JP2011007733A - Radiation irradiation device - Google Patents

Radiation irradiation device Download PDF

Info

Publication number
JP2011007733A
JP2011007733A JP2009153749A JP2009153749A JP2011007733A JP 2011007733 A JP2011007733 A JP 2011007733A JP 2009153749 A JP2009153749 A JP 2009153749A JP 2009153749 A JP2009153749 A JP 2009153749A JP 2011007733 A JP2011007733 A JP 2011007733A
Authority
JP
Japan
Prior art keywords
irradiation
neutron
radiation
containing solution
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009153749A
Other languages
Japanese (ja)
Other versions
JP5403605B2 (en
Inventor
Etsuo Ishizuka
悦男 石塚
Yoshitomo Inaba
良知 稲葉
Katsuyoshi Tadenuma
克嘉 蓼沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaken Co Ltd
Japan Atomic Energy Agency
Original Assignee
Kaken Co Ltd
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaken Co Ltd, Japan Atomic Energy Agency filed Critical Kaken Co Ltd
Priority to JP2009153749A priority Critical patent/JP5403605B2/en
Publication of JP2011007733A publication Critical patent/JP2011007733A/en
Application granted granted Critical
Publication of JP5403605B2 publication Critical patent/JP5403605B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a γ-ray/neutron-beam irradiation device for medical use having easy handleability and excellent work efficiency, capable of obtaining a desired radiation flux distribution shape.SOLUTION: This radiation irradiation device includes: an irradiation source part 30 for irradiating an irradiation object with a radiation; a reactor 10; a neutron irradiation capsule 20 installed in the reactor 10; an introduction pipe 40 for connecting the irradiation source part 30 to the neutron irradiation capsule 20, and introducing radioactive isotope-including solution into the neutron irradiation capsule 20; and a lead-out pipe 50 for connecting the irradiation source part 30 to the neutron irradiation capsule 20, and leading out the radioactive isotope-including solution after being subjected to neutron irradiation from the neutron irradiation capsule 20. In the device, the radioactive isotope-including solution subjected to neutron irradiation in the reactor 10 is conveyed to the irradiation source part 30 through the introduction pipe 40, and is used as an irradiation source for irradiating the irradiation object 108 with a radiation, and thereafter, the radioactive isotope-including solution is returned into the neutron irradiation capsule 20 through the lead-out pipe 50, and is subjected again to neutron irradiation.

Description

本発明は、放射線照射装置に関し、特に医療用放射線照射装置として有用な中性子照射した放射性同位元素含有溶液を照射用線源として直接利用する放射線照射装置に関する。   The present invention relates to a radiation irradiation apparatus, and more particularly to a radiation irradiation apparatus that directly uses a neutron-irradiated radioisotope-containing solution useful as a medical radiation irradiation apparatus as an irradiation radiation source.

放射性同位元素(ラジオアイソトープ、以下「RI」とも称する)は、工業的用途、医療用途、研究開発などの幅広い分野で使われており、これらのうち、コバルト60(60Co)やイリジウム192(192Ir)などの比較的長寿命のRIは、固体ターゲット(金属ペレット)を原子炉で照射して製造されている(非特許文献1)。これら原子炉照射によるRI製造は、ターゲット金属ペレット数個毎に個別に行われており、多数のターゲット金属ペレットを1回の原子炉照射で製造することはできなかった。また、原子炉内でターゲット金属ペレットに中性子を照射する際には、できるだけ均一な放射能を有するRIを製造するため、中性子束が高い垂直方向の炉心位置の一部しか利用できなかった。 Radioactive isotope (radio isotope, hereinafter also referred to as "RI") is, industrial applications, medical applications, has been used in a wide range of fields, such as research and development, and of these, cobalt 60 (60 Co) and iridium 192 (192 A relatively long-life RI such as Ir) is manufactured by irradiating a solid target (metal pellet) with a nuclear reactor (Non-patent Document 1). RI production by these reactor irradiations is performed individually for every several target metal pellets, and many target metal pellets cannot be produced by one reactor irradiation. Moreover, when irradiating the target metal pellet with neutrons in the nuclear reactor, in order to manufacture RI having as uniform radioactivity as possible, only a part of the vertical core position with a high neutron flux could be used.

このため、製造したRIを使って所望の放射線フラックス分布を実現するためには、複数回に分けて個別に原子炉内で中性子照射した異なる放射能を有するRIを1個ずつ密封容器に封入した後、基板上に配列する必要があり、取り扱いが煩雑で、作業時間が長くなり、作業者の被曝量が増えるという問題があった。また、個別に密封容器に封入する作業は、小さなペレット状の個別のRIを取り扱うために、管理が煩雑で紛失の危険性があった。   For this reason, in order to achieve the desired radiation flux distribution using the manufactured RI, the RIs having different activities irradiated with neutrons in the reactor individually in multiple times are enclosed in sealed containers one by one. After that, it is necessary to arrange them on the substrate, and there is a problem that handling is complicated, work time becomes long, and the exposure dose of the worker increases. In addition, the operation of individually enclosing the container in a sealed container is difficult to manage because there is a risk of loss due to handling of individual RI in the form of a small pellet.

たとえば、頭部がん治療に使われているガンマナイフでは、201個のRI(60Co:たとえば円柱状8mm径、長さ27mm)が半球状ヘルメットに装着されている。201個のRIの放射能を均等にするためには、Co金属ターゲットに対する中性子照射条件を同一としなければならない。従来の原子炉照射による方法で同一の中性子照射条件を実現するためには、炉心位置の限定された一部だけを利用しなければならなかったため、一度の中性子照射で201個のRIを製造することはできず、数個のCo金属ターゲットを照射容器に封入して、個別または複数回に分けて原子炉内で中性子照射を行っていた。この場合、中性子照射により得られた60Co[(1.11TBq(30Ci)/個)]201個を個別に密封容器に封入し、ガンマナイフのヘルメットに1個ずつ配列していた。このため、作業が繁雑な上、作業者の被曝量コントロールが問題であった。 For example, in a gamma knife used for head cancer treatment, 201 RIs ( 60 Co: for example, a cylindrical shape having a diameter of 8 mm and a length of 27 mm) are mounted on a hemispherical helmet. In order to equalize the radioactivity of 201 RIs, the neutron irradiation conditions for the Co metal target must be the same. In order to realize the same neutron irradiation conditions by the conventional reactor irradiation method, it was necessary to use only a limited part of the core position, so 201 RIs were produced by one neutron irradiation. However, several Co metal targets were enclosed in an irradiation container, and neutron irradiation was performed in the reactor individually or in multiple times. In this case, 201 60 Co [(1.11 TBq (30 Ci) / piece)] obtained by neutron irradiation were individually enclosed in a sealed container and arranged one by one in a gamma knife helmet. For this reason, the work is complicated and the exposure control of the worker is a problem.

