JP2008095067A - オキソチタニルフタロシアニン結晶、その製造方法及び電子写真感光体 - Google Patents

オキソチタニルフタロシアニン結晶、その製造方法及び電子写真感光体 Download PDF

Info

Publication number
JP2008095067A
JP2008095067A JP2007166128A JP2007166128A JP2008095067A JP 2008095067 A JP2008095067 A JP 2008095067A JP 2007166128 A JP2007166128 A JP 2007166128A JP 2007166128 A JP2007166128 A JP 2007166128A JP 2008095067 A JP2008095067 A JP 2008095067A
Authority
JP
Japan
Prior art keywords
phthalocyanine crystal
titanyl phthalocyanine
wet cake
crystal
oxo titanyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007166128A
Other languages
English (en)
Other versions
JP5255786B2 (ja
Inventor
Takashi Maruo
敬司 丸尾
Daisuke Kuboshima
大輔 窪嶋
Jun Azuma
潤 東
Yoshio Inagaki
義雄 稲垣
Junichiro Otsubo
淳一郎 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Document Solutions Inc
Original Assignee
Kyocera Mita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Mita Corp filed Critical Kyocera Mita Corp
Priority to JP2007166128A priority Critical patent/JP5255786B2/ja
Publication of JP2008095067A publication Critical patent/JP2008095067A/ja
Application granted granted Critical
Publication of JP5255786B2 publication Critical patent/JP5255786B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

【課題】結晶が安定であるとともに感光層中における分散性に優れ、電荷発生剤として電子写真感光体に対して含有させた場合には、かかる電子写真感光体の露光メモリの抑制及び感度の向上に効果的に寄与するオキソチタニルフタロシアニン結晶、その製造方法及び電子写真感光体を提供する。
【解決手段】テトラヒドロフラン100重量部に対して、オキソチタニルフタロシアニン結晶1重量部を加えて7日間撹拌した後に測定したCuKα特性X線回折スペクトルにおける、ブラッグ角2θ±0.2°=7.4°での強度をX1とし、ブラッグ角2θ±0.2°=9.6°での強度をX2とした場合に、関係式(1)を満足するオキソチタニルフタロシアニン結晶。X1/X2≦0.25 (1)
【選択図】図1

