JP2008090129A - 光モジュールの製造方法、及び、光素子 - Google Patents

光モジュールの製造方法、及び、光素子 Download PDF

Info

Publication number
JP2008090129A
JP2008090129A JP2006272697A JP2006272697A JP2008090129A JP 2008090129 A JP2008090129 A JP 2008090129A JP 2006272697 A JP2006272697 A JP 2006272697A JP 2006272697 A JP2006272697 A JP 2006272697A JP 2008090129 A JP2008090129 A JP 2008090129A
Authority
JP
Japan
Prior art keywords
optical
optical element
light
waveguide
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006272697A
Other languages
English (en)
Other versions
JP4913527B2 (ja
Inventor
Sayoko Ibe
紗代子 井部
Noriyuki Yokouchi
則之 横内
Kengo Muranushi
賢悟 村主
Tatsuya Kimoto
竜也 木本
Tatsuo Kurobe
立郎 黒部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2006272697A priority Critical patent/JP4913527B2/ja
Publication of JP2008090129A publication Critical patent/JP2008090129A/ja
Application granted granted Critical
Publication of JP4913527B2 publication Critical patent/JP4913527B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】第1の光素子から出射した光を集光レンズで集光し、第2の光素子の光導波路に容易に且つ正確に位置合わせ出来る光モジュールの製造方法を提供する。
【解決手段】光モジュールの製造方法は、第2の光素子6を集光レンズを通過した光の光軸方向に移動させて、集光レンズを通過した光を第2の光素子6を位置合わせする第1ステップと、第2の光素子6を光軸と直交する面内で移動させて、集光レンズを通過した光の出射方向側から観察したときに集光レンズを通過した光の焦点のスポットが、第2の光素子6の頂面上に第2の光素子6の光導波路と整列して形成された突起部35aと、光軸と直交し且つ基台の主面に平行な方向で整列するように位置合わせする第2ステップと、第2の光素子6を基台の主面に垂直な方向に移動させて、集光レンズを通過した光が第2の光素子6の光導波路に光結合するように第2の光素子6を位置合わせする第3ステップと、第2の光素子6の位置を固定する第4ステップと、を順次に有する。
【選択図】図2