また、非破壊検査用RIなどに広く使われている192Irの製造手順を下記に示す。
1)たとえば、2mm径、長さ2mmの円柱状のIr金属及びアルミニウムスペーサを交互に試料ホルダーに封入した後、インナーキャプセルにセットする。
2)インナーキャプセルをアルミバスケットキャプセルに入れて、原子炉内に導入し、中性子照射に供する。このとき、目的の線量を得るために、インナーキャプセルへの中性子照射は1度に1個程度である。
3)アルミバスケットキャプセルを原子炉から取り出し、同キャプセルの機械的ロックを外して、インナーキャプセルを取り出す。
4)RI製造施設にインナーキャプセルを輸送した後、インナーキャプセルを解体し、Ir金属の放射能を測定する。
5)特殊な装置を使ってIr金属を個々に密封容器に封入して、品質のチェックを行う。
A manufacturing procedure of 192 Ir widely used for RI for nondestructive inspection is shown below.
1) For example, a cylindrical Ir metal having a diameter of 2 mm and a length of 2 mm and an aluminum spacer are alternately enclosed in a sample holder, and then set in an inner capsule.
2) Put the inner capsule into the aluminum basket capsule, introduce it into the reactor, and use it for neutron irradiation. At this time, in order to obtain a target dose, the neutron irradiation to the inner capsule is about one at a time.
3) Remove the aluminum basket capsule from the reactor, unlock the mechanical lock of the capsule, and remove the inner capsule.
4) After transporting the inner capsule to the RI manufacturing facility, disassemble the inner capsule and measure the radioactivity of Ir metal.
5) Using a special device, Ir metal is individually sealed in a sealed container to check the quality.

RIは、ほとんどが点状や棒状の固定線源として利用されている。移動線源の利用としては、RI線源を高精度のロボットアーム等で移動させながら病巣に集中的に照射し、正常組織への照射を極力減らす医療照射等がある。しかし、面線源として利用できるようなRIを単一の操作で製造することはなされていない。   RI is mostly used as a point-like or rod-like fixed source. As the use of the moving radiation source, there is medical irradiation or the like that irradiates the lesion intensively while moving the RI radiation source with a high-precision robot arm or the like and reduces the irradiation to the normal tissue as much as possible. However, an RI that can be used as a plane line source has not been manufactured in a single operation.

本発明者らは、原子炉内でMo水溶液に中性子照射して98Moを放射化して99Moに変換させた後、99Moを含むMo水溶液を回収する方法を提案した(特許文献1)。しかし、中性子照射した液体を直接、医療用線源として利用する方法及び装置は未だ提案されていない。 The present inventors have found that after a 98 Mo by neutron irradiation was converted into by activation 99 Mo in Mo solution in the reactor was proposed a method for recovering Mo solution containing 99 Mo (Patent Document 1). However, a method and apparatus for directly using a neutron-irradiated liquid as a medical radiation source has not yet been proposed.

また、医療用放射線照射装置としては、ガンマナイフや重粒子・陽子線治療装置などがある。   Medical radiation irradiation devices include gamma knives and heavy particle / proton therapy devices.

ガンマナイフは、Co金属などを原子炉内で中性子照射して得られる60Co(1.11TBq(30Ci)/個)を多数個、照射線源部に配置してなる。特に頭部照射用ガンマナイフはヘルメット型であり、60Coを1個ずつ、総数で201個の60Coをヘルメット内側に取り付けてなり、ヘルメットの中心位置で約200Sv/hの照射量が得られる。しかし、多量の60Coの放射化量を等しく製造するためには、同じ照射条件で製造することが必要であり、限定された炉心位置での照射が必要であった。また、患部への積算照射量を十分な量(40〜70Gy)とするためには、約20分と長い患部への照射時間が必要であるが、長時間の放射線照射は患者にとって負担となる。また、照射位置精度を上げるために、患者に麻酔をかけてヘルメットを固定する特殊な治具をボルトで頭部に固定する必要があり、患者に負担となっていた。 The gamma knife is formed by arranging a large number of 60 Co (1.11 TBq (30 Ci) / piece) obtained by neutron irradiation of Co metal or the like in a nuclear reactor in the irradiation source section. In particular, the head-irradiating gamma knife is a helmet type, and 60 Co is attached one by one and a total of 201 60 Co is attached to the inside of the helmet, and an irradiation amount of about 200 Sv / h is obtained at the center position of the helmet. . However, in order to produce a large amount of activation of 60 Co equally, it is necessary to manufacture under the same irradiation conditions, and irradiation at a limited core position is necessary. Moreover, in order to make the integrated dose to the affected area sufficient (40 to 70 Gy), irradiation time to the affected area as long as about 20 minutes is required, but long-time radiation irradiation is a burden on the patient. . In addition, in order to increase the irradiation position accuracy, it is necessary to anesthetize the patient and fix a special jig for fixing the helmet to the head with a bolt, which is a burden on the patient.