Description

本発明は、オキソチタニルフタロシアニン化合物から形成されるオキソチタニルフタロシアニン結晶、その製造方法及び電子写真感光体に関する。特に、結晶が安定であるとともに感光層中における分散性に優れ、電荷発生剤として、電子写真感光体における露光メモリの抑制及び感度の向上に効果的に寄与するオキソチタニルフタロシアニン結晶、その製造方法及び電子写真感光体に関する。
一般に、複写機やレーザープリンタ等の電子写真機器において使用される電子写真感光体には、近年、低価格や低環境汚染性等の要求から、有機感光体が多く用いられている。このような有機感光体において使用される電荷発生剤としては、半導体レーザーや赤外線LEDなどから照射される赤外ないし近赤外の波長の光に感応するフタロシアニン系顔料が広く使用されている。
また、かかるフタロシアニン系顔料には、その化学構造によって、無金属フタロシアニン化合物、銅フタロシアニン化合物、チタニルフタロシアニン化合物等が存在するとともに、それぞれのフタロシアニン化合物が、その製造条件の違いによって種々の結晶型をとり得ることが知られている。
このように結晶型が異なる多数種のフタロシアニン化合物結晶が存在する中で、電荷発生剤として、Y型結晶構造を有するオキソチタニルフタロシアニンを使用した電子写真感光体を製造した場合、他の結晶型のオキソチタニルフタロシアニンを使用した場合と比較して、電子写真感光体における電気特性が向上することが知られている。
このようなY型オキソチタニルフタロシアニン結晶に関しては、例えば、X線回折スペクトルにおいてCu−Kα線に対するブラッグ角(2θ±0.2゜)=27.3゜に最大回折ピークを有するオキソチタニルフタロシアニンであって、フタロシアニン環を形成し得る有機化合物と、チタン化合物と、を尿素又はアンモニアを添加したジアルキルアミノアルコール中で、130℃、4時間程度の条件で反応させてなるオキソチタニルフタロシアニン結晶の製造方法が開示されている(例えば、特許文献1)。
また、o−フタロニトリルと、チタンテトラブトキシドとを、尿素化合物を用いずに直接的に反応させて、215℃、2時間程度の条件で反応させてなるオキソチタニルフタロシアニン結晶の製造方法が開示されている(例えば、特許文献2及び3)。
より具体的には、CuKα特性X線回折スペクトルにおけるピークを所定の範囲に有し、示差走査熱量分析において50〜400℃の範囲内における温度変化のピークを有しないオキソチタニルフタロシアニン結晶の製造方法が開示されている。
特開平8−176456(実施例) 特許第3463032 (特許請求の範囲) 特開2004−145284(特許請求の範囲)
しかしながら、特許文献1の場合、フタロシアニン環を形成し得る有機化合物に対するチタン化合物の添加割合が少ない一方、フタロシアニン環を形成し得る有機化合物に対する尿素等の添加割合が過剰であり、さらに、反応温度が低いため、製造されたY型オキソチタニルフタロシアニン結晶が、感光層用塗布液中で、β型もしくはα型結晶に結晶転移を起こしやすいという問題が見られた。そのため、感光層用塗布液の貯蔵安定性が乏しくなり、結果として、良好な電気特性を有する感光層を安定して形成することができず、特に、露光メモリが発生しやすいといった問題が見られた。
また、特許文献2や特許文献3に記載のオキソチタニルフタロシアニン結晶を用いた場合には、感光層用塗布液中での結晶転移については、ある程度抑制することができるものの、感光層中における分散性が低いという問題が見られた。その結果、かかるY型オキソチタニルフタロシアニン結晶を電荷発生剤として使用した電子写真感光体においても、露光メモリが発生しやすく、さらには十分な感度を得ることも困難であるといった問題が見られた。
そこで、本発明者らは、上述した問題に鑑み鋭意検討したところ、所定の光学特性を有するオキソチタニルフタロシアニン結晶を製造する過程において、オキソチタニルフタロシアニンに対して所定の酸処理工程及び所定の洗浄工程を実施することにより、結晶が安定であるとともに、感光層中における分散性に優れたオキソチタニルフタロシアニン結晶を得ることができることを見出した。
すなわち、本発明の目的は、結晶が安定であるとともに感光層中における分散性に優れ、電荷発生剤として電子写真感光体に対して含有させた場合には、かかる電子写真感光体の露光メモリの抑制及び感度の向上に効果的に寄与するオキソチタニルフタロシアニン結晶、その製造方法及び電子写真感光体を提供することにある。
本発明によれば、テトラヒドロフラン100重量部に対して、オキソチタニルフタロシアニン結晶1重量部を加えて7日間撹拌した後に測定したCuKα特性X線回折スペクトルにおける、ブラッグ角2θ±0.2°=7.4°での強度をX1とし、ブラッグ角2θ±0.2°=9.6°での強度をX2とした場合に、当該X1及びX2が、下記関係式(1)を満足するとともに、下記工程(a)〜(g)を含む製造方法によって得られてなるオキソチタニルフタロシアニン結晶が提供され、上述した問題を解決することができる。
X1/X2≦0.25 (1)
(a)粗オキソチタニルフタロシアニン結晶を酸に対して溶解し、オキソチタニルフタロシアニン溶液を得る工程
(b)オキソチタニルフタロシアニン溶液を貧溶媒中に滴下して第1のウェットケーキを得る工程
(c)第1のウェットケーキを、アルコールによって洗浄する工程
(d)洗浄後の第1のウェットケーキを酸に対して溶解し、オキソチタニルフタロシアニン溶液を得る工程
(e)オキソチタニルフタロシアニン溶液を貧溶媒中に滴下して第2のウェットケーキを得る工程
(f)第2のウェットケーキを水によって洗浄する工程
(g)洗浄後の第2のウェットケーキを非水系溶媒中で加熱撹拌して、オキソチタニルフタロシアニン結晶を得る工程
すなわち、7日間テトラヒドロフラン中で撹拌した後に測定したCuKα特性X線回折スペクトルにおける、ブラッグ角2θ±0.2°=7.4°での強度と、ブラッグ角2θ±0.2°=9.6°での強度と、の比を所定の範囲とすることによって、結晶構造が安定な、特に、α型に結晶転移しにくいオキソチタニルフタロシアニン結晶を得ることができる。
また、所定の工程を経て製造することにより、上述したα型に結晶転移しにくいオキソチタニルフタロシアニン結晶を、より容易に製造することができるばかりか、感光層中における分散性についても効果的に向上させることができる。
かかる分散性を向上させる効果は、特に、工程(c)において、ウェットケーキを所定のアルコールを用いて洗浄することによって、オキソチタニルフタロシアニン結晶の表面特性が改質されることによって得られるものと考えられる。
いずれにしても、本発明のオキソチタニルフタロシアニン結晶であれば、結晶が安定であるとともに感光層中における分散性に優れることから、電荷発生剤として電子写真感光体に対して含有させた場合には、かかる電子写真感光体の露光メモリの抑制及び感度の向上に効果的に寄与することができる。
なお、ウェットケーキとは、比較的少量の、例えば、水等の溶媒中にオキソチタニルフタロシアニンが分散し塊状になっている状態を示す。
また、本発明のオキソチタニルフタロシアニン結晶を構成するにあたり、工程(g)の後に、下記検査工程(h)〜(j)を含むことが好ましい。
(h)メタノール及びN,N−ジメチルホルムアミドからなる混合溶媒(メタノール:N,N−ジメチルホルムアミド=1:1(重量比))100重量部に対して、オキソチタニルフタロシアニン結晶1.25重量部を加えて懸濁液とする工程
(i)懸濁液をフィルタにてろ過し、ろ液を得る工程
(j)ろ液における波長328.5nmの光に対する吸光度が0.01〜0.035の範囲内の値であり、かつ、波長400nmの光に対する吸光度が0.003〜0.015の範囲内の値であることを確認する工程
このようにろ液における吸光度を測定することで、オキソチタニルフタロシアニン結晶の感光層中における分散性を、容易かつ定量的に評価することができる。
なお分散性の指標として波長328.5nm及び波長400nmの光に対する吸光度を測定する理由は、これらの波長の光に対する吸光度と、オキソチタニルフタロシアニン結晶における分散性及びそれに起因した電子写真感光体の電気特性と、の相関が、経験的に見出されているためである。
また、かかる相関は、オキソチタニルフタロシアニン結晶における表面特性の改質具合が、これらの波長の光に対する吸光度に反映されるために生じるものと考えられる。
また、本発明のオキソチタニルフタロシアニン結晶を構成するにあたり、工程(a)及び(d)、あるいはいずれか一方の工程において使用する酸が、濃硫酸、トリフルオロ酢酸及びスルホン酸からなる群から選択される少なくとも一種であることが好ましい。
このように構成することにより、これらの酸によって、不純物をより効果的に分解することができる一方、オキソチタニルフタロシアニン化合物の分解については、効果的に抑制することができる。
また、本発明のオキソチタニルフタロシアニン結晶を構成するにあたり、工程(b)及び(e)、あるいはいずれか一方の工程において使用する貧溶媒が、水であることが好ましい。
このように構成することにより、酸処理工程における酸を効果的に取り除くことができるとともに、得られるウェットケーキにおける表面積を増加させることができる。
したがって、後の洗浄工程において、より効果的にオキソチタニルフタロシアニン結晶の感光層中における分散性を向上させることができるとともに、結晶安定性を低下させる原因となるアルコールについても、効果的に除去することができる。
また、本発明のオキソチタニルフタロシアニン結晶を構成するにあたり、工程(c)において使用するアルコールが、メタノール、エタノール及びイソプロピルアルコールからなる群から選択される少なくとも一種であることが好ましい。
このように構成することにより、さらに効果的にオキソチタニルフタロシアニン結晶の感光層中における分散性を向上させることができる。
また、本発明のオキソチタニルフタロシアニン結晶を構成するにあたり、オキソチタニルフタロシアニン結晶が、下記(A)または(B)の特性を有することが好ましい。
(A)示差走査熱量分析において、吸着水の気化にともなうピーク以外は、50〜400℃の範囲内にピークを有さないこと
(B)示差走査熱量分析において、吸着水の気化にともなうピーク以外は、50〜270℃の範囲内にピークを有さず、270〜400℃の範囲内に1つのピークを有すること
このように構成することにより、電子写真感光体を製造する際に、オキソチタニルフタロシアニン結晶を、電荷発生剤として感光層用塗布液に対して添加した場合であっても、結晶型の経時安定性をより向上させることができるばかりか、その分散性についても、さらに向上させることができる。
また、本発明のオキソチタニルフタロシアニン結晶を構成するにあたり、オキソチタニルフタロシアニン結晶が、下記(C)の特性を有することが好ましい。
(C)有機溶媒中に7日間浸漬した後、CuKα特性X線回折スペクトルにおいて、少なくともブラッグ角2θ±0.2°=27.2°に最大ピークを有するとともに、26.2°にピークを有しないこと
このように構成することにより、感光層用塗布液中におけるオキソチタニルフタロシアニン結晶の経時安定性や分散性を、さらに向上させることができる。
また、本発明の別の態様は、テトラヒドロフラン100重量部に対して、オキソチタニルフタロシアニン結晶1重量部を加えて7日間撹拌した後に測定したCuKα特性X線回折スペクトルにおける、ブラッグ角2θ±0.2°=7.4°での強度をX1とし、ブラッグ角2θ±0.2°=9.6°での強度をX2とした場合に、当該X1及びX2が、下記関係式(1)を満足するオキソチタニルフタロシアニン結晶の製造方法であって、下記工程(a)〜(g)を含むことを特徴とするオキソチタニルフタロシアニン結晶の製造方法である。
X1/X2≦0.25 (1)
(a)粗オキソチタニルフタロシアニン結晶を酸に対して溶解し、オキソチタニルフタロシアニン溶液を得る工程
(b)オキソチタニルフタロシアニン溶液を貧溶媒中に滴下して第1のウェットケーキを得る工程
(c)第1のウェットケーキを、アルコールによって洗浄する工程
(d)洗浄後の第1のウェットケーキを酸に対して溶解し、オキソチタニルフタロシアニン溶液を得る工程
(e)オキソチタニルフタロシアニン溶液を貧溶媒中に滴下して第2のウェットケーキを得る工程
(f)第2のウェットケーキを水によって洗浄する工程
(g)洗浄後の第2のウェットケーキを非水系溶媒中で加熱撹拌して、オキソチタニルフタロシアニン結晶を得る工程
すなわち、所定の光学特性を有するオキソチタニルフタロシアニン結晶を、かかる工程を経て製造することによって、結晶が安定であるとともに、感光層中における分散性に優れ、電荷発生剤として電子写真感光体に対して含有させた場合には、かかる電子写真感光体の露光メモリの抑制及び感度の向上に効果的に寄与するオキソチタニルフタロシアニン結晶を安定的に製造することができる。
また、本発明のオキソチタニルフタロシアニン結晶の製造方法を実施するにあたり、工程(g)の後に、下記検査工程(h)〜(j)を含むことが好ましい。
(h)メタノール及びN,N−ジメチルホルムアミドからなる混合溶媒(メタノール:N,N−ジメチルホルムアミド=1:1(重量比))100重量部に対して、オキソチタニルフタロシアニン結晶1.25重量部を加えて懸濁液とする工程
(i)懸濁液をフィルタにてろ過し、ろ液を得る工程
(j)ろ液における波長328.5nmの光に対する吸光度が0.01〜0.035の範囲内の値であり、かつ、波長400nmの光に対する吸光度が0.003〜0.015の範囲内の値であることを確認する工程
このように実施することにより、ろ液における吸光度を測定することで、オキソチタニルフタロシアニン結晶の感光層中における分散性を、容易かつ定量的に評価することができる。
したがって、結晶が安定であるとともに、感光層中における分散性に優れたオキソチタニルフタロシアニン結晶を、より安定的に製造することができる。
また、本発明の別の態様は、基体上に、電荷発生剤と、電荷輸送剤と、結着樹脂と、を含む感光層を備えた電子写真感光体であって、電荷発生剤が、テトラヒドロフラン100重量部に対して、オキソチタニルフタロシアニン結晶1重量部を加えて7日間撹拌した後に測定したCuKα特性X線回折スペクトルにおける、ブラッグ角2θ±0.2°=7.4°での強度をX1とし、ブラッグ角2θ±0.2°=9.6°での強度をX2とした場合に、当該X1及びX2が、下記関係式(1)を満足するとともに、下記工程(a)〜(g)を含む製造方法によって得られてなるオキソチタニルフタロシアニン結晶であることを特徴とする電子写真感光体である。
X1/X2≦0.25 (1)
(a)粗オキソチタニルフタロシアニン結晶を酸に対して溶解し、オキソチタニルフタロシアニン溶液を得る工程
(b)オキソチタニルフタロシアニン溶液を貧溶媒中に滴下して第1のウェットケーキを得る工程
(c)第1のウェットケーキを、アルコールによって洗浄する工程
(d)洗浄後の第1のウェットケーキを酸に対して溶解し、オキソチタニルフタロシアニン溶液を得る工程
(e)オキソチタニルフタロシアニン溶液を貧溶媒中に滴下して第2のウェットケーキを得る工程
(f)第2のウェットケーキを水によって洗浄する工程
(g)洗浄後の第2のウェットケーキを非水系溶媒中で加熱撹拌して、オキソチタニルフタロシアニン結晶を得る工程
すなわち、電荷発生剤として、結晶が安定であるとともに、感光層中における分散性に優れた所定のオキソチタニルフタロシアニン結晶を含むことから、露光メモリを効果的に抑制し、かつ、優れた感度を有する電子写真感光体を得ることができる。
また、本発明としての電子写真感光体は、特に、露光メモリを効果的に抑制できるため、除電手段を有さない除電レスタイプの画像形成装置に対して搭載した場合であっても、良質な画像を安定的に形成することができる。
また、本発明の電子写真感光体を構成するにあたり、感光層における波長700nmの光に対する反射吸光度(A/−)と、感光層における膜厚(d/m)と、感光層におけるオキソチタニルフタロシアニン結晶の濃度(C/重量%)と、が下記関係式(2)を満足することが好ましい。
A・C-1・d-1 > 1.75×104 (2)
このように構成することにより、感光層中におけるオキソチタニルフタロシアニン結晶の分散性を、容易に確認することができる。
[第1の実施形態]
本発明の第1の実施形態は、テトラヒドロフラン100重量部に対して、オキソチタニルフタロシアニン結晶1重量部を加えて7日間撹拌した後に測定したCuKα特性X線回折スペクトルにおける、ブラッグ角2θ±0.2°=7.4°での強度をX1とし、ブラッグ角2θ±0.2°=9.6°での強度をX2とした場合に、当該X1及びX2が、下記関係式(1)を満足するとともに、下記工程(a)〜(g)を含む製造方法によって得られてなるオキソチタニルフタロシアニン結晶である。
X1/X2≦0.25 (1)
(a)粗オキソチタニルフタロシアニン結晶を酸に対して溶解し、オキソチタニルフタロシアニン溶液を得る工程
(b)オキソチタニルフタロシアニン溶液を貧溶媒中に滴下して第1のウェットケーキを得る工程
(c)第1のウェットケーキを、アルコールによって洗浄する工程
(d)洗浄後の第1のウェットケーキを酸に対して溶解し、オキソチタニルフタロシアニン溶液を得る工程
(e)オキソチタニルフタロシアニン溶液を貧溶媒中に滴下して第2のウェットケーキを得る工程
(f)第2のウェットケーキを水によって洗浄する工程
(g)洗浄後の第2のウェットケーキを非水系溶媒中で加熱撹拌して、オキソチタニルフタロシアニン結晶を得る工程
以下、オキソチタニルフタロシアニン結晶について、より具体的に説明するが、工程(a)〜(g)については、後の第2の実施形態において説明し、第1の実施形態においては、オキソチタニルフタロシアニン結晶自体の特性等について説明する。
1.オキソチタニルフタロシアニン化合物
本発明としてのオキソチタニルフタロシアニン結晶を構成するオキソチタニルフタロシアニン化合物としては、下記一般式(1)であらわされる化合物であることが好ましい。
この理由は、このような構造のオキソチタニルフタロシアニン化合物であれば、オキソチタニルフタロシアニン結晶の安定性をさらに向上させることができるばかりでなく、かかるオキソチタニルフタロシアニン結晶を安定して製造することができるためである。
また、特に、オキソチタニルフタロシアニン化合物の構造が、下記一般式(2)で表されることが好ましい。その中でも特に、下記式(3)で表される無置換のオキソチタニルフタロシアニン化合物であることが好ましい。
この理由は、このような構造のオキソチタニルフタロシアニン化合物を用いることによって、より安定した性質を備えたオキソチタニルフタロシアニン結晶をさらに容易に製造することができるためである。