Description

本発明は、光モジュールの製造方法、及び、光素子に関し、更に詳しくは、第1の光素子から出射され集光レンズで集光された光を、第2の光素子の光導波路に位置合わせする光モジュールの製造方法、及び、そのような光モジュールの製造方法に好適な光素子に関する。
近年、インターネットの普及により、光通信システムの小型化が要請されている。光通信システムの小型化を実現する手段の一つとして、複数の光素子を集積した光モジュールが検討されている。光モジュールでは、例えばレーザダイオードなどの能動光素子と、光変調器、光スイッチ、波長変換器といった受動光素子とが一体的に集積され、複合的な機能が実現される。
複数の光素子を集積化する方法として、モノリシック型とハイブリッド型とがある。モノリシック型は、同一の半導体基板上に複数の導波路型光素子を一体的に形成したものであって、小型化の究極の姿であるものの、製造プロセスに制限が多く、個々の光素子の機能最適化が容易ではない。このため、製造工程の複雑化による、歩留まりの低下の問題がある。
一方、ハイブリッド型は、複数の光素子を別個に構成すると共に、集光レンズなどの光学素子を用いて複数の光素子を光結合するものである。ハイブリッド型は、部品点数が多くなるものの、個々の光素子の機能最適化が容易である。また、デザイン変更が容易であると共に、異なる材料で製造された光素子同士を集積できる等の利点を有する。
ところで、ハイブリッド型の光モジュールでは、充分な信号強度を得るためには、光素子同士を高い結合効率で光結合させることが重要である。光結合のためには、例えば能動光素子から出射され集光レンズで集光された光の焦点を、受動光素子の光導波路に正確に位置合わせし、光結合させることが必須である。
特許文献1、2は、従来の光結合方法を記載している。特許文献1は、レーザダイオードを保持する保持部材の形状を工夫することによって、レーザダイオードと光ファイバとの光結合を容易に行う旨を記載している。また、特許文献2は、端面発光型のレーザダイオードにおいて、レーザ発光部の近傍に、発光部の相対位置がわかるように溝を形成する旨を記載している。
特開2003−46184号公報 特開平7−50449号公報
しかし、特許文献1には、能動光素子と受動光素子との光結合方法については記載がない。導波路型の受動光素子では一般に、端面において光導波路の位置を見分けることは困難であり、保持部材の工夫だけでは、集光レンズで集光された光の焦点を光素子の光導波路に正確に位置合わせすることは困難である。また、特許文献2に記載の溝は、10μm程度の比較的大きなコア径を有するシングルモード光ファイバの端部を、上記レーザ発光部に直接に位置合わせするためのものであって、同文献には、能動光素子から出射され集光レンズで集光された光の焦点を、導波路型の受動光素子の、シングルモード光ファイバよりもサイズの小さい光導波路に位置合わせする方法については記載がない。
本発明は、上記に鑑み、第1の光素子から出射され集光レンズで集光された光を、第2の光素子の光導波路に容易に且つ正確に位置合わせ出来る光モジュールの製造方法、及び、そのような光モジュールの製造方法に好適な光素子を提供することを目的とする。
上記課題を解決するために、本発明に係る光モジュールの製造方法は、基台の主面上に第1の光素子を固定し、該第1の光素子が出射する光を集光する集光レンズに合わせて第2の光素子を位置決めし、第1の光素子が出射する光を第2の光素子の光導波路に入射させる、光モジュールの製造方法において、
前記第2の光素子を前記集光レンズを通過した光の光軸方向に移動させて、前記集光レンズを通過した光を前記第2の光素子の入射側端面に位置合わせする第1ステップと、
前記第2の光素子を光軸と直交する面内で移動させて、前記集光レンズを通過した光の出射方向側から観察したときに前記集光レンズを通過した光の焦点のスポットが、前記第2の光素子の頂面上に前記第2の光素子の光導波路と整列して形成された突起又は切欠きと、前記光軸と直交し且つ前記基台の主面に平行な方向で整列するように位置合わせする第2ステップと、
前記第2の光素子を前記基台の前記主面に垂直な方向に移動させて、前記集光レンズを通過した光が前記第2の光素子の光導波路に光結合するように前記第2の光素子を位置合わせする第3ステップと、
前記第2の光素子の位置を固定する第4ステップと、
を順次に有することを特徴とする。
また、本発明の光素子は、上記記載の方法に使用する光素子であって、
光軸と直交方向に光導波路と整列すると共に、頂面上に形成された突起又は切欠きを有することを特徴とする。
本発明に係る光モジュールの製造方法によれば、第1ステップから第3ステップまでの各ステップでは、第1の光素子から出射され集光レンズで集光された光を、第2の光素子の光導波路と整列して形成された突起又は溝に整列させ、その後前記光導波路に光結合するよう位置合せを行うので、集光レンズを経由する第1の光素子からの出射光を第2の光素子の光導波路に容易に且つ正確に位置合わせ出来る。
本発明に係る光モジュールの製造方法の好適な態様では、前記第1ステップでは、前記第2の光素子の入射側端面で散乱され、前記第2の光素子の入射側端面に沿う視軸を有するカメラに入射する散乱光の光量が最大になるように、前記第2の光素子を位置合わせする。これにより、集光レンズで集光された光の焦点を、第2の光素子の入射側端面に容易に位置合わせ出来る。
本発明に係る光モジュールの製造方法の好適な態様では、前記第3ステップにおいて、前記第2の光素子の光導波路に結合する光の光量が最大になるように、前記第2の光素子を位置合わせする。集光レンズで集光された光の焦点を、第2の光素子の光導波路に容易に位置合わせ出来る。
本発明に係る光モジュールの製造方法では、前記突起又は切欠きが、第2の光素子の頂面上で光軸方向に連続して形成されてもよく、或いは、第2の光素子の頂面上に、光入射側端面及び光出射側端面に近接してそれぞれ形成されてもよい。
本発明に係る光モジュールの製造方法では、第2の光素子が、マッハツェンダ(MZ)型変調器や、LiNbO(LN)変調器、など、半導体基板やガラス基板上に形成されるシングルモード受動光導波路を有する受動光導波路素子であってもよい。例えば、第1の光素子が発光素子であり、第2の光素子が光変調器であってもよい。これらの第2の光素子では、光導波路のサイズが小さく、また、入射側端面において光導波路の位置を見分けることが困難であるため、本発明の方法を用いることによって、第1の光素子と第2の光素子との集光レンズを介した光結合を容易に行うことが出来る。
本発明の光素子の好適な態様では、前記突起又は切欠きは、前記光導波路を透過する光の電界が到達しない位置に形成される。光導波路を伝搬する光が、光素子上の空気の屈折率の影響を受けないようにすることが出来る。
他の光素子から出射され集光レンズで集光された光を、光素子のシングルモード光導波路に容易に且つ正確に位置合わせ出来る方法については従来知られていなかった。従って、本発明の光素子は、そのような光素子に好適に適用できる。
