KR20070026751A - The method for destroy of long-life radionuclides and for synthesis of valuable elements - Google Patents

The method for destroy of long-life radionuclides and for synthesis of valuable elements Download PDF

Info

Publication number
KR20070026751A
KR20070026751A KR1020070015653A KR20070015653A KR20070026751A KR 20070026751 A KR20070026751 A KR 20070026751A KR 1020070015653 A KR1020070015653 A KR 1020070015653A KR 20070015653 A KR20070015653 A KR 20070015653A KR 20070026751 A KR20070026751 A KR 20070026751A
Authority
KR
South Korea
Prior art keywords
long
synthesis
radionuclides
nuclear
valuable elements
Prior art date
Application number
KR1020070015653A
Other languages
Korean (ko)
Inventor
박영웅
Original Assignee
박영웅
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박영웅 filed Critical 박영웅
Priority to KR1020070015653A priority Critical patent/KR20070026751A/en
Publication of KR20070026751A publication Critical patent/KR20070026751A/en
Priority to KR1020070026669A priority patent/KR20070037735A/en

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G5/00Alleged conversion of chemical elements by chemical reaction
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A method for destroying long half-life radionuclides and a method for synthesizing valuable elements are provided to complete a nuclear reaction required in destroying nuclear division byproducts like I-129 and Tc-99 and synthesizing valuable elements like radioisotope and gold by using a middle high temperature chemical reaction apparatus using a catalytic reaction. In a method for destroying long half-life radionuclides or synthesizing valuable elements, Lewis acid, water and raw material are nuclear-reacted in a middle high temperature. The Lewis acid includes more than one of B, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn. The raw material uses more than one of He, Be, Ne, Mg, Si, P, S, Cl, Ar, Ti, V, Mn, Co, Kr, Tc, I, Xe, Cs, Pr, Tb, Ho, Lu, Ta, Ir and Hg. The middle high temperature is a reaction temperature of 100 to 1500 degrees centigrade.

Description

장반감기 방사성 핵종의 소멸처리 및 고부가가치의 원소를 합성하기 위한 방법 {The Method for Destroy of Long-life Radionuclides and for Synthesis of Valuable Elements}The Method for Destroy of Long-life Radionuclides and for Synthesis of Valuable Elements

우라늄-235의 핵분열 시 방출하는 질량결손 에너지를 이용하는 원자력 발전은 그 사용에 따라 필연적으로 핵분열생성물에 해당하는 방사성폐기물을 발생하게 되며, 2005년 12월말 현재 국내 사용후핵연료 저장시설의 예상포화시기는 2008년이 될 것이라고 분석된바 있다. 사용후핵연료로부터 발생한 방사성폐기물에 포함된 핵분열생성물의 대부분은 그 반감기가 30년 이하에 해당하므로 처분장에서 약 300년 정도 보관하면 자연적으로 소멸 되어 없어진다고 할 수 있지만, I-129 및 Tc-99과 같은 장반감기의 방사성 핵종은 그 반감기가 각각 15,700,000년 및 211,100년에 해당하므로 방사성폐기물의 안전한 처분을 위해서는 처분 전에 이들 핵종을 분리하는 것이 필요하며 또한 분리된 이들 핵종을 소멸처리하는 기술이 필요하다고 할 수 있다. Nuclear power generation, which uses mass-depleted energy released during nuclear fission of uranium-235, will inevitably generate radioactive wastes corresponding to fission products. As of the end of December 2005, the expected saturation period of domestic spent fuel storage facilities is It is analyzed to be 2008. Most of the fission products contained in the radioactive waste from spent fuel have a half-life of 30 years or less, so if they are stored at the disposal site for about 300 years, they disappear naturally. However, such as I-129 and Tc-99 Radionuclides with long half-lives have a half-life of 15,700,000 years and 211,100 years, respectively, so that the safe disposal of radioactive waste requires the separation of these nuclides before disposal and the need for the technology to extinguish these separated nuclides. have.

