JP2001348563A - Polishing material - Google Patents

Polishing material

Info

Publication number
JP2001348563A
JP2001348563A JP2000169007A JP2000169007A JP2001348563A JP 2001348563 A JP2001348563 A JP 2001348563A JP 2000169007 A JP2000169007 A JP 2000169007A JP 2000169007 A JP2000169007 A JP 2000169007A JP 2001348563 A JP2001348563 A JP 2001348563A
Authority
JP
Japan
Prior art keywords
composite oxide
oxide particles
particles
weight
abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000169007A
Other languages
Japanese (ja)
Inventor
Shoichiro Goto
昭一郎 後藤
Katsuya Edogawa
勝也 江戸川
Toru Tsurumi
徹 鶴見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2000169007A priority Critical patent/JP2001348563A/en
Publication of JP2001348563A publication Critical patent/JP2001348563A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a polishing material for an insulation film layer of a semiconductor capable of improving a polishing speed in the abrasion of an insulation film layer of a semiconductor by CMP method, at the same time, capable of reducing scratch and dust, and having excellent quality. SOLUTION: The polishing material comprises a slurry liquid prepared by dispersing a compound oxide particles of cerium and zirconium having an average particle size of secondary particles of <=5 μm in an aqueous solution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体基板、配線基
板、半導体デバイス、ガラス素材、ハードディスク、フ
ォトマスク、液晶ディスプレー等のガラス基板、光学レ
ンズ、水晶発振子、磁気ヘッド、ビデオデッキヘッド、
光ファイバコネクタ等の研磨剤に関する。更に詳しく
は、セリウムとジルコニウムの複合酸化物粒子を水溶液
中に分散させたスラリー液よりなる、半導体の絶縁膜層
の研磨剤に関するものである。
The present invention relates to a semiconductor substrate, a wiring substrate, a semiconductor device, a glass material, a hard disk, a photomask, a glass substrate such as a liquid crystal display, an optical lens, a crystal oscillator, a magnetic head, a video deck head,
The present invention relates to an abrasive for an optical fiber connector or the like. More specifically, the present invention relates to a polishing slurry for an insulating film layer of a semiconductor, comprising a slurry liquid in which composite oxide particles of cerium and zirconium are dispersed in an aqueous solution.

【0002】[0002]

【従来の技術】近年、半導体デバイスの高集積度化に伴
い、配線の多層化及びその配線パターンの微細化に伴う
最小加工線幅が0.1μmオーダーの微細な線幅を採用
する方向で進展しつつある。
2. Description of the Related Art In recent years, with the increase in the degree of integration of semiconductor devices, the minimum processing line width accompanying the increase in the number of wiring layers and the miniaturization of wiring patterns has been progressing in the direction of adopting fine line widths on the order of 0.1 μm. I am doing it.

【0003】これにより、配線パターン描線用露光機の
焦点深度不足を補うため、半導体デバイス製造の中間工
程でデバイス表面を平坦化する必要がある。
Accordingly, in order to compensate for the lack of depth of focus of an exposure apparatus for drawing a wiring pattern, it is necessary to flatten the device surface in an intermediate step of semiconductor device manufacturing.

【0004】かかる平坦化の手法としては、エッチバッ
ク法やリフロー法、或いはケミカルメカニカルポリッシ
ング法(略称CMP法:Chemical Mechanical Polishin
g)等、シリカ等の層間絶縁膜が均等な厚みになるよう
に研磨する技術が開発されているが、配線の粗密に由来
するようなグローバルな平坦化に特に有効なことから、
CMP法が主流になっている。
[0004] As a method of such flattening, an etch-back method, a reflow method, or a chemical mechanical polishing method (abbreviated as CMP method) is used.
g), etc., a technology to polish the interlayer insulating film such as silica so as to have a uniform thickness has been developed. However, since it is particularly effective for global flattening derived from the density of wiring,
The CMP method has become mainstream.

【0005】現在、CMP法には、シリカ粒子を含むス
ラリー液、酸化セリウム粒子を含むスラリー液を使用す
る技術が工業的に実用化されている。
At present, in the CMP method, a technique using a slurry liquid containing silica particles and a slurry liquid containing cerium oxide particles has been industrially put to practical use.

【0006】この内、シリカ粒子を含むスラリー液は最
も汎用性が高いが、シリカ粒子を含むスラリー液では、
研磨液にエッチング作用を持たせるために、研磨液を強
アルカリ性にする必要があり、用いる強アルカリ性溶液
により、カリウム等の不純物が増大したり、研磨速度が
小さくなる等の問題があった。
Among them, the slurry liquid containing silica particles has the highest versatility, but the slurry liquid containing silica particles has
In order for the polishing liquid to have an etching action, it is necessary to make the polishing liquid highly alkaline, and there are problems such as an increase in impurities such as potassium and a reduction in polishing rate, depending on the strong alkaline solution used.

