JP2008088325A - Cerium oxide-based abrasive material - Google Patents

Cerium oxide-based abrasive material Download PDF

Info

Publication number
JP2008088325A
JP2008088325A JP2006271802A JP2006271802A JP2008088325A JP 2008088325 A JP2008088325 A JP 2008088325A JP 2006271802 A JP2006271802 A JP 2006271802A JP 2006271802 A JP2006271802 A JP 2006271802A JP 2008088325 A JP2008088325 A JP 2008088325A
Authority
JP
Japan
Prior art keywords
polishing
abrasive
cerium oxide
mass
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006271802A
Other languages
Japanese (ja)
Other versions
JP5237542B2 (en
Inventor
Daisaku Kobayashi
大作 小林
Hidehiko Yamazaki
秀彦 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2006271802A priority Critical patent/JP5237542B2/en
Priority to TW096122998A priority patent/TWI368647B/en
Priority to CN 200710154443 priority patent/CN101157848B/en
Publication of JP2008088325A publication Critical patent/JP2008088325A/en
Application granted granted Critical
Publication of JP5237542B2 publication Critical patent/JP5237542B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an abrasive material suitably applied to polish glass, which is a high purity cerium oxide-based abrasive having ≥95 mass% CeO<SB>2</SB>/TREO (total rare earth oxides) and a large abrasion speed and reduced in generating abrasion cracks. <P>SOLUTION: The cerium oxide-based abrasive has 1.7-3.0 g/mL apparent density by a tap method and contains ≥95 mass% CeO<SB>2</SB>/TREO. Preferably, the fluorine content is ≤0.5 mass% and the half-value width (2θ) of the maximum peak of cerium oxide by X ray diffraction measurement is 0.10-0.50°. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、CeO/TREOが少なくとも95質量%である酸化セリウム系研摩材に関する。 The present invention relates to a cerium oxide-based abrasive having CeO 2 / TREO of at least 95% by mass.

酸化セリウム系研摩材は、ハードディスク用ガラス基板、液晶又はプラズマディスプレイ用ガラス基板、CRT用ガラス等のガラス、水晶の研摩に用いられ、特に、ガラスや水晶の研摩に好適なものである。   The cerium oxide-based abrasive is used for polishing glass and quartz such as a glass substrate for hard disk, a glass substrate for liquid crystal or plasma display, and a glass for CRT, and is particularly suitable for polishing glass and quartz.

このような酸化セリウム系研摩材として、タップ法により測定した見掛け密度が1.60g/ml以下となる酸化セリウム粒子を水中に分散させたスラリーであって、所定の基板上に設けられた絶縁膜層を研摩する酸化セリウム系研摩材が知られている(特許文献1参照)。また、92%CeOと8%Laからなる、圧縮見掛け密度(DIN53194)が1.6又は1.7のセリウム系研摩材が知られている(特許文献2参照)。
特開平11−330017号公報 特開昭60−35075号公報
As such a cerium oxide-based abrasive, a slurry in which cerium oxide particles whose apparent density measured by the tap method is 1.60 g / ml or less is dispersed in water, and an insulating film provided on a predetermined substrate A cerium oxide-based abrasive for polishing a layer is known (see Patent Document 1). Further, a cerium-based abrasive having a compression apparent density (DIN 53194) of 1.6 or 1.7 and comprising 92% CeO 2 and 8% La 2 O 3 is known (see Patent Document 2).
JP-A-11-330017 JP-A-60-35075

先行技術である特許文献1の研摩材は、研摩材製造時に420℃以下の焼成処理しかしていないため、半導体研摩のような比較的研摩速度が遅い研摩処理には好適であるものの、より大きな研摩速度が要求されるガラス研摩に使用することが難しい。そのため、より高温の焼成処理をすると、研摩速度は大きくなるものの、粗大粒子が非常に多く形成され、研摩傷を多く発生する研摩材となってしまう。また、特許文献2の研摩材は、Laを8%含有しているため、ある程度高温にて焼成しても粗大粒子の形成が少なく、研摩傷の発生はある程度抑制されているが、研摩速度的には小さいもので、ガラス研摩用途に好適なものとはいえない。 Since the polishing material of Patent Document 1 which is the prior art is only subjected to a baking treatment of 420 ° C. or less at the time of manufacturing the polishing material, it is suitable for a polishing treatment with a relatively low polishing speed such as semiconductor polishing, but a larger polishing material. Difficult to use for glass polishing where speed is required. For this reason, when the baking treatment is performed at a higher temperature, the polishing speed increases, but a large number of coarse particles are formed, resulting in an abrasive that generates a lot of scratches. Further, since the abrasive of Patent Document 2 contains 8% La 2 O 3 , there is little formation of coarse particles even when fired at a certain high temperature, and the occurrence of abrasive scratches is suppressed to some extent. The polishing speed is small and it is not suitable for glass polishing.

そこで、本発明は、CeO/TREOが95質量%以上である高純度の酸化セリウム系研摩材であって、研摩速度が大きく、しかも研摩傷の発生が少ない、ガラス研摩用途に好適な研摩材を提供することを課題とする。 Accordingly, the present invention is a high-purity cerium oxide-based abrasive having CeO 2 / TREO of 95% by mass or more, which has a high polishing speed and is less likely to cause polishing scratches and is suitable for glass polishing applications. It is an issue to provide.

上記課題を解決すべく、本発明は、タップ法による見掛け密度が1.7〜3.5g/mLであるとともに、CeO/TREOが95質量%以上であることを特徴とする。本発明に係る酸化セリウム系研摩材は、CeO/TREO95質量%以上が必要で、99質量%以上が好ましく、99.6質量%以上がより好ましく、99.9質量%以上がさらに好ましい。95質量%以上であれば研摩速度が十分大きく、99質量%以上、99.6質量%以上、99.9質量%以上であればさらに研摩速度が大きくなる。そして、タップ密度は、1.7〜3.5g/mLであることが必要で、好ましくは1.8〜3.3g/mL、さらに好ましくは2.0〜3.0g/mLである。1.7g/mL以上であれば研摩速度が大きく、1.8g/mL以上、或いは2.0g/mL以上であればさらに研摩速度が大きくなる。他方、タップ密度が3.5g/mL以下であれば研摩傷の発生は少なく、3.3g/mL以下、或いは3.0g/mL以下であればさらに研摩傷の発生は少なくなる。 In order to solve the above problems, the present invention is characterized in that the apparent density by the tap method is 1.7 to 3.5 g / mL, and CeO 2 / TREO is 95% by mass or more. The cerium oxide abrasive according to the present invention requires CeO 2 / TREO of 95% by mass or more, preferably 99% by mass or more, more preferably 99.6% by mass or more, and further preferably 99.9% by mass or more. When it is 95% by mass or more, the polishing rate is sufficiently high, and when it is 99% by mass or more, 99.6% by mass or more, and 99.9% by mass or more, the polishing rate is further increased. And tap density needs to be 1.7-3.5 g / mL, Preferably it is 1.8-3.3 g / mL, More preferably, it is 2.0-3.0 g / mL. If it is 1.7 g / mL or more, the polishing rate is high, and if it is 1.8 g / mL or more, or 2.0 g / mL or more, the polishing rate is further increased. On the other hand, if the tap density is 3.5 g / mL or less, the occurrence of abrasive scratches is small, and if the tap density is 3.3 g / mL or less, or 3.0 g / mL or less, the occurrence of abrasive scratches is further reduced.

本発明のタップ法見掛け密度は、市販のタップ法見掛け密度測定装置(タップデンサーKYT−2000:(株)セイシン企業社製)を使用し、100mLのシリンダーに50.00gの試料を投入し、タップ高さ50mmで300回タップさせて測定した値である。尚、通常の酸化セリウム系研摩材では目開き0.5mmのふるいを通過しない塊は存在しないため、目開き0.5mmのふるいによる前処理は実施しない。   The tap method apparent density of the present invention is measured by using a commercially available tap method apparent density measuring device (Tap Denser KYT-2000: manufactured by Seishin Enterprise Co., Ltd.), putting a 50.00 g sample into a 100 mL cylinder, It is a value measured by tapping 300 times at a height of 50 mm. In addition, in a normal cerium oxide-based abrasive, there is no lump that does not pass through a sieve having an aperture of 0.5 mm, and therefore pretreatment with a sieve having an aperture of 0.5 mm is not performed.