(一般式(1)中、X、X、XおよびXは同一または異なって、ハロゲン原子、アルキル基、アルコキシル基、シアノ基、またはニトロ基を示し、a,b,cおよびdは同一または異なって0〜4の整数を示す。)
(一般式(2)中、Xは水素原子、ハロゲン原子、アルキル基、アルコキシ基、シアノ基、またはニトロ基を示しており、繰り返し数eは1〜4の整数を示す。)
2.オキソチタニルフタロシアニン結晶
(1)光学特性
本発明としてのオキソチタニルフタロシアニン結晶は、テトラヒドロフラン100重量部に対して、オキソチタニルフタロシアニン結晶1重量部を加えて7日間撹拌した後に測定したCuKα特性X線回折スペクトルにおける、ブラッグ角2θ±0.2°=7.4°での強度をX1とし、ブラッグ角2θ±0.2°=9.6°での強度をX2とした場合に、当該X1及びX2が、下記関係式(1)を満足することを特徴とする。
X1/X2≦0.25 (1)
この理由は、テトラヒドロフランに対して、所定の条件下で浸漬した後に測定したCuKα特性X線回折スペクトルにおける、ブラッグ角2θ±0.2°=7.4°での強度(X1)と、ブラッグ角2θ±0.2°=9.6°での強度(X2)と、の比を所定の範囲とすることによって、結晶構造が安定な、特に、α型に結晶転移しにくい型チタニルフタロシアニン結晶を得ることができるためである。その結果、かかるオキソチタニルフタロシアニン結晶を、電荷発生剤として電子写真感光体に対して含有させた場合には、電子写真感光体における電気特性を向上させることができ、特に露光メモリを効果的に抑制することができる。
すなわち、ブラッグ角2θ±0.2°=7.4°での強度(X1)は、α型結晶において特徴的に大きくなることが知られている。一方、ブラッグ角2θ±0.2°=9.6°での強度(X2)は、Y型結晶において特徴的に大きくなることが知られている。
したがって、(X1/X2)の値(以下において、α化度と称する場合がある)が小さい程、Y型結晶がα型結晶へと結晶転移せず、優れた結晶安定性を備えていることを意味する。
そして、Y型結晶は、α型結晶と比較して、著しく電荷発生効率や電荷伝達効率等に優れることから、かかる結晶安定性が優れている程、感光層における電荷の発生や伝達が効率的となって、残留電荷の発生が抑制され、露光メモリを効果的に抑制することができる。
但し、α化度の値が0.005未満の値となると、α型結晶への結晶転移が効果的に抑制されていると判断できるものの、結晶の形成自体に問題がある場合がある。
よって、上述したX1及びX2の値が、下記関係式(1´)を満足することがより好ましく、下記関係式(1´´)を満足することがさらに好ましい。
0.005≦X1/X2≦0.2 (1´)
0.005≦X1/X2≦0.15 (1´´)
なお、テトラヒドロフランは、電子写真感光体における感光層を形成するための感光層用塗布液において、溶剤として一般的に使用される有機溶媒であるため、測定されたα化度から、実際の感光層用塗布液中におけるオキソチタニルフタロシアニン結晶の安定性を、正しく評価することができる。
また、上述したオキソチタニルフタロシアニン結晶における光学特性は、例えば、以下のようにして測定することができる。
すなわち、オキソチタニルフタロシアニン結晶0.1gをテトラヒドロフラン10g中に分散させ、温度23±1℃、相対湿度50〜60%の条件下、密閉系中で7日間、100rpmの回転速度にて回転撹拌を行う。次いで、テトラヒドロフランを除去して、X線回折装置(理学電機(株)製のRINT1100等)のサンプルホルダーに充填し、以下に示すような条件で測定を行うことができる。
X線管球:Cu
管電圧:40kV
管電流:30mA
スタート角度:3.0°
ストップ角度:40.0°
走査速度:10°/分
次いで、図1を用いて、オキソチタニルフタロシアニン結晶における(X1/X2)の値と、そのオキソチタニルフタロシアニン結晶を電荷発生剤として含む電子写真感光体におけるメモリ電位と、の関係を説明する。
図1においては、横軸に(X1/X2)(−)を採り、縦軸に電子写真感光体におけるメモリ電位の絶対値(V)を採った特性曲線を示している。なお、用いた電子写真感光体の構成や、メモリ電位の測定方法等については、実施例において記載する。
かかる特性曲線から理解されるように、(X1/X2)(−)の値が増加するにしたがって、メモリ電位の絶対値(V)が増加していることがわかる。
なお、メモリ電位の絶対値(V)が小さい値である程、露光メモリの発生を効果的に抑制していることを意味する。
より具体的には、(X1/X2)(−)の値が0から0.25へと増加するのにともなって、メモリ電位の絶対値(V)は、約10Vから急激に増加しているものの、約30V以下の範囲を維持していることがわかる。
一方、(X1/X2)(−)の値が0.25を超えた値となると、メモリ電位(V)の増加は緩やかになるものの、約30Vを超えた高い値となってしまうことが分かる。
したがって、メモリ電位の絶対値(V)を約30V以下に抑制して、メモリ画像の発生等を抑制するためには、オキソチタニルフタロシアニン結晶における(X1/X2)(−)の値を0.25以下の値とすることが有効であると理解される。
また、オキソチタニルフタロシアニン結晶が、下記(C)の特性を有することが好ましい。
(C)有機溶媒中に7日間浸漬した後、CuKα特性X線回折スペクトルにおいて、少なくともブラッグ角2θ±0.2°=27.2°に最大ピークを有するとともに、26.2°にピークを有しないこと
この理由は、オキソチタニルフタロシアニン結晶が、(C)の特性を有する場合、感光層用塗布液中におけるその経時安定性や分散性を、さらに向上させることができるためである。
すなわち、オキソチタニルフタロシアニン結晶を、実際にテトラヒドロフラン等の有機溶媒中に7日間浸漬させた場合であっても、結晶型がβ型へ転移せず、Y型を保持していることをより正確に確認できるため、有機溶媒中における結晶転移を確実に制御することができるためである。
より具体的には、ブラッグ角2θ±0.2°=27.2°での強度は、上述した9.6°での強度と同様に、Y型結晶において特徴的に大きくなることが知られている。一方、ブラッグ角2θ±0.2°=26.2°での強度は、β型結晶において特徴的に大きくなることが知られている。
したがって、これらのブラッグ角におけるピークの有無を確認することによって、直接的にオキソチタニルフタロシアニン結晶の安定性を評価することができる。
なお、かかるオキソチタニルフタロシアニン結晶の光学特性の測定は、上述したα化度を測定する方法と同様にして行うことができる。
(2)熱特性
また、オキソチタニルフタロシアニン結晶が、下記(A)または(B)の特性を有することが好ましい。
(A)示差走査熱量分析において、吸着水の気化にともなうピーク以外は、50〜400℃の範囲内にピークを有さないこと
(B)示差走査熱量分析において、吸着水の気化にともなうピーク以外は、50〜270℃の範囲内にピークを有さず、270〜400℃の範囲内に1つのピークを有すること
この理由は、このように構成することにより、電子写真感光体を製造する際に、オキソチタニルフタロシアニン結晶を、電荷発生剤として感光層用塗布液に対して添加した場合であっても、結晶型の経時安定性をより向上させることができるばかりか、その分散性についても、さらに向上させることができるためである。
より具体的には、オキソチタニルフタロシアニン結晶が、(A)の特性を有する場合、かかるオキソチタニルフタロシアニン結晶は、結晶転移が起こりにくい安定結晶となるためである。
すなわち、感光層用塗布液を製造し、一定期間貯蔵した後に使用するような場合であっても、オキソチタニルフタロシアニン結晶が、かかる感光層用塗布液に含まれるテトラヒドロフラン等の有機溶媒の作用によってα型またはβ型への結晶転移を起こすことが少なくなる。よって、電荷発生に優れた所定の結晶型を保持することができる。
また、オキソチタニルフタロシアニン結晶が、(B)の特性を有する場合、感光層用塗布液中におけるオキソチタニルフタロシアニン結晶の経時安定性や分散性を、さらに優れたものとすることができるためである。
より具体的には、(B)の特性を有する場合、かかるオキソチタニルフタロシアニン結晶は、有機溶媒中における結晶転移を抑制することができるとともに、感光層塗布液中において、特に優れた分散性を発揮することができる。
すなわち、感光層を製造する際の感光層用塗布液を製造する際に、結晶型がα型またはβ型へ結晶転移を起こすことがより少なくなるとともに、感光層用塗布液に対する分散性が特に優れるため、形成された感光層における露光時の電荷の発生を、極めて効率的に行うことができる。さらには、かかる優れた分散性によって、オキソチタニルフタロシアニン結晶と電荷輸送剤との間における電荷輸送が効率的に行われるようになり、露光に対する感度を、さらに向上させることができる。
なお、吸着水の気化に伴うピーク以外のピークであって、270〜400℃の範囲内に現れる1つのピークは、290〜400℃の範囲内に現れることがより好ましく、300〜400℃の範囲内に現れることがさらに好ましい。
また、オキソチタニルフタロシアニン結晶における熱特性は、例えば、以下のようにして測定することができる。
すなわち、示差走査熱量計(理学電機(株)製のTAS−200型、DSC8230D)を用いて、以下に示すような条件で測定を行うことができる。
サンプルパン:アルミニウム製
昇温速度:20℃/分
[第2の実施形態]
また、本発明の第2の実施形態は、テトラヒドロフラン100重量部に対して、オキソチタニルフタロシアニン結晶1重量部を加えて7日間撹拌した後に測定したCuKα特性X線回折スペクトルにおける、ブラッグ角2θ±0.2°=7.4°での強度をX1とし、ブラッグ角2θ±0.2°=9.6°での強度をX2とした場合に、当該X1及びX2が、下記関係式(1)を満足するオキソチタニルフタロシアニン結晶の製造方法であって、下記工程(a)〜(g)を含むことを特徴とするオキソチタニルフタロシアニン結晶の製造方法である。
X1/X2≦0.25 (1)
(a)粗オキソチタニルフタロシアニン結晶を酸に対して溶解し、オキソチタニルフタロシアニン溶液を得る工程
(b)オキソチタニルフタロシアニン溶液を貧溶媒中に滴下して第1のウェットケーキを得る工程
(c)第1のウェットケーキを、アルコールによって洗浄する工程
(d)洗浄後の第1のウェットケーキを酸に対して溶解し、オキソチタニルフタロシアニン溶液を得る工程
(e)オキソチタニルフタロシアニン溶液を貧溶媒中に滴下して第2のウェットケーキを得る工程
(f)第2のウェットケーキを水によって洗浄する工程
(g)洗浄後の第2のウェットケーキを非水系溶媒中で加熱撹拌して、オキソチタニルフタロシアニン結晶を得る工程
以下、第1の実施形態において既に説明した内容は適宜省略し、第2の実施形態であるオキソチタニルフタロシアニン結晶の製造方法について説明する。
1.オキソチタニルフタロシアニン化合物の製造
オキソチタニルフタロシアニン化合物の製造方法としては、かかる分子の製造材料としてのo−フタロニトリルまたはその誘導体、もしくは1,3−ジイミノイソインドリンまたはその誘導体と、チタンアルコキシドまたは四塩化チタンと、を尿素化合物の存在下において反応させて、オキソチタニルフタロシアニン化合物を製造することが好ましい。
すなわち、下記反応式(1)または下記反応式(2)に準じて実施することが好ましい。なお、反応式(1)及び反応式(2)においては、チタンアルコキシドとして、一例ではあるが、式(5)で表されるチタンテトラブトキシドを用いている。
(1)反応式
したがって、反応式(1)に示すように、式(4)で表されるo−フタロニトリルと、式(5)で表されるチタンアルコキシドとしてのチタンテトラブトキシドとを反応させるか、反応式(2)において示すように、式(6)で表される1,3−ジイミノイソインドリンと、式(5)で表されるチタンテトラブトキシド等のチタンアルコキシドとを反応させて、式(3)で表されるオキソチタニルフタロシアニン化合物を製造することが好ましい。
なお、式(5)で表されるチタンテトラブトキシド等のチタンアルコキシドの替わりに、四塩化チタンを用いてもよい。
(2)添加量
また、式(5)で表されるチタンテトラブトキシド等のチタンアルコキシドまたは四塩化チタンの添加量を、式(4)で表されるo−フタロニトリルまたはその誘導体、もしくは式(6)で表される1,3−ジイミノイソインドリンまたはその誘導体1モルに対して、0.40〜0.53モルの範囲内の値とすることが好ましい。
この理由は、式(5)で表されるチタンテトラブトキシド等のチタンアルコキシドまたは四塩化チタンの添加量を、式(4)で表されるo−フタロニトリルまたはその誘導体、もしくは式(6)で表される1,3−ジイミノイソインドリンまたはその誘導体に対して、1/4モル当量を超えた過剰量とすることにより、後述する尿素化合物との相互作用が効果的に発揮されるためである。なお、かかる相互作用については、尿素化合物の項で詳述する。
したがって、式(5)で表されるチタンテトラブトキシド等のチタンアルコキシドまたは四塩化チタンの添加量を、式(4)で表されるo−フタロニトリルまたは式(6)で表される1,3−ジイミノイソインドリン等1モルに対して、0.42〜0.50モルの範囲内の値とすることがより好ましく、0.45〜0.47モルの範囲内の値とすることがさらに好ましい。
(3)尿素化合物
また、上述した反応式(1)及び(2)で表される反応を、尿素化合物の存在下において行うことが好ましい。この理由は、尿素化合物の存在下において製造されたオキソチタニルフタロシアニン化合物を用いることにより、尿素化合物とチタンアルコキシドまたは四塩化チタンにおける相互作用が発揮されるため、特定のオキソチタニルフタロシアニン結晶を効率的に得ることができるためである。
すなわち、かかる相互作用とは、尿素化合物とチタンアルコキシドまたは四塩化チタンとの反応によって生成するアンモニアが、さらにチタンアルコキシドまたは四塩化チタンと錯体を形成し、かかる錯体が反応式(1)及び(2)で表される反応をより促進させる作用である。そして、このような促進作用のもとに、原料物質を反応させることにより、有機溶媒中であっても、結晶転移しにくいオキソチタニルフタロシアニン結晶を効率的に製造することができる。
(3)−1 種類
また、反応式(1)及び(2)で使用される尿素化合物が、尿素、チオ尿素、O−メチルイソ尿素硫酸塩、O−メチルイソ尿素炭酸塩及びO−メチルイソ尿素塩酸塩からなる群の少なくとも1種であることが好ましい。
この理由は、かかる尿素化合物を、反応式(1)及び(2)中の尿素化合物として用いることにより、反応の過程で生成するアンモニアが、より効率的にチタンアルコキシドまたは四塩化チタンと錯体を形成し、かかる物質が反応式(1)及び(2)で表される反応をさらに促進させるためである。
すなわち、原料物質としてのチタンアルコキシドまたは四塩化チタンと、尿素化合物とが反応して生成するアンモニアが、さらに効率的にチタンアルコキシド等と錯体化合物を形成するためである。したがって、かかる錯体化合物が反応式(1)及び(2)で表される反応をさらに促進させるためである。
なお、かかる錯体化合物は、180℃以上の高温条件で反応させた場合に、特異的に生成しやすいことが判明している。そのため、沸点が180℃以上の含窒素化合物中、例えば、キノリン(沸点:237.1℃)やイソキノリン(沸点:242.5℃)、あるいはこれらの混合物(重量比10:90〜90:10)中で実施することがより有効である。
また、反応促進剤としてのアンモニアや、それに起因した錯体化合物がさらに生成しやすいことから、上述した尿素化合物の中でも、尿素を用いることがより好ましい。
(3)−2 添加量
また、反応式(1)及び(2)で使用する尿素化合物の添加量を、o−フタロニトリルまたはその誘導体、もしくは1,3−ジイミノイソインドリンまたはその誘導体1モルに対して、0.1〜0.95モルの範囲内の値とすることが好ましい。
この理由は、尿素化合物の添加量をかかる範囲内の値とすることにより、上述した尿素化合物の作用をより効率的に発揮させることができるためである。
したがって、かかる尿素化合物の添加量を、o−フタロニトリルまたはその誘導体、もしくは1,3−ジイミノイソインドリンまたはその誘導体1モルに対して、0.2〜0.8モルの範囲内の値とすることがより好ましく、0.3〜0.7モルの範囲内の値とすることがさらに好ましい。
(4)溶媒
また、反応式(1)及び(2)で使用する溶媒としては、例えば、キシレン、ナフタレン、メチルナフタレン、テトラリン、及びニトロベンゼン等の炭化水素系溶剤、ジクロロベンゼン、トリクロロベンゼン、ジブロモベンゼン、及びクロロナフタレン等のハロゲン化炭化水素系溶剤、ヘキサノール、オクタノール、デカノール、ベンジルアルコール、エチレングリコール、及びジエチレングリコール等のアルコール系溶剤、シクロヘキサノン、アセトフェノン、1−メチル−2−ピロリドン、及び1,3−ジメチル−2−イミダゾリジノン等のケトン系溶剤、ホルムアミド、及びアセトアミド等のアミド系溶剤、ピコリン、キノリン、及びイソキノリン等の窒素含有溶剤からなる群の1種または2種以上の任意の組み合わせが挙げられる。
特に、沸点が180℃以上の含窒素化合物、例えば、キノリンやイソキノリンであれば、原料物質としてのチタンアルコキシドまたは四塩化チタンと、尿素化合物とが反応して生成するアンモニアが、さらに効率的にチタンアルコキシド等と錯体化合物を形成しやすくなることから好適な溶媒である。
(5)反応温度
また、反応式(1)及び(2)における反応温度を150℃以上の高温とすることが好ましい。この理由は、かかる反応温度が150℃未満、特に135℃以下となると、原料物質としてのチタンアルコキシドまたは四塩化チタンと、尿素化合物とが反応して、錯体化合物を形成しにくくなるためである。したがって、かかる錯体化合物が反応式(1)及び(2)で表される反応をさらに促進させることが困難となって、有機溶媒中であっても、結晶転移しにくいオキソチタニルフタロシアニン結晶を効率的に製造することが困難となるためである。
したがって、反応式(1)及び(2)における反応温度を180〜250℃の範囲内の値とすることがより好ましく、200〜240℃の範囲内の値とすることがさらに好ましい。
(6)反応時間