【0007】一方、酸化セリウム粒子を含むスラリー液
では、絶縁膜の素材であるシリカとの反応性が大きいた
め研磨速度は増大するが、被研磨材の表面にスクラッチ
と称される傷が発生し易く、また、酸化セリウム粒子が
被研磨面に残存し、いわゆるダストを生じる問題があっ
た。
On the other hand, the slurry containing cerium oxide particles has a high polishing rate because of its high reactivity with silica as a material of the insulating film. However, scratches called scratches are generated on the surface of the material to be polished. In addition, there is a problem that cerium oxide particles easily remain on the surface to be polished, generating so-called dust.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、CM
P法による半導体の絶縁膜層の研磨にあたり、研磨速度
の向上が図れ、同時にスクラッチ及びダストを低減でき
る高性能な半導体の絶縁膜層用研磨剤を提供することに
ある。
An object of the present invention is to provide a CM
An object of the present invention is to provide a high-performance semiconductor insulating film layer polishing agent which can improve the polishing rate in polishing a semiconductor insulating film layer by the P method and can reduce scratches and dust.

【0009】[0009]

【課題を解決するための手段】かかる課題を解決するた
めに、本発明の研磨剤は次の構成を有する。即ち、その
二次粒子の平均粒子径が5μm以下であるセリウムとジ
ルコニウムの複合酸化物粒子を水溶液中に分散させたス
ラリ液よりなる研磨剤である。
Means for Solving the Problems To solve such problems, the abrasive of the present invention has the following constitution. That is, it is an abrasive made of a slurry liquid in which composite oxide particles of cerium and zirconium whose secondary particles have an average particle diameter of 5 μm or less are dispersed in an aqueous solution.

【0010】[0010]

【発明の実施の形態】本発明者らは、鋭意検討の結果、
セリウムとジルコニウムの複合酸化物粒子(以下、単に
複合酸化物粒子と略記)を水溶液中に分散させたスラリ
ー液よりなる研磨剤により、意外にも、上述した課題を
一挙を解決することを見いだしたものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted intensive studies and as a result,
Surprisingly, it has been found that the above-mentioned problems can be solved at once by a polishing agent comprising a slurry liquid in which composite oxide particles of cerium and zirconium (hereinafter simply referred to as composite oxide particles) are dispersed in an aqueous solution. Things.

【0011】本発明による研磨剤は、半導体製造工程に
おいて絶縁膜層の研磨に用いられるものである。中でも
STI(シャロートレンチアイソレーション)と呼ばれ
る、窒化硅素等からなるストップ膜とシリカ等からなる
絶縁膜との研磨速度の差を利用して絶縁膜表面を均一に
研磨する方法に好ましく適用できる。
The abrasive according to the present invention is used for polishing an insulating film layer in a semiconductor manufacturing process. In particular, it can be preferably applied to a method called STI (Shallow Trench Isolation) for uniformly polishing the surface of an insulating film by utilizing the difference in polishing rate between a stop film made of silicon nitride or the like and an insulating film made of silica or the like.

【0012】本発明において、研磨剤に用いる複合酸化
物粒子は、酸化第一セリウム又は酸化第二セリウム(以
下、これらを総称して酸化セリウムという)と酸化ジル
コニウムとが固溶体を形成するなど、酸化セリウムと酸
化ジルコニウムとが反応して化合物を形成した状態のも
のが好ましく使用できるが、それ以外にも、単純な混合
物も使用することができる。
In the present invention, the composite oxide particles used for the abrasive are formed by oxidizing cerium oxide or ceric oxide (hereinafter collectively referred to as cerium oxide) and zirconium oxide to form a solid solution. A compound in which cerium and zirconium oxide have reacted to form a compound can be preferably used, but a simple mixture can also be used.

【0013】本発明において、固溶体を形成した複合酸
化物粒子は、例えば、以下に示すような方法で得ること
ができる。
In the present invention, the composite oxide particles forming a solid solution can be obtained, for example, by the following method.

【0014】硝酸セリウム、硫酸セリウム、塩化セリウ
ム等、水溶性の3価のセリウム化合物とオキシ塩化ジル
コニウム等の水溶性のジルコニウム化合物とを水溶液中
で混合後、アンモニア水等を添加して反応せしめて、セ
リウムとジルコニウムの非水溶性化合物を生成させ、更
に過酸化水素等の酸化剤を添加して、酸化処理する。
A water-soluble trivalent cerium compound such as cerium nitrate, cerium sulfate and cerium chloride is mixed with a water-soluble zirconium compound such as zirconium oxychloride in an aqueous solution, and the mixture is reacted by adding aqueous ammonia or the like. Then, a water-insoluble compound of cerium and zirconium is formed, and an oxidizing agent such as hydrogen peroxide is further added to perform oxidation treatment.