そして、本発明の酸化セリウム系研摩材は、フッ素が0.5質量%以下であることが好ましい。フッ素は、被研摩面への研摩粒子の付着現象に影響するものであるが、0.5質量%以下であれば被研摩面への研摩材粒子の付着が少なく、0.1質量%以下であればさらに付着が少なくなり、より好ましい。   And it is preferable that the cerium oxide type abrasive | polishing material of this invention is 0.5 mass% or less of fluorine. Fluorine affects the phenomenon of polishing particles adhering to the surface to be polished. If the amount is 0.5% by mass or less, the amount of abrasive particles adhering to the surface to be polished is small, and 0.1% by mass or less. If it exists, adhesion will decrease further and it is more preferable.

また、本発明の酸化セリウム系研摩材は、X線回折測定における酸化セリウムの最大ピークの半値幅(2θ)が0.10〜0.50°であることが好ましい。最大ピークの半値幅(2θ)が0.10°以上であれば研摩傷の発生が少なく、0.15°以上或いは0.20°以上であればさらに研摩傷の発生は少ない。最大ピークの半値幅(2θ)が0.50°以下であれば研摩速度は大きく、0.45°以下或いは0.40°以下であればさらに研摩速度は大きくなる。尚、本発明のX線回折測定は、CuKα1線に基づいて、測定範囲を2θで20〜40°または、それより広い範囲について行う。そして、酸化セリウムの最大ピークは、2θで約28.6°に出現する。   Moreover, it is preferable that the half width (2 (theta)) of the maximum peak of cerium oxide in a cerium oxide type abrasive | polishing material of this invention is 0.10 to 0.50 degree. If the half-value width (2θ) of the maximum peak is 0.10 ° or more, the occurrence of abrasive scratches is small, and if it is 0.15 ° or more or 0.20 ° or more, the occurrence of abrasive scratches is even less. If the half width (2θ) of the maximum peak is 0.50 ° or less, the polishing rate is high, and if it is 0.45 ° or less or 0.40 ° or less, the polishing rate is further increased. Note that the X-ray diffraction measurement of the present invention is performed in a range of 20 to 40 ° in 2θ or a wider range based on the CuKα1 line. The maximum peak of cerium oxide appears at about 28.6 ° at 2θ.

さらに、本発明の酸化セリウム系研摩材は、粒径10μm以上の粒子の含有量が1000質量ppm以下であることが好ましい。より好ましくは、300質量ppm以下である。研摩傷の発生が少ないという観点から粗粒子の含有量が少ないことが望ましく、粒径10μm以上の粒子の含有量が好ましくは1000質量ppm以下、より好ましくは300質量ppm以下、さらに好ましくは100質量ppm以下である。   Further, in the cerium oxide-based abrasive of the present invention, the content of particles having a particle size of 10 μm or more is preferably 1000 ppm by mass or less. More preferably, it is 300 mass ppm or less. It is desirable that the content of coarse particles is small from the viewpoint of less generation of abrasive scratches, and the content of particles having a particle size of 10 μm or more is preferably 1000 ppm by mass or less, more preferably 300 ppm by mass or less, and even more preferably 100 masses. ppm or less.

そして、さらに本発明の酸化セリウム系研摩材は、BET法比表面積が1〜10m/gであることが好ましい。BET法比表面積が10.0m/g以下であれば研摩速度が大きくなる。6.0m/g以下であればより研摩速度が大きく、5.5m/g以下であればさらに研摩速度が大きくなる。他方、1m/g以上であれば研摩傷の発生が少なくなり、1.5m/g以上であればより研摩傷の発生がより少なく、2.0m/g以上であればさらに研摩傷の発生が少なくなる。 Further, the cerium oxide-based abrasive of the present invention preferably has a BET specific surface area of 1 to 10 m 2 / g. If the BET method specific surface area is 10.0 m 2 / g or less, the polishing rate is increased. If it is 6.0 m 2 / g or less, the polishing speed is higher, and if it is 5.5 m 2 / g or less, the polishing speed is further increased. On the other hand, if it is 1 m 2 / g or more, the generation of abrasive scratches is reduced, if it is 1.5 m 2 / g or more, the generation of abrasive scratches is less, and if it is 2.0 m 2 / g or more, further polishing scratches are generated. The occurrence of is reduced.

また、本発明の酸化セリウム系研摩材は、レーザ回折・散乱法粒子径分布測定の体積基準の積算分率における50%径(D50)が1.0〜3.5μmであることが好ましい。また、D50が1.5〜3.0μmであることがより好ましく、1.8〜2.8μmがさらに好ましい。D50が1.0μm以上であれば研摩速度が大きく、1.5μm以上であれば研摩速度がより大きく、1.8μm以上であれば研摩速度がさらに大きくなる。他方、D50が3.5μm以下であれば研摩傷の発生が少なく、3.0μm以下であれば研摩傷の発生がより少なく、2.8μm以下であれば研摩傷の発生がさらに少なくなる。 The cerium oxide-based abrasive of the present invention preferably has a 50% diameter (D 50 ) of 1.0 to 3.5 μm in a volume-based integrated fraction of laser diffraction / scattering particle size distribution measurement. Further, more preferably D 50 is 1.5-3.0, more preferably 1.8~2.8Myuemu. If D 50 is 1.0 μm or more, the polishing speed is high, if it is 1.5 μm or more, the polishing speed is higher, and if it is 1.8 μm or more, the polishing speed is further increased. On the other hand, if D 50 is 3.5 μm or less, the generation of abrasive scratches is small, and if it is 3.0 μm or less, the generation of abrasive scratches is less, and if it is 2.8 μm or less, the generation of abrasive scratches is further reduced.

上記した本発明の酸化セリウム系研摩材は次のようにして製造することができる。まず、原料としては、炭酸セリウム、モノオキシ炭酸セリウム、水酸化炭酸セリウム、またはこれらのうち2種類以上の混合物を用いることができる。また、これらの原料はそのまま使用してもよいが、水分を含む状態から130〜250℃で乾燥して、強熱減量を5〜25質量%に調整したものを原料としてもよい(高純度品(CeO/TREO≧95質量%)ならば、この乾燥処理によって酸化セリウムとなる場合が多い)。そして、上記いずれの原料を用いた場合においても、原料自体がCeO/TREO≧95質量%のものを使用し、粉砕により微粒化して粗大粒子を低減した後、湿式分級して微粒子を除去後、固液分離してから、焙焼し、焙焼品を分級して粗大粒子を除去して製造できるものである。 The above-described cerium oxide-based abrasive of the present invention can be produced as follows. First, as the raw material, cerium carbonate, cerium monooxycarbonate, cerium hydroxide carbonate, or a mixture of two or more thereof can be used. These raw materials may be used as they are, but may be dried from 130 to 250 ° C. in a moisture-containing state and the ignition loss adjusted to 5 to 25% by mass (high purity product). (If CeO 2 / TREO ≧ 95 mass%), this drying treatment often results in cerium oxide). In any of the above raw materials, after the raw material itself is CeO 2 / TREO ≧ 95% by mass, the fine particles are pulverized to reduce coarse particles, and then the fine particles are removed by wet classification. After solid-liquid separation, it can be manufactured by roasting and classifying the roasted product to remove coarse particles.

粉砕処理は、湿式粉砕が好ましく、湿式媒体粉砕機による粉砕が特に好ましい。湿式媒体粉砕機に使用する場合の媒体としては、直径0.4〜10mmの球状物又は直径0.4〜10mmの球と同容積の球状以外の形状物(例えば、円柱状物)が好ましい。湿式媒体粉砕に供用するスラリーは、原料:水を1:9〜2:1の割合(質量)で混合することが好ましく、1:4〜3:2の割合(質量)で混合したものが、さらに好ましい。このような湿式媒体粉砕機による粉砕処理によれば、高い粉砕効率で、コスト的にも有利となる。   The pulverization treatment is preferably wet pulverization, and pulverization by a wet medium pulverizer is particularly preferable. As a medium for use in a wet medium pulverizer, a spherical product having a diameter of 0.4 to 10 mm or a shape other than a sphere having the same volume as a sphere having a diameter of 0.4 to 10 mm (for example, a cylindrical product) is preferable. The slurry used for wet medium pulverization is preferably a mixture of raw material: water at a ratio (mass) of 1: 9 to 2: 1, and a mixture of 1: 4 to 3: 2 ratio (mass). Further preferred. According to the pulverization treatment by such a wet medium pulverizer, it is advantageous in terms of cost with high pulverization efficiency.