이에 따라 장반감기의 방사성 핵종을 소멸처리하기 위한 연구가 전 세계적으 로 활발히 진행되어 왔는데, 지금까지 개발된 장반감기 방사성 핵종의 소멸처리 방법으로는 고속로를 이용하는 방법과 양성자가속기와 미임계로의 복합시스템을 이용하는 방법이 소개되어 있다. 고속로를 이용하는 방법은 높은 에너지의 중성자 환경에서 핵연료에 포함된 악티나이드 원소들을 단반감기의 핵종으로 변환시키는 기술에 해당하며, 프랑스의 원형 고속로인 PHENIX에 넵투늄(Np), 아메리슘(Am)이 포함된 혼합산화물(MOX) 연료를 넣고 연소 실험을 한 결과 Np과 Am의 양을 당초의 절반으로 줄이는데 약 2년이 걸린다는 실험결과를 발표한 적이 있으며, 양성자가속기와 미임계로를 동시에 이용하는 복합시스템은 텅스텐이나 납에 고에너지의 양성자를 충돌시킬 때 핵 파쇄에 의해 생성된 다수의 중성자를 미임계로에서 장반감기 방사성 핵종의 핵변환에 이용하는 기술에 해당하며, 현재 일본 원자력연구소, 미국 로스알라모스 국립연구소, 유럽 공동체의 원자력연구센터 등에서 연구개발되고 있다. 이와 같이 현재까지 개발된 장반감기 방사성 핵종을 소멸처리하기 위한 기술들은 모두 원자로 또는 가속기 등 막대한 비용의 시설을 필요로 하며 또한 그 처리효율도 높다고 할 수 없기 때문에 아직까지 상용화되지 못하고 있는 실정에 있다.As a result, researches to extinguish radionuclides of long-lived radionuclides have been actively carried out all over the world. The methods for extinguishing long-lived radionuclides developed using the high-speed reactor and the proton acceleration and subcritical How to use a complex system is introduced. The use of fast reactors is a technology that converts actinide elements contained in nuclear fuel into short-lived nuclides in a high-energy neutron environment. Neptunium (Np) and americium (Am) Combustion experiments with the included mixed oxide (MOX) fuel have shown that it takes about two years to reduce the amount of Np and Am to half of the original. The system corresponds to a technique that uses a number of neutrons for nuclear conversion of long-lived radionuclides in subcritical furnaces when colliding high energy protons with tungsten or lead. It is being researched and developed at the Ramos National Laboratory and the European Nuclear Research Center. As described above, all of the technologies for extinguishing long-lived radionuclides, which have been developed to date, require enormous cost facilities such as nuclear reactors or accelerators, and their processing efficiency is not high.

본 발명의 기술적 과제는, I-129 및 Tc-99등 장반감기의 핵분열 생성물을 소멸처리하는 것뿐만 아니라 표지화합물의 원료로 사용되는 방사성동위원소 및 금과 같은 고부가가치의 원소를 합성하는데 필요한 핵 반응을 촉매반응을 이용한 중고온 화학반응장치를 이용하여 완성하는 데 있다.The technical problem of the present invention is not only to extinguish the fission products of long-life, such as I-129 and Tc-99, but also to synthesize nuclei of high-value elements such as radioisotopes and gold used as raw materials for labeling compounds. The reaction is completed by using a high-temperature chemical reaction device using a catalytic reaction.

본 발명은 100℃ 내지 1,500℃의 온도에서 루이스산과 물을 이용하여 핵변환을 일으키고자 하는 원료물질을 원소변환 하는 기술에 해당하며, 중고온 핵반응 기술이라고 할 수 있다. The present invention corresponds to a technology for elemental conversion of a raw material to cause nuclear transformation using Lewis acid and water at a temperature of 100 ℃ to 1,500 ℃, it can be referred to as a medium-temperature nuclear reaction technology.

루이스산이란 B, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu 및 Zn 등을 주원료로 한 전자쌍을 받을 수 있는 구조의 화합물로써 루이스 염기로 작용하는 수증기와 중고온의 온도에서 산·염기 반응을 일으키는 것으로 확인된 바 있다. 루이스 산·염기 반응이 진행되는 동안에 핵반응을 일으키고자 하는 원료물질이 함께 존재하는 경우에는 루이스 산에 결합된 물 분자의 수소는 안정한 물질인 헬륨으로 변하게 되며 이와 동시에 원료물질은 중성자가 2개 감소한 형태의 동위원소로 변화하게 된다. 중성자가 감소한 동위원소의 원자상태가 불안정한 경우에는 전자포획(Electron Capture) 등의 핵변환 과정을 거쳐 새로운 안정한 원소로 변환되며, 이 모든 과정은 반응 기간 중에 거의 동시에 이루어질 수 있으며 결과적으로 다음과 같은 화학식으로 표현할 수 있게 된다.Lewis acid is a compound capable of receiving electron pairs using B, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn as the main raw materials. It has been found to cause acid-base reactions at temperature. If there is a raw material to cause a nuclear reaction during the Lewis acid / base reaction, the hydrogen of the water molecules bonded to the Lewis acid is changed to helium, which is a stable material, and at the same time, the raw material is in the form of two reduced neutrons. Isotopes of. If the atomic state of the isotope with reduced neutrons is unstable, it is converted to a new stable element through a nuclear transformation process such as electron capture, and all of these processes can be performed almost simultaneously during the reaction period. Can be expressed as

Figure 112007013901544-PAT00001
Figure 112007013901544-PAT00001

Figure 112007013901544-PAT00002
Figure 112007013901544-PAT00002

본문의 이해를 돕기 위하여 적용 가능한 실시예를 통하여 설명하고자 하며 본 발명은 이에 종속되지 않는다. In order to help the understanding of the text, the present invention will be described through embodiments, and the present invention is not limited thereto.