重粒子・陽子線治療装置は、炭素等の重粒子線や陽子線のブラックピークを利用して体内深層部の患部にまで大きな線量での照射を可能とする。しかし、患部の形状に合わせてボーラス(ビームの成形を行う治具)を製作する必要があること、ビームを複数に分割して3人程度の照射ができるが、それ以上分割すると強度が下がってしまい、より多くの患者を同時治療できないこと、体表面近傍部には適応しにくい等の問題がある。また、重粒子・陽子線治療装置の建設費は数百億円規模と非常に高価であり、結果的に治療費も高価になっている。   The heavy particle / proton beam treatment apparatus enables irradiation with a large dose to the affected part in the deep part of the body using a heavy particle beam such as carbon or the black peak of the proton beam. However, it is necessary to manufacture a bolus (a jig for beam shaping) according to the shape of the affected part, and it is possible to irradiate about 3 people by dividing the beam into multiple parts. In other words, there are problems such as being unable to treat more patients simultaneously and being difficult to adapt to the vicinity of the body surface. In addition, the construction cost of heavy particle / proton therapy equipment is very expensive, on the scale of several tens of billion yen, and as a result, the treatment cost is also expensive.

特開2008−102078号公報JP 2008-102078 A

「アイソトープ製造35年誌」アイソトープ製造35年誌編集委員会編、日本原子力研究所東海研究所アイソトープ部発行、平成7年3月31日"Isotope Production 35 Years Magazine" edited by Isotope Production 35 Years Editorial Board, published by Tokai Research Institute, Japan Atomic Energy Research Institute, March 31, 1995 新エネルギー・産業技術総合開発機構(委託先 財団法人化学物質評価研究機構、委託先 独立行政法人製品評価技術基盤機構)、マンガン及びその化合物、有害性評価書Ver.1.0,No.116、化学物質排出把握管理促進法政令号番号:1-311New Energy and Industrial Technology Development Organization (Outsourced Chemical Substance Evaluation and Research Organization, Outsourced National Institute for Product Evaluation Technology), Manganese and its compounds, Hazard Assessment Report Ver.1.0, No.116, Chemical Substances Emission Control Management Promotion Law Decree No .: 1-311

本発明は、取り扱いが容易で、作業性に優れ、所望の放射線照射速度を実現できる医療用γ線・中性子線照射装置を提供することを目的とする。   An object of the present invention is to provide a medical γ-ray / neutron beam irradiation apparatus that is easy to handle, excellent in workability, and capable of realizing a desired radiation irradiation rate.

本発明者らは、上記課題を解消すべく鋭意検討した結果、原子炉内で中性子照射したRI溶液を医療用線源として直接利用する装置構成とすることで上記目的を達成しうることを知見し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the above object can be achieved by adopting an apparatus configuration that directly uses a RI solution irradiated with neutrons in a nuclear reactor as a medical radiation source. Thus, the present invention has been completed.

すなわち、本発明によれば、原子炉内で中性子照射したRI溶液を放射線源として直接利用する放射線照射装置が提供される。   That is, according to the present invention, there is provided a radiation irradiation apparatus that directly uses an RI solution irradiated with neutrons in a nuclear reactor as a radiation source.

本発明による放射線照射装置は、
被照射体に放射線を照射する照射線源部と、
原子炉と、
当該原子炉内に設置した中性子照射キャプセルと、
当該照射線源部と当該中性子照射キャプセルとを流体連通状態に連結し、放射性同位元素含有溶液を当該中性子照射キャプセルに導入する導入配管と、
当該照射線源部と当該中性子照射キャプセルとを流体連通状態に連結し、当該中性子照射キャプセルから、中性子照射後の当該放射性同位元素含有溶液を導出する導出配管と、
を具備し、
当該導入配管及び当該導出配管を介して、当該原子炉内で中性子照射された放射性同位元素含有溶液を当該照射線源部まで搬送し、当該放射性同位元素含有溶液を被照射体に放射線照射する照射線源として使用し、その後、当該放射性同位元素含有溶液を当該照射線源部から再び当該中性子キャプセル内に戻して中性子照射することを特徴とする。
The radiation irradiation apparatus according to the present invention comprises:
An irradiation source unit for irradiating the irradiated object with radiation;
A nuclear reactor,
A neutron irradiation capsule installed in the reactor,
Connecting the radiation source section and the neutron irradiation capsule in fluid communication, and introducing a radioisotope-containing solution into the neutron irradiation capsule;
Connecting the radiation source section and the neutron irradiation capsule in fluid communication, and from the neutron irradiation capsule, a lead-out pipe for deriving the radioisotope-containing solution after neutron irradiation;
Comprising
Irradiation through which the radioactive isotope-containing solution irradiated with neutrons in the nuclear reactor is transported to the irradiation source unit through the introduction pipe and the lead-out pipe, and the irradiated object is irradiated with the radioactive isotope-containing solution. The radioisotope-containing solution is used as a radiation source, and then the neutron irradiation is performed by returning the radioisotope-containing solution from the radiation source section again into the neutron capsule.

前記照射線源部は、シャッター付遮蔽体の間に、前記中性子照射された放射性同位元素含有溶液が流通する配管を配置し、当該シャッター付遮蔽体のシャッター開閉によって被照射体への放射線照射を制御することが好ましい。   The irradiation source unit is arranged with a pipe through which the neutron-irradiated radioisotope-containing solution flows between the shuttered shields, and irradiates the irradiated object by opening and closing the shutters with the shutters. It is preferable to control.

また、前記照射線源部は、前記中性子照射された放射性同位元素含有溶液が流通する配管を複数の小径短長の配管とし、各配管の一端部が被照射体に面するように直列に配列してなる構成とすることが好ましい。具体的には、たとえば直径2mm高さ10cmの小径短長の配管を複数本直列に配列し、当該配管の端部とシャッターとの位置を合わせる。被照射体への放射線量は、シャッターの開閉によって調節することができる。放射性同位元素含有溶液を流通させる配管が長すぎるとγ線が減衰して被照射体に到達する照射量が少なくなり、一方、配管が短すぎると流通させる溶液量が少なくなりγ線照射量が少なくなる。   In addition, the irradiation source section includes a plurality of small-diameter short-length pipes through which the neutron-irradiated radioisotope-containing solution flows, and is arranged in series so that one end of each pipe faces the irradiated body It is preferable to have a configuration formed by Specifically, for example, a plurality of small and short pipes having a diameter of 2 mm and a height of 10 cm are arranged in series, and the end portions of the pipes and the positions of the shutters are aligned. The amount of radiation to the irradiated object can be adjusted by opening and closing the shutter. If the piping through which the radioactive isotope-containing solution is circulated is too long, the amount of γ-rays attenuates and the amount of irradiation reaching the irradiated object decreases, whereas if the piping is too short, the amount of solution to circulate decreases and the amount of γ-ray irradiation decreases. Less.