また、反応式(1)及び(2)における反応時間は、反応温度にもよるが、0.5〜10時間の範囲とすることが好ましい。この理由は、かかる反応時間が0.5時間未満となると、原料物質としてのチタンアルコキシドまたは四塩化チタンと、尿素化合物とが反応して、錯体化合物を形成しにくくなるためである。したがって、かかる錯体化合物が反応式(1)及び(2)で表される反応をさらに促進させることが困難となって、有機溶媒中であっても結晶転移しにくいオキソチタニルフタロシアニン結晶を効率的に製造することが困難となるためである。一方、かかる反応時間が10時間を越えると、経済的に不利となったり、あるいは生成した錯体化合物が減少したりする場合があるためである。
したがって、反応式(1)及び(2)における反応時間を0.6〜3.5時間の範囲内の値とすることがより好ましく、0.8〜3時間の範囲内の値とすることがさらに好ましい。
2.オキソチタニルフタロシアニン結晶の製造
(1)酸処理前工程
次いで、上述した工程またはその他の工程によって製造されたオキソチタニルフタロシアニン化合物に対して酸処理を実施する前段階として、酸処理前工程を行うことが好ましい。
すなわち、かかるオキソチタニルフタロシアニン化合物を水溶性有機溶媒中に加え、加熱下で一定時間、攪拌処理し、次いで、当該攪拌処理よりも低温の温度条件下で一定時間、液を静置して安定化処理を行うことが好ましい。
また、酸処理前工程に使用する水溶性有機溶媒としては、例えば、メタノール、エタノール、及びイソプロパノールなどのアルコール類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、プロピオン酸、酢酸、N−メチルピロリドン、及びエチレングリコール等の1種または2種以上が挙げられる。なお水溶性有機溶媒には、少量であれば、非水溶性の有機溶媒を添加してもよい。
また、酸処理前工程のうち攪拌処理の条件は特に限定されないが、およそ70〜200℃程度の温度範囲の一定温度条件下で、1〜3時間程度の攪拌処理を行うのが好ましい。
さらにまた、攪拌処理後の安定化処理の条件も特に限定されないが、およそ10〜50℃程度、特に好ましくは23±1℃前後の温度範囲の一定温度条件下で、5〜15時間程度、液を静置して安定化させるのが好ましい。このように酸処理前工程を行うことによって、粗オキソチタニルフタロシアニン結晶を得ることができる。
(2)酸処理工程(1)
次いで、酸処理工程として、粗オキソチタニルフタロシアニン結晶を酸に対して溶解し、オキソチタニルフタロシアニン溶液を得ることを特徴とする。
この理由は、酸に対して粗オキソチタニルフタロシアニン結晶を溶解することによって、オキソチタニルフタロシアニン化合物を製造する際に残留した材料物質等に由来する不純物を、十分に分解することができるためである。
また、使用する酸としては、濃硫酸、トリフルオロ酢酸及びスルホン酸からなる群から選択される少なくとも一種であることが好ましい。
この理由は、このような酸であれば、上述した不純物をより効果的に分解することができる一方、オキソチタニルフタロシアニン化合物の分解については、効果的に抑制することができるためである。
また、かかる酸処理後においては、これらの酸に由来する成分を、後述する洗浄によって容易に除去することができるためである。
なお、酸処理工程は、使用する酸によっても異なるが、一般に−5〜10℃、0.5〜3.0時間の条件で行うことが好ましい。
(3)滴下工程(1)
次いで、酸処理工程(1)において得られたオキソチタニルフタロシアニン溶液を、貧溶媒中に滴下して第1のウェットケーキを得ることを特徴とする。
この理由は、オキソチタニルフタロシアニン溶液を貧溶媒中に滴下することによって、後の洗浄工程における洗浄効果を、有効に発揮させることができるためである。
すなわち、滴下によって、析出したオキソチタニルフタロシアニン化合物からなる第1のウェットケーキが、表面積が大きな不定形となるため、後の洗浄工程における洗浄効果を、有効に発揮させることができるためである。
また、使用する貧溶媒としては、水、メタノール、エタノール、メタノールと水の混合溶媒、エタノールと水の混合溶媒、1−プロパノール、2−プロパノール、水とプロパノールの混合溶媒が挙げられる。そのなかでも、貧溶媒は水であることが好ましい。
この理由は、水であれば、酸処理工程における酸を効果的に取り除くことができるとともに、得られるウェットケーキにおける表面積を増加させることができるためである。
したがって、後の洗浄工程において、より効果的にオキソチタニルフタロシアニン結晶の感光層中における分散性を向上させることができるとともに、結晶安定性を低下させる原因となるアルコールについても、効果的に除去することができる。
なお、貧溶媒の温度は、使用する貧溶媒の種類によっても異なるが、一般に0〜20℃範囲内とすることが好ましい。
(4)アルコールによる洗浄工程
次いで、滴下工程(1)において得られたオキソチタニルフタロシアニン化合物からなる第1のウェットケーキをアルコールによって洗浄することを特徴とする。
この理由は、アルコールを用いて洗浄することによって、後の結晶型変換工程において得られるオキソチタニルフタロシアニン結晶の、感光層中における分散性を効果的に向上させることができるためである。かかる分散性を向上させる効果は、オキソチタニルフタロシアニン結晶の表面特性が改質されることによって得られるものと考えられる。
いずれにしても、アルコールを用いて洗浄することによって、感光層中における分散性に優れ、電荷発生剤として電子写真感光体に対して含有させた場合には、かかる電子写真感光体の露光メモリの抑制及び感度の向上に効果的に寄与するオキソチタニルフタロシアニン結晶を安定的に得ることができる。
なお、アルコールとしては、メタノール、エタノール及びイソプロピルアルコールからなる群から選択される少なくとも一種であることが好ましい。
この理由は、これらのアルコールであれば、さらに効果的にオキソチタニルフタロシアニン結晶の感光層中における分散性を向上させることができるためである。
(5)酸処理工程(2)
次いで、洗浄後の第1のウェットケーキを、酸に対して溶解し、チタニルフタロシアニン溶液を得ることを特徴とする。
この理由は、上述したアルコールによる洗浄によって、最終的に得られるオキソチタニルフタロシアニン結晶における結晶安定性が低下する場合があるためである。そこで、再度の酸処理を実施し、さらに後述するように、得られた第2のウェットケーキを水で洗浄することによって、アルコールの影響を除去して、結晶安定性を向上させることができるためである。
すなわち、再度の酸処理を実施することによって、第1のウェットケーキ中に残留しているアルコールを分解して、後の水による洗浄工程において、これらの除去を容易にすることができるためである。
なお、好適な酸の種類や、酸処理条件は、上述した酸処理工程(1)と同様とすることができる。
(6)滴下工程(2)
次いで、酸処理工程(2)において得られたオキソチタニルフタロシアニン溶液を、貧溶媒中に滴下して第2のウェットケーキを得ることを特徴とする。
この理由は、上述した滴下工程(1)と同様の作用によって、滴下によって、析出したオキソチタニルフタロシアニン化合物からなる第2のウェットケーキを、表面積が大きな不定形とすることができるため、後の洗浄工程において、効果的にアルコール及びその分解物を除去することができるためである。
なお、好適な貧溶媒の種類や、その温度条件は、上述した滴下工程(1)と同様とすることができる。
(7)水による洗浄工程
次いで、滴下工程(2)において得られたオキソチタニルフタロシアニン化合物からなる第2のウェットケーキを水によって洗浄することを特徴とする。
この理由は、既に上述したように、結晶安定性を低下させる原因となるアルコール及びその分解物を、十分に除去するためである。
すなわち、アルコール、特に、メタノール、エタノール及びイソプロピルアルコールといった分子量の小さなアルコールであれば、水との相溶性に優れることから、水によって容易に第2のウェットケーキから除去することができるためである。
(8)結晶型変換工程
次いで、水による洗浄工程において得られた洗浄後の第2のウェットケーキを非水系溶媒中で加熱撹拌して、オキソチタニルフタロシアニン結晶を得ることを特徴とする。
この理由は、オキソチタニルフタロシアニンのウェットケーキを、非水系溶媒中で加熱撹拌することによって、結晶型を第1の実施形態において説明した所定の光学特性等を有する所定の結晶型に変換することができるためである。
なお、上述した加熱撹拌は、水が存在した状態で非水系溶媒中に分散させて、30〜70℃で5〜40時間攪拌することが好ましい。
また、非水系溶媒としては、例えば、クロロベンゼン、及びジクロロメタン等のハロゲン系溶媒が挙げられる。
(9)検査工程
工程(g)、すなわち、上述した結晶型変換工程の後に、下記検査工程(h)〜(j)を含むことが好ましい。
(h)メタノール及びN,N−ジメチルホルムアミドからなる混合溶媒(メタノール:N,N−ジメチルホルムアミド=1:1(重量比))100重量部に対して、オキソチタニルフタロシアニン結晶1.25重量部を加えて懸濁液とする工程
(i)懸濁液をフィルタにてろ過し、ろ液を得る工程
(j)ろ液における波長328.5nmの光に対する吸光度が0.01〜0.035の範囲内の値であり、かつ、波長400nmの光に対する吸光度が0.003〜0.015の範囲内の値であることを確認する工程
この理由は、上述した工程を経て得られた所定のろ液における吸光度を測定することで、オキソチタニルフタロシアニン結晶の感光層中における分散性を、容易かつ定量的に評価することができるためである。
したがって、結晶が安定であるとともに、感光層中における分散性に優れたオキソチタニルフタロシアニン結晶を、より安定的に製造することができるためである。
すなわち、上述したろ液における波長328.5nmの光に対する吸光度が、0.01未満の値となると、オキソチタニルフタロシアニン結晶における結晶形成自体に問題がある場合があるためである。一方、上述したろ液における波長328.5nmの光に対する吸光度が0.035を超えた値となると、感光層中におけるオキソチタニルフタロシアニン結晶の分散性が低下しやすくなって、電子写真感光体における電気特性の低下、特に感度の低下の原因となる場合があるためである。
したがって、上述したろ液における波長328.5nmの光に対する吸光度を0.012〜0.03の範囲内の値とすることがより好ましく、0.012〜0.025の範囲内の値とすることがさらに好ましい。
また、上述したろ液における波長400nmの光に対する吸光度についても、波長328.5nmの光に対する吸光度の場合と同様の理由から、0.005〜0.012の範囲内の値とすることがより好ましく、0.005〜0.01の範囲内の値とすることがさらに好ましい。
なお分散性の指標として波長328.5nm及び波長400nmの光に対する吸光度を測定する理由は、これらの波長の光に対する吸光度と、オキソチタニルフタロシアニン結晶における分散性及びそれに起因した電子写真感光体の電気特性と、の相関が、経験的に見出されているためである。
また、かかる相関は、オキソチタニルフタロシアニン結晶における表面特性の改質具合が、これらの波長の光に対する吸光度に反映されるために生じるものと考えられる。
また、所定のろ液における吸光度の測定方法については、後の実施例において記載する。
また、(h)工程において懸濁液を得る際の条件としては、超音波洗浄装置を用いて、温度23±3℃で1時間分散したものを用いるものとする。
また、オキソチタニルフタロシアニン結晶を懸濁させるために使用する混合溶媒の量としては、メタノール4g及びN,N−ジメチルホルムアミド4gを混合して、合計8gとする。
また、懸濁させるオキソチタニルフタロシアニン結晶の量を0.1gとする。
また、(i)工程において懸濁液をろ過するためのフィルタとしては、PTFEタイプの0.1μmメンブランフィルタを用いるものとする。
さらに、工程(j)において吸光度を測定する際の吸収層(ろ液)の厚さは、10mm(セル長)とする。
次いで、図2を用いて、メタノール及びN,N−ジメチルホルムアミドからなる混合溶媒(メタノール:N,N−ジメチルホルムアミド=1:1(重量比))100重量部に対して、オキソチタニルフタロシアニン結晶1.25重量部を加えて懸濁液とした後、当該懸濁液をフィルタにてろ過してろ液を得た場合における、当該ろ液における波長328.5nmの光に対する吸光度と、そのオキソチタニルフタロシアニン結晶を電荷発生剤として含む電子写真感光体における感度と、の関係を説明する。
図2においては、横軸に上述した所定のろ液における波長328.5nmの光に対する吸光度(−)を採り、縦軸に電子写真感光体における感度の絶対値(V)を採った特性曲線を示している。なお、かかる電子写真感光体の構成や、感度の測定方法等については、実施例において記載する。
かかる特性曲線から理解されるように、所定のろ液における波長328.5nmの光に対する吸光度(−)の値が増加するのにしたがって、感度の絶対値(V)が、ほぼ一次的に増加していることがわかる。なお、感度の絶対値(V)が小さい値である程、優れた感度特性を有することを意味する。
より具体的には、所定のろ液における吸光度(−)の値が0から0.035へと増加するのにともなって、感度の絶対値(V)は、約30Vから増加し始め、約60V以下の範囲内の値とをとっていることがわかる。
一方、所定のろ液における波長328.5nmの光に対する吸光度(−)の値が0.035を超えた値となると、感度の絶対値(V)の増加割合はほぼ一定のままであるが、約60V以上の高い値となってしまうことが分かる。
したがって、感度の絶対値(V)を約60V以下に抑制して優れた感度特性を得るためには、所定のろ液における波長328.5nmの光に対する吸光度(−)の値を0.035以下の値とすることが有効であると理解される。
次いで、図3を用いて、メタノール及びN,N−ジメチルホルムアミドからなる混合溶媒(メタノール:N,N−ジメチルホルムアミド=1:1(重量比))100重量部に対して、オキソチタニルフタロシアニン結晶1.25重量部を加えて懸濁液とした後、当該懸濁液をフィルタにてろ過してろ液を得た場合における、当該ろ液における波長400nmの光に対する吸光度と、そのオキソチタニルフタロシアニン結晶を電荷発生剤として含む電子写真感光体における感度と、の関係を説明する。
図3においては、横軸に上述した所定のろ液における波長400nmの光に対する吸光度(−)を採り、縦軸に電子写真感光体における感度の絶対値(V)を採った特性曲線を示している。なお、かかる電子写真感光体の構成や、感度の測定方法等については、実施例において記載する。
かかる特性曲線から理解されるように、所定のろ液における波長400nmの光に対する吸光度(−)の値が増加するにしたがって、感度の絶対値(V)が、ほぼ一次的に増加していることがわかる。なお、感度の絶対値(V)が小さい値である程、優れた感度特性を備えることを意味する。
より具体的には、所定のろ液における波長400nmの光に対する吸光度(−)の値が0から0.015へと増加するのにともなって、感度の絶対値(V)は、約50Vから増加し始め、約60V以下の範囲内の値とをとっていることがわかる。
一方、所定のろ液における波長400nmの光に対する吸光度(−)の値が0.015を超えた値となると、感度の絶対値(V)の増加割合はほぼ一定のままであるが、約60V以上の高い値となってしまうことが分かる。
したがって、感度の絶対値(V)を約60V以下に抑制して優れた感度特性を得るためには、所定のろ液における波長400nmの光に対する吸光度(−)の値を0.015以下の値とすることが有効であると理解される。
次いで、図4を用いて、感光層中におけるオキソチタニルフタロシアニン結晶の分散性と、電子写真感光体における感度と、の関係を説明する。
ここで、分散性の指標としては、オキソチタニルフタロシアニン結晶を含んだ感光層における波長700nmの光に対する反射吸光度(A/−)と、感光層における膜厚(d/m)と、感光層におけるオキソチタニルフタロシアニン結晶の濃度(C/重量%)と、からなるパラメータ(A・C-1・d-1)(単位:1/(重量%・m)、以下同様である。)を用いることとする。かかるパラメータ及び感光層における反射吸光度の測定方法等については後述するが、基本的にランベルト・ベールの法則に準じて感光層中におけるオキソチタニルフタロシアニン結晶の分散性を評価したパラメータである。
すなわち、図4においては、横軸に(A・C-1・d-1)を採り、左縦軸に電子写真感光体における感度の絶対値(V)を採った特性曲線Aを、右縦軸に感光層中におけるオキソチタニルフタロシアニン結晶の分散性(相対評価)を採った特性曲線Bを、それぞれ示している。
また、感光層中におけるオキソチタニルフタロシアニン結晶の分散性の相対評価は、感光層を顕微鏡で観察した結果に基づく評価である。
まず、特性曲線Bから理解されるように、(A・C-1・d-1)の値が増加する程、オキソチタニルフタロシアニン結晶の分散性(相対評価)が向上している。
すなわち、(A・C-1・d-1)の値が大きい程、感光層中におけるオキソチタニルフタロシアニン結晶の分散性が高いことを示している。
したがって、(A・C-1・d-1)によって、オキソチタニルフタロシアニン結晶の分散性を明確に評価できると言える。
また、特性曲線Aから理解されるように、(A・C-1・d-1)の値が増加するのにしたがって、感度の絶対値が減少している。
したがって、特性曲線A及びBの結果を総合的に評価すると、オキソチタニルフタロシアニン結晶の分散性が向上するほど、電子写真感光体における感度が向上すると言える。
よって、本発明の分散性に優れたオキソチタニルフタロシアニン結晶を用いることで、電子写真感光体における感度を効果的に向上させることができると言える。
なお、電子写真感光体が積層型である場合には、その電荷発生層を対象として用いることで、オキソチタニルフタロシアニン結晶の分散性を評価することができる。
[第3の実施形態]
第3の実施形態は、基体上に、電荷発生剤と、電荷輸送剤と、結着樹脂と、を含む感光層を備えた電子写真感光体であって、電荷発生剤が、テトラヒドロフラン100重量部に対して、オキソチタニルフタロシアニン結晶1重量部を加えて7日間撹拌した後に測定したCuKα特性X線回折スペクトルにおける、ブラッグ角2θ±0.2°=7.4°での強度をX1とし、ブラッグ角2θ±0.2°=9.6°での強度をX2とした場合に、当該X1及びX2が、下記関係式(1)を満足するとともに、下記工程(a)〜(g)を含む製造方法によって得られてなるオキソチタニルフタロシアニン結晶であることを特徴とする電子写真感光体である。
X1/X2≦0.25 (1)
(a)粗オキソチタニルフタロシアニン結晶を酸に対して溶解し、オキソチタニルフタロシアニン溶液を得る工程
(b)オキソチタニルフタロシアニン溶液を貧溶媒中に滴下して第1のウェットケーキを得る工程