以下に、添付図面を参照し、本発明の実施形態を詳細に説明する。図1は、本発明方法が適用される光モジュールの構成を示す断面図である。光モジュール100は、複数の光素子5,6、光素子5,6を光結合する光学部品7〜9、及び、光素子6と光ファイバ12とを光結合する光学部品10,11とを備える。光素子5,6、及び、光学部品7〜10は、パッケージ1の内部に収容されると共に、基台3上に配置されている。基台3は、温度調整器を構成するペルチェモジュール2上に搭載され、ペルチェモジュール2により、光素子5,6等から発生する熱が除去される。
光素子5,6には、レーザダイオード5、及び、マッハツェンダ(MZ)型変調器6が含まれる。レーザダイオード5は、例えば分布帰還型レーザであり、所定波長のレーザ光を発生する能動導波路を有する。MZ型変調器6は、マッハツェンダ(MZ)型干渉導波路を有する受動光素子であり、レーザダイオード5と光ファイバ12との間に配設されると共に、レーザダイオード5から入射したレーザ光を変調して光ファイバ12に出射する。また、光モジュール100は、レーザダイオード5の後端面から出射したレーザ光を受光し、その強度をモニタするフォトダイオード4を有している。
フォトダイオード4、レーザダイオード5、MZ型変調器6、コリメートレンズ7、アイソレータ8、集光レンズ9、及び、コリメートレンズ10は、それぞれ固定部材21〜26を介して基台3上に固定されている。MZ型変調器6は、固定部材25上にサブマウント部材27を介して固定されている。光学部品11は、集光レンズを構成し、光ファイバ12と共にパッケージ1の外表面に固定されている。
図2は、図1のMZ型変調器6の形状を示す斜視図であり、図3は、MZ型変調器内部の素子構成を示す透視図である。光はz方向に進行し、入射側端面及び出射側端面はそれぞれx−y平面に平行である。MZ型変調器6のMZ型干渉導波路(以下、単に光導波路と呼ぶ)は、半導体基板30上に形成されている。光導波路は、入射側から、入射側導波路34a、入射側のMMI(マルチモード干渉器)カプラ31、一対のアーム32、出射側のMMIカプラ31、及び、出射側導波路34bを含み、一対のアーム32は、入射側及び出射側のMMIカプラ31にそれぞれ接続している。一対のアーム32のそれぞれに対応して駆動電極33が形成されており、半導体基板30の裏面には共通電極が形成されている。
光導波路は、上下のクラッド層及び両脇の埋込み層に囲まれ、それらの間の屈折率の違いによって光を導波し、光はそれらの間の界面で全反射しながら光導波路内部を透過するシングルモード光導波路である。入射側導波路34aから入射した光は、入射側のMMIカプラ31で分波され一対のアーム32に導かれる。それぞれのアーム32を透過した光は、出射側のMMIカプラ31で合波され出射側導波路34bから出射する。一対の駆動電極33を介して各アーム32に印加する電界や電流の大きさを制御して、各アーム32の光路長を変化させることにより、変調を行うことが出来る。
MZ型変調器6には、その上面であって入射側端面及び出射側端面の近傍に、突起部35a,35bがそれぞれ形成されている。突起部35a,35bは、z方向に細長い直方体形状を有し、対応する入射側導波路34a又は出射側導波路34bとx方向の位置が揃っている。また、その端面が、入射側端面又は出射側端面と連続している。なお、出射側端面の突起部35bは形成しなくてもよいが、MZ型変調器6では双方の側を入射側又は出射側として用いることが出来るようにするため、本実施形態では、双方の側に突起部35a,35bを形成している。また、突起部35a,35bは、入射側端面から出射側端面まで連続して形成されてもよい。
MZ型変調器6は、全長が約2000μm、全幅が約250μmで、半導体基板30の厚みは約100μmである。z方向に沿ったアーム32の長さは約1000μm、MMIカプラ31の長さは約100μmである。入射側導波路34a及び出射側導波路34bの幅は約2μmで、厚みは約0.4μmである。
突起部35a,35bの幅は約2μmで、高さは約1〜2μmである。突起部35a,35bの幅及び高さには制約は無いが、幅については、入射側導波路34aの幅と同程度とすると、入射光の位置合わせを容易に行うことが出来る。光導波路の上面から、突起部35a,35bを除くMZ型変調器6の上面までの距離は、2μmである。この距離は、光導波路を伝搬する光が、MZ型変調器6上の空気の屈折率の影響を受けない値に設定される。
図4は、図1のMZ型変調器6付近を拡大して示す斜視図である。固定部材25は、基台3上に固定された基部41と、基部41の両端からy方向に起立する一対の起立壁42とで構成されている。サブマウント部材27は、金属製サブマウント43と金属製サブマウント43上の非金属製サブマウント44とで構成され、金属製サブマウント43は、一対の起立壁42の間に挟持されている。金属製サブマウント43及び固定部材25は、Fe−Ni−Co合金などレーザ溶接に適した材料で構成されており、金属製サブマウント43と起立壁42との間、及び、基部41と基台3との間は、符号45,46に示す部位で、YAG溶接によってそれぞれ固定されている。
図5、6は、図1の光モジュール100を製造する手順を示すフローチャートである。レーザダイオード5をはんだを用いて固定部材22上に固定した後、この固定部材22を、はんだを用いて、CuWなどの材料から成る基台3上に固定する(ステップS11)。レーザダイオード5の固定には、Au−Snなどのはんだを、固定部材22の固定には、レーザダイオード5の固定に用いたはんだと同じはんだか、それよりも融点が低いはんだを用いる。
引き続き、フォトダイオード4をはんだを用いて固定部材21上に固定した後、この固定部材21をはんだを用いて基台3上に固定する(ステップS12)。フォトダイオード4の固定には、Au−Snなどのはんだを、固定部材21の固定には、フォトダイオード4の固定に用いたはんだと同じはんだか、それよりも融点が低いはんだを用いる。
次いで、レーザダイオード5の出射側にコリメートレンズ7を配置し、レーザダイオード5を駆動した状態で、コリメートレンズ7の透過光が平行光となるようにカメラで観察しながらコリメートレンズ7を位置合わせする。引き続き、コリメートレンズ7を保持する固定部材23をYAG溶接で固定する(ステップS13)。固定部材23は、Fe−Ni−Co合金などレーザ溶接に適した材料から構成されている。
次いで、コリメートレンズ7の出射側にアイソレータ8を配置し、レーザダイオード5を駆動した状態で、コリメートレンズ7の透過光がアイソレータ8を透過するようにカメラで観察しながら位置合わせする。引き続き、アイソレータ8をYAG溶接で基台3上に固定する(ステップS14)。
次いで、アイソレータ8の出射側に集光レンズ9を配置し、レーザダイオード5を駆動した状態で、集光レンズ9を位置合わせする。引き続き、集光レンズ9を保持する固定部材24をYAG溶接で基台3上に固定する(ステップS15)。固定部材24は、Fe−Ni−Co合金などレーザ溶接に適した材料から構成されている。
