target, and then 2 mL of 5N NaOH aqueous solution is added to adjust the pH of the solution to pH 2.0. It was.
The anion exchange resin used in step b was Dowex1X8 manufactured by Dow Chemical Co., Ltd., and 0.4 g of this anion exchange resin was filled in a container to obtain an anion exchange column. As pretreatment of the column, 5 mL of physiological saline and 5 mL of pure water were passed.
In step c, 3 mL of a 0.9 wt% NaCl aqueous solution was used.
In step d, 5 mL of TBAB / CH 2 Cl 2 was used. The TBAB concentration was 0.2 mg / ml.
The alumina powder used in step e is neutral alumina powder, “AluminaN” manufactured by Wako Pure Chemical Industries, Ltd., and 1.5 g of this alumina powder was filled in a container to form an alumina column.
In the 99m Tc recovery step, 5 mL of 0.9 wt% NaCl aqueous solution was used.

(実験2−2)
実験2−2では、各工程の条件を次の通りとした。
工程aで準備した99Mo/99mTcターゲットは、金属Moターゲット(寸法:6mmx6mmx0.1mmを6枚、質量:0.1627g)に、サイクロトロンの中性子線を照射して得られたものである。中性子線の照射条件は、照射電流=1μA、照射時間=10分である。
工程aでは、99Mo/99mTcターゲットに対し、1Nの塩酸8mLと過酸化水素水1.6mLとを加えてターゲットを溶解し、更に5NのNaOH水溶液2mLを加えて溶解液のpHをpH11とした。
工程bで用いた陰イオン交換樹脂は、ダウ・ケミカル社製のDowex1X8であり、この陰イオン交換樹脂0.2gを容器に充填して陰イオン交換カラムとした。カラムの前処理として、生理食塩水5mLと純水5mLを通過させた。
工程cでは、0.9wt%のNaCl水溶液3mLを用いた。
工程dでは、TBAB/CH2Cl2を5mLずつ3回に分けて合計15mL導入した。TBAB濃度は0.2mg/mlとした。
工程eで用いたアルミナ粉末は、中性アルミナ粉末であり、和光純薬工業(株)製の「AluminaN」であり、このアルミナ粉末1.5gを容器に充填してアルミナカラムとした。
99mTc回収工程では、0.9wt%のNaCl水溶液5mLを用いた。
(Experiment 2-2)
In Experiment 2-2, the conditions of each step were as follows.
The 99 Mo / 99m Tc target prepared in step a is obtained by irradiating a metal Mo target (dimensions: 6 mm × 6 mm × 0.1 mm, mass: 0.1627 g) with cyclotron neutrons. The irradiation conditions of the neutron beam are irradiation current = 1 μA and irradiation time = 10 minutes.
In step a, 8 mL of 1N hydrochloric acid and 1.6 mL of hydrogen peroxide solution were added to the 99 Mo / 99m Tc target to dissolve the target, and 2 mL of 5N NaOH aqueous solution was further added to adjust the pH of the solution to pH 11. .
The anion exchange resin used in step b was Dowex 1X8 manufactured by Dow Chemical Co., Ltd., and 0.2 g of this anion exchange resin was filled in a container to obtain an anion exchange column. As pretreatment of the column, 5 mL of physiological saline and 5 mL of pure water were passed.
In step c, 3 mL of a 0.9 wt% NaCl aqueous solution was used.
In step d, TBAB / CH 2 Cl 2 was introduced in a total of 15 mL in 5 mL portions. The TBAB concentration was 0.2 mg / ml.
The alumina powder used in step e is neutral alumina powder, “AluminaN” manufactured by Wako Pure Chemical Industries, Ltd., and 1.5 g of this alumina powder was filled in a container to form an alumina column.
In the 99m Tc recovery step, 5 mL of 0.9 wt% NaCl aqueous solution was used.

実験2(実験2−1〜実験2−2)の分離条件は、まとめて表2(図5)に示す。   The separation conditions of Experiment 2 (Experiment 2-1 to Experiment 2-2) are collectively shown in Table 2 (FIG. 5).