粉砕処理した原料は、レーザ回折・散乱法粒子径分布測定の体積基準の積算分率における90%径(D90)が1.5〜10μmが好ましく、2〜5μmがさらに好ましい。粉砕処理した原料のD90が、1.5μm以上であれば、次の微粒子除去工程でのロスを抑制でき、2μm以上であればさらによいものである。一方、粉砕処理した原料のD90が、10μm以下であれば粉砕不足による粗粒子の残留が防げ、5μm以下であればさらによいものである。 The pulverized raw material preferably has a 90% diameter (D 90 ) in a volume-based integrated fraction of laser diffraction / scattering particle size distribution measurement of 1.5 to 10 μm, and more preferably 2 to 5 μm. If D 90 of the pulverized raw material is 1.5 μm or more, loss in the next fine particle removal step can be suppressed, and if it is 2 μm or more, it is even better. On the other hand, if the D 90 of the pulverized raw material is 10 μm or less, residual coarse particles due to insufficient pulverization can be prevented, and if it is 5 μm or less, it is even better.

さらに、粉砕処理した原料は、レーザ回折・散乱法粒子径分布測定の体積基準の積算分率における10%径(D10)は0.1μm以上0.4μm未満であることが好ましい。0.2μm以上0.35μm以下であることがさらに好ましい。粉砕処理した原料のD10が0.1μm以上であれば、次の微粒子除去工程でのロスを抑制でき、0.2μm以上であればよりロスが少なくなる。また、。粉砕処理した原料のD10が、0.4μm未満であれば、粉砕不足による粗粒子の残留を防止でき、0.35μm以下であればさらに残留を抑制できる。 Further, the pulverized raw material preferably has a 10% diameter (D 10 ) in a volume-based integrated fraction of laser diffraction / scattering particle size distribution measurement of 0.1 μm or more and less than 0.4 μm. More preferably, it is 0.2 μm or more and 0.35 μm or less. If pulverized treated D 10 of the raw material is 0.1μm or more, can suppress the loss in the subsequent particle removal step, more loss is reduced if the 0.2μm or more. Also,. Milling treated D 10 of raw material, it is less than 0.4 .mu.m, prevents retention of coarse particles by crushing shortage can be suppressed more residual if 0.35μm or less.

粉砕処理した原料は、微粒子の除去処理が行われる。この微粒子の除去処理は、湿式分級によることで行える。その一方法としては、湿式分級装置を利用することができる、例えば、湿式サイクロン等の湿式分級装置を使用すれば微粒子の除去を容易に実施可能である。   The pulverized raw material is subjected to a fine particle removal process. The removal process of the fine particles can be performed by wet classification. As one of the methods, a wet classifier can be used. For example, if a wet classifier such as a wet cyclone is used, fine particles can be easily removed.

また、別の方法としては、沈降分離を利用することができる。粉砕した原料スラリーを必要に応じて希釈し、均一混合後、静置して沈降させ、沈降ケーキ層より上部の希薄懸濁液を抜き出すことにより微粒子を除去するのである。1回の沈降分離処理では微粒子の除去率が低いため、希薄懸濁液を抜き出した後の沈降ケーキをスラリー化(均一混合)して、再度静置して沈降させ、沈降ケーキ層より上部の希薄懸濁液を抜出すことが好ましい。静置・沈降、希薄懸濁液抜き出しは、最初も含めて2〜5回が好ましく、2〜3回がさらに好ましい。多数回実施するほど微粒子の除去は進行するが、処理時間が非常に長時間を要することになる。   As another method, sedimentation separation can be used. The pulverized raw material slurry is diluted as necessary, and after uniform mixing, it is allowed to settle and settle, and the fine suspension is removed by extracting the diluted suspension above the sediment cake layer. Since the removal rate of fine particles is low in a single sedimentation process, the sedimented cake after extracting the diluted suspension is slurried (homogeneously mixed), allowed to settle again and sedimented, and above the sedimented cake layer. It is preferred to extract the dilute suspension. The standing / sedimentation and extraction of the diluted suspension are preferably performed 2 to 5 times including the beginning, and more preferably 2 to 3 times. Although the removal of the fine particles progresses as the process is performed many times, a very long processing time is required.

この沈降分離の沈降時間は、限界ストークス径を定め、微粒子除去工程スラリーの上部液面上にある限界ストークス径の粒子が、沈降距離(例えば、希釈懸濁液抜き出し口を設けている場合は、上部液面〜希釈懸濁液抜き出し口までの距離)を沈降するのに必要な時間をストークスの式より計算して定めることもできる。この限界ストークス径から沈降時間を決定して微粒子除去を行う方法によると、限界ストークス径より大きい粒子が希薄懸濁液中に残留することはないが、限界ストークス径以下の粒子は、その全部が希薄懸濁液中に含まれるわけではない。したがって、上記で説明したように静置・沈降、希薄懸濁液抜き出しを複数回実施する方法が望ましいものといえる。限界ストークス径は、0.2〜1.0μmとするのが好ましく、0.3〜0.8μmとすることがより好ましい。この方法は定めた限界ストークス径以下の粒子のみを除去することが可能であるが、湿式分級装置に比べて手間がかかる。   The sedimentation time of the sedimentation separation determines the critical Stokes diameter, and the particles having the critical Stokes diameter on the upper liquid surface of the fine particle removal step slurry are settled (for example, when a diluted suspension outlet is provided, The time required to settle the distance from the upper liquid surface to the diluted suspension outlet can also be determined by calculating from the Stokes equation. According to the method of determining the sedimentation time from the limit Stokes diameter and removing the fine particles, particles larger than the limit Stokes diameter do not remain in the dilute suspension, but all the particles having a diameter less than the limit Stokes diameter are all present. It is not included in the dilute suspension. Therefore, as described above, it can be said that a method in which the stationary / sedimentation and the extraction of the diluted suspension are performed a plurality of times is desirable. The limit Stokes diameter is preferably 0.2 to 1.0 μm, and more preferably 0.3 to 0.8 μm. Although this method can remove only particles having a limit Stokes diameter or less, it is more laborious than a wet classifier.

微粒子除去処理後の原料は、レーザ回折・散乱法粒子径分布測定の体積基準の積算分率における10%径(D10)が0.4〜1.2μmが好ましく、0.5〜1.0μmがさらに好ましい。0.4μm以上であれば微粒子が少なく、焙焼したとき微粒子の焼結が急激に進みすぎて生成する研摩傷の原因となる粗大粒子の発生が抑制され、0.5μm以上ではより一層抑制される。また、原料のD10が1.2μm以下にするだけであれば、粉砕を行わないか、軽く粉砕を行い、微粒子除去は行わないことも考えられるが、粉砕されない粗大粒子が多く存在し、焙焼後も粗大粒子として残り、研摩傷の原因となる傾向がある。 The raw material after the fine particle removal treatment preferably has a 10% diameter (D 10 ) in a volume-based integrated fraction of laser diffraction / scattering particle size distribution measurement of 0.4 to 1.2 μm, preferably 0.5 to 1.0 μm. Is more preferable. If the particle size is 0.4 μm or more, the number of fine particles is small, and the sintering of the fine particles proceeds too rapidly when roasted, thereby suppressing the generation of coarse particles that cause abrasive flaws. The Further, if only D 10 of the material is below 1.2 [mu] m, or not performed milling, lightly and milling, although particulate removal is also possible not to perform, there are many coarse particles are not grinding, roasting After firing, it remains as coarse particles and tends to cause abrasive scratches.

微粒子を除去した原料は、フィルタープレス等のろ過機でろ過を行い、乾燥、解砕するのが好ましい。ろ過しないで、噴霧乾燥することも可能である。解砕を行う場合は凝集をほぐす程度で、微粉砕して微粒子を多く発生させないように行う。   The raw material from which the fine particles have been removed is preferably filtered with a filter such as a filter press, dried and crushed. It is also possible to spray dry without filtering. When pulverization is performed, the pulverization should be performed so as not to generate a large amount of fine particles.