非金属製サブマウント44にMZ型変調器6を固定した後、これを金属製サブマウント43に固定する。次いで、金属製サブマウント43を固定部材の起立壁42間に配置する。引き続き、図7に示す位置決めアーム47でサブマウント部材27を把持する。
位置決めアーム47は、サブマウント部材27を把持した状態で、x方向、y方向、及び、z方向にそれぞれ移動することが出来る。位置決めアーム47のx方向の移動に際しては、サブマウント部材27及び固定部材25が一体的に移動し、y方向及びz方向の移動に際しては、固定部材25を移動させずにサブマウント部材27のみが起立壁42間で移動する。MZ型変調器6脇のサブマウント部材27上には、サーミスタ48が配設されている。
更に、レーザダイオード5を駆動した状態で、位置決めアーム47を用いてMZ型変調器6をx方向、y方向、及び、z方向にそれぞれ移動させ、集光レンズ9で集光された光の焦点を、MZ型変調器6の光導波路に位置合わせする(ステップS16)。その後、MZ型変調器6をYAG溶接で固定する(ステップS17)。
MZ型変調器6の出射側端面に、コリメートレンズ10を配置した後、レーザダイオード5を駆動した状態で、コリメートレンズ10を透過した光が平行光となるように位置合わせする。引き続き、コリメートレンズ10を保持する固定部材26をYAGレーザ溶接で固定する(ステップS18)。
Sn−Pbなどのはんだを用いて、パッケージ1上にペルチェモジュール2を固定した後(ステップS19)、InPbAgなどのはんだを用いて、ペルチェモジュール2上に基台3を固定する(ステップS20)。ペルチェモジュール2をパッケージ1と配線した後(ステップS21)、フォトダイオード4やレーザダイオード5などを、ワイヤボンディングによってパッケージ1と配線する(ステップS22)。
MZ型変調器6をパッケージ1と配線した後(ステップS23)、蓋14のシーム溶接によって、パッケージ1を封止する(ステップS24)。パッケージ1のリードピンを介してレーザダイオード5を駆動した状態で、パッケージ1の窓15に、集光レンズ11及びフェルール13によって支持された光ファイバ12を、光結合効率が最大になるように位置合わせした後、これらを固定する(ステップS25)
図8は、図5のステップS16、S17の手順を詳しく示すフローチャートである。図9(a)に示す光モジュール100について、カメラを用いてMZ型変調器6の入射側端面Aをy方向から観察する。レーザダイオード5を駆動させた状態で、位置決めアーム47を用いてMZ型変調器6をz方向に移動させて、MZ型変調器6の入射側端面Aで散乱される光の強度が最大になる位置で、MZ型変調器6を停止する(ステップS31)。これによって、図9(b)に示すように、集光レンズ9で集光されたレーザ光の焦点36をMZ型変調器6の入射側端面Aに位置合わせし、MZ型変調器6のz方向の位置を粗調整する。
次いで、図10に示すように、z方向から入射側端面Aを観察し、カメラ39の焦点をMZ型変調器6の入射側端面Aに合せる。
引き続き、MZ型変調器6をy軸の負方向に移動させ、カメラ39に表示される焦点36の像(スポット)が明瞭になり光量が増加する位置、即ち、図11(a)に示すように、焦点36がMZ型変調器6上に僅かに移動した位置でMZ型変調器6を停止する(ステップS32)。引き続き、MZ型変調器6をx軸方向に移動させ、カメラ39に表示される焦点36のスポットが突起部35aと重なり光量が減少する位置、即ち、図11(b)に示すように、焦点36が突起部35aと整合する位置でMZ型変調器6を停止する(ステップS33)。これによって、集光レンズ9を通過した光が、光軸に垂直で且つ基台3の主面に平行な方向において整列される。即ち、MZ型変調器6のx方向の位置が粗調整される。
次いで、図10に示した配置のままで、カメラ39の焦点をMZ型変調器6の出射側端面Bに合せる。引き続き、MZ型変調器6をy軸方向に移動し、出射側端面Bの光導波路から光導波路の導波モードに対応した形状のレーザ光が観察される位置でMZ型変調器6を停止する(ステップS34)。これによって、図12に示すように、焦点36を入射側端面における入射側導波路34aに合わせ、MZ型変調器6のy方向の位置を粗調整することが出来る。
次いで、出射側端面Bの光導波路から出射されるレーザ光の強度が最大になるように、MZ型変調器6のx方向及びy方向の位置を微調整する(ステップS35)。更に、出射側端面Bの光導波路から出射される、光導波路の導波モードに対応した形状のレーザ光の強度が最大になるように、MZ型変調器6のz方向の位置を微調整する(ステップS36)。しかる後、図4に示したように、金属製サブマウント部材43をYAG溶接で起立壁42に固定し(ステップS37)、固定部材25をYAG溶接で基台3に固定する(ステップS38)。YAG溶接が可能な金属製サブマウント部材43及び固定部材25を用いることによって、MZ型変調器6を正確に位置決め出来る。なお、YAG溶接の部位及び回数に限定はない。
本実施形態によれば、ステップS31〜S34の各ステップにより、レーザダイオード5から出射され集光レンズ9で集光されたレーザ光の焦点36を、MZ型変調器6の光導波路の上部に形成された突起部35aに位置合わせした後、MZ型変調器6を一次元的に(y方向に)移動することにより、レーザダイオード5から出射され集光レンズ9で集光されたレーザ光をMZ型変調器6の光導波路に光結合させることが出来る。従って、レーザダイオード(第1の光素子)5とMZ型変調器(第2の光素子)6との光結合を容易に且つ正確に行うことが出来る。ステップS32、S33に際しては、MZ型変調器6の入射側端面にカメラ39の焦点を合せて焦点36のスポットを観察することによって、焦点36を正確に且つ容易に突起部35aに位置合わせすることが出来る。
図13〜17は、本発明に係る光モジュールの製造方法に使用する、図2のMZ型変調器6の製造方法の一例について、その手順を順次に示す平面図及び断面図である。図13(a)〜図17(j)の各図において、左側の図はy方向から見た平面図であり、中央の図は、左側の図のC−C線に沿った断面図で、右側の図は、左側の図の入射側端面A又は出射側端面Bの正面図である。
先ず、MOCVD結晶成長装置を用い、InP半導体基板51上に、InP下部クラッド層52、InGaAsP導波路形成層53a、InP上部クラッド層54、InGaAsPエッチングストップ層55、及び、InP突起部形成層56aを順次に成長する(図13(a))。全面にSiNx膜を蒸着した後、フォトリソグラフィ技術を用いてSiNx膜上に、突起部に対応した平面形状を有するレジストパターンを形成する。更に、レジストパターンをSiNx膜に転写し、SiNxマスク57を形成する(図13(b))。
引き続き、SiNxマスク57を用いたエッチングにより、突起部形成層56aをパターニングし、エッチングストップ層55でエッチングを停止させる(図14(c))。全面にInGaAsコンタクト形成層58aを成長した後(図14(d))、全面にSiNx膜59aを蒸着する(図15(e))。