さらに、前記中性子照射された放射性同位元素含有溶液が流通する配管と、前記シャッター付遮蔽体のシャッターとの間に、ベリリウムからなるコリメータ窓部を具備し、前記中性子照射された放射性同位元素含有溶液から放射されるγ線を中性子線に変換する構成でもよい。   Furthermore, a radioisotope-containing solution irradiated with neutron is provided with a collimator window portion made of beryllium between a pipe through which the neutron-irradiated radioactive isotope-containing solution flows and a shutter of the shield with shutter. The structure which converts the gamma ray radiated | emitted from into a neutron beam may be sufficient.

本発明の放射線照射装置において使用する前記放射性同位元素含有溶液は、Mn、Na、Al、K、Moから選択される短半減期放射性同位元素を含むことが好ましい。たとえば、MnCl水溶液、NaCl水溶液、KMoO水溶液を好ましく利用することができる。これらの短半減期放射性同位元素を利用するため、原子炉内での中性子照射を短時間で行うことができると共に、短時間で減衰するので取り扱いが容易となる。 The radioisotope-containing solution used in the radiation irradiation apparatus of the present invention preferably contains a short half-life radioisotope selected from Mn, Na, Al, K, and Mo. For example, an MnCl 2 aqueous solution, an NaCl aqueous solution, or a K 2 MoO 4 aqueous solution can be preferably used. Since these short half-life radioactive isotopes are used, neutron irradiation in the nuclear reactor can be performed in a short time, and since it attenuates in a short time, handling becomes easy.

本発明の放射線照射装置において、照射線源量は、配管の配列及びシャッターの開閉の他に、放射性同位元素含有溶液中の放射性同位元素の濃度を調節することによっても制御可能である。照射時間を短くするためには、放射性同位元素の濃度は可能な限り高いことが好ましいが、沈殿などによる配管の目詰まりを回避するために、80〜90wt%程度の濃度であることがより好ましい。   In the radiation irradiation apparatus of the present invention, the amount of radiation source can be controlled by adjusting the concentration of the radioisotope in the radioisotope-containing solution in addition to the arrangement of the pipes and the opening and closing of the shutter. In order to shorten the irradiation time, the concentration of the radioisotope is preferably as high as possible. However, in order to avoid clogging of the piping due to precipitation or the like, the concentration is preferably about 80 to 90 wt%. .

本発明の放射線照射装置において使用する配管は、耐腐食性の高いステンレス鋼、チタン等の金属及びこれらを主成分とする合金などから製造されていることが好ましい。また、放射性溶液の漏洩を防止するために二重構造の配管を用いることがより好ましい。   It is preferable that the piping used in the radiation irradiation apparatus of the present invention is manufactured from a metal such as stainless steel and titanium having high corrosion resistance and an alloy containing these as a main component. It is more preferable to use a double-structured pipe in order to prevent leakage of the radioactive solution.

また、原子炉1基に対して複数の照射線源部を連結する構成とすることもできる。この場合、多数の被照射体に同時に放射線照射を行うことができる。   Moreover, it can also be set as the structure which connects a some irradiation source part with respect to 1 nuclear reactor. In this case, a large number of irradiated objects can be irradiated simultaneously.

さらに、原子炉内の中性子照射キャプセルに撹拌装置を設けてもよい。撹拌装置としては、中性子照射キャプセルの流路内に乱流を付与する邪魔板を設けることが好ましい。この場合、中性子照射キャプセル内で放射性同位元素溶液は撹拌しながら中性子照射されるので、均質な放射性同位元素含有溶液を得ることができる。   Further, a stirring device may be provided in the neutron irradiation capsule in the nuclear reactor. As the stirring device, it is preferable to provide a baffle plate for imparting turbulent flow in the flow path of the neutron irradiation capsule. In this case, since the radioactive isotope solution is irradiated with neutrons while stirring in the neutron irradiation capsule, a homogeneous radioisotope-containing solution can be obtained.

本発明の放射線照射装置によれば、原子炉内で中性子照射した放射性同位元素含有溶液を直接照射用線源として利用するので、従来の放射性同位元素を利用する場合のように原子炉外部に取り出す必要がないため、作業者が被曝する危険性を最小限にとどめることができ、取り扱いが容易である。また、放射性同位元素の生産と照射利用をほぼ同時に実現することができる。さらに、放射性同位元素含有溶液中の放射性同位元素の濃度を調節することによって、照射速度を容易に調節することができる。   According to the radiation irradiation apparatus of the present invention, since the radioactive isotope-containing solution irradiated with neutrons in the reactor is used as a direct irradiation source, it is taken out from the reactor as in the case of using conventional radioisotopes. Since it is not necessary, the risk of exposure to the operator can be minimized, and handling is easy. In addition, production of radioactive isotopes and use of irradiation can be realized almost simultaneously. Furthermore, the irradiation rate can be easily adjusted by adjusting the concentration of the radioisotope in the radioisotope-containing solution.

照射線源部は、放射性同位元素含有溶液を流通させる配管と、当該配管と被照射体との間に設けられたシャッターと、の簡易な構造であるため、メンテナンスが容易である。また、このような構成の照射線源部であるから、配管の配置及びシャッターの開閉作業によって、所望の放射線フラックス分布形状を容易に実現可能で且つ容易に調節可能である。   Since the irradiation source section has a simple structure including a pipe for circulating the radioisotope-containing solution and a shutter provided between the pipe and the irradiated object, maintenance is easy. In addition, since the irradiation source section has such a configuration, a desired radiation flux distribution shape can be easily realized and easily adjusted by arranging the piping and opening / closing the shutter.