<실시예1>Example 1

루이스산 400g을 넣은 연속식 반응기를 500℃로 유지하면서 I-129 증기 및 수증기를 1g/h 내지 10g/h의 유속으로 흘려주면서 반응을 진행시키며, 이와 동시에 반응기를 통과한 기체에 포함된 I-129 및 I-127의 농도 비를 GC-Mass를 사용하여 분석하면 I-129의 처리효율을 계산할 수 있으며, 그 처리원리를 화학반응식의 형태로 표현하면 다음과 같다.While maintaining a continuous reactor containing 400 g of Lewis acid at 500 ° C., I-129 steam and water vapor were flowed at a flow rate of 1 g / h to 10 g / h, and at the same time, I- included in the gas passed through the reactor. By analyzing the concentration ratio of 129 and I-127 using GC-Mass, the treatment efficiency of I-129 can be calculated. The principle of treatment is expressed as chemical reaction formula as follows.

Figure 112007013901544-PAT00003
Figure 112007013901544-PAT00003

<실시예2>Example 2

10g의 Tc-99을 루이스산 400g에 균일하게 고착·혼합하여 연속식 반응기에 넣은 후 반응기의 온도를 500℃로 유지한 상태에서 수증기를 1g/h 내지 10g/h의 유속으로 4시간 내지 24시간 동안 흘려준 다음 루이스산에 부착된 반응생성물을 염산 또는 질산으로 용해한 후 용액에 녹아있는 Tc-99, Tc-97, Tc-95 및 Mo-95의 농도를 LC-Mass를 사용하여 분석하면 Tc-99의 처리효율을 계산할 수 있으며, 그 처리원리를 화학반응식의 형태로 표현하면 다음과 같다.10 g of Tc-99 was uniformly fixed and mixed in 400 g of Lewis acid and placed in a continuous reactor, followed by steam at a flow rate of 1 g / h to 10 g / h for 4 to 24 hours while maintaining the reactor temperature at 500 ° C. After dissolving the reaction product attached to Lewis acid with hydrochloric acid or nitric acid, the concentrations of Tc-99, Tc-97, Tc-95 and Mo-95 dissolved in the solution were analyzed using LC-Mass. The treatment efficiency of 99 can be calculated, and the treatment principle is expressed in the form of chemical reaction equation as follows.

Figure 112007013901544-PAT00004
Figure 112007013901544-PAT00004

Figure 112007013901544-PAT00005
Figure 112007013901544-PAT00005

Figure 112007013901544-PAT00006
Figure 112007013901544-PAT00006

<실시예3>Example 3

루이스산 400g을 넣은 연속식 반응기를 500℃로 유지하면서 네온(Ne)가스 및 수증기를 1g/h 내지 10g/h의 유속으로 흘려주면서 반응을 진행시키며, 이와 동시에 반응기를 통과한 기체에 포함된 F-18 및 네온가스의 농도 비를 GC-Mass를 사용하여 분석하면 표지화합물로 많이 사용되고 있는 F-18의 합성효율을 계산할 수 있으며, 그 합성원리를 화학반응식의 형태로 표현하면 다음과 같다.While maintaining a continuous reactor containing 400 g of Lewis acid at 500 ° C., the reaction was performed while flowing neon (Ne) gas and water vapor at a flow rate of 1 g / h to 10 g / h, and at the same time, the F contained in the gas passed through the reactor. By analyzing the concentration ratio of -18 and neon gas using GC-Mass, we can calculate the synthesis efficiency of F-18 which is widely used as a labeling compound. The synthesis principle is expressed as chemical reaction formula as follows.