焙焼処理は、650〜1200℃が好ましく、700〜1150℃がより好ましく、750〜1100℃がさらに好ましい。650℃以上で焙焼すれば、研摩速度の大きな研摩材が製造可能で、700℃以上、750℃以上ではさらに研摩速度の大きな研摩材が得られやすい。1200℃以下であれば、研摩傷の発生が抑制された研摩材が製造可能となり、1150℃以下、1100℃以下とすればより一層研摩傷の発生が抑制された研摩材が得られやすい。   The roasting treatment is preferably 650 to 1200 ° C, more preferably 700 to 1150 ° C, and further preferably 750 to 1100 ° C. If roasting is performed at 650 ° C. or higher, an abrasive with a high polishing rate can be produced. At 700 ° C. or higher and 750 ° C. or higher, an abrasive with a higher polishing rate is easily obtained. If it is 1200 degrees C or less, the abrasive | polishing material in which generation | occurrence | production of the abrasion damage was suppressed can be manufactured, and if it is 1150 degrees C or less and 1100 degrees C or less, the abrasive material in which generation | occurrence | production of the abrasion damage was suppressed more easily will be obtained.

焙焼品は分級前に粉砕されることが好ましい。ハンマーによる衝撃式粉砕機を用いることが簡便な方法であり、この方法であれば微粒化し過ぎることなく粗大粒子を低減できるので好ましいものである。   The roasted product is preferably pulverized before classification. Using a hammer-type impact pulverizer is a simple method, and this method is preferable because coarse particles can be reduced without excessive atomization.

分級処理は、粒径10μm以上の粗大粒子を低減するために行うことができる。分級処理は、各種乾式分級装置を使用して行うのが簡便で好ましい。本発明の酸化セリウム系研摩材では、原料を粉砕して微粒子を除去して焙焼した場合は、分級により粗大粒子を十分低減でき、原料がCeO/TREO95質量%以上という高純度であっても、研摩傷の発生が抑制された研摩材を製造することが可能である。但し、原料を粉砕して微粒子を除去しない状態で焙焼すると、原料がCeO/TREO95質量%以上という高純度であるため、焙焼により粗大粒子が非常に多く発生し、それを分級処理しても粒径10μm以上の粗大粒子をある程度しか除去できず、研摩傷が多く発生する研摩材となる場合があるため注意を要する。尚、上記の粉砕処理した原料に対する、微粒子の除去処理を行わない場合、焙焼処理によって粗大粒子が多く発生しても、焙焼品の粉砕及び分級処理を極端に強化して行うことで、研摩材中の粗大粒子をある程度低減することは可能である。しかし、研摩材中の微粒子が非常に多くなり、タップ法見掛け密度が低下するとともに、研摩速度が非常に低いものとなる。 The classification treatment can be performed in order to reduce coarse particles having a particle size of 10 μm or more. The classification treatment is simple and preferably performed using various dry classification apparatuses. In the cerium oxide-based abrasive of the present invention, when the raw material is pulverized to remove fine particles and roasted, coarse particles can be sufficiently reduced by classification, and the raw material has a high purity of CeO 2 / TREO of 95% by mass or more. In addition, it is possible to produce an abrasive with suppressed generation of abrasive scratches. However, when the raw material is pulverized and roasted without removing fine particles, the raw material has a high purity of CeO 2 / TREO of 95% by mass or more, so that a large amount of coarse particles are generated by the roasting, which is classified. However, care must be taken because coarse particles having a particle size of 10 μm or more can be removed only to some extent, and the resulting abrasive may generate many abrasive scratches. In addition, when not performing the removal processing of the fine particles for the above-mentioned pulverized raw material, even if a large number of coarse particles are generated by the roasting process, the pulverization and classification process of the roasted product is extremely strengthened, It is possible to reduce coarse particles in the abrasive to some extent. However, the amount of fine particles in the polishing material becomes very large, the apparent density of the tap method decreases, and the polishing speed becomes very low.

本発明によれば、CeO/TREOが95質量%以上である高純度の酸化セリウム系研摩材であって、大きな研摩速度を有し、研摩傷の発生が少ない、ガラス研摩用途に好適な酸化セリウム系研摩材となる。 According to the present invention, it is a high-purity cerium oxide-based abrasive having a CeO 2 / TREO of 95% by mass or more, having a high polishing rate, and generating less scratches, and suitable for glass polishing applications. It becomes a cerium-based abrasive.

以下、本発明における最良の実施形態を実施例に基づいて説明するが、本発明は下記実施例に限定されるものではない。   Hereinafter, although the best mode in the present invention is described based on an example, the present invention is not limited to the following example.

本実施形態では、原料、製造条件などを変化させた実施例1〜24、比較例1〜12の各研摩材(表1〜表3)を作製し、その研摩特性を検討した。   In this embodiment, each polishing material (Tables 1 to 3) of Examples 1 to 24 and Comparative Examples 1 to 12 in which raw materials and manufacturing conditions were changed was produced, and the polishing characteristics were examined.

(1)原料の微粒子除去処理の有無と焙焼温度を変えた酸化セリウム系研摩材:ここでの研摩材は、次の製造条件に従って作製した。原料は、TREO45質量%、CeO/TREO≧99.9質量%の炭酸セリウムを用い、原料:水=1:2(質量比)で混合したスラリーを直径1.2mmのジルコニアボールを用いたビーズミルに3回通した。 (1) A cerium oxide-based abrasive whose presence or absence of the raw material fine particle removal treatment and the roasting temperature was changed: The abrasive here was produced according to the following production conditions. A bead mill using a zirconia ball having a diameter of 1.2 mm with a slurry prepared by mixing cerium carbonate with 45% by mass of TREO and CeO 2 /TREO≧99.9% by mass of raw material: water = 1: 2 (mass ratio). Passed three times.

そして、粉砕処理した原料は、限界ストークス径を0.5μmと定めた沈降分離を3回実施した(実施例1〜11、比較例6、7)。また比較のため、沈降分離による微粒除去処理を行わないものも準備した(比較例1〜5)。   The pulverized raw material was subjected to sedimentation separation with a limit Stokes diameter of 0.5 μm three times (Examples 1 to 11, Comparative Examples 6 and 7). Moreover, what does not perform the fine particle removal process by sedimentation separation was also prepared for the comparison (Comparative Examples 1-5).

その後、各原料は、フィルタープレスでろ過を行い、120℃、24時間の乾燥処理を行った。乾燥後、アトマイザー(不二パウダル株式会社製)を用いて解砕処理を行った。   After that, each raw material was filtered with a filter press and dried at 120 ° C. for 24 hours. After drying, crushing treatment was performed using an atomizer (Fuji Paudal Co., Ltd.).

解砕処理した原料は、表1に示す各焙焼温度により、12時間の焙焼処理を行った。 The crushed raw material was subjected to a roasting process for 12 hours at each roasting temperature shown in Table 1.

焙焼処理後、目開き2mmのスクリーンを取り付けたアトマイザー(不二パウダル株式会社製)により回転数6000rpmにて粉砕処理(以下、総て同じ条件)を行い、ターボクラシファイヤー(日清エンジニアリング株式会社製)を分級点8μmに設定して分級処理を行った。表1には、この(1)に関する各研摩材の製造条件を示している。 After the roasting treatment, pulverization processing (hereinafter, all the same conditions) is performed by an atomizer (manufactured by Fuji Powdal Co., Ltd.) equipped with a screen having a mesh opening of 2 mm, and the turbo classifier (Nisshin Engineering Co., Ltd.). The product was classified at a classification point of 8 μm. Table 1 shows the production conditions of each abrasive for (1).

(2)CeO/TREOを変えた酸化セリウム系研摩材:ここでの研摩材は次の製造条件により作製した。実施例12〜14、比較例8の各研摩材は、表2に示す各CeO/TREO値の原料を用い、他の製造条件は上記実施例6と同じ条件として作製した。実施例15〜17、比較例9の各研摩材は、表2に示す各CeO/TREO値の異なる原料を用いて、焙焼温度を表2に示す温度にした。他の製造条件は上記実施例6と同じ条件とした。 (2) A cerium oxide-based abrasive with different CeO 2 / TREO: The abrasive here was produced under the following production conditions. The abrasives of Examples 12 to 14 and Comparative Example 8 were prepared using the raw materials having the respective CeO 2 / TREO values shown in Table 2 under the same conditions as in Example 6 above. The polishing materials of Examples 15 to 17 and Comparative Example 9 were roasted at the temperatures shown in Table 2 using raw materials having different CeO 2 / TREO values shown in Table 2. Other manufacturing conditions were the same as those in Example 6 above.