【0015】次に、溶液をろ過、遠心分離し、複合酸化
物粒子よりなる共沈物を回収する。ここで、複合酸化物
粒子の純度を高めるために、共沈物を超純水等で繰り返
し洗浄するのが有効である。
Next, the solution is filtered and centrifuged to collect a coprecipitate composed of composite oxide particles. Here, in order to increase the purity of the composite oxide particles, it is effective to repeatedly wash the coprecipitate with ultrapure water or the like.

【0016】次いで、共沈物を乾燥後、オーブン中で3
00℃以上で熱処理することにより、複合酸化物粒子の
粉末を得る。
Next, after drying the coprecipitate, the coprecipitate is dried in an oven for 3 hours.
By performing a heat treatment at a temperature of 00 ° C. or higher, powder of composite oxide particles is obtained.

【0017】本発明において、かかる粉末の見掛密度は
1.5g/cm3以下であるのが好ましい。1.5g/
cm3を越えると、半導体の絶縁膜層用研磨剤として使
用した際に被研磨面にスクラッチが発生することがあ
る。ここで、粉体の見掛密度は、JIS R6126に
従い、通常の静置法により測定することができる。
In the present invention, the apparent density of the powder is preferably 1.5 g / cm 3 or less. 1.5g /
If it exceeds cm 3 , scratches may occur on the surface to be polished when used as an abrasive for a semiconductor insulating film layer. Here, the apparent density of the powder can be measured by an ordinary stationary method according to JIS R6126.

【0018】尚、本発明において、粉末の見掛密度は、
少なくとも0.3g/cm3あれば、本発明の効果を奏
するに当たり、充分であることが多い。
In the present invention, the apparent density of the powder is as follows:
At least 0.3 g / cm 3 is often sufficient for achieving the effects of the present invention.

【0019】また、複合酸化物粒子は、その一次粒子の
平均粒子径が10〜1000nm、好ましくは50〜5
00nmであるのが良い。10nm未満であると、粒子
が微細にすぎ、半導体の絶縁膜層用研磨剤として使用し
た際に研磨性能が劣ったものとなることがあり、100
0nmを越えると、被研磨面にスクラッチが発生するこ
とがある。ここで、「一次粒子」とは、分子間の結合を
破壊することなく存在しうる、粉体や凝集体を構成する
粒子の最小単位をいう。
The composite oxide particles have an average primary particle diameter of 10 to 1000 nm, preferably 50 to 5 nm.
It is preferably 00 nm. When it is less than 10 nm, the particles are too fine, and when used as a polishing agent for an insulating film layer of a semiconductor, the polishing performance may be poor.
If it exceeds 0 nm, scratches may occur on the surface to be polished. Here, the “primary particle” refers to a minimum unit of particles constituting a powder or an aggregate that can exist without breaking bonds between molecules.

【0020】一次粒子の平均粒子径は、例えば、透過型
電子顕微鏡(TEM)により、得られたTEM写真を一
次粒子毎に拡大観察し、画像処理により円相当径を決定
して、円相当径の粒度分布における50%径(メディア
ン径)より求めることができる。
The average particle diameter of the primary particles is determined by, for example, observing the obtained TEM photograph by a transmission electron microscope (TEM) for each primary particle under magnification, determining the equivalent circle diameter by image processing, and determining the equivalent circle diameter. Can be determined from the 50% diameter (median diameter) in the particle size distribution.

【0021】本発明において、複合酸化物粒子に含まれ
る酸化セリウムの含有率は、全複合酸化物粒子100重
量%に対して、25〜99.9重量%、好ましくは30
〜95重量%、より好ましくは35〜90重量%、さら
に好ましくは40〜85重量%であるのが良い。25重
量%未満であると、半導体の絶縁膜層用研磨剤として使
用した際に被研磨面にスクラッチが発生することがあ
る。
In the present invention, the content of cerium oxide contained in the composite oxide particles is 25 to 99.9% by weight, preferably 30 to 100% by weight based on the total composite oxide particles.
The content is preferably from 95 to 95% by weight, more preferably from 35 to 90% by weight, and still more preferably from 40 to 85% by weight. If the content is less than 25% by weight, scratches may occur on the surface to be polished when used as an abrasive for a semiconductor insulating film layer.

【0022】尚、本発明において、複合酸化物粒子は、
ナトリウム、銅、鉄、アルミニウム、カルシウム等の不
純物の含有率が、全複合酸化物粒子100重量%に対し
て、1重量%未満、好ましくは0.5重量%未満である
のが良い。不純物が1重量%以上であると、研磨する半
導体中に残存し、半導体の品質を低下させることがあ
る。尚、この不純物の含有率は、ICP発光分光分析法
により測定できる。
In the present invention, the composite oxide particles are
The content of impurities such as sodium, copper, iron, aluminum, and calcium is preferably less than 1% by weight, and preferably less than 0.5% by weight, based on 100% by weight of the total composite oxide particles. If the content of the impurities is 1% by weight or more, the impurities may remain in the semiconductor to be polished, thereby deteriorating the quality of the semiconductor. The content of the impurity can be measured by ICP emission spectroscopy.