(c)第1のウェットケーキを、アルコールによって洗浄する工程
(d)洗浄後の第1のウェットケーキを酸に対して溶解し、オキソチタニルフタロシアニン溶液を得る工程
(e)オキソチタニルフタロシアニン溶液を貧溶媒中に滴下して第2のウェットケーキを得る工程
(f)第2のウェットケーキを水によって洗浄する工程
(g)洗浄後の第2のウェットケーキを非水系溶媒中で加熱撹拌して、オキソチタニルフタロシアニン結晶を得る工程
以下、第1及び第2の実施形態において既に説明した内容は適宜省略し、第3の実施形態である電子写真感光体について、主に単層型電子写真感光体を例にとって説明する。
1.基本的構成
図5(a)に示すように、本発明としての電子写真感光体10の基本的構成としては、基体12上に、特定の電荷発生剤と、電荷輸送剤と、結着樹脂と、からなる単一の感光層14を設けたものであることが好ましい。
この理由は、単層型電子写真感光体10であれば、正負いずれの帯電型においても適用可能となるとともに、簡易な層構成となることから、感光層を形成する際の被膜欠陥を抑制し、生産性を向上させることができるためである。
また、層間の界面が少ないことから、光学的特性を向上させることができるためである。
また、図5(b)に例示するように、この感光層14と、基体12と、の間に、中間層16を形成した単層型感光体10´とすることもできる。
2.基体
また、図5に例示する基体12としては、導電性を有する種々の材料を使用することができる。例えば、鉄、アルミニウム、銅、スズ、白金、銀、バナジウム、モリブデン、クロム、カドミウム、チタン、ニッケル、パラジウム、インジウム、ステンレス鋼、真鍮等の金属や、上述した金属が蒸着またはラミネートされたプラスチック材料、アルマイト、ヨウ化アルミニウム、酸化スズ、酸化インジウム等で被覆されたガラス等があげられる。
また、基体の形状は、使用する画像形成装置の構造に合わせて、シート状、ドラム状等のいずれであってもよく、基体自体が導電性を有するか、あるいは基体の表面が導電性を有していればよい。また、基体は、使用に際して十分な機械的強度を有するものが好ましい。ドラム状の場合は、基体の直径が10〜60mm、より好ましくは10〜35mmの範囲内の値とすることが装置の小型化の面で好ましい。
また、干渉縞の発生防止のためには、エッチング、陽極酸化、ウエットブラスティング法、サンドブラスティング法、粗切削、センタレス切削等の方法を用いて、支持基体の表面に粗面化処理を行っても良い。
なお、基体に対して陽極酸化等を実施した場合、非導電性や半導体特性となる場合があるが、そのような場合であっても所定の効果が得られる限り、基体として用いることができる。
3.中間層
また、図5(b)に示すように、基体12上に、所定の結着樹脂を含有する中間層16を設けてもよい。
この理由は、基体と感光層との密着性を向上させるとともに、この中間層内に所定の微粉末を添加することで、入射光を散乱させて、干渉縞の発生を抑制するとともに、カブリや黒点の原因となる非露光時における基体から感光層への電荷注入を抑制することができるためである。この微粉末としては、光散乱性、分散性を有するものであれば特に限定されるものではないが、例えば、酸化チタン、酸化亜鉛、亜鉛華、硫化亜鉛、鉛白、リトポン等の白色顔料や、アルミナ、炭酸カルシウム、硫酸バリウム等の体質顔料としての無機顔料やフッ素樹脂粒子、ベンゾグアナミン樹脂粒子、スチレン樹脂粒子等を用いることができる。
また、この中間層の膜厚を0.1〜50μmの範囲内の値とすることが好ましい。この理由は、中間層厚が厚くなりすぎると、感光体表面に残留電位が生じやすくなり、電気特性を低下させる要因となる場合があるためである。その一方で、中間層厚が薄くなりすぎると、基体表面の凹凸を十分緩和させることができなくなり、基体と感光層との密着性を得ることができなくなるためである。
したがって、中間層の膜厚としては、0.1〜50μmの範囲内の値とすることが好ましく、0.5〜30μmの範囲内の値とすることがより好ましい。
4.感光層
(1)結着樹脂
本発明の電子写真感光体に使用する結着樹脂の種類は特に制限されるものではないが、例えば、ポリカーボネート樹脂をはじめ、ポリエステル樹脂、ポリアリレート樹脂、スチレン−ブタジエン共重合体、スチレン−アクリロニトリル共重合体、スチレン−マレイン酸共重合体、アクリル共重合体、スチレン−アクリル酸共重合体、ポリエチレン、エチレン−酢酸ビニル共重合体、塩素化ポリエチレン、ポリ塩化ビニル、ポリプロピレン、アイオノマー、塩化ビニル−酢酸ビニル共重合体、アルキド樹脂、ポリアミド、ポリウレタン、ポリスルホン、ジアリルフタレート樹脂、ケトン樹脂、ポリビニルブチラール樹脂、ポリエーテル樹脂等の熱可塑性樹脂、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、その他架橋性の熱硬化性樹脂、エポキシアクリレート、ウレタン−アクリレート等の光硬化型樹脂等の樹脂が使用可能である。
(2)電荷発生剤
本発明においては、電荷発生剤として、テトラヒドロフラン100重量部に対して、オキソチタニルフタロシアニン結晶1重量部を加えて7日間撹拌した後に測定したCuKα特性X線回折スペクトルにおける、ブラッグ角2θ±0.2°=7.4°での強度をX1とし、ブラッグ角2θ±0.2°=9.6°での強度をX2とした場合に、当該X1及びX2が、下記関係式(1)を満足するとともに、下記工程(a)〜(g)を含む製造方法によって得られてなるオキソチタニルフタロシアニン結晶を使用することを特徴とする。
X1/X2≦0.25 (1)
(a)粗オキソチタニルフタロシアニン結晶を酸に対して溶解し、オキソチタニルフタロシアニン溶液を得る工程
(b)オキソチタニルフタロシアニン溶液を貧溶媒中に滴下して第1のウェットケーキを得る工程
(c)第1のウェットケーキを、アルコールによって洗浄する工程
(d)洗浄後の第1のウェットケーキを酸に対して溶解し、オキソチタニルフタロシアニン溶液を得る工程
(e)オキソチタニルフタロシアニン溶液を貧溶媒中に滴下して第2のウェットケーキを得る工程
(f)第2のウェットケーキを水によって洗浄する工程
(g)洗浄後の第2のウェットケーキを非水系溶媒中で加熱撹拌して、オキソチタニルフタロシアニン結晶を得る工程
この理由は、かかるオキソチタニルフタロシアニン結晶であれば、結晶が安定であるとともに、感光層中における分散性に優れることから、露光メモリを効果的に抑制し、かつ、優れた感度を有する電子写真感光体を得ることができるためである。
また、本発明としての電子写真感光体は、特に、露光メモリを効果的に抑制できるため、除電手段を有さない除電レスタイプの画像形成装置に対して搭載した場合であっても、良質な画像を安定的に形成することができるためである。
なお、電荷発生剤としてのオキソチタニルフタロシアニン結晶の詳細については、上述した第1及び第2の実施形態における記載内容と重複するため、省略する。
また、電荷発生剤としてのオキソチタニルフタロシアニン結晶の添加量としては、後述する結着樹脂100重量部に対して、0.1〜50重量部の範囲内の値とすることが好ましい。
この理由は、電荷発生剤の添加量をかかる範囲内の値とすることによって、電子写真感光体への露光をした際に、当該電荷発生剤が効率的に電荷を発生することができるためである。すなわち、かかる電荷発生剤の添加量が、結着樹脂100重量部に対して0.1重量部未満の値となると、電荷発生量が感光体上に静電潜像を形成するのに不十分となる場合があるためである。一方、かかる電荷発生剤の添加量が、結着樹脂100重量部に対して50重量部を超えた値となると、感光層用塗布液中に均一に分散させることが困難となる場合があるためである。
よって、結着樹脂100重量部に対する電荷発生剤の添加量を0.5〜30重量部の範囲内の値とすることがより好ましい。
(3)正孔輸送剤
また、本発明において使用される正孔輸送剤としては、特に制限されるものではなく、従来公知の種々の正孔輸送性化合物がいずれも使用可能である。特にベンジジン系化合物、フェニレンジアミン系化合物、ナフチレンジアミン系化合物、フェナントリレンジアミン系化合物、オキサジアゾール系化合物(例えば、2,5−ジ(4−メチルアミノフェニル)−1,3,4−オキサジアゾールなど)、スチリル系化合物(例えば、9−(4−ジエチルアミノスチリル)アントラセンなど)、カルバゾール系化合物(例えば、ポリ−N−ビニルカルバゾールなど)、有機ポリシラン化合物、ピラゾリン系化合物(例えば、1−フェニル−3−(p−ジメチルアミノフェニル)ピラゾリンなど)、ヒドラゾン系化合物、トリフェニルアミン系化合物、インドール系化合物、オキサゾール系化合、イソオキサゾール系化合物、チアゾール系化合物、チアジアゾール系化合物、イミダゾール系化合物、ピラゾール系化合物、トリアゾール系化合物、ブタジエン系化合物、ピレン−ヒドラゾン系化合物、アクロレイン系化合物、カルバゾール−ヒドラゾン系化合物、キノリン−ヒドラゾン系化合物、スチルベン系化合物、スチルベン−ヒドラゾン系化合物、及びジフェニレンジアミン系化合物などが好適に使用される。これらはそれぞれ単独で使用される他、2種以上を併用することもできる。
また、正孔輸送剤の添加量を、結着樹脂100重量部に対して、1〜120重量部の範囲内の値とすることが好ましい。
この理由は、かかる正孔輸送剤の添加量が1重量部未満の値となると、感光層の正孔輸送能が極端に低下し、画像特性に悪影響を与える場合があるためである。
また、添加量が120重量部を超える値となると、分散性が低下し、結晶化しやすくなるという問題が生じるためである。
したがって、正孔輸送剤の添加量を、結着樹脂100重量部に対して、5〜100重量部の範囲内の値とすることがより好ましく、10〜90重量部の範囲内の値とすることがさらに好ましい。
(4)電子輸送剤
本発明に用いられる電子輸送剤としては、特に限定されるものではないが、例えば、ベンゾキノン系化合物、ナフトキノン系化合物、アントラキノン系化合物、ジフェノキノン系化合物、ジナフトキノン系化合物、ナフタレンテトラカルボン酸ジイミド系化合物、フルオレノン系化合物、マロノニトリル系化合物、チオピラン系化合物、トリニトロチオキサントン系化合物、ジニトロアントラセン系化合物、ジニトロアクリジン系化合物、ニトロアントアラキノン系化合物、ジニトロアントラキノン系化合物などが好適に使用される。これらは、それぞれ単独で使用されるほか、2種以上を併用することもできる。
また、電子輸送剤の添加量を、結着樹脂100重量部に対して、1〜120重量部の範囲内の値とすることが好ましい。
この理由は、かかる電子輸送剤の添加量が1重量部未満の値となると、感光層の電子輸送能が極端に低下し、画像特性に悪影響を与える場合があるためである。
また、添加量が120重量部を超える値となると、分散性が低下し、結晶化しやすくなるという問題が生じるためである。
したがって、電子輸送剤の添加量を、結着樹脂100重量部に対して、5〜100重量部の範囲内の値とすることがより好ましく、10〜90重量部の範囲内の値とすることがさらに好ましい。
(5)厚さ
また、感光層の膜厚を5.0〜100μmの範囲内の値とすることが好ましい。
この理由は、かかる感光層の厚さが5.0μm未満の値となると、電子写真感光体としての機械的強度が不十分となる場合があるためである。一方、かかる感光層の厚さが100μmを超えた値となると、基体から剥離しやすくなったり、均一に形成することが困難となる場合があるためである。したがって、かかる感光層の厚さを10〜80μmの範囲内の値とすることがより好ましく、20〜40μmの範囲内の値とすることがさらに好ましい。
(6)関係式(2)
また、感光層における波長700nmの光に対する反射吸光度(A/−)と、感光層における膜厚(d/m)と、感光層におけるオキソチタニルフタロシアニン結晶の濃度(C/重量%)と、が下記関係式(2)を満足することが好ましい。
A・C-1・d-1 > 1.75×104 (2)
この理由は、関係式(2)を満足する感光層であれば、感光層中におけるオキソチタニルフタロシアニン結晶の分散性を、容易に確認することができるためである。
すなわち、第2の実施形態において図4を用いて説明したように、関係式(2)の左辺である(A・C-1・d-1)(1/(重量%・m))の値は、感光層中におけるオキソチタニルフタロシアニン結晶の分散性との間に、明確な相関を有する。したがって、(A・C-1・d-1)の値が所定の範囲であるか否かによって、感光層中におけるオキソチタニルフタロシアニン結晶の分散性及びそれに起因した電子写真感光体の電気特性を、容易に確認することができるためである。
なお、関係式(2)における左辺(A・C-1・d-1)は、ランベルト・ベールの法則に準じて、言わば、感光層中におけるオキソチタニルフタロシアニン結晶の分散性を表すパラメータと見なすことができる。
すなわち、感光層における膜厚(d/m)及びオキソチタニルフタロシアニン結晶の濃度(C/重量%)が一定の場合、オキソチタニルフタロシアニン結晶の分散性が不十分であると、入射光が吸収されにくく、波長700nmの光に対する反射吸光度(A)が小さい値となりやすいためである。一方、感光層におけるオキソチタニルフタロシアニン結晶の分散性が良好であれば、入射光が吸収されやすく、感光層における波長700nmの光に対する反射吸光度(A)が大きい値となるためである。
よって、かかる理由から、関係式(2)における左辺(A・C-1・d-1)の値より、感光層中におけるオキソチタニルフタロシアニン結晶の分散性を評価できることがわかる。
なお、電子写真感光体が積層型である場合には、その電荷発生層を対象として用いることで、オキソチタニルフタロシアニン結晶の分散性を評価することができる。
また、図4を参照して、関係式(2)における左辺A・C-1・d-1の数値(単位:1/(重量%・m)、以下同様である。)と、電子写真感光体における感度と、の関係を説明する。
すなわち、図4においては、横軸に(A・C-1・d-1)を採り、縦軸(左軸)に電子写真感光体における感度の絶対値(V)を採った特性曲線Aを示している。
かかる特性曲線Aから理解されるように、(A・C-1・d-1)の値が0に近づく程感度の絶対値(V)の値は大きく、(A・C-1・d-1)の値がより大きな値となるにしたがって、感度の絶対値(V)の値は小さくなっている。より具体的には、(A・C-1・d-1)の値が0〜1.75×104の範囲においては、かかる値が大きくなるにしたがって急激に感度の絶対値(V)の値が低下していることがわかる。一方、(A・C-1・d-1)の値が1.75×104以上の範囲においては、かかる値が増加するにともなって、感度の絶対値(V)の値が緩やかに減少し、60V以下の範囲内の値をとっていることがわかる。
したがって、(A・C-1・d-1)の値を1.9×104以上の値とすることがより好ましく、2.0×104以上の値とすることがさらに好ましい。
なお、感光層における波長700nmの光に対する反射吸光度(A/−)の測定は、例えば、以下のようにして行うことができる。
まず、感光層(基準厚さ2.5×10-5m)を積層した支持基体における、波長700nmの光に対する反射吸光度(A1)を、色差計(ミノルタ(株)製、色差計CM1000)を用いて測定する。次に、感光層を積層していない支持基体における、波長700nmの光に対する反射吸光度(A2)を、同様に測定する。
より具体的に、図6(a)及び(b)を用いて説明すると、図6(a)は、支持基体12上に感光層14が積層してある状態を示しており、図6(b)は、支持基体12のみの状態を示している。そして、図6(a)及び(b)中のI0は、それぞれの支持基体に対して照射された光(入射光)の強度を表しており、I1及びI2はそれぞれの支持基体に対して照射された入射光における反射光の強度を表している。したがって、支持基体の影響を排除して、感光層における反射吸光度を求めるためには、感光層と支持基体の反射吸光度が混在しているA1から、支持基体の反射吸光度であるA2を差し引けばよい。
よって、得られた反射吸光度の値(A1、A2)をもとに、下記数式(1)から、中間層の反射吸光度(A)を算出すればよい。
なお、図6(a)における反射吸光度(A1)は、下記数式(2)から算出され、同様に、図6(b)における反射吸光度(A2)は、下記数式(3)から算出される。
5.製造方法
単層型電子写真感光体の製造方法としては、特に制限されるものではないが、以下のような手順で実施することができる。
まず、溶剤に特定の電荷発生剤、電荷輸送剤、結着樹脂、添加剤等を含有させて塗布液を作成する。このようにして得られた塗布液を、例えば、ディップコート法、スプレー塗布法、ビード塗布法、ブレード塗布法、ローラ塗布法等の塗布法を用いて導電性基材(アルミニウム素管)上に塗布する。
その後、例えば、100℃、30分間の条件で熱風乾燥して、所定膜厚の感光層を有する単層型電子写真感光体を得ることができる。
なお、分散液を作るための溶剤としては、種々の有機溶剤が使用可能であり、例えば、メタノール、エタノール、イソプロパノール、ブタノール等のアルコール類;n−ヘキサン、オクタン、シクロヘキサン等の脂肪族系炭化水素;ベンゼン、トルエン、キシレン等の芳香族系炭化水素、ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素、クロロベンゼン等のハロゲン化炭化水素;ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、1,3−ジオキソラン、1,4-ジオキサン、等のエーテル類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸メチル等のエステル類;ジメチルホルムアルデヒド、ジメチルホルムアミド、ジメチルスルホキシド等があげられる。これらの溶剤は単独でまたは2種以上を混合して用いられる。このとき、さらに、電荷発生剤の分散性、感光体層表面の平滑性を良くするために界面活性剤、レベリング剤等を含有させてもよい。
また、この感光層を形成する前に、基体上に中間層を形成しておくことも好ましい。
この中間層を形成するにあたり、結着樹脂、必要に応じて添加剤(有機微粉末または無機微粉末)を適当な分散媒とともに、公知の方法、例えば、ロールミル、ボールミル、アトライタ、ペイントシェーカー、超音波分散機等を用いて分散混合して塗布液を調整し、これを公知の手段、例えば、ブレード法、浸漬法、スプレー法により塗布して、熱処理を施し中間層を形成する。
また、添加剤は製造時の沈降等が問題とならない範囲であって、光散乱を生じさせて干渉縞の発生を防止する等の目的のために、各種添加剤(有機微粉末または無機微粉末)を少量添加することができる。