放射性同位元素として短半減期元素を利用するため、短時間の中性子照射によって多量の短寿命放射性同位元素含有溶液を調製することができ、強力な照射用線源が利用できる。さらに、本装置で利用する放射性同位元素は短寿命であるために数日間で減衰するので、装置のメンテナンスが容易である。   Since a short half-life element is used as a radioisotope, a large amount of a short-lived radioisotope-containing solution can be prepared by short-time neutron irradiation, and a powerful irradiation source can be used. Furthermore, since the radioisotope used in this apparatus has a short life and decays within a few days, the apparatus is easily maintained.

原子炉1基に対して複数の照射線源部を連結する構成とすることによって、同時に多数の被照射体への放射線照射を行うことができる。従来の重粒子線照射を利用する重粒子加速医療照射装置等の場合には3被照射体への同時照射が限度であったが、本発明の装置によれば従来の重粒子加速医療照射装置等に用いられている加速器より格段に大きな照射体積を確保できる原子炉の特長を生かして10〜20被照射体への同時照射が可能となる。   By adopting a configuration in which a plurality of irradiation source units are connected to one nuclear reactor, a large number of irradiated objects can be irradiated simultaneously. In the case of a conventional heavy particle accelerated medical irradiation apparatus or the like using heavy particle beam irradiation, simultaneous irradiation to three irradiated objects was the limit. However, according to the apparatus of the present invention, a conventional heavy particle accelerated medical irradiation apparatus is used. It is possible to simultaneously irradiate 10 to 20 irradiated objects by taking advantage of the characteristics of a nuclear reactor that can secure a much larger irradiation volume than that of an accelerator used for the above.

また、従来の重粒子線照射の場合には、照射が望ましくない体表面部分の線量を低く抑制することができなかったが、本発明の装置では、体内の任意の場所に存在する患部のみに照射し、正常組織部の線量を低減することができる(図3参照)。   In addition, in the case of conventional heavy particle beam irradiation, the dose of the body surface part where irradiation is not desirable could not be suppressed low, but with the device of the present invention, only the affected part existing in any place in the body Irradiation can reduce the dose of normal tissue (see FIG. 3).

また、コリメータの窓部にベリリウム又はベリリウムを含む合金を取り付けることによって、(γ、n)反応によってγ線から中性子線への放射線種の変更もできる。中性子線に放射線種を変更することで、ホウ素中性子捕捉量法への適用が可能となる。すなわち、ホウ素を含む腫瘍マーカーを用いることで、腫瘍部分にデリバリされたホウ素に中性子線を照射することができ、α線により癌細胞のみ死滅させることができる。   Further, by attaching beryllium or an alloy containing beryllium to the window of the collimator, the radiation species can be changed from γ rays to neutron rays by (γ, n) reaction. By changing the radiation type to neutron radiation, it can be applied to the boron neutron trapping method. That is, by using a tumor marker containing boron, it is possible to irradiate boron delivered to the tumor portion with neutron rays, and to kill only cancer cells by α rays.

本発明は、種々用途に用いることができるが、特に医療用ガンマ線・中性子線照射装置などの医療用用途などに有用である。   The present invention can be used for various applications, but is particularly useful for medical applications such as a medical gamma ray / neutron beam irradiation apparatus.

図1は、本発明の放射線照射装置の概略構成を示す構成図である。FIG. 1 is a configuration diagram showing a schematic configuration of a radiation irradiation apparatus of the present invention. 図2は、本発明の放射線照射装置の線源部の構造を示す構成図である。FIG. 2 is a block diagram showing the structure of the radiation source part of the radiation irradiation apparatus of the present invention. 図3は、各放射線種の身体表面からの深度と相対線量との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the depth from the body surface of each radiation type and the relative dose.

以下、図面を参照して本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to the drawings, but the present invention is not limited thereto.

本発明の放射線照射装置を医療用治療装置に応用した例の装置構成を図1に示す。本実施形態の医療用放射線照射装置1は、原子炉10と、原子炉10内に設けられている中性子照射キャプセル20と、被照射体(本実施形態においては患者)108に放射線を照射する照射線源部30と、を具備する。当該照射線源部30と当該中性子照射キャプセル20との間には、両者を流体連通状態に連結し、放射性同位元素含有溶液を当該中性子照射キャプセル20に導入する導入配管40、及び当該中性子照射キャプセル20から中性子照射後の当該放射性同位元素含有溶液を導出する導出配管50が設けられている。照射線源部30は、シャッター開口部107aを具備するシャッター付遮蔽体107、及び当該シャッター付遮蔽体107の間に配置されている配管106を具備する。当該配管106には、導入配管40及び導出配管50が連結されている。照射線源部30は、γカメラやMRI、X線CT等の病理部位の位置確認用手段105をさらに具備する。   An apparatus configuration of an example in which the radiation irradiation apparatus of the present invention is applied to a medical treatment apparatus is shown in FIG. The medical radiation irradiation apparatus 1 according to this embodiment is configured to irradiate a nuclear reactor 10, a neutron irradiation capsule 20 provided in the nuclear reactor 10, and an irradiation object (a patient in this embodiment) 108. Radiation source unit 30. Between the irradiation source section 30 and the neutron irradiation capsule 20, both are connected in fluid communication, and an introduction pipe 40 for introducing a radioactive isotope-containing solution into the neutron irradiation capsule 20, and the neutron irradiation capsule A lead-out pipe 50 for leading out the radioisotope-containing solution after neutron irradiation from 20 is provided. The irradiation line source unit 30 includes a shield with shutter 107 having a shutter opening 107 a and a pipe 106 disposed between the shutter with shield 107. An inlet pipe 40 and a lead-out pipe 50 are connected to the pipe 106. The irradiation source unit 30 further includes means for confirming the position of a pathological site such as a γ camera, MRI, and X-ray CT.