【0023】本発明の研磨剤、即ち複合酸化物粒子を含
んでなるスラリー液は、前述した方法により得られた複
合酸化物粒子を、常法通り、水溶液中に分散させること
により得ることができる。ここでの分散方法としては、
例えば、通常の攪拌機による方法や、ボールミル等によ
る方法が採用できる。
The slurry of the present invention, that is, the slurry containing the composite oxide particles, can be obtained by dispersing the composite oxide particles obtained by the above-described method in an aqueous solution as usual. . The distribution method here is
For example, a method using an ordinary stirrer, a method using a ball mill or the like can be adopted.

【0024】尚、分散にあたっては、分散剤を添加する
のが好ましい。分散剤としては、金属イオン類を含まな
いものが好ましく使用できる。具体的には、ポリアクリ
ル酸のアンモニウム塩、ポリビニルアルコール等の水溶
性有機高分子類、ラウリル硫酸アンモニウム塩等の水溶
性陰イオン性界面活性剤、ポリエチレングリコールモノ
ステアレート等の水溶性非イオン性界面活性剤、モノエ
タノールアミン等の水溶性アミン類が挙げられる。分散
剤を添加しないと、被研磨材料の表面に粒子が付着して
いわゆるダストとなったり、スラリー液の分散性が低下
することがある。 また、複合酸化物粒子は、その二次
粒子の平均粒子径が5μm以下であることが必要であ
り、好ましくは3μm以下、より好ましくは2μm以下
であるのが良い。5μmを越えると、半導体の絶縁膜層
用研磨剤として使用した際に被研磨面にスクラッチが発
生することがある。ここで、「二次粒子」とは、一次粒
子が凝集してなる、一次粒子より大きな粒子単位をい
う。
For dispersion, it is preferable to add a dispersant. As the dispersant, those containing no metal ions can be preferably used. Specifically, water-soluble organic polymers such as ammonium salts of polyacrylic acid and polyvinyl alcohol; water-soluble anionic surfactants such as ammonium lauryl sulfate; and water-soluble nonionic surfactants such as polyethylene glycol monostearate. Activators and water-soluble amines such as monoethanolamine. If the dispersant is not added, particles may adhere to the surface of the material to be polished to form so-called dust, or the dispersibility of the slurry liquid may decrease. The composite oxide particles need to have an average particle diameter of secondary particles of 5 μm or less, preferably 3 μm or less, and more preferably 2 μm or less. If it exceeds 5 μm, scratches may occur on the surface to be polished when used as an abrasive for a semiconductor insulating film layer. Here, the “secondary particle” refers to a particle unit formed by aggregating the primary particles and larger than the primary particles.

【0025】尚、本発明において、複合酸化物粒子の二
次粒子径は、0.01μmあれば、本発明の効果を奏す
るに当たり、充分であることが多い。
In the present invention, if the secondary particle diameter of the composite oxide particles is 0.01 μm, it is often sufficient to achieve the effects of the present invention.

【0026】また、ここでは、複合酸化物粒子の二次粒
子径は、光散乱式粒度分布測定装置(日機装社製、MICR
OTRAC、7995型)を用いて測定した。ここで、複合
酸化物粒子の二次粒子の平均粒子径は、体積基準の50
%積算径とした。本発明において、複合酸化物粒子を水
溶液中に分散させたスラリー液よりなる研磨剤は、その
pHが3〜11、好ましくは5〜9であるのが良い。p
Hがかかる範囲から外れると、酸性やアルカリ性の度合
いが強まり、排水処理が困難となったり、製造装置を腐
食させることがある。
Here, the secondary particle size of the composite oxide particles is measured by a light scattering type particle size distribution analyzer (MICR, manufactured by Nikkiso Co., Ltd.).
OTRAC, type 7995). Here, the average particle diameter of the secondary particles of the composite oxide particles is 50 based on volume.
% Integrated diameter. In the present invention, the pH of the abrasive made of a slurry liquid in which composite oxide particles are dispersed in an aqueous solution is preferably 3 to 11, and more preferably 5 to 9. p
If H is out of the above range, the degree of acidity or alkalinity is increased, which may make drainage treatment difficult or corrode the production equipment.