(3)微粒子の除去処理条件を変えた酸化セリウム系研摩材:ここでの研摩材は、次の製造条件により作製した。実施例18〜20の研摩材は、限界ストークス径から沈降時間を決定して微粒子除去を行う方法によるもので、実施例18では、限界ストークス径0.3μmと定めた沈降分離を3回実施した。実施例19では、限界ストークス径0.5μmと定めた沈降分離を1回実施した。実施例20は、限界ストークス径0.8μmと定めた沈降分離を1回実施した。また、実施例21の研摩材については、湿式サイクロンによる微粒子除去処理を行ったもので、湿式サイクロン装置(スパークローンTR−30型(村田工業株式会社製))にて分級点を0.5μmとして実施した。その他製造条件は上記実施例6と同じ条件とした(表2参照)。 (3) Cerium oxide-based abrasives with different fine particle removal treatment conditions: The abrasives here were produced under the following production conditions. The abrasives of Examples 18 to 20 are based on the method of determining the settling time from the limit Stokes diameter and removing the fine particles. In Example 18, the settling separation determined to be the limit Stokes diameter of 0.3 μm was performed three times. . In Example 19, sedimentation separation with a limit Stokes diameter of 0.5 μm was performed once. In Example 20, sedimentation separation with a limiting Stokes diameter of 0.8 μm was performed once. Moreover, about the abrasive of Example 21, the fine particle removal process by wet cyclone was performed, and a classification point was 0.5 micrometer with the wet cyclone apparatus (Spur clone TR-30 type (made by Murata Industrial Co., Ltd.)). Carried out. Other manufacturing conditions were the same as those in Example 6 (see Table 2).

(4)原料の形態を変えた酸化セリウム系研摩材:ここでの研摩材は次の製造条件により作製した。実施例22の研摩材では、上記(1)で使用した炭酸セリウムに、その質量の1/3の純水を加えた後、乾燥機にて、200℃で72時間乾燥して、酸化セリウムとしたものを原料とした。実施例23の研摩材では、上記(1)で使用した炭酸セリウムを、炭酸セリウム:純水=1:2(質量)の割合で攪拌機付の槽に入れ、蒸気を吹き込んで、90℃まで昇温後、12時間90℃を保持して、モノオキシ炭酸セリウムのスラリーとし、30℃まで放冷後したものを原料とした(既にスラリーとなっているためそのまま粉砕粉砕へ供用した)。実施例24の研摩材では、上記(1)で使用した炭酸セリウムを、炭酸セリウム:20g/L炭酸水素アンモニウム水溶液=1:2(質量)の割合で攪拌機付の槽に入れ、蒸気を吹き込んで、90℃まで昇温後、12時間90℃を保持して、水酸化炭酸セリウムのスラリーとし、30℃まで放冷後、ろ過して水酸化炭酸セリウムを得て原料とした。その他製造条件は上記実施例6と同じ条件とした(表2参照)。 (4) A cerium oxide-based abrasive in which the form of the raw material was changed: The abrasive here was produced under the following production conditions. In the abrasive of Example 22, after adding 1 / of pure water to the cerium carbonate used in (1) above, it was dried in a dryer at 200 ° C. for 72 hours to obtain cerium oxide and The raw material was used. In the polishing material of Example 23, the cerium carbonate used in (1) above was placed in a tank equipped with a stirrer at a ratio of cerium carbonate: pure water = 1: 2 (mass), and steam was blown to rise to 90 ° C. After heating, the temperature was kept at 90 ° C. for 12 hours to obtain a slurry of cerium monooxycarbonate, which was allowed to cool to 30 ° C. as a raw material (since it was already a slurry, it was directly used for pulverization and pulverization). In the abrasive of Example 24, the cerium carbonate used in (1) above was placed in a tank equipped with a stirrer at a ratio of cerium carbonate: 20 g / L aqueous ammonium hydrogen carbonate = 1: 2 (mass), and steam was blown into it. The temperature was raised to 90 ° C. and maintained at 90 ° C. for 12 hours to obtain a cerium hydroxide carbonate slurry. After cooling to 30 ° C., filtration was performed to obtain cerium hydroxide carbonate as a raw material. Other manufacturing conditions were the same as those in Example 6 (see Table 2).

(5)特許文献1(特開平11−330017号公報)の実施例に類似した方法にて製造した酸化セリウム系研摩材:比較のため、次のような製造条件により研摩材を作製した。まず、TREO45質量%、CeO2/TREO≧99.9質量%の炭酸セリウムを原料として用い、原料:水=1:9(質量比)で混合したスラリーを直径1.2mmのジルコニアボールを用いたビーズミルに3回通すことにより粉砕処理を行った。粉砕した原料は、スラリーを攪拌しながら、35%過酸化水素を、炭酸セリウム1kg当たり584gを1時間かけて添加し、この過酸化水素添加後、1時間経過時から蒸気を吹き込み90℃に昇温後、90℃で1時間保持した。そして、ろ過処理を行って、120℃、24時間の乾燥処理をして酸化セリウム粒子を作製した(この酸化セリウム粒子のタップ密度(TD)は、1.46g/mLであった)。 (5) A cerium oxide-based abrasive produced by a method similar to the example of Patent Document 1 (Japanese Patent Laid-Open No. 11-330017): For comparison, an abrasive was produced under the following production conditions. First, a bead mill using a zirconia ball having a diameter of 1.2 mm using a slurry prepared by mixing cerium carbonate having 45% by mass of TREO and CeO2 / TREO ≧ 99.9% by mass as a raw material and raw material: water = 1: 9 (mass ratio). The powder was pulverized by passing it through 3 times. While the slurry was stirred, 35% hydrogen peroxide was added to the pulverized raw material over a period of 1 hour, and 584 g per kg of cerium carbonate was added over 1 hour. After warming, it was kept at 90 ° C. for 1 hour. And it filtered and performed the drying process for 120 hours and 120 degreeC, and produced the cerium oxide particle (The tap density (TD) of this cerium oxide particle was 1.46 g / mL).

比較例10の研摩材は、上記方法により得られた酸化セリウム粒子を用い、酸化セリウム粒子:純水:ポリアクリル酸アンモニウム塩(質量比)=10:100:1で混合したスラリーを直径0.4mmのジルコニアボールを用いたビーズミルに3回通し、分散処理をした酸化セリウムスラリーとした(この比較例10の研摩材については、スラリー状態であるためタップ密度(TD)は測定不能であった)。また、比較例11の研摩材は、上記方法により得られた酸化セリウム粒子を用い、アトマイザー(不二パウダル株式会社製)により解砕処理をして、ターボクラシファイヤー(日清エンジニアリング株式会社製)により分級処理を行って研摩材を作製した(この研摩材のタップ密度(TD)は、1.37g/mLであった)。そして、比較例12の研摩材は、上記比較例3と原料形成から焙焼処理まで同条件で、その後焙焼品をアトマイザーにて5回粉砕処理を行い、ターボクラシファイヤーを分級点5μmに設定して分級処理を行って作製した。   The abrasive of Comparative Example 10 uses cerium oxide particles obtained by the above method, and a slurry prepared by mixing cerium oxide particles: pure water: polyacrylic acid ammonium salt (mass ratio) = 10: 100: 1 has a diameter of 0.00. A cerium oxide slurry that was passed through a bead mill using 4 mm zirconia balls three times and was subjected to a dispersion treatment (the abrasive of this Comparative Example 10 was in a slurry state, so the tap density (TD) could not be measured). . Further, the abrasive of Comparative Example 11 was crushed by an atomizer (Fuji Powdal Co., Ltd.) using the cerium oxide particles obtained by the above method, and a turbo classifier (Nisshin Engineering Co., Ltd.). Then, classification was carried out to prepare an abrasive (the tap density (TD) of this abrasive was 1.37 g / mL). The abrasive of Comparative Example 12 was subjected to the same conditions as in Comparative Example 3 from raw material formation to roasting, and then the roasted product was pulverized five times with an atomizer, and the turbo classifier was set at a classification point of 5 μm. Then, a classification process was performed.

Figure 2008088325
Figure 2008088325

Figure 2008088325
Figure 2008088325

Figure 2008088325
Figure 2008088325

以上のような製造条件により得られた各研摩材について、その組成、フッ素濃度、粒径10μm以上の粗大粒子含有量、タップ密度、X線回折測定、比表面積、レーザ回折・散乱法粒子径分布測定の体積基準の積算分率における50%径(D50)について測定を行った。各測定条件は、以下の通りである。 About each abrasive obtained under the above manufacturing conditions, its composition, fluorine concentration, content of coarse particles having a particle size of 10 μm or more, tap density, X-ray diffraction measurement, specific surface area, laser diffraction / scattering method particle size distribution Measurement was carried out for a 50% diameter (D 50 ) in the volume-based integrated fraction of the measurement. Each measurement condition is as follows.