Figure 112007013901544-PAT00007
Figure 112007013901544-PAT00007

Figure 112007013901544-PAT00008
Figure 112007013901544-PAT00008

<실시예4>Example 4

20g의 Hg-199을 루이스산 400g에 균일하게 고착·혼합하여 연속식 반응기에 넣은 후 반응기의 온도를 500℃로 유지한 상태에서 수증기를 1g/h 내지 10g/h의 유속으로 4시간 내지 24시간 동안 흘려준 다음 루이스산에 부착된 반응생성물을 염산과 질산을 혼합한 용액으로 용해한 후 용액에 녹아 있는 Hg-199, Hg-197 및 Au-197의 농도를 LC-Mass를 사용하여 분석하면 Au-197의 합성효율을 계산할 수 있으며, 그 합성원리를 화학반응식의 형태로 표현하면 다음과 같다.20 g of Hg-199 is uniformly fixed and mixed in 400 g of Lewis acid and placed in a continuous reactor, followed by steam at a flow rate of 1 g / h to 10 g / h for 4 to 24 hours while maintaining the reactor temperature at 500 ° C. After dissolving the reaction product attached to Lewis acid into a mixture of hydrochloric acid and nitric acid, the concentration of Hg-199, Hg-197 and Au-197 dissolved in the solution was analyzed using LC-Mass. The synthesis efficiency of 197 can be calculated, and the synthesis principle is expressed in the form of chemical reaction equation as follows.

Figure 112007013901544-PAT00009
Figure 112007013901544-PAT00009

Figure 112007013901544-PAT00010
Figure 112007013901544-PAT00010

본 발명에서는 위에서 제시한 4개의 실시예 뿐만 아니라, He, Be, Ne, Mg, Si, P, S, Cl, Ar, Ti, V, Mn, Co, Kr, Tc, I, Xe, Cs, Pr, Tb, Ho, Lu, Ta, Ir 및 Hg 을 원료물질로 사용할 수 있으며, 결과적으로 표지화합물의 원료로 사용되는 방사성동위원소의 합성은 물론 원자로 및 사이클로트론으로는 합성이 불가능한 새로운 동위원소의 합성도 가능하게 될 것이다. In the present invention, as well as the four embodiments described above, He, Be, Ne, Mg, Si, P, S, Cl, Ar, Ti, V, Mn, Co, Kr, Tc, I, Xe, Cs, Pr , Tb, Ho, Lu, Ta, Ir and Hg can be used as raw materials, and as a result, the synthesis of radioisotopes used as raw materials for labeling compounds, as well as the synthesis of new isotopes that cannot be synthesized with reactors and cyclotrons It will be possible.

본 발명으로 인하여, 원자력발전소의 가동에 따라 발생한 방사성폐기물에 포함된 장반감기의 방사성 핵종을 경제적으로 소멸처리할 수 있게 되었을 뿐만 아니라, 또한 저렴한 비용으로 표지화합물의 원료로 사용되는 방사성동위원소를 포함하여 고부가가치의 새로운 원소를 합성할 수 있게 되었다. The present invention not only economically extinguishes radionuclides of long-lives contained in radioactive wastes generated by operation of nuclear power plants, but also includes radioisotopes used as raw materials for labeling compounds at low cost. Thus, new elements of high added value can be synthesized.

Claims (4)

장반감기 방사성 핵종의 소멸처리 또는 고부가가치의 원소를 합성하기 위한 방법에 있어서,In the method for extinction of long-lived radionuclides or for synthesis of high value elements, '루이스산'과 '물' 그리고 '원료물질'을 '중고온의 온도'에서 핵 반응시키는 것을 특징으로 하는, 장반감기 방사성 핵종의 소멸처리 또는 고부가가치의 원소를 합성하기 위한 방법.Method for synthesizing long-lived radionuclides or synthesizing high-value elements, characterized in that the 'nuic acid', 'water' and 'raw material' are nuclear reacted at 'high temperature'. 제1항의 '루이스산'에 있어서, B, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu 및 Zn 을 하나 이상 포함하는 루이스산을 사용하는 것을 특징으로 하는, 장반감기 방사성 핵종의 소멸처리 또는 고부가가치의 원소를 합성하기 위한 방법.The 'half acid' according to claim 1, wherein the long-life is characterized by using a Lewis acid containing at least one of B, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn. Process for extinction of radionuclides or for synthesis of high value elements. 제1항의 '원료물질'에 있어서, He, Be, Ne, Mg, Si, P, S, Cl, Ar, Ti, V, Mn, Co, Kr, Tc, I, Xe, Cs, Pr, Tb, Ho, Lu, Ta, Ir 및 Hg 을 하나 이상 사용하는 것을 특징으로 하는, 장반감기 방사성 핵종의 소멸처리 또는 고부가가치의 원소를 합성하기 위한 방법.In the 'raw material' of claim 1, He, Be, Ne, Mg, Si, P, S, Cl, Ar, Ti, V, Mn, Co, Kr, Tc, I, Xe, Cs, Pr, Tb, A method for the quenching of long-lived radionuclides or for the synthesis of high value elements, characterized in using at least one of Ho, Lu, Ta, Ir and Hg. 제1항의 '중고온의 온도'에 있어서, 반응온도가 100℃ 내지 1,500℃인 것을 특징으로 하는, 장반감기 방사성 핵종의 소멸처리 또는 고부가가치의 원소를 합성하기 위한 방법.The method for synthesizing a long-lived radionuclide or synthesizing a high value-added element according to claim 1, wherein the reaction temperature is 100 ° C to 1,500 ° C.
KR1020070015653A 2007-02-14 2007-02-14 The method for destroy of long-life radionuclides and for synthesis of valuable elements KR20070026751A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020070015653A KR20070026751A (en) 2007-02-14 2007-02-14 The method for destroy of long-life radionuclides and for synthesis of valuable elements
KR1020070026669A KR20070037735A (en) 2007-02-14 2007-03-19 The method for destroy of long-life radionuclides and for synthesis of valuable elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070015653A KR20070026751A (en) 2007-02-14 2007-02-14 The method for destroy of long-life radionuclides and for synthesis of valuable elements