【0027】[0027]

【実施例】(実施例1)酸化セリウムと酸化ジルコニウ
ムの混合比が、重量換算で50:50となるように、酸
化第二セリウムの濃度が24重量%の塩化第一セリウム
水溶液2080gと酸化ジルコニウムの濃度が20重量
%のオキシ塩化ジルコニウム水溶液2500gとを混合
して攪拌し、塩化第一セリウムとオキシ塩化ジルコニウ
ムの混合水溶液を調整した。
(Example 1) 2080 g of an aqueous solution of cerous chloride containing 24% by weight of ceric oxide and 2080 g of zirconium oxide so that the mixing ratio of cerium oxide and zirconium oxide becomes 50:50 in terms of weight. Was mixed and stirred with 2500 g of an aqueous solution of zirconium oxychloride having a concentration of 20% by weight to prepare a mixed aqueous solution of cerous chloride and zirconium oxychloride.

【0028】次に、この水溶液に濃度7重量%のアンモ
ニア水3000gを添加して撹拌して水溶液のpHを7
とした。更に、過酸化水素水を77g添加して撹拌し、
水酸化セリウムと水酸化ジルコニウムとの共沈物を得
た。
Next, 3000 g of aqueous ammonia having a concentration of 7% by weight was added to the aqueous solution and stirred to adjust the pH of the aqueous solution to 7%.
And Furthermore, 77 g of hydrogen peroxide solution was added and stirred,
A coprecipitate of cerium hydroxide and zirconium hydroxide was obtained.

【0029】本共沈物を含む水溶液をオートクレーブに
て、150℃、24時間、加熱処理し、ろ過と洗浄を数
回繰り返し、その後乾燥することにより、複合酸化物の
粉末を得た。
The aqueous solution containing the coprecipitate was heated in an autoclave at 150 ° C. for 24 hours, and filtration and washing were repeated several times, and then dried to obtain a composite oxide powder.

【0030】この粉末を1050℃で2時間焼成し、見
掛密度が0.7g/cm3の複合酸化物粒子の粉末を得
た。本粉末を構成する粒子の一次粒子の平均粒子径は8
5nm、全複合酸化物粒子100重量%に対して、酸化
セリウムの含有率は49.9重量%、不純物の含有率は
0.2重量%であった。
This powder was fired at 1050 ° C. for 2 hours to obtain a powder of composite oxide particles having an apparent density of 0.7 g / cm 3 . The average particle size of the primary particles of the particles constituting the powder is 8
The content of cerium oxide was 49.9% by weight and the content of impurities was 0.2% by weight based on 5 nm and 100% by weight of all the composite oxide particles.

【0031】次に、複合酸化物粒子の粉末300gに純
水2700gを加え、ボールミルで24時間混合し、複
合酸化物粒子を含んでなるスラリー液とした。
Next, 2700 g of pure water was added to 300 g of the powder of the composite oxide particles, and mixed for 24 hours by a ball mill to obtain a slurry containing the composite oxide particles.

【0032】次いで、複合酸化物粒子のスラリー液中の
濃度を10重量%に調整し、更に分散剤として、ポリア
クリル酸のアンモニウム塩をスラリー液中に含まれる複
合酸化物粒子100重量%に対し10重量%添加して撹
拌し、更に純水で希釈し、濃度1重量%、二次粒子の平
均粒子径1.2μm、pH7.3の、複合酸化物粒子を
水溶液中に分散させたスラリー液よりなる研磨剤を得
た。
Next, the concentration of the composite oxide particles in the slurry liquid was adjusted to 10% by weight, and an ammonium salt of polyacrylic acid as a dispersant was added to 100% by weight of the composite oxide particles contained in the slurry liquid. A slurry liquid in which composite oxide particles having a concentration of 1% by weight, a secondary particle average particle diameter of 1.2 μm, and a pH of 7.3 were dispersed in an aqueous solution, and the mixture was further diluted with pure water. A polishing agent was obtained.

【0033】本研磨剤を用いて、シリコンウエハー上の
シリコン酸化膜(絶縁膜層)(サイズ、型:15mm×
15mmの正方形)を次の装置、条件にて研磨した。
Using this polishing agent, a silicon oxide film (insulating film layer) on a silicon wafer (size, type: 15 mm ×
(15 mm square) was polished with the following apparatus and conditions.

【0034】・研磨装置:ラッピングマシン(ムサシノ
電子社製、型番:MA−200) ・研磨パッド:IC1000/SUBA400(ロデー
ルニッタ社製) ・荷重:200g/cm2 ・定盤回転数:60rpm ・ワーク回転数:60rpm ・研磨時間:5分 ・研磨剤供給量:24cc/分 ここでは、研磨後のシリコン酸化膜を次の装置、方法で
評価した。
Polishing device: Wrapping machine (Musashino Electronics Co., Ltd., model number: MA-200) Polishing pad: IC1000 / SUBA400 (Rodel Nitta) Load: 200 g / cm 2 Platen rotation speed: 60 rpm Work rotation Number: 60 rpm Polishing time: 5 minutes Abrasive supply amount: 24 cc / min Here, the silicon oxide film after polishing was evaluated by the following apparatus and method.