組成の測定:TREO濃度の分析は、まず、研摩材を酸溶解してシュウ酸を添加後、生じた沈殿を濾別し、焼成を行ってTREO酸化物を得た。そして、このTREO試料を質量測定し、これを基準としてCeO、La、Pr11、Nd、Smの含有量(CeO/TREO、La/TREO、Pr11/TREO、Nd/TREO、Sm/TREO)を求めた。ここで、La/TREO、Pr11/TREO、Nd/TREO、Sm/TREOについては、TREO試料を酸溶解後、ICP−AES法により求めた。そして、CeOについては、直接測定を行わず、上記で求めた値を使用し、100−{(La/TREO)+(Pr11/TREO)+(Nd/TREO)+(Sm/TREO)}の式により算出した。 Measurement of composition: Analysis of the TREO concentration was carried out by first dissolving the abrasive and adding oxalic acid, and then separating the resulting precipitate by filtration and firing to obtain a TREO oxide. Then, the TREO sample was subjected to mass measurement, and the content of CeO 2 , La 2 O 3 , Pr 6 O 11 , Nd 2 O 3 , Sm 2 O 3 (CeO 2 / TREO, La 2 O 3 / (TREO, Pr 6 O 11 / TREO, Nd 2 O 3 / TREO, Sm 2 O 3 / TREO). Here, La 2 O 3 / TREO, Pr 6 O 11 / TREO, Nd 2 O 3 / TREO, Sm 2 O 3 / TREO were determined by ICP-AES method after acid dissolution of the TREO sample. Then, the CeO 2 does not perform the direct measurement, using the values obtained above, 100 - {(La 2 O 3 / TREO) + (Pr 6 O 11 / TREO) + (Nd 2 O 3 / TREO ) + (Sm 2 O 3 / TREO)}.

フッ素濃度:フッ素成分の定量方法としては、試料をアルカリ溶融させて温水抽出し、フッ素イオン電極法により測定した。また、Fe、Ca、Baについては、酸で溶解させた後に、ICP−AES法によって測定を行った。 Fluorine concentration: As a method for quantifying the fluorine component, the sample was melted with alkali, extracted with warm water, and measured by the fluorine ion electrode method. Moreover, about Fe, Ca, and Ba, after making it melt | dissolve with an acid, it measured by ICP-AES method.

粒径10μm以上の粗大粒子含有量測定:粗大粒子含有量の測定は、製造したセリウム系研摩材200g(スラリーの場合は固形分200g相当のスラリー)を秤量採取し測定容器に入れ、0.1%ヘキサメタリン酸ナトリウム水溶液を測定容器の上部標線まで入れて十分に混合した。次に、指定時間静置して沈降させた。指定時間経過後、上部標線から下部標線の間のスラリーを抜き出した。スラリーを抜き出した後に、新たに0.1%ヘキサメタリン酸ナトリウム水溶液を測定容器の上部標線まで注ぎ足して十分に混合して、指定時間静置して沈降させた後、先ほどと同様に上部標線から下部標線の間のスラリーを抜き出した。このような一連の操作(ヘキサメタリン酸ナトリウム水溶液の注液、混合、静置・沈降、スラリーの抜き出し)を繰り返し行った。この一連の操作を更に6回、合計8回行った後、最終的に、測定容器の下部標線以下に残留した粒子を105℃の温度で十分に乾燥した。このようにして得られた乾燥残留分の質量A(g)を精密天秤にて測定した。そして、ストークス径10μm以上の粗大粒子の含有率S(質量ppm)を、算出式S=(A/200)×1000000を用いて算出した。上記指定時間(静置・沈降時間)は、上部標線(スラリー上面)の位置にあるストークス径10μmの粒子が下部標線まで沈降するのに要する時間であり、上部標線と下部標線との間の距離をストークスの式から算出される沈降速度で割ることにより決定される。上記一連の操作を1回だけしか行わない場合、下部標線の以下の部分にストークス径10μm未満の粒子が多く混入してしまうので、この一連の操作は多数回繰り返すことで、ストークス径10μm未満の粒子混入量を無視できる程度まで少なくすることが必要である。上記一連の操作は、室温約25℃の雰囲気において、液温約25℃の0.1%ヘキサメタリン酸ナトリウム水溶液を使用して実施した。 Measurement of the content of coarse particles having a particle size of 10 μm or more: The measurement of the content of coarse particles is carried out by weighing 200 g of the produced cerium-based abrasive (in the case of slurry, a slurry corresponding to a solid content of 200 g), putting it in a measurement container, and adding 0.1 A sodium hexametaphosphate aqueous solution was added to the upper marked line of the measurement vessel and mixed well. Next, it was allowed to stand for a specified time and allowed to settle. After the designated time had elapsed, the slurry between the upper marked line and the lower marked line was extracted. After extracting the slurry, add a new 0.1% sodium hexametaphosphate aqueous solution to the upper marked line of the measuring container, mix well, let it settle for a specified time, and then set the upper marked as before. Slurry was extracted from the line to the bottom marked line. Such a series of operations (injection of sodium hexametaphosphate aqueous solution, mixing, standing and settling, extraction of slurry) were repeated. This series of operations was further repeated 6 times for a total of 8 times, and finally, the particles remaining below the lower marked line of the measurement container were sufficiently dried at a temperature of 105 ° C. The mass A (g) of the dry residue thus obtained was measured with a precision balance. Then, the content S (mass ppm) of coarse particles having a Stokes diameter of 10 μm or more was calculated using the calculation formula S = (A / 200) × 1000000. The specified time (stationary / sedimentation time) is the time required for particles with a Stokes diameter of 10 μm at the position of the upper marked line (the upper surface of the slurry) to settle to the lower marked line. Is divided by the settling velocity calculated from the Stokes equation. When the above series of operations is performed only once, many particles having a Stokes diameter of less than 10 μm are mixed in the following part of the lower marked line. Therefore, by repeating this series of operations many times, the Stokes diameter is less than 10 μm. It is necessary to reduce the amount of mixed particles to a negligible level. The above series of operations was carried out using a 0.1% sodium hexametaphosphate aqueous solution having a liquid temperature of about 25 ° C. in an atmosphere at room temperature of about 25 ° C.

タップ法見掛け密度:このタップ法見掛け密度(TD)測定は、試料を50.00g秤量し、10mLのプラスチック製シリンダーに該試料を投入し、タップデンサーKYT−2000((株)セイシン企業社製)に該シリンダーをセットし、タップ高さ50mmで300回タップ後、試料の容量(V mL)を計測して、TD(g/mL)=50÷Vより算出した。 Tap method apparent density: In this tap method apparent density (TD) measurement, 50.00 g of a sample was weighed, and the sample was put into a 10 mL plastic cylinder, and Tap Denser KYT-2000 (manufactured by Seishin Enterprise Co., Ltd.) The cylinder was set to, and after tapping 300 times at a tap height of 50 mm, the volume of the sample (V mL) was measured and calculated from TD (g / mL) = 50 ÷ V.

X線回折測定:X線分析装置(マックサイエンス株式会社製:MXP18)を使用して、Cuターゲットにて、管電圧を40kV、管電流150mA、測定範囲を2θで20〜40°の範囲とし、サンプリング幅を0.02°、走査速度は2°/minとして測定できる。得られた回折X線は、CuKα線に基づくものと、CuKα線に基づくものとに分離し、CuKα線に基づく回折X線について、2θで28.6°付近の最大ピークの半値幅を測定した。 X-ray diffraction measurement: Using an X-ray analyzer (manufactured by Mac Science Co., Ltd .: MXP18), with a Cu target, the tube voltage is 40 kV, the tube current is 150 mA, and the measurement range is 20 to 40 ° in 2θ, It can be measured with a sampling width of 0.02 ° and a scanning speed of 2 ° / min. The obtained diffracted X-rays are separated into those based on the CuKα 1 line and those based on the CuKα 2 line, and the FWHM of the maximum peak near 28.6 ° at 2θ for the diffracted X-ray based on the CuKα 1 line. Was measured.