Publications (1)

Publication Number Publication Date
KR20070026751A true KR20070026751A (en) 2007-03-08

Family

ID=38100212

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020070015653A KR20070026751A (en) 2007-02-14 2007-02-14 The method for destroy of long-life radionuclides and for synthesis of valuable elements
KR1020070026669A KR20070037735A (en) 2007-02-14 2007-03-19 The method for destroy of long-life radionuclides and for synthesis of valuable elements

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020070026669A KR20070037735A (en) 2007-02-14 2007-03-19 The method for destroy of long-life radionuclides and for synthesis of valuable elements

Country Status (1)

Country Link
KR (2) KR20070026751A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PE20180139A1 (en) * 2015-05-12 2018-01-18 Suneel Navnitdas Parekh METHOD FOR CREATING A MERCURY-BASED COMPOUND, MERCURY-BASED COMPOUND, METHODS OF USE OF THE MERCURY-BASED COMPOUND AND USES OF THE MERCURY-BASED COMPOUND

Also Published As

Publication number Publication date
KR20070037735A (en) 2007-04-06

Similar Documents

Publication Publication Date Title
AU2009212487B2 (en) Radioisotope production and treatment of solution of target material
JP4618732B2 (en) Method and apparatus for manufacturing radioactive molybdenum
Nawar et al. New strategies for a sustainable 99mTc supply to meet increasing medical demands: Promising solutions for current problems
CA3013320C (en) Method for preparing radioactive substance through muon irradiation, and substance prepared using said method
Lee et al. Development of fission 99Mo production process using HANARO
Paulenova Physical and chemical properties of actinides in nuclear fuel reprocessing
Muenze et al. The Fission‐Based 99Mo Production Process ROMOL‐99 and Its Application to PINSTECH Islamabad
KR20070026751A (en) The method for destroy of long-life radionuclides and for synthesis of valuable elements
Tyagi et al. Evolution of chemistry programme at DAE.
Vyas et al. A novel approach for preferential recovery of Sr from (Sr, Th) O2
Babra Identification, characterisation and quantification of degradation adducts of CyMe4-BTBP
RU2688196C9 (en) The method of producing radioisotope molybdenum-99
Horne et al. Dioctyl ether radiolysis under used nuclear fuel reprocessing conditions: Foundational knowledge for the development of sacrificial ligand grafts
Lee Modelling the ion exchange process in pressurised water reactors
Lee et al. Treatment of Radiowastes from Fission Mo-99 Production
Kozar' Increasing 129I transmutation efficiency
Richards et al. . sup. 100Mo compounds as accelerator targets for production of. sup. 99mTc
Scheme INCREASING 129 I TRANSMUTATION EFFICIENCY
Fréchou et al. Radiological inventory of irradiated graphite samples
Muenze et al. Research Article The Fission-Based 99 Mo Production Process ROMOL-99 and Its Application to PINSTECH Islamabad
Uhlir et al. Current status of fluoride volatility method development
Alexander et al. Reactor production of 252 Cf and transcurium isotopes
Anderson et al. THE RESULTS OF RADIATION CHEMICAL MEASUREMENTS DURING THE EARLY OPERATIONAL PERIOS OF DIDO
KUDO et al. A. IGUCHI, E. SHIKATA
Kozar' et al. Obtaining artificial ruthenium from transmutation products of99Tc

Legal Events

Date Code Title Description
A201 Request for examination