【0035】・膜厚測定:膜厚計(大日本スクリーン社
製、ラムダエース) ・スクラッチ及びダストの観察:マイクロスコープ(キ
ーエンス社製)で目視観察した。
Measurement of film thickness: Film thickness meter (Lambda Ace, manufactured by Dainippon Screen Co., Ltd.) Observation of scratches and dust: Visual observation was performed with a microscope (manufactured by Keyence Corporation).

【0036】尚、研磨速度は、膜厚変化量を研磨時間
(5分)で除して求めた。以上により、次の結果を得
た。
The polishing rate was determined by dividing the change in film thickness by the polishing time (5 minutes). From the above, the following results were obtained.

【0037】・研磨速度:141nm/分 ・スクラッチ:認められず。Polishing rate: 141 nm / min. Scratch: not recognized.

【0038】・ダスト:認められず。 (実施例2)酸化セリウムと酸化ジルコニウムの混合比
が、重量換算で80:20となるようにした以外は、実
施例1と同様にして、研磨剤を調整し、シリコンウエハ
ー上にシリコン酸化膜を研磨し、評価した。
Dust: not observed. (Example 2) A polishing agent was adjusted in the same manner as in Example 1 except that the mixing ratio of cerium oxide and zirconium oxide was 80:20 in terms of weight, and a silicon oxide film was formed on a silicon wafer. Was polished and evaluated.

【0039】ここで、複合酸化物粒子は、粉末の見掛密
度は、1.2g/cm3、一次粒子の平均粒子径90n
m、全複合酸化物粒子100重量%に対して、酸化セリ
ウムの含有率は79.8重量%、不純物の含有率0.2
重量%であった。さらに、調整した研磨剤は、複合酸化
物粒子の二次粒子の平均粒子径1.5μm、濃度1重量
%、pH7.1であった。以上により、次の結果を得
た。
The composite oxide particles had an apparent powder density of 1.2 g / cm 3 and an average primary particle size of 90 n.
m, the content of cerium oxide was 79.8% by weight and the content of impurities was 0.2 with respect to 100% by weight of all composite oxide particles.
% By weight. Further, the prepared abrasive had an average particle diameter of secondary particles of the composite oxide particles of 1.5 μm, a concentration of 1% by weight, and a pH of 7.1. From the above, the following results were obtained.

【0040】・研磨速度:101nm/分 ・スクラッチ:認められず。Polishing rate: 101 nm / min. Scratch: not recognized.

【0041】・ダスト:認められず。 (実施例3)酸化セリウムと酸化ジルコニウムの混合比
が、重量換算で99.9:0.1となるようにした以外
は、実施例1と同様にして、研磨剤を調整し、シリコン
ウエハー上にシリコン酸化膜を研磨し、評価した。
Dust: not observed. (Example 3) A polishing agent was prepared in the same manner as in Example 1 except that the mixing ratio of cerium oxide and zirconium oxide was 99.9: 0.1 in terms of weight, and a silicon wafer was prepared. Then, the silicon oxide film was polished and evaluated.

【0042】ここで、複合酸化物粒子は、粉末の見掛密
度は、1.3g/cm3、一次粒子の平均粒子径は14
0nm、全複合酸化物粒子100重量%に対して、酸化
セリウムの含有率は99.7重量%、不純物の含有率は
0.2重量%であった。さらに、調整した研磨剤は、複
合酸化物粒子の二次粒子の平均粒子径は0.8μm、濃
度1重量%、pH7.5であった。以上により、次の結
果を得た。
Here, the composite oxide particles have an apparent powder density of 1.3 g / cm 3 and an average primary particle diameter of 14 g / cm 3 .
The content of cerium oxide was 99.7% by weight and the content of impurities was 0.2% by weight based on 0 nm and 100% by weight of all the composite oxide particles. Further, in the prepared abrasive, the average particle diameter of the secondary particles of the composite oxide particles was 0.8 μm, the concentration was 1% by weight, and the pH was 7.5. From the above, the following results were obtained.

【0043】・研磨速度:130nm/分 ・スクラッチ:認められず。Polishing rate: 130 nm / min. Scratch: not recognized.

【0044】・ダスト:認められず。 (比較例1)天然鉱物を粉砕して得られた酸化セリウム
粉末を用いた以外は、実施例1と同様にして、研磨剤を
調整し、シリコンウエハー上にシリコン酸化膜を研磨
し、評価した。
Dust: not observed. Comparative Example 1 An abrasive was prepared, and a silicon oxide film was polished on a silicon wafer and evaluated in the same manner as in Example 1 except that cerium oxide powder obtained by pulverizing a natural mineral was used. .