フォトリソグラフィ技術を用いてSiNx膜59a上に、光導波路に対応した平面形状を有するレジストパターンを形成した後、レジストパターンをSiNx膜59aに転写し、SiNxマスク59を形成する。引き続き、SiNxマスク59を用いたドライエッチングにより、導波路形成層53a下までパターニングし、光導波路53及び突起部56を形成する(図15(f))。ドライエッチングには、例えばICP(Inductively Coupled Plasma)ドライエッチング装置を用いる。
光導波路53脇をポリイミドなどの絶縁物質で埋め込んで埋込み層60を形成した後、SiNxマスク59を除去する(図16(g))。埋込み層60は、ポリイミド以外のポリマー、又は、Fe−InPなどの絶縁性材料で構成してもよい。埋込み層60には、光導波路53よりも屈折率が低い材料を用いる。
全面にSiNx膜を蒸着した後、フォトリソグラフィ技術を用いてSiNx膜上に、コンタクト層が必要なアーム上の部分に対応した平面形状を有するレジストパターンを形成する。レジストパターンをSiNx膜に転写してSiNxマスク61を形成した後、SiNxマスク61を用いたエッチングによって、コンタクト層が不要な部分のコンタクト形成層58aを除去する(図16(h))。
SiNxマスク61を除去した後、全面にSiNx膜62を蒸着する。引き続き、フォトリソグラフィ技術を用いて、SiNx膜62上にレジストパターンを形成する。更に、レジストパターンをSiNx膜62に転写し、駆動電極が必要な部分のSiNx膜62を除去する。全面に導電材料を貼付した後、リフトオフ法によって、レジストパターン上に塗布された導電材料を選択的に除去して、駆動電極63を形成する(図17(i))。
半導体基板51の裏面を研磨した後、半導体基板51の裏面に共通電極64を形成する(図17(j))ことによって、突起部56を有するMZ型変調器を製造できる。フォトリソグラフィ技術を用いることによって、突起部56を光導波路53に対応した位置に正確に形成できる。
図18は、本発明の第2実施形態に係る光モジュールの製造方法に使用されるMZ型変調器の構成を示す斜視図である。MZ型変調器37には、図2に示したMZ型変調器6におけるような突起部35a,35bが形成されておらず、入射側端面及び出射側端面のそれぞれの付近に、z方向に細長く切り欠いた溝部38a,38bがそれぞれ形成されている。溝部38a,38bは、z方向に細長い直方体形状に切り欠かれた部分であって、対応する入射側導波路34a又は出射側導波路34bとx方向の位置が揃っている。
溝部38a,38bの幅は約2μmで、深さは約1〜2μmである。溝部38a,38bの幅及び深さには制約は無いが、幅については、入射側導波路34aの幅と同程度とすると、入射光の位置合わせを容易に行うことが出来る。また、光導波路を伝搬する光が、MZ型変調器37上の空気の屈折率の影響を受けないように、光導波路の上面から溝部38a,38bの底面までの距離は2μmに設定されている。
図19は、第2実施形態に係る光モジュールの製造方法について、図8に対応する手順を示すフローチャートである。ステップS32に際して、MZ型変調器37をy軸の負方向に移動させ、カメラ39に表示される焦点36のスポットが明瞭になり光量が増加する位置の手前、即ち、図20(a)に示すように、焦点36がMZ型変調器37の上面から僅かに下方となる位置でMZ型変調器37を停止する。ステップS33に際して、MZ型変調器37をx軸方向に移動し、MZ型変調器37の中央付近でカメラ39に表示される焦点36のスポットが明瞭になり光量が増加する位置、即ち、図20(b)に示すように、レーザ光の焦点36と溝部38aとが整合する位置でMZ型変調器37を停止する。これによって、集光レンズ9を通過した光が、光軸に垂直で且つ基台3の主面に平行な方向において整列される。即ち、MZ型変調器37のx方向の位置が粗調整される。
ステップS34に際して、第1実施形態と同様に、MZ型変調器37をy軸方向に移動し、出射側端面の光導波路から導波モードに対応した形状のレーザ光が観察される位置でMZ型変調器37を停止する。これによって、図21に示すように、レーザ光の焦点36を入射側端面における入射側導波路34aに合わせ、MZ型変調器37のy方向の位置を粗調整することが出来る。
本実施形態に係る光モジュールの製造方法によれば、レーザダイオード5から出射され集光レンズ9で集光されたレーザ光の焦点36を溝部38aに位置合わせした後、MZ型変調器37を1次元的に(y方向に)移動するだけでMZ型変調器37の光導波路に位置合わせ出来る。従って、レーザダイオード(第1の光素子)5とMZ型変調器(第2の光素子)37との光結合を容易に且つ正確に行うことが出来る。
なお、図18では、直方体形状に切り欠かれた溝部38a,38bについて示したが、溝部38a,38bの形状はこれに限定されず、例えばV字状の断面を有しても構わない。
図22〜26は、断面が略V字状の溝部を有するMZ型変調器37の製造方法の一例について、その手順を順次に示す平面図及び断面図である。図22(a)〜図26(j)の各図において、左側の図はy方向から見た平面図であり、中央の図は、左側の図のC−C線に沿った断面図で、右側の図は、左側の図の入射側端面A又は出射側端面Bの正面図である。
先ず、MOCVD結晶成長装置を用い、InP半導体基板51上に、InP下部クラッド層52、InGaAsP導波路形成層53a、InP上部クラッド層54、InGaAsPエッチングストップ層55、及び、InP溝部形成層71aを順次に成長する(図22(a))。全面にSiNx膜を蒸着した後、フォトリソグラフィ技術を用いてSiNx膜上に、溝部付近を露出させる平面形状を有するレジストパターンを形成する。更に、レジストパターンをSiNx膜に転写し、SiNxマスク72を形成する(図22(b))。
引き続き、SiNxマスク72を用いたエッチングにより、溝部形成層71aをパターニングし、エッチングストップ層55でエッチングを停止させる。SiNxマスク72を除去した後(図23(c))、全面にInGaAsコンタクト形成層58aを成長する(図23(d))。
全面にSiNx膜を蒸着した後、フォトリソグラフィ技術を用いてSiNx膜上に、コンタクト層が必要なアーム上の部分に対応した平面形状を有するレジストパターンを形成する。レジストパターンをSiNx膜に転写してSiNxマスク73を形成した後、SiNxマスク73を用いたエッチングによって、コンタクト層が不要な部分のコンタクト形成層58aを除去する(図24(e))。更に、SiNxマスク73を除去する。
全面にSiNx膜74aを蒸着した後(図24(f))、フォトリソグラフィ技術を用いてSiNx膜74a上に、光導波路に対応した平面形状を有するレジストパターンを形成する。レジストパターンをSiNx膜74aに転写し、SiNxマスク74を形成する。引き続き、SiNxマスク74を用いたドライエッチングにより、導波路形成層53a下までパターニングし、光導波路53を形成する(図25(g))。ドライエッチングには、例えばICP(Inductively Coupled Plasma)ドライエッチング装置を用いる。