図1上段は集中型照射装置の例であり、図1下段は均一型照射装置の例である。図1上段に示す集中型照射装置の例は、患者108を乗せる載置台110と、載置台110をX軸方向、Y軸方向及びZ軸方向に移動させる移動台111と、載置台110の所定位置において載置台110の下側及び上側を覆うように配置され、患者が通過できるように貫通穴が設けられた放射線照射ユニットである。照射線源部30は、患者108の照射患部に集中して照射できるように構成されている。図1下段に示す均一型照射装置の例は、照射線源部30が載置台110内に埋め込まれ、患者108の下方向から全身に照射できるように構成されている。   The upper part of FIG. 1 is an example of a concentrated irradiation apparatus, and the lower part of FIG. 1 is an example of a uniform irradiation apparatus. An example of the concentrated irradiation apparatus shown in the upper part of FIG. 1 includes a mounting table 110 on which a patient 108 is placed, a moving table 111 that moves the mounting table 110 in the X-axis direction, the Y-axis direction, and the Z-axis direction. The radiation irradiation unit is arranged so as to cover the lower side and the upper side of the mounting table 110 at a position, and is provided with a through hole so that a patient can pass therethrough. The irradiation source unit 30 is configured to be able to irradiate concentratedly on the irradiation affected part of the patient 108. The example of the uniform irradiation apparatus shown in the lower part of FIG. 1 is configured such that the irradiation source unit 30 is embedded in the mounting table 110 and the whole body can be irradiated from below the patient 108.

本実施形態において、原子炉10は、熱中性子束2×1018n/m・s、高速中性子束1×1018n/m・sで照射できる原子炉(JMTR)であり、J−12の照射位置を使用する。1gのMnを含有する放射性同位元素含有溶液(MnCl飽和水溶液)を中性子照射キャプセル20に導入して、56Mnの半減期(2.579時間)より十分長い1日間照射した後、中性子照射キャプセル20から導出配管50を介して照射線源部30に送る。本実施形態では、中性子照射キャプセル20から照射線源部30までの搬送時間を6分に設定した。この条件で、28.1TBq/g(759Ci/g)の56Mnを含む放射性同位元素含有溶液(MnCl飽和水溶液;MnCl773g/水 1kg)が調製できる。照射線源部30から0.6m離れた被照射体(患者)108へのこの放射性同位元素含有溶液の線量当量率は18Sv/h(RASCコードによる計算)となる。本実施形態では、図2(a)に示すように、照射線源部30に、直径2mm、高さ10cmの小径短長の配管106を直列に配置し、照射線源部30全体での照射面積を3.0144mとし、約100mgMnに相当する量のMnCl水溶液を流したので、30144×0.1=3014gのMnに相当する量の放射性同位元素からの線量当量18Sv/h×3014となる。この値は、従来のガンマナイフ装置と比較して289倍である。また、従来のガンマナイフ装置では照射時間が20分であったところ、本発明の装置では約4秒という非常に短時間で照射が完了した。照射後の放射性同位元素含有溶液は、導入配管40を介して再び中性子照射キャプセル20内に戻され、原子炉10内で中性子照射に供される。 In this embodiment, the nuclear reactor 10 is a nuclear reactor (JMTR) that can irradiate with a thermal neutron flux 2 × 10 18 n / m 2 · s and a fast neutron flux 1 × 10 18 n / m 2 · s. Twelve irradiation positions are used. After introducing a radioactive isotope-containing solution (MnCl 2 saturated aqueous solution) containing 1 g of Mn into the neutron irradiation capcel 20 and irradiating it for one day sufficiently longer than the half-life of 56 Mn (2.579 hours), 20 is sent to the irradiation source unit 30 via the outlet pipe 50. In this embodiment, the conveyance time from the neutron irradiation capsule 20 to the irradiation source unit 30 is set to 6 minutes. In this condition, 28.1TBq / g radioisotope-containing solution containing (759Ci / g) of 56 Mn (MnCl 2 aqueous saturated solution; MnCl 2 773 g / water 1 kg) can be prepared. The dose equivalent rate of this radioisotope-containing solution to the irradiated object (patient) 108 located 0.6 m away from the irradiation source unit 30 is 18 Sv / h (calculated by the RASC code). In this embodiment, as shown in FIG. 2A, a small diameter short pipe 106 having a diameter of 2 mm and a height of 10 cm is arranged in series on the irradiation source unit 30, so that the irradiation source unit 30 as a whole is irradiated. Since the area was 3.0144 m 2 and an amount of MnCl 2 aqueous solution corresponding to about 100 mg Mn was flowed, a dose equivalent of 18144 Sv / h × 3014 from a radioisotope of an amount corresponding to 30144 × 0.1 = 3014 g of Mn Become. This value is 289 times that of the conventional gamma knife device. In addition, when the irradiation time was 20 minutes in the conventional gamma knife device, the irradiation was completed in a very short time of about 4 seconds in the device of the present invention. The irradiated radioisotope-containing solution after irradiation is returned again into the neutron irradiation capsule 20 through the introduction pipe 40 and is subjected to neutron irradiation in the reactor 10.

また、図2(b)に示すように、小径短長の配管106の一端部が面するシャッター開口107aと配管106との間に、10cm〜15cm程度の厚みを有するベリリウム窓を設けて、γ線を中性子線に変換して照射することもできる。ベリリウム窓が薄すぎると中性子発生量が小さくなり、逆に厚すぎると被照射体を収容するスペースがなくなってしまう。   Further, as shown in FIG. 2B, a beryllium window having a thickness of about 10 cm to 15 cm is provided between the shutter opening 107a facing one end of the small-diameter short and long pipe 106 and the pipe 106, and γ It is also possible to irradiate by converting the rays into neutron rays. If the beryllium window is too thin, the amount of neutron generation becomes small. Conversely, if the beryllium window is too thick, there is no space for accommodating the irradiated object.