次いで、得られた塗布液を、公知の製造方法に準じて、例えば、支持基体(アルミニウム素管)上に、ディップコート法、スプレー塗布法、ビード塗布法、ブレード塗布法、ローラ塗布法等の塗布法を用いて塗布することができる。
その後、基体上の塗布液を乾燥する工程は、20〜200℃の温度で5分〜2時間の範囲で行うことが好ましい。
なお、かかる塗布液を作るための溶剤としては、種々の有機溶剤が使用可能であり、例えば、メタノール、エタノール、イソプロパノール、ブタノール等のアルコール類;n−ヘキサン、オクタン、シクロヘキサン等の脂肪族系炭化水素;ベンゼン、トルエン、キシレン等の芳香族系炭化水素、ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素、クロロベンゼン等のハロゲン化炭化水素;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸メチル等のエステル類;ジメチルホルムアルデヒド、ジメチルホルムアミド、ジメチルスルホキシド等があげられる。これらの溶剤は単独でまたは2種以上を混合して用いられる。
6.積層型電子写真感光体
また、本発明の電子写真感光体を構成するにあたり、感光層が、図7に示すように、特定の電荷発生剤を含む電荷発生層24と、電荷輸送剤及び結着樹脂を含む電荷輸送層22と、からなる積層型の感光層20であることも好ましい。
この積層型電子写真感光体20は、基体12上に、蒸着または塗布等の手段によって、特定の電荷発生剤を含有する電荷発生層24を形成し、次いでこの電荷発生層24上に、電荷輸送剤と結着樹脂とを含む塗布液を塗布し、それを乾燥させて電荷輸送層22を形成することによって作製することができる。
また、上述した構造とは逆に、図7(b)に示すように、基体12上に電荷輸送層22を形成し、その上に電荷発生層24を形成してもよい。ただし、電荷発生層24は、電荷輸送層22に比べて膜厚がごく薄いため、その保護のためには、図7(a)に示すように、電荷発生層24の上に電荷輸送層22を形成することがより好ましい。
また、単層型感光体の場合と同様に、基体上に中間層25を形成することも好ましい。
また、電荷発生層形成用塗布液および電荷輸送層形成用塗布液は、例えば、特定の電荷発生剤、電荷輸送剤、結着樹脂などの所定の成分を、分散媒とともに、ロールミル、ボールミル、アトライタ、ペイントシェーカー、超音波分散機などを用いて分散混合することによって、調製することができる。
この積層型感光層20において、感光層(電荷発生層及び電荷輸送層)の厚さは、特に限定されないが、電荷発生層については、好ましくは0.01〜5μm、より好ましくは0.1〜3μmの厚さであり、電荷輸送層については、好ましくは2〜100μm、より好ましくは5〜50μmの厚さである。
以下、実施例に基づいて、本発明を具体的に説明する。
[実施例1]
1.オキソチタニルフタロシアニン化合物の製造
アルゴン置換したフラスコ中に、o−フタロニトリル22g(0.17mol)と、チタンテトラブトキシド25g(0.073mol)と、キノリン300gと、尿素2.28g(0.038mol)を加え、撹拌しつつ150℃まで昇温した。
次いで、反応系から発生する蒸気を系外へ留去しながら215℃まで昇温したのち、この温度を維持しつつさらに2時間、撹拌して反応させた。
次いで、反応終了後、150℃まで冷却した時点で反応混合物をフラスコから取り出し、ガラスフィルターによってろ別し、得られた固体をN,N−ジメチルホルムアミド、およびメタノールで順次洗浄したのち真空乾燥して、青紫色の固体24gを得た。
2.オキソチタニルフタロシアニン結晶の製造
(1)顔料化前処理
上述したオキソチタニルフタロシアニン化合物の製造で得られた青紫色の固体12gを、N,N−ジメチルホルムアミド100ミリリットル中に加え、撹拌しつつ130℃に加熱して2時間、撹拌処理を行った。
次いで、2時間経過した時点で加熱を停止し、さらに、23±1℃まで冷却した時点で撹拌も停止し、この状態で12時間、液を静置して安定化処理を行った。そして安定化された後の上澄みをガラスフィルターによってろ別し、得られた固体をメタノールで洗浄したのち真空乾燥して、オキソチタニルフタロシアニン化合物の粗結晶11.8gを得た。
(2)顔料化処理
上述した顔料化前処理で得られたオキソチタニルフタロシアニンの粗結晶10gを、97%の濃硫酸100gに加えて溶解した。なお、かかる酸処理は、5℃で1時間行った。
次いで、この溶液を、氷冷下の純水5リットル中に毎分10mlにて滴下したのち23±1℃付近で30分間、静置してウェットケーキを析出させ、上澄みと分離させた。
次いで、上澄みをガラスフィルターによってろ別したのち、得られたウェットケーキをメタノール500mlに懸濁して洗浄し、洗浄後のメタノールをガラスフィルターによってろ別した。そして、かかる洗浄を4回行った。
このとき、4回目の洗浄後のメタノールにおける波長328.5nm及び400nmの光に対する吸光度を測定し、それぞれ0.035及び0.015以下となっていることを確認した。この理由は、この段階での吸光度を測定することで、最終的に得られるオキソチタニルフタロシアニン結晶における表面特性の改質具合及びそれに起因した感光層中での分散性を、大まかに確認することができるためである。
次いで、60℃にて真空乾燥させたウェットケーキ8gを、97%の濃硫酸80gに加えて溶解した。なお、かかる酸処理は、5℃で1時間行った。
次いで、この溶液を、氷冷下の純水4リットル中に毎分10mlにて滴下したのち23±1℃付近で30分間、静置してウェットケーキを析出させ、上澄みと分離させた。
次いで、上澄みをガラスフィルターによってろ別したのち、得られたウェットケーキを純水800mlに懸濁して洗浄し、洗浄後の純水をガラスフィルターによってろ別した。そしてかかる洗浄を4回行った。
このとき、4回目の洗浄後の純水における伝導度が0.2μJ・cm以下となっていることを確認した。この理由は、溶出する伝導性成分量から、洗浄が十分に行なわれたか否かを確認することができるためである。
次いで、洗浄後のウェットケーキ5gを、水0.75g、クロロベンゼン100g中に加えて、50℃にて24時間加熱撹拌を行った。
そして上澄みをガラスフィルターによってろ別して得られた結晶を、100mlのメタノールで漏斗上にて洗浄したのち、50℃で5時間、真空乾燥させて、式(3)で表される無置換のオキソチタニルフタロシアニンの結晶(青色粉末)4.5gを得た。
3.オキソチタニルフタロシアニン結晶の評価
(1)CuKα特性X線回折スペクトル測定
得られたオキソチタニルフタロシアニン結晶0.1gを、テトラヒドロフラン10g中に分散させ、温度23±1℃、相対湿度50〜60%の条件下、密閉系中で7日間、100rpmの回転速度にて回転撹拌を行った。次いで、テトラヒドロフランを除去して、X線回折装置(理学電機(株)製のRINT1100)のサンプルホルダーに充填して測定を行った。得られたスペクトルチャートを、図8に示す。
そして、かかるスペクトルチャートから、ブラッグ角2θ±0.2°=7.4°における強度(X1)は、144cpsであり、9.6°における強度(X2)は、900cpsであった。したがって、α化度(X1/X2)は0.16であった。
また、かかるスペクトルチャートから、ブラッグ角2θ±0.2°=27.2°に最大ピークを有するとともに、26.2°にピークを有さないことを確認した。
したがって、得られたオキソチタニルフタロシアニン結晶が、安定した所定の結晶型を有していることが確認できた。
なお、測定の条件は、下記の通りとした。
X線管球:Cu
管電圧:40kV
管電流:30mA
スタート角度:3.0°
ストップ角度:40.0°
走査速度:10°/分
(2)吸光度の測定
また、得られたオキソチタニルフタロシアニン結晶0.1g(1.25重量部)を、メタノール及びN,N−ジメチルホルムアミドからなる混合溶媒(メタノール:N,N−ジメチルホルムアミド=1:1(重量比))8g(100重量部)に対して加えて、液の温度を25℃に保ちながら、超音波洗浄装置にて1時間分散して懸濁液とした。次いで、得られた懸濁液を、PTFEタイプの0.1μmメンブランフィルム(アドバンテスト(株)製)を用いてろ過し、ろ液を得た。次いで、得られたろ液をセル長10mmのセルに収容した後、かかるろ液における波長328.5nm及び400nmの光に対する吸光度を吸光度計(日立製作所製、分光光度計 U−3000)で測定した。得られた結果を表1に示す。
4.電子写真感光体の製造
(1)中間層の形成
ビーズミルを用いて、酸化チタン(MT−02、アルミナ、シリカ、シリコーンで表面処理した数平均一次粒子径が10nm(テイカ製))200重量部、四元共重合ポリアミド樹脂CM8000(東レ製)100重量部、溶媒としてメタノール1000重量部と、n-ブタノール200重量部とを、5時間混合、分散させ、さらに5ミクロンのフィルタにてろ過処理して、中間層用塗布液を作成した。
次いで、30mm、長さ238.5mmのアルミニウム基体(支持基体)の一端を上にして、得られた中間層用塗布液中に5mm/secの速度で浸漬させて中間層用塗布液を塗布した。その後、130℃、30分の条件で硬化処理を行って、膜厚2μmの中間層を形成した。
(2)電荷発生層の形成
次いで、ビーズミルを用いて、電荷発生剤として上述したようにして製造したオキソチタニルフタロシアニン結晶を230重量部、結着樹脂としてポリビニルアセタール樹脂(積水化学工業(株)製、エスレックKS−5)50重量部、フェノキシ樹脂(InChem(株)製、PKKH)50重量部、分散媒としてプロピレングリコールモノメチルエーテル4000重量部、テトラヒドロフラン4000重量部を、2時間混合、分散させ、電荷発生層用の塗布液を得た。得られた塗布液を、3ミクロンのフィルタにてろ過後、上述した中間層上にディップコート法にて塗布し、50℃で5分間乾燥させて、膜厚0.1μmの電荷発生層を形成した。
(3)電荷輸送層の形成
次いで、超音波分散機内に、正孔輸送剤として下記式(7)で表されるビストリフェニルアミン誘導体(HTM−1)70重量部と、添加剤としてメタターフェニル15重量部と、テトラヒドロフラン320重量部と、粘度平均分子量30,500のポリカーボネート樹脂100重量部を、テトラヒドロフラン280重量部に対して溶解させて得た樹脂溶液と、を収容したのち、10分間分散処理させて、電荷輸送層用塗布液を得た。
得られた電荷輸送層用塗布液を、電荷発生層用塗布液と同様にして電荷発生層上に塗布し、130℃で30分間乾燥し、膜厚20μmの電荷輸送層を形成し積層型電子写真感光体を作製した。
5.評価
(1)感度の測定
また、得られた積層型電子写真感光体における感度の評価を行った。
すなわち、負帯電反転現像プロセスを採用したプリンタ(沖データ(株)製MicroLine−22)におけるイメージングユニットから、現像手段を取り外し、そこに電位測定装置を装着して、電位測定用のイメージングユニットを作成した。かかる電位測定装置は、イメージングユニットの現像位置に対して、電位測定プローブを配置する構成とした。また、かかる電位測定プローブを、電子写真感光体の軸方向における中央に対して配置し、電位測定プローブと電子写真感光体表面との距離は、5mmとした。
次いで、常温常湿環境下(温度:23℃、相対湿度:50%RH)において、1%原稿にて10,000枚プリントした後の積層型電子写真感光体を、上述した電位測定用のイメージングユニットに装着し、負帯電させて、ベタ黒画像に相当する露光を行い、かかる露光部の電位を測定して感度(V)とした。得られた結果を表1に示す。なお、得られた帯電電位(V)及び感度(V)の測定値は負の値であったが、表1においては、その絶対値(正の値)を記載している。
(2)メモリ電位の測定
また、得られた積層型電子写真感光体におけるメモリ電位の評価を行った。
すなわち、常温常湿環境下(温度:23℃、相対湿度:50%RH)において、1%原稿にて10,000枚プリントした後の積層型電子写真感光体を、上述した電位測定用イメージングユニットに装着し、1周目(95mm長)の電子写真感光体に対して、ベタ黒画像65mmに相当する露光を行い(露光部)、残りの30mmには露光を行わなかった(非露光部)。次いで、2周目の電子写真感光体全体に対しても、露光を行わなかった。次いで、1周目の露光部に相当する部分の2周目における表面電位V0b(V)と、1周目の非露光部に相当する部分の2周目における表面電位V0(V)と、を測定し、この電位差の絶対値│V0−V0b│(V)を計算して、メモリ電位(V)とした。得られた結果を表1に示す。
(3)メモリ画像の評価
また、得られた積層型電子写真感光体におけるメモリ画像の評価を行った。
すなわち、負帯電反転現像プロセスを採用したプリンタ(沖データ(株)製MicroLine−22)のイメージングユニットに対して、得られた積層型電子写真感光体を装着し、常温常湿環境下(温度:23℃、湿度:50%RH)において、1%原稿にて10,000枚プリントした後、10mm角の黒四角パターンを、電子写真感光体1周分任意の数だけ印字した。次いで、全面グレー画像及び全面白紙画像をプリントし、下記基準に沿って評価した。
◎:メモリ画像が全く観察されない
○:メモリ画像が若干観察されるが、四角形の輪郭は観察されない
△:メモリ画像が若干観察されるとともに、四角形の輪郭も観察される
×:メモリ画像がはっきりと観察される
[実施例2]
また、実施例2では、オキソチタニルフタロシアニン結晶を製造する際の顔料化処理において、1回目のウェットケーキの洗浄として、メタノールによる洗浄のかわりに、エタノールによる洗浄を5回繰り返したほかは、実施例1と同様にオキソチタニルフタロシアニン結晶及び積層型電子写真感光体を製造し、評価した。得られた結果を表1に示す。
[実施例3]
また、実施例3では、オキソチタニルフタロシアニン結晶を製造する際の顔料化処理において、1回目のウェットケーキの洗浄として、メタノールによる洗浄のかわりに、イソプロピルアルコールによる洗浄を5回繰り返したほかは、実施例1と同様にオキソチタニルフタロシアニン結晶及び積層型電子写真感光体を製造し、評価した。得られた結果を表1に示す。
[比較例1]
また、比較例1では、オキソチタニルフタロシアニン結晶を製造する際の顔料化処理において、1回目のウェットケーキの洗浄として、メタノールによる洗浄を行った後、そのまま洗浄後のウェットケーキを水及びクロロベンゼン中に加えて熱撹拌を行ってオキソチタニルフタロシアニン結晶を得た。そのほかは、実施例1と同様にオキソチタニルフタロシアニン結晶及び積層型電子写真感光体を製造し、評価した。得られた結果を表1に示す。
[比較例2]
また、比較例2では、オキソチタニルフタロシアニン結晶を製造する際の顔料化処理において、1回目のウェットケーキの洗浄として、エタノールによる洗浄を行った後、そのまま洗浄後のウェットケーキを水及びクロロベンゼン中に加えて熱撹拌を行ってオキソチタニルフタロシアニン結晶を得た。そのほかは、実施例1と同様にオキソチタニルフタロシアニン結晶及び積層型電子写真感光体を製造し、評価した。得られた結果を表1に示す。
[比較例3]
また、比較例3では、オキソチタニルフタロシアニン結晶を製造する際の顔料化処理において、1回目のウェットケーキの洗浄として、イソプロピルアルコールによる洗浄を行った後、そのまま洗浄後のウェットケーキを水及びクロロベンゼン中に加えて熱撹拌を行ってオキソチタニルフタロシアニン結晶を得た。そのほかは、実施例1と同様にオキソチタニルフタロシアニン結晶及び積層型電子写真感光体を製造し、評価した。得られた結果を表1に示す。
[比較例4]
また、比較例4では、オキソチタニルフタロシアニン結晶を製造する際の顔料化処理において、1回目のウェットケーキの洗浄として、水による洗浄を行った後、そのまま洗浄後のウェットケーキを水及びクロロベンゼン中に加えて熱撹拌を行ってオキソチタニルフタロシアニン結晶を得た。そのほかは、実施例1と同様にオキソチタニルフタロシアニン結晶及び積層型電子写真感光体を製造し、評価した。得られた結果を表1に示す。
[比較例5]
また、比較例5では、オキソチタニルフタロシアニン結晶を製造する際の顔料化処理において、1回目のウェットケーキの洗浄として、メタノールと水の混合液(メタノール50重量%、水50重量%)による洗浄を行った後、そのまま洗浄後のウェットケーキを水及びクロロベンゼン中に加えて熱撹拌を行ってオキソチタニルフタロシアニン結晶を得た。そのほかは、実施例1と同様にオキソチタニルフタロシアニン結晶及び積層型電子写真感光体を製造し、評価した。得られた結果を表1に示す。
本発明にかかるオキソチタニルフタロシアニン結晶によれば、所定の光学特性を有するオキソチタニルフタロシアニン結晶を製造する過程において、オキソチタニルフタロシアニンに対して所定の酸処理工程及び所定の洗浄工程を実施することにより、結晶が安定であるとともに、感光層中における分散性に優れたオキソチタニルフタロシアニン結晶を得ることができるようになった。
また、本発明にかかるオキソチタニルフタロシアニン結晶の製造方法によれば、結晶が安定であるとともに感光層中における分散性に優れたチタニルフタロシアニン結晶を、安定的に製造できるようになった。
したがって、かかるオキソチタニルフタロシアニン結晶を電荷発生剤として用いた電子写真感光体は、複写機やプリンタ等の各種画像形成装置における電気特性の向上や、品質の安定化に著しく寄与することが期待される。より具体的には、例えば、除電手段を備えない除電レスタイプの画像形成装置のように、電子写真感光体の性能が直接的に形成画像の品質に影響するような画像形成装置において、その性能の向上に著しく寄与することが期待される。
図1は、α化度と、メモリ電位と、の関係を説明するために供する図である。 図2は、波長328.5nmの光に対する吸光度と、感度と、の関係を説明するために供する図である。 図3は、波長400nmの光に対する吸光度と、感度と、の関係を説明するために供する図である。 図4は、分散性と、感度と、の関係を説明するために供する図である。 (a)〜(b)は、本発明にかかる単層型電子写真感光体の構成を説明するために供する図である。 (a)〜(b)は、感光層における反射吸光度の測定方法を説明するために供する図である。 (a)〜(b)は、本発明にかかる積層型電子写真感光体の構成を説明するために供する図である。 図8は、実施例1で用いたオキソチタニルフタロシアニン結晶におけるCuKα特性X線回折スペクトルである。
符号の説明
10:単層型感光体、12:基体、14:感光層、16:中間層、20:積層型感光体、22:電荷輸送層、24:電荷発生層、25:中間層