〔実験結果の考察〕
実験2では、工程bにおける分離精製効率は最大でも84.9%であった。これに対し、実験1では、陰イオン交換カラム吸着工程における分離精製効率はいずれも95%以上であった。よって、陰イオン交換カラムに導入する溶解液をアルカリ性にすることで、陰イオン交換カラムへの99mTcの吸着率が向上し、その結果、最終的に得られる99mTcが増加し、99mTcの収率が向上することが判った。
[Consideration of experimental results]
In Experiment 2, the separation and purification efficiency in step b was 84.9% at the maximum. On the other hand, in Experiment 1, the separation and purification efficiency in the anion exchange column adsorption step was 95% or more. Therefore, by the solution to be introduced into the anion exchange column in an alkaline, improved adsorption rate 99m Tc to the anion exchange column, as a result, the finally obtained 99m Tc increases, the 99m Tc It was found that the yield was improved.

更に、実験1−1〜1−3を比較すると、溶解液のpHが高くなるほど、陰イオン交換カラム吸着工程における分離精製効率が向上することが判った。そして、十分な分離精製効率を得るために、溶解液のpHをpH11以上とすることが特に好ましいことが判った。   Furthermore, when Experiments 1-1 to 1-3 were compared, it was found that the separation and purification efficiency in the anion exchange column adsorption process was improved as the pH of the solution was increased. In order to obtain sufficient separation and purification efficiency, it has been found that it is particularly preferable to set the pH of the solution to pH 11 or higher.

また実験2では、工程fにおける分離精製効率は最大でも10%未満であった。すなわち、アルミナカラムへの99mTcの吸着率が極めて低い。これに対し、実験1では、酸性アルミナカラム吸着工程における分離精製効率はいずれも95%以上であった。よって、酸性アルミナカラムに導入する溶液を99mTc水溶液とすることで、99mTcのTBAB/C2H2溶液を導入する場合に比べて、カラムへの吸着率が向上し、その結果、最終的に得られる99mTcが増加し、99mTcの収率が向上することが判った。 In Experiment 2, the separation and purification efficiency in Step f was less than 10% at the maximum. That is, the adsorption rate of 99m Tc on the alumina column is extremely low. In contrast, in Experiment 1, the separation and purification efficiency in the acidic alumina column adsorption step was 95% or more. Therefore, by using 99m Tc aqueous solution as the solution to be introduced into the acidic alumina column, the adsorption rate to the column is improved compared to the case of introducing 99m Tc TBAB / C 2 H 2 solution. It was found that the 99m Tc obtained was increased and the yield of 99m Tc was improved.

以上のとおり、実験1,2によれば、本実施形態の精製方法(実験1の精製方法)では、非特許文献1の精製方法(実験2の精製方法)に比べて、99mTcの収率が向上することが判った。 As described above, according to Experiments 1 and 2, the purification method of this embodiment (Purification Method of Experiment 1) yields 99m Tc compared to the purification method of Non-Patent Document 1 (Purification Method of Experiment 2). Was found to improve.

11…99Mo/99mTcターゲット、13…陰イオン交換カラム、15…酸性アルミナカラム。 11 ... 99 Mo / 99m Tc target, 13 ... anion exchange column, 15 ... acidic alumina column.

Claims (3)