引き続き、光導波路53脇をポリイミドなどの絶縁物質で埋め込んで埋込み層60を形成する(図25(h))。埋込み層60の形成に際しては、入射側端面A又は出射側端面Bの近傍では、x方向の中央部と周縁部との間の段差によって、x方向の中央付近に向かって窪んだ形状に形成される。
SiNxマスク74を除去した後、全面にSiNx膜62を蒸着する。入射側端面A及び出射側端面Bの近傍では、x方向の中央付近に向かって窪む溝部71が形成される。引き続き、フォトリソグラフィ技術を用いて、SiNx膜62上にレジストパターンを形成する。更に、レジストパターンをSiNx膜62に転写し、駆動電極が必要な部分のSiNx膜62を除去する。全面に導電材料を貼付した後、リフトオフ法によって、レジストパターン上に塗布された導電材料を選択的に除去して、駆動電極63を形成する(図26(i))。
半導体基板51の裏面を研磨した後、半導体基板51の裏面に共通電極64を形成する(図26(j))ことによって、溝部71を有するMZ型変調器を製造できる。フォトリソグラフィ技術を用いることによって、溝部71を光導波路53に対応した位置に正確に形成できる。
なお、上記第1、第2実施形態において、MZ型変調器6、37が光増幅器、波長変換器、光スイッチ、AWG(Arrayed Waveguide Grating)、又は、リング共振器などの他の導波路型光素子に置き換わっても、上記第1、第2実施形態に係る光モジュールの製造方法を用いることによって、光結合を容易で且つ正確に行うことが出来る。レーザダイオード5も、分布帰還型レーザ以外のレーザであっても構わない。
また、図13〜17、22〜26では、突起部56、又は、溝部形成層71aには、半導体基板51と同じ材料を用いたが、異なる材料を用いても構わない。この場合、厚膜化が容易で、且つ、レーザ光を透過しない材料が好ましい。そのような材料として、例えばAuを蒸着した後、不要な部分を除去することで、突起部56や溝部71を形成してもよい。更に、メサ構造と埋込み層60とを反射率や透過率が大きく異なる材料で構成することによって、焦点36の位置合わせに際して、突起部56や溝部71に代えて、メサ構造に位置合わせしてもよい。
以上、本発明をその好適な実施態様に基づいて説明したが、本発明に係る光モジュールの製造方法、及び、光素子は、上記実施態様の構成にのみ限定されるものではなく、上記実施態様の構成から種々の修正及び変更を施したものも、本発明の範囲に含まれる。
本発明方法が適用される光モジュールの構成を示す断面図である。 図1のMZ型変調器の構成を示す斜視図である。 図1のMZ型変調器内部の素子構成を示す透視図である。 図1のMZ型変調器付近を拡大して示す斜視図である。 図1の光モジュールを製造する手順を示すフローチャートである。 図5に後続する手順を示すフローチャートである。 図1のサブマウント部材を位置決めアームで保持した状態を示す斜視図である。 図5のステップS16,S17の手順を詳細に示すフローチャートである。 図9(a)は、図1の光モジュールをy方向から見た平面図であり、図9(b)は、図8のステップS31における図9(a)の部分bを拡大して示す平面図である。 図8のステップS32〜36における光モジュールとカメラとの位置関係を示す断面図である。 図11(a)は、図8のステップS32におけるMZ型変調器の入射側端面の上部付近を拡大して示す正面図であり、図11(b)は、図8のステップS33におけるMZ型変調器の入射側端面の上部付近を拡大して示す正面図である。 図8のステップS34におけるMZ型変調器の入射側端面の上部付近を拡大して示す正面図である。 図13(a)、(b)は、図2のMZ型変調器を製造する手順を順次に示す平面図及び断面図である。 図14(c)、(d)は、図13に後続する手順を順次に示す平面図及び断面図である。 図15(e)、(f)は、図14に後続する手順を順次に示す平面図及び断面図である。 図16(g)、(h)は、図15に後続する手順を順次に示す平面図及び断面図である。 図17(i)、(j)は、図16に後続する手順を順次に示す平面図及び断面図である。 本発明の第2実施形態に係る光モジュールの製造方法に使用される光モジュールについて、MZ型変調器の構成を示す斜視図である。 第2実施形態の光モジュールの製造方法について、図8に対応する手順を示すフローチャートである。 図20(a)は、図19のステップS32におけるMZ型変調器の入射側端面の上部付近を拡大して示す正面図であり、図20(b)は、図19のステップS33におけるMZ型変調器の入射側端面の上部付近を拡大して示す正面図である。 図19のステップS34におけるMZ型変調器の入射側端面の上部付近を拡大して示す正面図である。 図22(a)、(b)は、断面が略V字状の溝部を有するMZ型変調器を製造する手順を順次に示す平面図及び断面図である。 図23(c)、(d)は、図22に後続する手順を順次に示す平面図及び断面図である。 図24(e)、(f)は、図23に後続する手順を順次に示す平面図及び断面図である。 図25(g)、(h)は、図24に後続する手順を順次に示す平面図及び断面図である。 図26(i)、(j)は、図25に後続する手順を順次に示す平面図及び断面図である。
符号の説明
1:パッケージ
2:ペルチェモジュール
3:基台
4:フォトダイオード
5:レーザダイオード
6:MZ型変調器
7:コリメートレンズ
8:アイソレータ
9:集光レンズ
10:コリメートレンズ
11:集光レンズ
12:光ファイバ
13:フェルール
14:蓋
15:窓
21:固定部材
22:固定部材
23:固定部材
24:固定部材
25:固定部材
26:固定部材
27:サブマウント部材
30:半導体基板
31:MMIカプラ
32:アーム
33:駆動電極
34a:入射側導波路
34b:出射側導波路
35:突起部
35a:(入射側の)突起部
35b:(出射側の)突起部
36:焦点
37:MZ型変調器
38:溝部
38a:(入射側の)溝部
38b:(出射側の)溝部
39:カメラ
41:基部
42:起立壁
43:金属製サブマウント
44:非金属製サブマウント
45:溶接部位
46:溶接部位
47:位置決めアーム
48:サーミスタ
51:半導体基板
52:下部クラッド層
53:光導波路
53a:導波路形成層
54:上部クラッド層
55:エッチングストップ層
56:突起部
56a:突起部形成層
57:SiNxマスク
58:コンタクト層
58a:コンタクト形成層
59:SiNxマスク
60:埋込み層
61:SiNxマスク
62:SiNx膜
63:駆動電極
64:共通電極
71:溝部
71a:溝部形成層
72:SiNxマスク
73:SiNxマスク
74:SiNxマスク
74a:SiNx膜
100:光モジュール