Claims (11)

  1. テトラヒドロフラン100重量部に対して、オキソチタニルフタロシアニン結晶1重量部を加えて7日間撹拌した後に測定したCuKα特性X線回折スペクトルにおける、ブラッグ角2θ±0.2°=7.4°での強度をX1とし、ブラッグ角2θ±0.2°=9.6°での強度をX2とした場合に、当該X1及びX2が、下記関係式(1)を満足するとともに、
    下記工程(a)〜(g)を含む製造方法によって得られてなるオキソチタニルフタロシアニン結晶。
    X1/X2≦0.25 (1)
    (a)粗オキソチタニルフタロシアニン結晶を酸に対して溶解し、オキソチタニルフタロシアニン溶液を得る工程
    (b)前記オキソチタニルフタロシアニン溶液を貧溶媒中に滴下して第1のウェットケーキを得る工程
    (c)前記第1のウェットケーキを、アルコールによって洗浄する工程
    (d)洗浄後の前記第1のウェットケーキを酸に対して溶解し、オキソチタニルフタロシアニン溶液を得る工程
    (e)前記オキソチタニルフタロシアニン溶液を貧溶媒中に滴下して第2のウェットケーキを得る工程
    (f)前記第2のウェットケーキを水によって洗浄する工程
    (g)洗浄後の第2のウェットケーキを非水系溶媒中で加熱撹拌して、オキソチタニルフタロシアニン結晶を得る工程
  2. 前記工程(g)の後に、下記検査工程(h)〜(j)を含むことを特徴とする請求項1に記載のオキソチタニルフタロシアニン結晶。
    (h)メタノール及びN,N−ジメチルホルムアミドからなる混合溶媒(メタノール:N,N−ジメチルホルムアミド=1:1(重量比))100重量部に対して、前記オキソチタニルフタロシアニン結晶1.25重量部を加えて懸濁液とする工程
    (i)前記懸濁液をフィルタにてろ過し、ろ液を得る工程
    (j)前記ろ液における波長328.5nmの光に対する吸光度が0.01〜0.035の範囲内の値であり、かつ、波長400nmの光に対する吸光度が0.003〜0.015の範囲内の値であることを確認する工程
  3. 前記工程(a)及び(d)、あるいはいずれか一方の工程において使用する酸が、濃硫酸、トリフルオロ酢酸及びスルホン酸からなる群から選択される少なくとも一種であることを特徴とする請求項1または2に記載のオキソチタニルフタロシアニン結晶。
  4. 前記工程(b)及び(e)、あるいはいずれか一方の工程において使用する貧溶媒が、水であることを特徴とする請求項1〜3のいずれか一項に記載のオキソチタニルフタロシアニン結晶。
  5. 前記工程(c)において使用するアルコールが、メタノール、エタノール及びイソプロピルアルコールからなる群から選択される少なくとも一種であることを特徴とする請求項1〜4のいずれか一項に記載のオキソチタニルフタロシアニン結晶。
  6. 前記オキソチタニルフタロシアニン結晶が、下記(A)または(B)の特性を有することを特徴とする請求項1〜5のいずれか一項に記載のオキソチタニルフタロシアニン結晶。
    (A)示差走査熱量分析において、吸着水の気化にともなうピーク以外は、50〜400℃の範囲内にピークを有さないこと
    (B)示差走査熱量分析において、吸着水の気化にともなうピーク以外は、50〜270℃の範囲内にピークを有さず、270〜400℃の範囲内に1つのピークを有すること
  7. 前記オキソチタニルフタロシアニン結晶が、下記(C)の特性を有することを特徴とする請求項1〜6のいずれか一項に記載のオキソチタニルフタロシアニン結晶。
    (C)有機溶媒中に7日間浸漬した後、CuKα特性X線回折スペクトルにおいて、少なくともブラッグ角2θ±0.2°=27.2°に最大ピークを有するとともに、26.2°にピークを有しないこと
  8. テトラヒドロフラン100重量部に対して、オキソチタニルフタロシアニン結晶1重量部を加えて7日間撹拌した後に測定したCuKα特性X線回折スペクトルにおける、ブラッグ角2θ±0.2°=7.4°での強度をX1とし、ブラッグ角2θ±0.2°=9.6°での強度をX2とした場合に、当該X1及びX2が、下記関係式(1)を満足するオキソチタニルフタロシアニン結晶の製造方法であって、
    下記工程(a)〜(g)を含むことを特徴とするオキソチタニルフタロシアニン結晶の製造方法。
    X1/X2≦0.25 (1)
    (a)粗オキソチタニルフタロシアニン結晶を酸に対して溶解し、オキソチタニルフタロシアニン溶液を得る工程
    (b)前記オキソチタニルフタロシアニン溶液を貧溶媒中に滴下して第1のウェットケーキを得る工程
    (c)前記第1のウェットケーキを、アルコールによって洗浄する工程
    (d)洗浄後の前記第1のウェットケーキを酸に対して溶解し、オキソチタニルフタロシアニン溶液を得る工程
    (e)前記オキソチタニルフタロシアニン溶液を貧溶媒中に滴下して第2のウェットケーキを得る工程
    (f)前記第2のウェットケーキを水によって洗浄する工程
    (g)洗浄後の第2のウェットケーキを非水系溶媒中で加熱撹拌して、オキソチタニルフタロシアニン結晶を得る工程
  9. 前記工程(g)の後に、下記検査工程(h)〜(j)を含むことを特徴とする請求項8に記載のオキソチタニルフタロシアニン結晶の製造方法。
    (h)メタノール及びN,N−ジメチルホルムアミドからなる混合溶媒(メタノール:N,N−ジメチルホルムアミド=1:1(重量比))100重量部に対して、前記オキソチタニルフタロシアニン結晶1.25重量部を加えて懸濁液とする工程
    (i)前記懸濁液をフィルタにてろ過し、ろ液を得る工程
    (j)前記ろ液における波長328.5nmの光に対する吸光度が0.01〜0.035の範囲内の値であり、かつ、波長400nmの光に対する吸光度が0.003〜0.015の範囲内の値であることを確認する工程
  10. 基体上に、電荷発生剤と、電荷輸送剤と、結着樹脂と、を含む感光層を備えた電子写真感光体であって、
    前記電荷発生剤が、テトラヒドロフラン100重量部に対して、オキソチタニルフタロシアニン結晶1重量部を加えて7日間撹拌した後に測定したCuKα特性X線回折スペクトルにおける、ブラッグ角2θ±0.2°=7.4°での強度をX1とし、ブラッグ角2θ±0.2°=9.6°での強度をX2とした場合に、当該X1及びX2が、下記関係式(1)を満足するとともに、
    下記工程(a)〜(g)を含む製造方法によって得られてなるオキソチタニルフタロシアニン結晶であることを特徴とする電子写真感光体。
    X1/X2≦0.25 (1)
    (a)粗オキソチタニルフタロシアニン結晶を酸に対して溶解し、オキソチタニルフタロシアニン溶液を得る工程
    (b)前記オキソチタニルフタロシアニン溶液を貧溶媒中に滴下して第1のウェットケーキを得る工程
    (c)前記第1のウェットケーキを、アルコールによって洗浄する工程
    (d)洗浄後の前記第1のウェットケーキを酸に対して溶解し、オキソチタニルフタロシアニン溶液を得る工程
    (e)前記オキソチタニルフタロシアニン溶液を貧溶媒中に滴下して第2のウェットケーキを得る工程
    (f)前記第2のウェットケーキを水によって洗浄する工程
    (g)洗浄後の第2のウェットケーキを非水系溶媒中で加熱撹拌して、オキソチタニルフタロシアニン結晶を得る工程
  11. 前記感光層における波長700nmの光に対する反射吸光度(A/−)と、前記感光層における膜厚(d/m)と、前記感光層におけるオキソチタニルフタロシアニン結晶の濃度(C/重量%)と、が下記関係式(2)を満足することを特徴とする請求項10に記載の電子写真感光体。
    A・C-1・d-1 > 1.75×104 (2)
JP2007166128A 2006-09-15 2007-06-25 オキソチタニルフタロシアニン結晶、その製造方法及び電子写真感光体 Active JP5255786B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007166128A JP5255786B2 (ja) 2006-09-15 2007-06-25 オキソチタニルフタロシアニン結晶、その製造方法及び電子写真感光体