99Mo/99mTcターゲットから99mTcを精製する99mTcの精製方法であって、
前記99Mo/99mTcターゲットを溶解して溶解液を得る溶解工程と、
前記溶解液を陰イオン交換カラムに導入し前記陰イオン交換カラムに99Moと99mTcとを吸着させる陰イオン交換カラム吸着工程と、
前記陰イオン交換カラムに吸着された99Moを溶媒で除去する99Mo除去工程と、
前記陰イオン交換カラムに吸着された99mTcを溶媒で抽出する99mTc抽出工程と、
前記99mTc抽出工程で得られた抽出液に所定の処理を施して99mTcを含む溶液を得る99mTc溶液調製工程と、
前記99mTcを含む溶液を酸性アルミナカラムに導入し前記酸性アルミナカラムに99mTcを吸着させる酸性アルミナカラム吸着工程と、
前記酸性アルミナカラムに吸着された99mTcを食塩水で抽出し回収する99mTc回収工程と、を備え、
前記溶解工程の前記溶解液をアルカリ性とし、
前記99mTc溶液調製工程における前記所定の処理は、
前記抽出液から溶媒を蒸発させて除去した後、水を加えて99mTc水溶液とする処理であることを特徴とする99mTcの精製方法。
99m Tc purification method for purifying 99m Tc from 99 Mo / 99m Tc target,
A dissolution step of dissolving the 99 Mo / 99m Tc target to obtain a solution;
An anion exchange column adsorption step for introducing the lysate into the anion exchange column and adsorbing 99 Mo and 99m Tc to the anion exchange column;
99 Mo removal step of removing 99 Mo adsorbed on the anion exchange column with a solvent;
99m Tc extraction step of extracting 99m Tc adsorbed on the anion exchange column with a solvent;
A 99m Tc solution preparation step for obtaining a solution containing 99m Tc by subjecting the extract obtained in the 99m Tc extraction step to a predetermined treatment;
An acidic alumina column adsorption step a of adsorbing 99m Tc solution to the acidic alumina column and introduced into an acidic alumina column containing the 99m Tc,
99m Tc recovery step of extracting and recovering 99m Tc adsorbed on the acidic alumina column with saline,
Making the solution in the dissolution step alkaline,
The predetermined treatment in the 99m Tc solution preparation step is:
A method for purifying 99m Tc, which is a process of evaporating and removing a solvent from the extract and then adding water to form a 99m Tc aqueous solution.
99Mo/99mTcターゲットから99mTcを精製する精製方法であって、
前記99Mo/99mTcターゲットを溶解して溶解液を得る溶解工程と、
前記溶解液を陰イオン交換カラムに導入し前記陰イオン交換カラムに99Moと99mTcとを吸着させる陰イオン交換カラム吸着工程と、
前記陰イオン交換カラムに吸着された99mTcを取得する99mTc取得工程と、を備え、
前記溶解工程の前記溶解液をアルカリ性とすることを特徴とする99mTcの精製方法。
A purification method for purifying 99m Tc from a 99 Mo / 99m Tc target,
A dissolution step of dissolving the 99 Mo / 99m Tc target to obtain a solution;
An anion exchange column adsorption step for introducing the lysate into the anion exchange column and adsorbing 99 Mo and 99m Tc to the anion exchange column;
99m Tc acquisition step of acquiring 99m Tc adsorbed on the anion exchange column,
A method for purifying 99m Tc, wherein the dissolution solution in the dissolution step is made alkaline.
99Mo/99mTcターゲットから99mTcを精製する精製方法であって、
前記99Mo/99mTcターゲットの溶解液を吸着させたカラムから溶媒にて99mTcを分離抽出した抽出液を準備する工程と、
前記抽出液に所定の処理を施して99mTcを含む溶液を得る99mTc溶液調製工程と、を備え、
前記99mTc溶液調製工程における前記所定の処理は、
前記抽出液から溶媒を蒸発させて除去した後、水を加えて99mTcを含む水溶液とする処理であることを特徴とする99mTcの精製方法。
A purification method for purifying 99m Tc from a 99 Mo / 99m Tc target,
Preparing an extract obtained by separating and extracting 99m Tc with a solvent from a column on which the 99 Mo / 99m Tc target solution is adsorbed;
99m Tc solution preparation step for obtaining a solution containing 99m Tc by performing a predetermined treatment on the extract,
The predetermined treatment in the 99m Tc solution preparation step is:
A method for purifying 99m Tc, comprising removing the solvent from the extract by evaporating and then adding water to an aqueous solution containing 99m Tc.
JP2012079200A 2012-03-30 2012-03-30 99mTc purification method Active JP6000600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012079200A JP6000600B2 (en) 2012-03-30 2012-03-30 99mTc purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012079200A JP6000600B2 (en) 2012-03-30 2012-03-30 99mTc purification method

Publications (2)

Publication Number Publication Date
JP2013210226A true JP2013210226A (en) 2013-10-10
JP6000600B2 JP6000600B2 (en) 2016-09-28

Family

ID=49528199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012079200A Active JP6000600B2 (en) 2012-03-30 2012-03-30 99mTc purification method

Country Status (1)