比表面積測定:BET法によるもので、JIS R 1626-1996(ファインセラミックス粉体の気体吸着BET法による比表面積の測定方法)の「6.2 流動法 の(3.5)一点法」に準拠して、研摩材の比表面積の測定を行った。その際、キャリアガスであるヘリウムと、吸着質ガスである窒素の混合ガスを使用した。 Specific surface area measurement: Based on the BET method, compliant with “6.2 Flow method (3.5) single point method” in JIS R 1626-1996 (Method for measuring specific surface area of fine ceramic powder by gas adsorption BET method) Then, the specific surface area of the abrasive was measured. At that time, a mixed gas of helium as a carrier gas and nitrogen as an adsorbate gas was used.

レーザ回折・散乱法粒子径分布測定の体積基準の積算分率における50%径(D50)測定:レーザ回折・散乱法粒子径分布測定装置((株)堀場製作所製:LA−920)を使用して、各研摩材原料及び各セリウム系研摩材の粒度分布を測定することにより、平均粒径(D50:小粒径側からの累積質量50質量%における粒径<メジアン径>)を求めた。 50% diameter (D 50 ) measurement in volume-based cumulative fraction of laser diffraction / scattering method particle size distribution measurement: Laser diffraction / scattering method particle size distribution measuring device (manufactured by Horiba, Ltd .: LA-920) is used. Then, by measuring the particle size distribution of each abrasive raw material and each cerium-based abrasive, the average particle size (D 50 : particle size <median diameter> at a cumulative mass of 50% by mass from the small particle size side) is obtained. It was.

各研摩材の物性データを表4〜表6に示す。   The physical property data of each abrasive is shown in Tables 4-6.

Figure 2008088325
Figure 2008088325

Figure 2008088325
Figure 2008088325

Figure 2008088325
Figure 2008088325

そして、各研摩材についての研摩特性を評価した。研摩特性としては、研摩速度、研摩傷、被研摩面の表面性状(表面粗さRa、微小うねり)を調査した。以下に、各特性評価の測定法に関して説明する。   And the grinding | polishing characteristic about each abrasive material was evaluated. As polishing characteristics, polishing speed, polishing scratches, and surface properties of the surface to be polished (surface roughness Ra, microwaviness) were investigated. Below, the measuring method of each characteristic evaluation is demonstrated.

研摩速度:研摩機として、研摩試験機(HSP−2I型、台東精機(株)製)を用意した。この研摩試験機は、スラリー状の研摩材を研摩対象面に供給しながら、当該研摩対象面を研摩パッドで研摩するものである。研摩材スラリーの砥粒濃度は、100g/Lとした(分散媒は水のみ)。本研摩試験では、スラリー状の研摩材を5リットル/分の割合で供給することとし、研摩材を循環使用した。なお、研摩対象物は65mmφの平面パネル用ガラスとした。また、研摩パッドはポリウレタン製のものを使用した。研摩面に対する研摩パッドの圧力は9.8kPa(100g/cm2)とし、研摩試験機の回転速度は100min−1(rpm)に設定し、所定時間研摩をした。そして、特定時間の研摩処理を行った後、水洗、乾燥し、研摩前後のガラス重量を測定して研摩によるガラス重量の減少量を求め、この値に基づき研摩値を求めた。本研摩評価では、この研摩値を用いて研摩速度を評価した。なお、この研摩速度の評価値は、表7で示すように、比較例3のセリウム系研摩材により得られた研摩値を基準(100)とし、他の研摩速度の評価値を算定した。後述する研摩傷、算術平均微小うねり及び算術平均表面粗さ(Ra)の測定対象は、特定時間の研摩処理を行った後、水洗、乾燥したガラスである。 Polishing speed: A polishing tester (HSP-2I type, manufactured by Taito Seiki Co., Ltd.) was prepared as a polishing machine. This polishing tester polishes the polishing target surface with a polishing pad while supplying a slurry-like polishing material to the polishing target surface. The abrasive grain concentration of the abrasive slurry was 100 g / L (dispersion medium was water only). In this polishing test, a slurry-like abrasive was supplied at a rate of 5 liters / minute, and the abrasive was recycled. The polishing object was 65 mmφ flat panel glass. A polishing pad made of polyurethane was used. The polishing pad pressure on the polishing surface was 9.8 kPa (100 g / cm 2 ), the rotation speed of the polishing tester was set at 100 min −1 (rpm), and polishing was performed for a predetermined time. And after performing the polishing process for the specific time, it washed with water, dried, measured the glass weight before and behind polishing, calculated | required the reduction | decrease amount of the glass weight by polishing, and calculated | required the polishing value based on this value. In this polishing evaluation, the polishing rate was evaluated using this polishing value. In addition, as shown in Table 7, the evaluation value of this polishing rate was calculated based on the polishing value obtained with the cerium-based polishing material of Comparative Example 3 as a reference (100). The measurement object of the abrasive scratches, arithmetic average microwaviness, and arithmetic average surface roughness (Ra) described later is glass that has been subjected to a polishing treatment for a specific time, then washed with water and dried.

研摩傷:研摩傷評価は、30万ルクスのハロゲンランプを光源として用いる反射法で研摩後のガラス表面を観察し、大きな傷および微細な傷の数を点数化し、100点を満点として減点評価する方式で行った。この傷評価では、ハードディスク(HD)用あるいはLCD用のガラス基板の仕上げ研摩で要求される研摩精度を判断基準とした。具体的には表7〜表9中、「◎」は、98点以上(HD用・LCD用ガラス基板の仕上げ研摩に非常に好適)であることを、「○」は、98点未満95点以上(HD用・LCD用ガラス基板の仕上げ研摩に好適)であることを、「△」は、95点未満90点以上(HD用・LCD用ガラス基板の仕上げ研摩に使用可能)であることを、そして「×」は、90点未満(HD用・LCD用ガラス基板の仕上げ研摩に使用不可)であることを示す。 Abrasion scratches: Abrasion scratches are evaluated by observing the polished glass surface with a reflection method using a 300,000 lux halogen lamp as the light source, scoring the number of large and fine scratches, and then deducting the score from 100 points. The method was performed. In this scratch evaluation, the polishing accuracy required for finish polishing of a glass substrate for a hard disk (HD) or LCD was used as a criterion. Specifically, in Tables 7 to 9, “◎” is 98 points or more (very suitable for finishing polishing of glass substrates for HD and LCD), and “◯” is 95 points less than 98 points. That it is above (suitable for finishing polishing of HD / LCD glass substrates), and “△” is less than 95 points and 90 points or more (can be used for finishing polishing of HD / LCD glass substrates). "X" indicates that it is less than 90 points (cannot be used for finish polishing of glass substrates for HD and LCD).

算術平均表面粗さRa:この算術平均表面粗さは、プルーブ顕微鏡SPA−400(エスエスアイ・ナノテクノロジー(株)製)を用いてDFM(ダイナミックフオースモード)を使用して、研摩表面の中の10μm×10μm範囲を測定することによって、算術平均表面粗さ(Ra:nm)値を求めた。 Arithmetic average surface roughness Ra: This arithmetic average surface roughness is determined by using DFM (dynamic force mode) with a probe microscope SPA-400 (manufactured by SSI Nanotechnology Co., Ltd.). The 10 μm × 10 μm range was measured to obtain the arithmetic average surface roughness (Ra: nm) value.

算術平均微小うねり:算術平均微小うねりは、3次元表面構造解析顕微鏡(Zygo社製NewView200)を用い、測定波長を0.2〜1.4mmとして基板の所定領域を白色光で研摩面を走査して測定した。 Arithmetic average micro-waviness: The arithmetic average micro-waviness uses a three-dimensional surface structure analysis microscope (New View 200 manufactured by Zygo) to scan the polishing surface with white light at a measurement wavelength of 0.2 to 1.4 mm. Measured.

研摩特性の評価結果を表7〜9に示す。   The evaluation results of the polishing characteristics are shown in Tables 7-9.

Figure 2008088325
Figure 2008088325

Figure 2008088325
Figure 2008088325

Figure 2008088325
Figure 2008088325

表7〜表9の研摩特性の評価結果より、本実施例の酸化セリウム系研摩材でガラスの研摩を行った場合、研摩速度が大きく、研摩傷が少ないという良好な特性を備えていることが判明した。   From the evaluation results of the polishing characteristics shown in Tables 7 to 9, when the glass was polished with the cerium oxide-based abrasive of this example, it was found that the polishing characteristics were high and the polishing characteristics were small. found.