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006250494 2006-09-15
JP2006250494 2006-09-15
JP2007166128A JP5255786B2 (ja) 2006-09-15 2007-06-25 オキソチタニルフタロシアニン結晶、その製造方法及び電子写真感光体

Publications (2)

Publication Number Publication Date
JP2008095067A true JP2008095067A (ja) 2008-04-24
JP5255786B2 JP5255786B2 (ja) 2013-08-07

Family

ID=39378255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007166128A Active JP5255786B2 (ja) 2006-09-15 2007-06-25 オキソチタニルフタロシアニン結晶、その製造方法及び電子写真感光体

Country Status (1)

Country Link
JP (1) JP5255786B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008749A (ja) * 2008-06-27 2010-01-14 Kyocera Mita Corp チタニルフタロシアニン結晶及びチタニルフタロシアニン結晶の製造方法
JP2010237549A (ja) * 2009-03-31 2010-10-21 Kyocera Mita Corp 単層型電子写真感光体及び画像形成装置
JP2010237511A (ja) * 2009-03-31 2010-10-21 Kyocera Mita Corp 単層型電子写真感光体及び画像形成装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313819A (ja) * 1999-04-28 2000-11-14 Mitsubishi Paper Mills Ltd フタロシアニン組成物及びその製造方法、並びにそれを用いた電子写真感光体
JP2001181531A (ja) * 1999-10-14 2001-07-03 Kyocera Mita Corp チタニルフタロシアニン結晶とその製造方法、および電子写真感光体とその製造方法
JP2002129058A (ja) * 2000-10-24 2002-05-09 Mitsubishi Paper Mills Ltd フタロシアニン組成物及びその製造方法、並びにそれを用いた電子写真感光体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313819A (ja) * 1999-04-28 2000-11-14 Mitsubishi Paper Mills Ltd フタロシアニン組成物及びその製造方法、並びにそれを用いた電子写真感光体
JP2001181531A (ja) * 1999-10-14 2001-07-03 Kyocera Mita Corp チタニルフタロシアニン結晶とその製造方法、および電子写真感光体とその製造方法
JP2002129058A (ja) * 2000-10-24 2002-05-09 Mitsubishi Paper Mills Ltd フタロシアニン組成物及びその製造方法、並びにそれを用いた電子写真感光体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008749A (ja) * 2008-06-27 2010-01-14 Kyocera Mita Corp チタニルフタロシアニン結晶及びチタニルフタロシアニン結晶の製造方法
JP2010237549A (ja) * 2009-03-31 2010-10-21 Kyocera Mita Corp 単層型電子写真感光体及び画像形成装置
JP2010237511A (ja) * 2009-03-31 2010-10-21 Kyocera Mita Corp 単層型電子写真感光体及び画像形成装置

Also Published As

Publication number Publication date
JP5255786B2 (ja) 2013-08-07

Similar Documents

Publication Publication Date Title
JP5156409B2 (ja) 単層型電子写真感光体及び画像形成装置
JP5550686B2 (ja) チタニルフタロシアニン結晶、及び電子写真感光体
JP4891003B2 (ja) 電子写真感光体
US7981581B2 (en) Phthalocyanine composition and photoconductive material, electrophotographic photoreceptor cartridge, and image-forming apparatus each employing the composition
JP5101854B2 (ja) チタニルフタロシアニン結晶の製造方法
JP2007212798A (ja) 電子写真感光体及び画像形成装置
JP4892320B2 (ja) 画像形成装置及び画像形成方法
JP5405873B2 (ja) 単層型電子写真感光体及び画像形成装置
JP5255786B2 (ja) オキソチタニルフタロシアニン結晶、その製造方法及び電子写真感光体
JP4943104B2 (ja) 電子写真感光体及び画像形成装置
JP2008286909A (ja) 単層型電子写真感光体及び画像形成装置
JP5165922B2 (ja) オキソチタニルフタロシアニン結晶、その製造方法及び電子写真感光体
JP2007199629A (ja) 電子写真感光体及び画像形成装置
JP5265881B2 (ja) 画像形成装置及び画像形成方法
JP5106053B2 (ja) 積層型電子写真感光体及び積層型電子写真感光体の製造方法
JP5383843B2 (ja) 画像形成装置
US8686133B2 (en) Oxo-titanylphthalocyanine crystal, method for producing the same and electrophotographic photoreceptor
JP5203568B2 (ja) 電子写真感光体
JP2008003143A (ja) 積層型電子写真感光体及び画像形成装置
JP2007219257A (ja) 積層型電子写真感光体及び画像形成装置
JP2007212670A (ja) 積層型電子写真感光体及び画像形成装置
JP4379227B2 (ja) フタロシアニン化合物の製造方法、並びに電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP2008281943A (ja) 単層型電子写真感光体及び画像形成装置
JP4661241B2 (ja) フッ素置換インジウムフタロシアニン、並びにそれを用いた電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP5204945B2 (ja) フタロシアニン化合物の製造方法、並びに電子写真感光体、電子写真感光体カートリッジ及び画像形成装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081020

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130422

R150 Certificate of patent or registration of utility model

Ref document number: 5255786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3