Country Link
JP (1) JP6000600B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104923077A (en) * 2014-03-17 2015-09-23 住友重机械工业株式会社 Radioactive isotope refining device and radioactive isotope refining method
JP2018091708A (en) * 2016-12-02 2018-06-14 日本メジフィジックス株式会社 Technetium production device, technetium production method and radioactive medicine production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002370A (en) * 2009-06-19 2011-01-06 Kaken:Kk Method and system for concentration and elution recovery of radioactive technetium as material for radiopharmaceutical medicine and labeled compound of the same
WO2011126522A2 (en) * 2009-12-07 2011-10-13 Medi-Physics, Inc. Multiple generator elution system
WO2012039038A1 (en) * 2010-09-22 2012-03-29 独立行政法人放射線医学総合研究所 Method for production/extraction of tc-99m utilizing mo-99, and mo-99/tc-99m liquid generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002370A (en) * 2009-06-19 2011-01-06 Kaken:Kk Method and system for concentration and elution recovery of radioactive technetium as material for radiopharmaceutical medicine and labeled compound of the same
WO2011126522A2 (en) * 2009-12-07 2011-10-13 Medi-Physics, Inc. Multiple generator elution system
WO2012039038A1 (en) * 2010-09-22 2012-03-29 独立行政法人放射線医学総合研究所 Method for production/extraction of tc-99m utilizing mo-99, and mo-99/tc-99m liquid generator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015028948; Sankha Chattopadhyay,Malay Kanti Das: 'A novel technique for the effective concentration of 99mTc from a large alumina column loaded with l' Applied Radiation and Isotopes 66, 2008, P1295-1299 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104923077A (en) * 2014-03-17 2015-09-23 住友重机械工业株式会社 Radioactive isotope refining device and radioactive isotope refining method
CN104923077B (en) * 2014-03-17 2017-06-13 住友重机械工业株式会社 Radioisotopic refining plant and radioisotopic process for purification
JP2018091708A (en) * 2016-12-02 2018-06-14 日本メジフィジックス株式会社 Technetium production device, technetium production method and radioactive medicine production method

Also Published As

Publication number Publication date
JP6000600B2 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
US11798700B2 (en) Systems, apparatus and methods for separating actinium, radium, and thorium
KR20190021251A (en) Especially a method for producing an iodine radioisotope fraction of I-131, particularly a method for producing an iodine radioisotope fraction of I-131
JP5294180B2 (en) Method and apparatus for separating and purifying technetium from molybdenum containing technetium, and method and apparatus for recovering molybdenum
JP6000600B2 (en) 99mTc purification method
CA3054925A1 (en) Method for the manufacture of highly purified 68ge material for radiopharmaceutical purposes
Cieszykowska et al. Separation of Ytterbium from 177 Lu/Yb mixture by electrolytic reduction and amalgamation
CN109437343B (en) Preparation method of sodium pertechnetate solution
JP6911092B2 (en) High-purity SN-117M composition and method for preparing it
JP4877863B2 (en) Separation of radioactive copper using chelate exchange resin
JP2014102086A (en) Method for adsorbing and removing cesium in water and cesium adsorbent
JP2023550075A (en) How to generate scandium-44
Tachimori et al. Preparation of Tc-99m by direct adsorption from organic solution
Yamaura et al. Studies on the Separation of 99 Mo From Nitric Acid Medium by Alumina
WO2023203826A1 (en) Radionuclide production system and radionuclide production method
KR20230080400A (en) How to separate lutetium and ytterbium using chromatography
Shehata et al. Radiochemical studies relevant to the separation of 68 Ga and 68 Ge
AU2017312531B2 (en) Methods for purifying molybdenum-99
Kikunaga et al. No-carrier-added purification of 28Mg using co-precipitation and cation exchange method
TW202235092A (en) Ra-226 recovery method, Ra-226 solution production method, and Ac-225 solution production method
Ikeda et al. Development of Separation for Carrier-free Astatine Using Column Chromatography
JP6827709B2 (en) Method for producing 2- [18F] fluoro-2-deoxy-D-glucose
Neuburger et al. Dosage du molybdene et du tungstene dans les plantes par activation neutronique: Methode radiochimique adaptee aux vegetaux riches en calcium
Kotovskii et al. Isolation of radium-224
JP2009198333A (en) Uranium refining method and device
Mushtaq et al. Separation of fission Iodine-131

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160831

R150 Certificate of patent or registration of utility model

Ref document number: 6000600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150