Claims (6)

タップ法による見掛け密度が1.7〜3.5g/mLであるとともに、CeO/TREOが95質量%以上であることを特徴とする酸化セリウム系研摩材。 A cerium oxide-based abrasive having an apparent density by a tap method of 1.7 to 3.5 g / mL and CeO 2 / TREO of 95% by mass or more. フッ素が0.5質量%以下である請求項1に記載の酸化セリウム系研摩材。 The cerium oxide-based abrasive according to claim 1, wherein the fluorine is 0.5 mass% or less. X線回折測定における酸化セリウムの最大ピークの半値幅(2θ)が0.10〜0.50°である請求項1又は請求項2に記載の酸化セリウム系研摩材。 The cerium oxide-based abrasive according to claim 1 or 2, wherein a half-value width (2θ) of the maximum peak of cerium oxide in X-ray diffraction measurement is 0.10 to 0.50 °. 粒径10μm以上の粒子の含有量が1000質量ppm以下である請求項1〜請求項3のいずれか1項に記載の酸化セリウム系研摩材。 The cerium oxide-based abrasive according to any one of claims 1 to 3, wherein the content of particles having a particle size of 10 µm or more is 1000 ppm by mass or less. 粒径10μm以上の粒子の含有量が300質量ppm以下である請求項4に記載の酸化セリウム系研摩材。 The cerium oxide-based abrasive according to claim 4, wherein the content of particles having a particle size of 10 µm or more is 300 ppm by mass or less. BET法比表面積が1〜10m/gである請求項1〜請求項5のいずれか1項に記載の酸化セリウム系研摩材。 The BET method specific surface area is 1-10 m < 2 > / g, The cerium oxide type abrasive | polishing material of any one of Claims 1-5.
JP2006271802A 2006-10-03 2006-10-03 Cerium oxide abrasive Active JP5237542B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006271802A JP5237542B2 (en) 2006-10-03 2006-10-03 Cerium oxide abrasive
TW096122998A TWI368647B (en) 2006-10-03 2007-06-26 Cerium oxide based abrasive
CN 200710154443 CN101157848B (en) 2006-10-03 2007-09-12 Cerium oxide type abrasive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006271802A JP5237542B2 (en) 2006-10-03 2006-10-03 Cerium oxide abrasive

Publications (2)

Publication Number Publication Date
JP2008088325A true JP2008088325A (en) 2008-04-17
JP5237542B2 JP5237542B2 (en) 2013-07-17

Family

ID=39306088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006271802A Active JP5237542B2 (en) 2006-10-03 2006-10-03 Cerium oxide abrasive

Country Status (3)

Country Link
JP (1) JP5237542B2 (en)
CN (1) CN101157848B (en)
TW (1) TWI368647B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043214A1 (en) * 2010-09-30 2012-04-05 コニカミノルタオプト株式会社 Manufacturing method for glass substrate for information recording medium, and information recording medium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102775958B (en) * 2012-08-16 2014-03-12 上海华明高纳稀土新材料有限公司 Cerium oxide polishing material for stone grinding tool and preparation method thereof
KR102423338B1 (en) * 2017-09-11 2022-07-21 쇼와 덴코 가부시키가이샤 A method for producing a raw material for a cerium-based abrasive, and a method for producing a cerium-based abrasive
CN107674592B (en) * 2017-10-16 2019-08-23 淄博包钢灵芝稀土高科技股份有限公司 Samarium cerium mischmetal polishing powder and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035075A (en) * 1983-05-13 1985-02-22 ローヌ―プーラン・スペシアリテ・シミーク Novel cerium abrasive composition and manufacture
JPH09270402A (en) * 1996-03-29 1997-10-14 Hitachi Chem Co Ltd Cerium oxide abraisives and method of manufacturing substrate
JPH11330017A (en) * 1996-03-29 1999-11-30 Hitachi Chem Co Ltd Cerium oxide abrasives and producing method for substrate
JP2001348563A (en) * 2000-06-06 2001-12-18 Toray Ind Inc Polishing material
JP2004043657A (en) * 2002-07-12 2004-02-12 Mitsui Mining & Smelting Co Ltd Cerium abrasive and method for producing the same
JP2004323574A (en) * 2003-04-22 2004-11-18 Mitsui Mining & Smelting Co Ltd Manufacturing method of cerium abrasive essentially comprising cerium oxide

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3983949B2 (en) * 1998-12-21 2007-09-26 昭和電工株式会社 Polishing cerium oxide slurry, its production method and polishing method
KR100480760B1 (en) * 2000-10-02 2005-04-07 미쓰이 긴조꾸 고교 가부시키가이샤 Cerium based abrasive material and method for producing cerium based abrasive material
JP4033440B2 (en) * 2001-09-17 2008-01-16 三井金属鉱業株式会社 Cerium-based abrasive slurry and method for producing cerium-based abrasive slurry

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035075A (en) * 1983-05-13 1985-02-22 ローヌ―プーラン・スペシアリテ・シミーク Novel cerium abrasive composition and manufacture
JPH09270402A (en) * 1996-03-29 1997-10-14 Hitachi Chem Co Ltd Cerium oxide abraisives and method of manufacturing substrate
JPH11330017A (en) * 1996-03-29 1999-11-30 Hitachi Chem Co Ltd Cerium oxide abrasives and producing method for substrate
JP2001348563A (en) * 2000-06-06 2001-12-18 Toray Ind Inc Polishing material
JP2004043657A (en) * 2002-07-12 2004-02-12 Mitsui Mining & Smelting Co Ltd Cerium abrasive and method for producing the same
JP2004323574A (en) * 2003-04-22 2004-11-18 Mitsui Mining & Smelting Co Ltd Manufacturing method of cerium abrasive essentially comprising cerium oxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043214A1 (en) * 2010-09-30 2012-04-05 コニカミノルタオプト株式会社 Manufacturing method for glass substrate for information recording medium, and information recording medium
US8938990B2 (en) 2010-09-30 2015-01-27 Hoya Corporation Method for producing glass substrate for information storage medium, and information storage medium
JP5695068B2 (en) * 2010-09-30 2015-04-01 Hoya株式会社 Method for manufacturing glass substrate for information recording medium and method for manufacturing information recording medium

Also Published As

Publication number Publication date
TWI368647B (en) 2012-07-21
CN101157848B (en) 2013-01-16
JP5237542B2 (en) 2013-07-17
CN101157848A (en) 2008-04-09
TW200817496A (en) 2008-04-16

Similar Documents

Publication Publication Date Title
JP6421887B2 (en) Method for producing cerium salt, cerium oxide and cerium-based abrasive
JP3960914B2 (en) Cerium-based abrasive and method for producing cerium-based abrasive
JP2003277729A (en) Cerium abrasive material and its preparation process
JP4401353B2 (en) Cerium-based abrasive
JP5237542B2 (en) Cerium oxide abrasive
WO2002097004A1 (en) Method for producing cerium-based polishing agent
JP4131870B2 (en) Abrasive particle quality evaluation method, glass polishing method and abrasive composition for polishing glass
JP6839767B2 (en) Method for manufacturing raw materials for cerium-based abrasives, and method for manufacturing cerium-based abrasives
WO2005000992A1 (en) Cerium based polishing material and raw materials therefor
JP5259933B2 (en) Raw material for cerium-based abrasive, method for producing cerium-based abrasive, and cerium-based abrasive
JP2007231158A (en) Cerium-based abrasive
JP5512962B2 (en) Cerium-based abrasive containing fluorine and sulfur
JP3986384B2 (en) Cerium-based abrasive and method for producing the same
JP3875668B2 (en) Cerium-based abrasive containing fluorine and method for producing the same
JP3685481B2 (en) Cerium-based abrasive particle powder excellent in particle size distribution, abrasive slurry containing the particle powder, and method for producing the particle powder
JP4395049B2 (en) Cerium-based abrasive and method for producing cerium-based abrasive
JP4070180B2 (en) Method for producing cerium-based abrasive
JP4290465B2 (en) Method for producing cerium-based abrasive mainly composed of cerium oxide
JP2002212544A (en) Method of producing cerium oxide polishing material and cerium oxide polishing material produced by the method
JP2002180033A (en) Method for classifying cerium-based abrasive and cerium- based abrasive to be produced by the method
JP2004189857A (en) Cerium type abrasive and manufacturing method of cerium type abrasive, and quality evaluation method of cerium type abrasive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5237542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250