【0045】ここで、酸化物粒子は、粉末の見掛密度
は、1.8g/cm3、一次粒子の平均粒子径1500
nm、不純物の含有率は30%であった。さらに、調整
した研磨剤は、複合酸化物粒子の二次粒子の平均粒子径
は12μm、濃度1重量%、pH7.4であった。以上
により、次の結果を得た。
The oxide particles had an apparent powder density of 1.8 g / cm 3 and an average primary particle diameter of 1500.
nm, and the impurity content was 30%. Further, in the prepared abrasive, the average particle diameter of the secondary particles of the composite oxide particles was 12 μm, the concentration was 1% by weight, and the pH was 7.4. From the above, the following results were obtained.

【0046】・研磨速度:76nm/分 ・スクラッチ:多数認められた。Polishing rate: 76 nm / min. Scratch: Many were observed.

【0047】・ダスト:認められず。 (比較例2)焼成温度を1200℃とした以外は、実施
例1と同様にして、研磨剤を調製し、シリコンウエハ上
のシリコン酸化膜を研磨し、評価した。
Dust: not observed. (Comparative Example 2) An abrasive was prepared, and a silicon oxide film on a silicon wafer was polished and evaluated in the same manner as in Example 1 except that the firing temperature was 1200 ° C.

【0048】ここで、複合酸化物粒子は、一次粒子の平
均粒子径は200nm、不純物の含有率は0.5%、粉
末の見掛密度は2.1g/cm3であった。さらに、調
整した研磨剤は、複合酸化物粒子の二次粒子の平均粒子
径は8.8μm、濃度1重量%、pHは7.5であっ
た。以上により、次の結果を得た。 ・研磨速度:145nm/分 ・スクラッチ:多数認められた。 ・ダスト:認められず。
The average primary particle diameter of the composite oxide particles was 200 nm, the content of impurities was 0.5%, and the apparent density of the powder was 2.1 g / cm 3 . Further, in the prepared abrasive, the average particle diameter of the secondary particles of the composite oxide particles was 8.8 μm, the concentration was 1% by weight, and the pH was 7.5. From the above, the following results were obtained. Polishing rate: 145 nm / min Scratch: Many were observed. -Dust: not found.

【0049】[0049]

【発明の効果】本発明によれば、二次粒子の平均粒子径
が5μm以下であるセリウムとジルコニウムの複合酸化
物粒子を水溶液中に分散させたスラリー液を研磨剤とし
て用いることから、CMP法による半導体の絶縁膜層の
研磨にあたり、研磨速度が顕著に向上し、同時にスクラ
ッチ及びダストを従来より大幅に低減することができ
る。
According to the present invention, since a slurry in which composite oxide particles of cerium and zirconium having an average secondary particle diameter of 5 μm or less are dispersed in an aqueous solution is used as an abrasive, the CMP method is used. In polishing the semiconductor insulating film layer by the method described above, the polishing rate is significantly improved, and at the same time, the amount of scratches and dust can be significantly reduced as compared with the conventional method.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】その二次粒子の平均粒子径が5μm以下で
あるセリウムとジルコニウムの複合酸化物粒子を水溶液
中に分散させたスラリー液よりなる研磨剤。
1. An abrasive comprising a slurry in which composite oxide particles of cerium and zirconium whose secondary particles have an average particle diameter of 5 μm or less are dispersed in an aqueous solution.
【請求項2】前記複合酸化物粒子が、その粉末の見掛密
度が1.5g/cm3以下である請求項1記載の研磨
剤。
2. The abrasive according to claim 1, wherein said composite oxide particles have an apparent density of powder of 1.5 g / cm 3 or less.
【請求項3】半導体製造工程において、絶縁膜層の研磨
に用いるものである請求項1又は2記載の研磨剤。
3. The abrasive according to claim 1, which is used for polishing an insulating film layer in a semiconductor manufacturing process.
【請求項4】シャロートレンチアイソレーションに用い
るものである請求項3記載の研磨剤。
4. An abrasive according to claim 3, which is used for shallow trench isolation.
【請求項5】前記複合酸化物粒子の一次粒子の平均粒子
径が10〜1000nmである請求項1〜4のいずれか
に記載の研磨剤。
5. The abrasive according to claim 1, wherein the primary particles of the composite oxide particles have an average particle size of 10 to 1000 nm.
【請求項6】前記複合酸化物粒子に含まれる酸化セリウ
ムの含有率が、全複合酸化物粒子100重量%に対し
て、25〜99.9重量%である請求項1〜5のいずれ
かに記載の研磨剤。
6. The method according to claim 1, wherein the content of cerium oxide contained in the composite oxide particles is 25 to 99.9% by weight based on 100% by weight of all the composite oxide particles. The abrasive according to the above.
【請求項7】前記複合酸化物粒子に含まれる不純物の含
有率が、全複合酸化物粒子100重量%に対して、1重
量%未満である請求項1〜6のいずれかに記載の研磨
剤。
7. The abrasive according to claim 1, wherein the content of impurities contained in the composite oxide particles is less than 1% by weight based on 100% by weight of all the composite oxide particles. .
【請求項8】前記スラリー液中に分散剤が添加されてな
る請求項1〜7のいずれかに記載の研磨剤。
8. The abrasive according to claim 1, wherein a dispersant is added to said slurry liquid.
【請求項9】pHが3〜11である請求項1〜8のいず
れかに記載の研磨剤。
9. The abrasive according to claim 1, wherein the pH is 3 to 11.
JP2000169007A 2000-06-06 2000-06-06 Polishing material Pending JP2001348563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000169007A JP2001348563A (en) 2000-06-06 2000-06-06 Polishing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000169007A JP2001348563A (en) 2000-06-06 2000-06-06 Polishing material