Claims (10)

  1. 基台の主面上に第1の光素子を固定し、該第1の光素子が出射する光を集光する集光レンズに合わせて第2の光素子を位置決めし、第1の光素子が出射する光を第2の光素子の光導波路に入射させる、光モジュールの製造方法において、
    前記第2の光素子を前記集光レンズを通過した光の光軸方向に移動させて、前記集光レンズを通過した光を前記第2の光素子の入射側端面に位置合わせする第1ステップと、
    前記第2の光素子を光軸と直交する面内で移動させて、前記集光レンズを通過した光の出射方向側から観察したときに前記集光レンズを通過した光の焦点のスポットが、前記第2の光素子の頂面上に前記第2の光素子の光導波路と整列して形成された突起又は切欠きと、前記光軸と直交し且つ前記基台の主面に平行な方向で整列するように位置合わせする第2ステップと、
    前記第2の光素子を前記基台の前記主面に垂直な方向に移動させて、前記集光レンズを通過した光が前記第2の光素子の光導波路に光結合するように前記第2の光素子を位置合わせする第3ステップと、
    前記第2の光素子の位置を固定する第4ステップと、
    を順次に有することを特徴とする光モジュールの製造方法。
  2. 前記第1ステップでは、前記第2の光素子の入射側端面で散乱され、前記第2の光素子の入射側端面に沿う視軸を有するカメラに入射する散乱光の光量が最大になるように、前記第2の光素子を位置合わせする、請求項1に記載の光モジュールの製造方法。
  3. 前記第3ステップでは、前記第2の光素子の光導波路に結合する光の光量が最大になるように、前記第2の光素子を位置合わせする、請求項1又は2に記載の光モジュールの製造方法。
  4. 前記突起又は切欠きが、前記第2の光素子の頂面上で光軸方向に連続して形成される、請求項1〜3の何れか一に記載の光モジュールの製造方法。
  5. 前記突起又は切欠きが、前記第2の光素子の頂面上に、光入射側端面及び光出射側端面に近接してそれぞれ形成される、請求項1〜3の何れか一に記載の光モジュールの製造方法。
  6. 前記第2の光素子が受動光導波路素子である、請求項1〜5の何れか一に記載の光モジュールの製造方法。
  7. 前記第1の光素子が発光素子であり、前記第2の光素子が光変調器である、請求項1〜5の何れか一に記載の光モジュールの製造方法。
  8. 請求項1に記載の方法に使用する光素子であって、
    光軸と直交方向に光導波路と整列すると共に、頂面上に形成された突起又は切欠きを有することを特徴とする光素子。
  9. 前記突起又は切欠きは、前記光導波路を透過する光の電界が到達しない位置に形成される、請求項8に記載の光素子。
  10. 前記光導波路は、シングルモード光導波路である、請求項8又は9に記載の光素子。
JP2006272697A 2006-10-04 2006-10-04 光モジュールの製造方法、及び、光素子 Active JP4913527B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006272697A JP4913527B2 (ja) 2006-10-04 2006-10-04 光モジュールの製造方法、及び、光素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006272697A JP4913527B2 (ja) 2006-10-04 2006-10-04 光モジュールの製造方法、及び、光素子