本発明の放射線照射装置は、従来のガンマナイフと異なり、原子炉内で中性子照射した放射性同位元素をそのまま直接照射線源として利用できるので、取り扱いが容易で、作業者の被曝の危険性が少ない。また、従来のガンマナイフよりRI線源の数が桁違いに多く、短時間の照射時間で十分な放射線量を照射することができ、レントゲン撮影の所要時間と同程度であるので患者への負担も少ない。また、患部だけへの照射量を調節することができるので、従来の治療方法では非患部への被曝を考慮して使用できなかった照射量でも照射することができるので、従来法では死滅しなかった癌も死滅させることができる。さらに、従来のガンマナイフでは半球面状の照射であるのに対して、本発明の放射線照射装置では、全球面状に近い状態で照射できることから、体表面近くの正常組織への被曝線量を抑え、がん等の腫瘍に高い線量を与えることができる。また、従来のガンマナイフでは頭部に限定されていたが、人体のどの位置でも照射が可能となる。   Unlike conventional gamma knives, the radiation irradiation apparatus of the present invention can be used as a direct irradiation source as it is as a direct irradiation source of neutrons irradiated in a nuclear reactor, so that handling is easy and there is little risk of exposure to workers. . In addition, the number of RI radiation sources is many orders of magnitude higher than that of conventional gamma knives, and a sufficient amount of radiation can be irradiated in a short irradiation time. There are few. In addition, since it is possible to adjust the irradiation dose only to the affected area, it is possible to irradiate even with an irradiation dose that could not be used in consideration of exposure to the non-affected area in the conventional treatment method, so the conventional method does not kill it. Cancer can be killed. Furthermore, in contrast to conventional gamma knives that emit in a hemispherical shape, the radiation irradiation apparatus of the present invention can irradiate in a nearly spherical shape, thereby reducing the exposure dose to normal tissue near the body surface. High doses can be given to tumors such as cancer. Moreover, although the conventional gamma knife is limited to the head, irradiation can be performed at any position on the human body.

Claims (5)

被照射体に放射線を照射する照射線源部と、
原子炉と、
当該原子炉内に設置した中性子照射キャプセルと、
当該照射線源部と当該中性子照射キャプセルとを流体連通状態に連結し、放射性同位元素含有溶液を当該中性子照射キャプセルに導入する導入配管と、
当該照射線源部と当該中性子照射キャプセルとを流体連通状態に連結し、当該中性子照射キャプセルから、中性子照射後の当該放射性同位元素含有溶液を導出する導出配管と、
を具備し、
当該導入配管及び当該導出配管を介して、当該原子炉内で中性子照射された放射性同位元素含有溶液を当該照射線源部まで搬送し、当該放射性同位元素含有溶液を被照射体に放射線照射する照射線源として使用し、その後、当該放射性同位元素含有溶液を当該照射線源部から再び当該中性子キャプセル内に戻して中性子照射することを特徴とする、放射線照射装置。
An irradiation source unit for irradiating the irradiated object with radiation;
A nuclear reactor,
A neutron irradiation capsule installed in the reactor,
Connecting the radiation source section and the neutron irradiation capsule in fluid communication, and introducing a radioisotope-containing solution into the neutron irradiation capsule;
Connecting the radiation source section and the neutron irradiation capsule in fluid communication, and from the neutron irradiation capsule, a lead-out pipe for deriving the radioisotope-containing solution after neutron irradiation;
Comprising
Irradiation through which the radioactive isotope-containing solution irradiated with neutrons in the nuclear reactor is transported to the irradiation source unit through the introduction pipe and the lead-out pipe, and the irradiated object is irradiated with the radioactive isotope-containing solution. A radiation irradiation apparatus characterized by being used as a radiation source, and thereafter irradiating the radioactive isotope-containing solution again from the irradiation radiation source section into the neutron capsule and neutron irradiation.
前記照射線源部は、シャッター付遮蔽体の間に、前記中性子照射された放射性同位元素含有溶液が流通する配管を配置し、当該シャッター付遮蔽体のシャッター開閉によって被照射体への放射線照射を制御することを特徴とする、請求項1に記載の放射線照射装置。   The irradiation source unit is arranged with a pipe through which the neutron-irradiated radioisotope-containing solution flows between the shuttered shields, and irradiates the irradiated object by opening and closing the shutters with the shutters. The radiation irradiation apparatus according to claim 1, wherein the radiation irradiation apparatus is controlled. 前記照射線源部は、前記中性子照射された放射性同位元素含有溶液が流通する配管を複数の小径短長の配管とし、各配管の一端部が被照射体に面するように直列に配列してなることを特徴とする、請求項2に記載の放射線照射装置。   The irradiation source section includes a plurality of small-diameter, short-and-long pipes through which the neutron-irradiated radioisotope-containing solution flows, and is arranged in series so that one end of each pipe faces the irradiated object. The radiation irradiation apparatus according to claim 2, wherein 前記中性子照射された放射性同位元素含有溶液が流通する配管と、前記シャッター付遮蔽体のシャッターとの間に、ベリリウムからなるコリメータ窓部をさらに具備し、前記中性子照射された放射性同位元素含有溶液から放射されるγ線を中性子線に変換することを特徴とする、請求項2又は3に記載の放射線照射装置。   Between the pipe through which the neutron-irradiated radioisotope-containing solution circulates and the shutter of the shield with shutter, further comprising a collimator window portion made of beryllium, from the neutron-irradiated radioisotope-containing solution The radiation irradiation apparatus according to claim 2, wherein the emitted γ-ray is converted into a neutron beam. 前記放射性同位元素含有溶液は、Mn、Na、Al、K、Moから選択される短半減期放射性同位元素を含むことを特徴とする、請求項1〜4のいずれか1項に記載の放射線照射装置。   The radiation irradiation according to claim 1, wherein the radioisotope-containing solution contains a short half-life radioisotope selected from Mn, Na, Al, K, and Mo. apparatus.
JP2009153749A 2009-06-29 2009-06-29 Radiation irradiation equipment Expired - Fee Related JP5403605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009153749A JP5403605B2 (en) 2009-06-29 2009-06-29 Radiation irradiation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009153749A JP5403605B2 (en) 2009-06-29 2009-06-29 Radiation irradiation equipment