Publications (1)

Publication Number Publication Date
JP2001348563A true JP2001348563A (en) 2001-12-18

Family

ID=18671932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000169007A Pending JP2001348563A (en) 2000-06-06 2000-06-06 Polishing material

Country Status (1)

Country Link
JP (1) JP2001348563A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002067309A1 (en) * 2001-02-20 2002-08-29 Hitachi Chemical Co., Ltd. Polishing compound and method for polishing substrate
JP2008088325A (en) * 2006-10-03 2008-04-17 Mitsui Mining & Smelting Co Ltd Cerium oxide-based abrasive material
WO2008081943A1 (en) 2006-12-28 2008-07-10 Kao Corporation Polishing liquid composition
JP2009007543A (en) * 2006-12-28 2009-01-15 Kao Corp Polishing liquid composition
WO2015019877A1 (en) * 2013-08-09 2015-02-12 コニカミノルタ株式会社 Polishing material, polishing material slurry

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002067309A1 (en) * 2001-02-20 2002-08-29 Hitachi Chemical Co., Ltd. Polishing compound and method for polishing substrate
US6786945B2 (en) 2001-02-20 2004-09-07 Hitachi Chemical Co., Ltd. Polishing compound and method for polishing substrate
JP2008088325A (en) * 2006-10-03 2008-04-17 Mitsui Mining & Smelting Co Ltd Cerium oxide-based abrasive material
WO2008081943A1 (en) 2006-12-28 2008-07-10 Kao Corporation Polishing liquid composition
JP2009007543A (en) * 2006-12-28 2009-01-15 Kao Corp Polishing liquid composition
US8357311B2 (en) 2006-12-28 2013-01-22 Kao Corporation Polishing liquid composition
US8617994B2 (en) 2006-12-28 2013-12-31 Kao Corporation Polishing liquid composition
WO2015019877A1 (en) * 2013-08-09 2015-02-12 コニカミノルタ株式会社 Polishing material, polishing material slurry
JPWO2015019877A1 (en) * 2013-08-09 2017-03-02 コニカミノルタ株式会社 Abrasive and abrasive slurry

Similar Documents

Publication Publication Date Title
JP5444625B2 (en) CMP polishing liquid, substrate polishing method, and electronic component
WO2011071168A1 (en) Cmp polishing liquid, method for polishing substrate, and electronic component
JP5002175B2 (en) Polishing slurry and wafer recycling method
EP1056816B1 (en) Cerium oxide slurry for polishing, process for preparing the slurry, and process for polishing with the slurry
KR102394717B1 (en) Cmp polishing agent, method for manufacturing same, and method for polishing substrate
JP4972829B2 (en) CMP polishing agent and substrate polishing method
JP6243791B2 (en) CMP abrasive, method for producing the same, and substrate polishing method
JP2001351882A (en) Abrasive
JP2008182179A (en) Additives for abrasives, abrasives, method for polishing substrate and electronic component
JP5088452B2 (en) CMP polishing liquid, substrate polishing method, and electronic component
JP5516594B2 (en) CMP polishing liquid, and polishing method and semiconductor substrate manufacturing method using the same
JP2001348563A (en) Polishing material
JP2001351883A (en) Abrasive for semiconductor insulation film
JP2002097459A (en) Abrasive agent
JPH10106990A (en) Cerium oxide abrasive material and polishing method of substrate
JP2001348564A (en) Polishing material
JPH10172934A (en) Composition for polishing
WO2013175976A1 (en) Polishing agent composition for cmp and method for manufacturing a device wafer using said polishing agent composition for cmp
JP4666138B2 (en) Polishing composition containing aqueous zirconia sol
JP2000160136A (en) Polishing agent and polishing process using the same
JP2000160137A (en) Polishing agent and polishing process using the same
JP4604727B2 (en) Additive for CMP abrasives
JP2003209076A (en) Cmp abrasive and abrading method for substrate
JP2003017447A (en) Cmp abrasives and method for polishing substrate
JP4608925B2 (en) Additive for CMP abrasives