Publications (2)

Publication Number Publication Date
JP2008090129A true JP2008090129A (ja) 2008-04-17
JP4913527B2 JP4913527B2 (ja) 2012-04-11

Family

ID=39374317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006272697A Active JP4913527B2 (ja) 2006-10-04 2006-10-04 光モジュールの製造方法、及び、光素子

Country Status (1)

Country Link
JP (1) JP4913527B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018117251A1 (ja) * 2016-12-22 2019-10-31 古河電気工業株式会社 半導体レーザモジュールおよび半導体レーザモジュールの製造方法
CN113383432A (zh) * 2019-02-08 2021-09-10 古河电气工业株式会社 光模块

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6721740B1 (ja) 2019-02-28 2020-07-15 三菱日立パワーシステムズ株式会社 燃料電池セルスタック、燃料電池モジュール、発電システム及び燃料電池セルスタックを作製する方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159636A (ja) * 1993-12-09 1995-06-23 Fujitsu Ltd 導波路型光部品およびその調整方法
JP2000275472A (ja) * 1999-03-26 2000-10-06 Fujitsu Ltd 光導波路付基板と該基板を用いる光モジュール装置
JP2005017761A (ja) * 2003-06-26 2005-01-20 Tdk Corp 光導波路および光導波路の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159636A (ja) * 1993-12-09 1995-06-23 Fujitsu Ltd 導波路型光部品およびその調整方法
JP2000275472A (ja) * 1999-03-26 2000-10-06 Fujitsu Ltd 光導波路付基板と該基板を用いる光モジュール装置
JP2005017761A (ja) * 2003-06-26 2005-01-20 Tdk Corp 光導波路および光導波路の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018117251A1 (ja) * 2016-12-22 2019-10-31 古河電気工業株式会社 半導体レーザモジュールおよび半導体レーザモジュールの製造方法
JP7166932B2 (ja) 2016-12-22 2022-11-08 古河電気工業株式会社 半導体レーザモジュールおよび半導体レーザモジュールの製造方法
US11545814B2 (en) 2016-12-22 2023-01-03 Furukawa Electric Co., Ltd. Semiconductor laser module and method of manufacturing semiconductor laser module
CN113383432A (zh) * 2019-02-08 2021-09-10 古河电气工业株式会社 光模块

Also Published As

Publication number Publication date
JP4913527B2 (ja) 2012-04-11

Similar Documents

Publication Publication Date Title
JP6175263B2 (ja) スポットサイズ変換器、その製造方法及び光集積回路装置
JP3302458B2 (ja) 集積化光装置及び製造方法
EP2626731B1 (en) An optical coupling arrangement
US7618201B2 (en) Optical module
JP4913526B2 (ja) 光モジュールの製造方法
WO2010137661A1 (ja) 光源装置
TWI675229B (zh) 包含矽光晶片和耦合器晶片的光學模組
JPH1082930A (ja) 光モジュール,およびその製造方法
JP2008251673A (ja) 光デバイスとその製造方法
JP2008060445A (ja) 発光素子
JP6598804B2 (ja) 半導体レーザ装置
JP2020533632A (ja) 単一側面で結合を行うフォトニックチップのハイブリッド集積化
JP2007072307A (ja) 光モジュール
JP2004212847A (ja) 光結合器
JP4913527B2 (ja) 光モジュールの製造方法、及び、光素子
JP5157409B2 (ja) 光モジュール
JP2018189875A (ja) 光接続構造およびその形成方法
JP3665967B2 (ja) レンズ付き光導波路の作製方法
JP6929103B2 (ja) 光モジュール
JP2004077602A (ja) 発光デバイス、光モジュール、およびグレーティングチップ
JP2002162527A (ja) 光デバイスおよびその光デバイス用半製品
JP2008170528A (ja) 光モジュール及びその製造方法
JP4427554B2 (ja) 光モジュール及びその製造方法
JP2017142464A (ja) 光半導体装置及びその製造方法
JP2002062458A (ja) 光モジュールおよびその組立方法、光モジュールを用いた映像表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090701

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20100409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100416

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120119

R151 Written notification of patent or utility model registration

Ref document number: 4913527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350