Publications (2)

Publication Number Publication Date
JP2011007733A true JP2011007733A (en) 2011-01-13
JP5403605B2 JP5403605B2 (en) 2014-01-29

Family

ID=43564563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009153749A Expired - Fee Related JP5403605B2 (en) 2009-06-29 2009-06-29 Radiation irradiation equipment

Country Status (1)

Country Link
JP (1) JP5403605B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8687954B2 (en) * 2010-11-10 2014-04-01 Samsung Electronics Co., Ltd. Flash lens and flash module employing the same
CN108635687A (en) * 2018-08-24 2018-10-12 西安大医集团有限公司 A kind of radiotherapy equipment
CN108785873A (en) * 2018-04-11 2018-11-13 西安大医数码科技有限公司 It is a kind of rotatably to focus radiotherapy head, radiotherapy equipment and system
JP2021534882A (en) * 2018-08-24 2021-12-16 西安大医集団股▲ふん▼有限公司 Radiation therapy equipment, control drive methods and equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560900A (en) * 1978-10-28 1980-05-08 Philips Nv Opening device used in plural radioactive source
JPH01154000A (en) * 1987-12-10 1989-06-16 Yoshinori Hayakawa Neutron generator
JPH11347137A (en) * 1998-06-05 1999-12-21 Japan Atom Energy Res Inst Xenon-133 radioactive stent for prevention of reangiostenosis and its production
JP2004184363A (en) * 2002-12-06 2004-07-02 Natl Inst Of Radiological Sciences Alpha-ray irradiator
JP2008102078A (en) * 2006-10-20 2008-05-01 Japan Atomic Energy Agency Method and device for manufacturing radioactive molybdenum and radioactive molybdenum manufactured by this method and this device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560900A (en) * 1978-10-28 1980-05-08 Philips Nv Opening device used in plural radioactive source
JPH01154000A (en) * 1987-12-10 1989-06-16 Yoshinori Hayakawa Neutron generator
JPH11347137A (en) * 1998-06-05 1999-12-21 Japan Atom Energy Res Inst Xenon-133 radioactive stent for prevention of reangiostenosis and its production
JP2004184363A (en) * 2002-12-06 2004-07-02 Natl Inst Of Radiological Sciences Alpha-ray irradiator
JP2008102078A (en) * 2006-10-20 2008-05-01 Japan Atomic Energy Agency Method and device for manufacturing radioactive molybdenum and radioactive molybdenum manufactured by this method and this device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8687954B2 (en) * 2010-11-10 2014-04-01 Samsung Electronics Co., Ltd. Flash lens and flash module employing the same
CN108785873A (en) * 2018-04-11 2018-11-13 西安大医数码科技有限公司 It is a kind of rotatably to focus radiotherapy head, radiotherapy equipment and system
CN108635687A (en) * 2018-08-24 2018-10-12 西安大医集团有限公司 A kind of radiotherapy equipment
JP2021533970A (en) * 2018-08-24 2021-12-09 西安大医集団股▲ふん▼有限公司 Radiation therapy equipment
JP2021534882A (en) * 2018-08-24 2021-12-16 西安大医集団股▲ふん▼有限公司 Radiation therapy equipment, control drive methods and equipment
JP7250138B2 (en) 2018-08-24 2023-03-31 西安大医集団股▲ふん▼有限公司 radiotherapy equipment
US11759654B2 (en) 2018-08-24 2023-09-19 Our United Corporation Radiotherapy device and control driving method thereof
US11759657B2 (en) 2018-08-24 2023-09-19 Our United Corporation Radiation treatment device

Also Published As

Publication number Publication date
JP5403605B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
Enger et al. Gadolinium-153 as a brachytherapy isotope
JP5403605B2 (en) Radiation irradiation equipment
JP2022521984A (en) Neutron capture therapy system
Thisgaard et al. Medium to large scale radioisotope production for targeted radiotherapy using a small PET cyclotron
WO2016037656A1 (en) Device and method for the production of radioisotopes
JP7304823B2 (en) A therapeutic high-energy charged particle generation system surgically placed and activated by neutron flux
Bieniasiewicz et al. Measurements of thermal and resonance neutron fluence and induced radioactivity inside bunkers of medical linear accelerators in the center of oncology in Opole, Poland
US20170316845A1 (en) Flexible irradiation facility
EP3847675B1 (en) Process for the production of gallium radionuclides
Sadeghi et al. Dosimetric characteristics of the brachytherapy sources based on Monte Carlo method
Saxena et al. Studies on the development of 169Yb-brachytherapy seeds: New generation brachytherapy sources for the management of cancer
JP2023518740A (en) Animal irradiation system and its irradiation fixing device
Kwon et al. Measurements of neutron activation and dose rate induced by high-energy medical linear accelerator
JP5673916B2 (en) Radioisotope production method and apparatus
Tujii et al. Research on radiation protection in the application of new technologies for proton and heavy ion radiotherapy
Chernyaev et al. Radiation technology in medicine: Part 2. Using isotopes in nuclear medicine
Marchese et al. The relative biological effectiveness of photon radiation from encapsulated iodine-125, assessed in cells of human origin: I. Normal diploid fibroblasts
Bzymek et al. Test of production of 99Mo/99mTc by means of typical medical linear accelerators used in teleradiotherapy
Savitskaya et al. Selection of Materials for Target Station Equipment at Cyclotron Cyclon-70
Bulavin et al. About model experiments on production of medical radionuclides at the IBR-2 reactor
Anh et al. Measurement of Neutron Flux and Gamma Dose Rate Distribution Inside a Water Phantom for Boron Neutron Capture Therapy Study at Dalat Research Reactor
Saxena et al. Development of a spherical 125I-brachytherapy seed for its application in the treatment of eye and prostate cancer
Burger Radioactive sources in brachytherapy
Bindu et al. Optimization of commercial scale photonuclear production of radioisotopes
KR et al. A Comparative Study of Photo-Neutron Production from Flattened and Unflattened Beams in a Medical Linear Accelerator.

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120525

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131023

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees