JP2008087182A - Transparent gas barrier film and its manufacturing method - Google Patents

Transparent gas barrier film and its manufacturing method Download PDF

Info

Publication number
JP2008087182A
JP2008087182A JP2006267314A JP2006267314A JP2008087182A JP 2008087182 A JP2008087182 A JP 2008087182A JP 2006267314 A JP2006267314 A JP 2006267314A JP 2006267314 A JP2006267314 A JP 2006267314A JP 2008087182 A JP2008087182 A JP 2008087182A
Authority
JP
Japan
Prior art keywords
silicon oxide
film
gas barrier
transparent
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006267314A
Other languages
Japanese (ja)
Other versions
JP4797919B2 (en
Inventor
Ryoji Ishii
良治 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2006267314A priority Critical patent/JP4797919B2/en
Publication of JP2008087182A publication Critical patent/JP2008087182A/en
Application granted granted Critical
Publication of JP4797919B2 publication Critical patent/JP4797919B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a transparent gas barrier film which is formed by providing a silicon oxide film on a transparent high-molecular film base material by using a vacuum vapor deposition method, not colored, transparent, has a gas barrier capacity and is equipped with the advantages of both aspects. <P>SOLUTION: The transparent gas barrier film is manufactured by evaporating a silicon oxide material under vacuum by a beam heating vapor deposition method to obtain silicon oxide particles 1, by introducing a reactive gas of steam and carbon dioxide in the vicinity of the silicon oxide material and providing the silicon oxide particles on one side or both sides of the transparent high-molecular film base material to form the silicon oxide film 1 on the transparent high-molecular film base material 1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、酸素および水蒸気を遮断する透明ガスバリア性フィルムに関する。特に食品、日用品、医薬品等の包装分野に用いられる透明ガスバリア性フィルム、あるいは非包装分野での酸素および水蒸気を遮断が必要な部材分野に用いられる透明ガスバリア性フィルムに関する。   The present invention relates to a transparent gas barrier film that blocks oxygen and water vapor. In particular, the present invention relates to a transparent gas barrier film used in the packaging field of foods, daily necessities, pharmaceuticals, etc., or a transparent gas barrier film used in a member field that needs to block oxygen and water vapor in a non-packaging field.

従来より、食品や日用品、医薬品の包装分野では内容物の変質を防止することが求められてきた。これら内容物の変質は、酸素や水蒸気などのガスが包装材料を透過して内容物と反応してしまう。よって、酸素や水蒸気などのガスを透過させない性質(ガスバリア性能)を備えていることが求められており、温度、湿度などに影響されないアルミニウムなどの金属箔やアルミニウム蒸着フイルムが用いられてきた。ところが、アルミニウムなどの金属箔やアルミニウム蒸着フイルムを用いた包装材料は、ガスバリア性能に優れるが、包装材料を透視して内容物を確認することができないだけではなく、使用後の廃棄の際は不燃物として処理しなければならない点や包装後の内容物などの検査の際に金属探知器が使用できない点などの欠点を有していた。同様に、包装用途ではなくとも酸素や水蒸気の進入で耐久性が劣化するようなエレクトロニクス部材等にもガスバリア性能が必要とさる。同時に可視光線の透過が求められるときは、金属箔やアルミニウム蒸着フィルムでは対応しきれない問題があった。   Conventionally, in the field of packaging of food, daily necessities and pharmaceuticals, it has been required to prevent the contents from being altered. In the alteration of the contents, gases such as oxygen and water vapor permeate the packaging material and react with the contents. Therefore, it is required to have a property (gas barrier performance) that does not allow gas such as oxygen and water vapor to pass through, and metal foils such as aluminum and aluminum vapor deposition films that are not affected by temperature, humidity, and the like have been used. However, packaging materials using metal foils such as aluminum and aluminum vapor deposition films are excellent in gas barrier performance, but not only can the contents not be seen through the packaging materials, but also nonflammable when discarded after use. There are drawbacks such as the fact that the metal detector cannot be used when inspecting the contents after packaging, etc. Similarly, gas barrier performance is required for an electronic member or the like whose durability deteriorates due to the ingress of oxygen or water vapor, even if it is not used for packaging. At the same time, when visible light transmission was required, there was a problem that metal foil and aluminum vapor deposition film could not cope.

そこで、これらの欠点を克服した包装用材料として、最近では酸化マグネシウム、酸化カルシウム、酸化アルミニウム、酸化珪素などの無機酸化物を透明な基材フイルム上に蒸着した透明ガスバリア性フィルムが上市されている。これらの透明ガスバリア性フィルムは透明性及び酸素、水蒸気等のガス遮断性を有していることが知られ、金属箔などでは得る事が出来ない透明性、ガスバリア性能の両方を有する包装材料として好適とされている。金属酸化物を蒸着した透明ガスバリア性フィルムの中で、酸化珪素を蒸着した透明ガスバリア性フィルムは、ガスバリア性能が優れているが、多少の着色が避けられないものであった。特に、真空蒸着法では成膜速度が速いがガスバリア性能を得るためには、透明性を犠牲にしなければ、十分なガスバリア性能が得られないという問題があった(特許文献1、2)。   Therefore, as a packaging material that overcomes these drawbacks, a transparent gas barrier film in which an inorganic oxide such as magnesium oxide, calcium oxide, aluminum oxide, or silicon oxide is deposited on a transparent base film has recently been put on the market. . These transparent gas barrier films are known to have transparency and gas barrier properties such as oxygen and water vapor, and are suitable as packaging materials having both transparency and gas barrier performance that cannot be obtained with metal foil or the like. It is said that. Among transparent gas barrier films deposited with metal oxides, transparent gas barrier films deposited with silicon oxide have excellent gas barrier performance, but some coloration is inevitable. In particular, the vacuum deposition method has a high film formation speed, but in order to obtain gas barrier performance, there is a problem that sufficient gas barrier performance cannot be obtained without sacrificing transparency (Patent Documents 1 and 2).

以下に公知文献を記す。
特公昭51−48511号公報 特開平6−136161号公報
The known literature is described below.
Japanese Patent Publication No. 51-48511 JP-A-6-136161

真空蒸着法を用いて透明高分子フィルム基材の上に酸化珪素膜を蒸着したフィルムで、着色せず透明であり、かつ、ガスバリア性能を有する、両面の利点を兼ね備えた透明ガスバリア性フィルムを得る。   A film obtained by vapor-depositing a silicon oxide film on a transparent polymer film substrate using a vacuum vapor deposition method, to obtain a transparent gas barrier film having both advantages of being transparent without being colored and having gas barrier performance. .

本発明は、この課題を解決するために、透明高分子フィルム基材の片面もしくは両面に、反応性ガスに少なくとも二酸化炭素を用いた蒸着により形成した酸化珪素膜を有し、前記酸化珪素膜の組成のSiOxの酸化度のxが1.8以上で2以下であり、前記酸化珪素膜の圧縮応力が70MPa以上で200MPa以下であることを特徴とする透明ガスバリア性フィルムである。   In order to solve this problem, the present invention has a silicon oxide film formed by vapor deposition using at least carbon dioxide as a reactive gas on one surface or both surfaces of a transparent polymer film substrate. The transparent gas barrier film is characterized in that the degree of oxidation of SiOx of the composition is 1.8 or more and 2 or less, and the compressive stress of the silicon oxide film is 70 MPa or more and 200 MPa or less.

本発明は、上記酸化珪素膜の最表面の炭素濃度が前記酸化珪素膜の内部の炭素濃度の3倍以上6倍以下であることを特徴とする上記の透明ガスバリア性フィルムである。   The present invention is the above transparent gas barrier film, wherein the carbon concentration on the outermost surface of the silicon oxide film is 3 to 6 times the carbon concentration inside the silicon oxide film.

本発明は、減圧下で酸化珪素材料をビーム加熱蒸着法により蒸発させることで酸化珪素粒子を得、かつ、前記酸化珪素材料の近傍に水蒸気および二酸化炭素の反応性ガスを導入し、前記酸化珪素粒子を透明高分子フィルム基材の片面もしくは両面に蒸着することで前記透明高分子フィルム基材上に酸化珪素膜を形成することを特徴とする透明ガスバリア性フィルムの製造方法である。   The present invention provides silicon oxide particles by evaporating a silicon oxide material by a beam heating vapor deposition method under reduced pressure, and introducing a reactive gas of water vapor and carbon dioxide in the vicinity of the silicon oxide material, A method for producing a transparent gas barrier film, comprising forming a silicon oxide film on the transparent polymer film substrate by depositing particles on one or both surfaces of the transparent polymer film substrate.

透明性を損なう事もなく、酸素および水蒸気の遮断性が高い透明ガスバリア性フィルムが得られる効果がある。さらに、真空蒸着法を用いることで他のスパッタリングや化学的気相堆積法(CVD法)に比べ成膜速度が高いため、高分子フィルムにおいて巻取真空成膜の生産性にも優れた透明ガスバリア性フィルムが得られる効果がある。   There is an effect that a transparent gas barrier film having a high barrier property against oxygen and water vapor can be obtained without impairing transparency. In addition, the film deposition rate is higher than other sputtering and chemical vapor deposition methods (CVD methods) by using the vacuum evaporation method, so the transparent gas barrier is excellent in the productivity of winding vacuum film formation for polymer films. Effect is obtained.

以下、本発明を図1を参照して詳細に説明する。図1は本発明の透明ガスバリア性フィルムの断面図を示す。透明ガスバリア性フィルムは、透明高分子フィルム基材2の上に酸化珪素膜1を、真空成膜によって作成することがガスバリア性能や均一性の観点から好ましい。成膜手段は、真空蒸着法、スパッタリング法、化学的気相成長法(CVD法)などの公知の方法で作成することができるが、真空蒸着方式のうち、電子ビームやレーザービーム等による酸化珪素材料のビーム加熱蒸着法が特に成膜速度や酸化珪素材料への昇温降温が短時間で行える点で有効である。また、本発明の透明ガスバリア性フィルムは、酸化珪素膜1の上に更に高分子膜を形成して用いることもできる。   Hereinafter, the present invention will be described in detail with reference to FIG. FIG. 1 shows a cross-sectional view of the transparent gas barrier film of the present invention. In the transparent gas barrier film, it is preferable from the viewpoint of gas barrier performance and uniformity that the silicon oxide film 1 is formed on the transparent polymer film substrate 2 by vacuum film formation. The film forming means can be formed by a known method such as a vacuum evaporation method, a sputtering method, a chemical vapor deposition method (CVD method), etc. Among the vacuum evaporation methods, silicon oxide by an electron beam, a laser beam or the like is used. The beam heating vapor deposition method of the material is particularly effective in that the film formation rate and the temperature increase / decrease of the silicon oxide material can be performed in a short time. Further, the transparent gas barrier film of the present invention can be used by further forming a polymer film on the silicon oxide film 1.

本発明は、減圧下で酸化珪素材料をビーム加熱蒸着法で蒸発させて、透明高分子フィルム基材2に蒸着して酸化珪素膜1を形成する。その酸化珪素膜1は、組成がSiOxで表わされるアモルファス構造であり、酸化度のxを大きくすると組成がSiO2に近づき透明性が増加する。しかしながら、xを大きくし過ぎて酸化珪素膜1をSiO2の組成にしてしまうとガスバリア性能が低下してしまう。そこで、内部圧縮応力があり200MPa以下70MPa以上の圧縮応力がある酸化珪素膜1を作成することで、ガスバリア性能を十分に保ちながら高い透明性を実現する本発明に至った。 In the present invention, a silicon oxide material is evaporated by a beam heating vapor deposition method under reduced pressure, and vapor-deposited on a transparent polymer film substrate 2 to form a silicon oxide film 1. The silicon oxide film 1 has an amorphous structure whose composition is represented by SiOx, and when the degree of oxidation x is increased, the composition approaches SiO 2 and the transparency increases. However, if x is increased too much and the silicon oxide film 1 has a composition of SiO 2 , the gas barrier performance deteriorates. Therefore, the present invention achieves high transparency while maintaining sufficient gas barrier performance by producing the silicon oxide film 1 having internal compressive stress and compressive stress of 200 MPa or less and 70 MPa or more.

酸化珪素膜1の内部応力には、引張り応力と圧縮応力がある。透明高分子フィルム基材2が下側、酸化珪素膜1が上側にある例を示すと、通常引張り応力は「∪」のように酸化珪素膜1を内側にする力が働き、圧縮応力は「∩」のように酸化珪素膜1を外側にする力が働く。つまり酸化珪素膜1が圧縮する方向に歪んだ力が常に加わっている。すなわち圧縮応力の場合は、酸化珪素膜1の一部にガスを透過するような欠陥を含んでいても、欠陥を塞ぐような力が内部で加わっておりガスバリア性能が保てる。   The internal stress of the silicon oxide film 1 includes tensile stress and compressive stress. In the example in which the transparent polymer film substrate 2 is on the lower side and the silicon oxide film 1 is on the upper side, the tensile stress is normally exerted by a force that causes the silicon oxide film 1 to be inward as “∪”, and the compressive stress is “ A force to make the silicon oxide film 1 outward acts as shown by “∩”. That is, a force distorted in the direction in which the silicon oxide film 1 is compressed is always applied. That is, in the case of compressive stress, even if a defect that allows gas to permeate is included in part of the silicon oxide film 1, a force that closes the defect is applied internally, and gas barrier performance can be maintained.

本発明における酸化珪素膜1の膜厚は、5nm〜300nmの範囲内であることが望ましく、その値は適宜選択される。ただし、酸化珪素膜1の膜厚が5nm以下であると透明高分子フィルム基材2の全面に酸化珪素膜1が形成されないことがあり、バリア材としての機能を十分に果たすことができない場合がある。また膜厚を300nm以上にした場合は酸化珪素膜1にフレキシビリティを保持させることができず、成膜後に折り曲げ、引っ張りなどの外的要因により、酸化珪素膜1に亀裂を生じるおそれがあるためである。   The thickness of the silicon oxide film 1 in the present invention is preferably in the range of 5 nm to 300 nm, and the value is appropriately selected. However, when the film thickness of the silicon oxide film 1 is 5 nm or less, the silicon oxide film 1 may not be formed on the entire surface of the transparent polymer film substrate 2 and may not function sufficiently as a barrier material. is there. In addition, when the film thickness is 300 nm or more, the silicon oxide film 1 cannot maintain flexibility, and the silicon oxide film 1 may be cracked due to external factors such as bending and pulling after the film formation. It is.

透明高分子フィルム基材2として用いる高分子透明プラスチック基材は、特に限定されるものではなく公知のものを使用することができる。例えばポリオレフィン系(ポリエチ
レン、ポリプロピレン等)、ポリエステル系(ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリアミド系(ナイロン−6、ナイロン−66等)、ポリスチレン、エチレンビニルアルコール、ポリ塩化ビニル、ポリイミド、ポリビニルアルコール、ポリカーボネイト、ポリエーテルスルホン、アクリル、セルロース系(トリアセチルセルロース、ジアセチルセルロース等)などが挙げられるが特に限定されない。また、透明プラスチック基材を用いた場合、ロール・トゥ・ロールによって大量生産に適するため、好ましい。実際的には、用途や要求物性により適宜選定をすることが望ましく、限定をする例ではないが医療用品、薬品、食品等の包装には、ポリエチレンテレフタレート、ポリプロピレン、ナイロンなどがコスト的に用いやすく、電子部材、光学部材等の極端に水分を嫌う内容物を保護する包装には、ポリエチレンナフタレート、ポリイミド類、ポリエーテルスルホンなどのそれ自体も高いガスバリア性能を有する基材を用いることが望ましい。また、透明高分子フィルム基材2の厚みは限定するものではないが、用途に応じて、6μmから200μm程度が使用しやすい。更に、透明高分子フィルム基材2は、高分子透明プラスチック基材の上に別の高分子膜を形成した多層基材を用いても良い。
The polymer transparent plastic substrate used as the transparent polymer film substrate 2 is not particularly limited, and a known one can be used. For example, polyolefin (polyethylene, polypropylene, etc.), polyester (polyethylene terephthalate, polyethylene naphthalate, etc.), polyamide (nylon-6, nylon-66, etc.), polystyrene, ethylene vinyl alcohol, polyvinyl chloride, polyimide, polyvinyl alcohol, Polycarbonate, polyethersulfone, acrylic, cellulose-based (triacetyl cellulose, diacetyl cellulose, etc.) and the like are exemplified, but not particularly limited. In addition, the use of a transparent plastic substrate is preferable because it is suitable for mass production by roll-to-roll. In practice, it is desirable to make appropriate selections depending on the application and required physical properties. This is not a limited example, but polyethylene terephthalate, polypropylene, nylon, etc. are easy to use for packaging medical supplies, drugs, foods, etc. In addition, it is desirable to use a base material having high gas barrier performance such as polyethylene naphthalate, polyimides, and polyethersulfone for packaging that protects extremely moisture-sensitive contents such as electronic members and optical members. Moreover, although the thickness of the transparent polymer film base material 2 is not limited, about 6 micrometers to 200 micrometers is easy to use according to a use. Further, the transparent polymer film substrate 2 may be a multilayer substrate in which another polymer film is formed on a polymer transparent plastic substrate.

内部応力を含んだ酸化珪素膜1は透明ガスバリア性フィルムをカールすることがある。そのカールの大きさは、透明ガスバリア性フィルムのフィルム厚によって異なるが、同じ内部応力を含む膜を仮定した場合に6、12μmのような薄い透明ガスバリア性フィルムではカールが大きくなり、100μm以上の厚さの透明ガスバリア性フィルムはカールが小さくなる傾向がある。カールが大きいとハンドリングの点で煩雑になる欠点があるが、透明ガスバリア性フィルムを単体で用いることは少なく他のフィルム等に貼り合わせて使用することが多いため、接着などで問題が生じなければ用いることができる。   The silicon oxide film 1 containing internal stress may curl the transparent gas barrier film. The size of the curl varies depending on the film thickness of the transparent gas barrier film. However, when a film containing the same internal stress is assumed, the curl becomes large in a thin transparent gas barrier film such as 6, 12 μm, and the thickness is 100 μm or more. The transparent gas barrier film has a tendency to reduce curl. If the curl is large, there is a disadvantage that it becomes complicated in terms of handling, but since a transparent gas barrier film is rarely used alone, it is often used by sticking it to other films etc., so there is no problem with adhesion etc. Can be used.

酸化珪素膜1の圧縮応力の調整は、反応性ガスを用いることで調整する。特に、水蒸気と二酸化炭素を導入することで蒸着中の気相中に発生した酸素を酸化珪素膜1の珪素と反応して酸化珪素膜1を形成する。これにより、圧縮応力が増加し、着色が無く、かつ、高いガスバリア性能を備えたフィルムを得ることができた。なお、反応性ガスとして水蒸気と二酸化炭素を導入する位置は、酸化珪素材料の近傍が好ましく、ビーム加熱蒸着法で酸化珪素材料を蒸発した得た酸化珪素の粒子が透明高分子フィルム基材2へ付着する軌跡上に設置することがより好ましい。反応性ガスの導入方法は、パイプ方式やシャワーヘッド方式などの公知の方法を用いることができる。   The compression stress of the silicon oxide film 1 is adjusted by using a reactive gas. In particular, by introducing water vapor and carbon dioxide, oxygen generated in the vapor phase during vapor deposition reacts with silicon in the silicon oxide film 1 to form the silicon oxide film 1. Thereby, the compressive stress increased, there was no coloring, and the film provided with the high gas barrier performance was able to be obtained. The position where water vapor and carbon dioxide are introduced as the reactive gas is preferably in the vicinity of the silicon oxide material, and the silicon oxide particles obtained by evaporating the silicon oxide material by the beam heating vapor deposition method are applied to the transparent polymer film substrate 2. It is more preferable to install on a sticking locus. As a method for introducing the reactive gas, a known method such as a pipe method or a shower head method can be used.

着色が無く高いガスバリア性能を備えたフィルムが得られた理由は以下のように考えられる。高いガスバリア性能を備えたフィルムでは、圧縮応力が70MPa以上あった。この圧縮応力は酸化珪素膜1を広げる方向に力が働き、それにより透明ガスバリア性フィルムが曲げられることにより観測した。この圧縮応力により、酸化珪素膜1中にガスを通過させる欠陥があっても、圧縮応力がその欠陥を塞ぐ作用が働くため高いガスバリア性能が得られると考えられる。また、高いガスバリア性能を備えたフィルムでは、酸化珪素膜1の最表面の炭素濃度が膜内の炭素濃度の3倍以上高かった。酸化珪素膜1の最表面は炭素濃度が高いことによりSiOC成分となり最表面の応力は少なくなる。一方、酸化珪素膜1内部での圧縮応力は依然強いことにより、内部にだけ圧縮応力が集中することになり、欠陥にかかる圧縮応力がより大きく、塞ぐ作用が強くなると考えられる。酸化珪素膜1の炭素濃度とガスバリア性能との関係は、最表面の炭素濃度が膜内部の炭素濃度よりも2倍多くなると効果が現れはじめ、おおよそ3倍になるとガスバリア性能が良好となった。少なくとも炭素濃度が3倍以上6倍以下の範囲内では酸化珪素膜1のガスバリア性能が良好であった。   The reason why a film having no gas coloring and high gas barrier performance was obtained is considered as follows. The film having high gas barrier performance had a compressive stress of 70 MPa or more. This compressive stress was observed by a force acting in the direction of expanding the silicon oxide film 1, thereby bending the transparent gas barrier film. It is considered that even if there is a defect that allows gas to pass through the silicon oxide film 1 due to this compressive stress, a high gas barrier performance can be obtained because the compressive stress acts to block the defect. In the film having high gas barrier performance, the carbon concentration on the outermost surface of the silicon oxide film 1 was three times or more higher than the carbon concentration in the film. The outermost surface of the silicon oxide film 1 becomes a SiOC component due to the high carbon concentration, and the stress on the outermost surface is reduced. On the other hand, since the compressive stress in the silicon oxide film 1 is still strong, the compressive stress is concentrated only in the inside, and it is considered that the compressive stress applied to the defect is larger and the action of closing is stronger. Regarding the relationship between the carbon concentration of the silicon oxide film 1 and the gas barrier performance, the effect began to appear when the carbon concentration on the outermost surface was twice as high as the carbon concentration inside the film, and the gas barrier performance was improved when the carbon concentration was approximately three times. The gas barrier performance of the silicon oxide film 1 was good at least when the carbon concentration was in the range of 3 to 6 times.

二酸化炭素の反応性ガスにより酸化珪素膜1の圧縮応力が増した。それと同時に、水蒸気の反応性ガスにより、Siと水酸化物とが結合され、SiOxの酸素欠損部分に反応しSiOxの酸化度のxを増すと考えられる。酸化珪素膜1において、水酸化物や水素結合によりSiOx
のxが1.8を超えた組成において着色が無く透明性も高くガスバリア性能の良好な膜となった。ただし、酸化珪素膜1に形成された膜の硬度が高過ぎると、圧縮応力が強い場合に膜が破壊されクラックの原因となり、逆にガスバリア性能は劣ってしまう恐れがある。ここで、蒸着膜では比較的膜の硬度が低いため、圧縮応力が強くてもクラックが発生するほどには至らずガスバリア性能が上がるものと考えられる。
The compressive stress of the silicon oxide film 1 was increased by the reactive gas of carbon dioxide. At the same time, it is thought that Si and hydroxide are combined by the reactive gas of water vapor and react with the oxygen deficient part of SiOx to increase the degree of oxidation of SiOx. In the silicon oxide film 1, SiOx is generated by hydroxide or hydrogen bond.
In the composition where x exceeded 1.8, the film was not colored and had high transparency and good gas barrier performance. However, if the hardness of the film formed on the silicon oxide film 1 is too high, when the compressive stress is strong, the film may be broken and cause cracks, and the gas barrier performance may be deteriorated. Here, since the deposited film has a relatively low hardness, it is considered that even if the compressive stress is strong, cracks are not generated and the gas barrier performance is improved.

酸化珪素膜1の圧縮応力の測定方法は、公知のStoneyの式を用いて圧縮応力σを算出したものと、シリコンウェハ上にも同様に成膜し、シリコンウェハの曲率半径をレーザーにより測定した方法の二通り行った。酸化珪素膜1が成膜された透明高分子フィルム基材2を、長さLを40mm、幅wを3mmの短冊状にした。透明高分子フィルム基材2が延伸フィルムの場合は全て同じ延伸方向で長辺・短辺を合わせた。このような短冊状のサンプルは片方を固定し、もう片方の変位量rを実測した。短冊状の透明高分子フィルム基材2のStoneyの式を下記の式1に示す。ここで、Esは透明高分子フィルム基材2のヤング率、νsは透明高分子フィルム基材2のポワソン比、tsは透明高分子フィルム基材2の厚さ、tfは酸化珪素膜1の厚さ、Rは透明高分子フィルム基材2の反りの曲率半径である。これらの関係から圧縮応力σを算出した。 The method for measuring the compressive stress of the silicon oxide film 1 was the same as that for calculating the compressive stress σ using the well-known Stoney equation, and the silicon wafer was similarly formed on the silicon wafer, and the radius of curvature of the silicon wafer was measured with a laser. The method went in two ways. The transparent polymer film substrate 2 on which the silicon oxide film 1 was formed was formed into a strip shape having a length L of 40 mm and a width w of 3 mm. When the transparent polymer film base material 2 was a stretched film, the long side and the short side were all combined in the same stretching direction. One of these strip-shaped samples was fixed, and the displacement r of the other was measured. The Stoney formula of the strip-shaped transparent polymer film substrate 2 is shown in the following formula 1. Here, Es is the Young's modulus of the transparent polymer film substrate 2, [nu s is Poisson's ratio of the transparent polymer film substrate 2, t s is a transparent polymeric film substrate 2 having a thickness of, t f is a silicon oxide film The thickness of 1 and R is the radius of curvature of the warp of the transparent polymer film substrate 2. The compressive stress σ was calculated from these relationships.

ここで、R=r/L2である。 Here, R = r / L 2 .

<実施例1>
電子ビーム加熱方式真空蒸着装置で、開閉可能なシャッターを有する蒸発装置の内部で、電子銃から放出する電子ビームを酸化珪素材料に照射し、酸化珪素材料を蒸発させた。そして、シャッターを開くことにより、この真空蒸着装置内に設置した透明高分子フィルム基材2に、蒸発した酸化珪素の粒子を吹付け酸化珪素膜1を成膜した。透明高分子フィルム基材2としては、PET(ポリエチレンテレフタレート、東レ社製T60)の25μm厚のフィルムを用いた。蒸発装置の電子銃から放出する電子ビームの加速電圧を40kV、電子ビームの電流を0.25Aとして酸化珪素材料(SiO、キヤノンオプトロン社製)を加熱した。そして、酸化珪素の蒸発粒子が透明高分子フィルム基材2へ付着する軌跡上にパイプ方式で水蒸気を1sccm、二酸化炭素を3sccm導入した。酸化珪素材料の蒸発が始まった時点で蒸発装置のシャッターを開け、透明高分子フィルム基材2の上に酸化珪素膜1が250nm積層された透明ガスバリア性フィルムが形成されるように成膜時間を調整した。圧力は0.043Paであった。同時に、シリコンウェハ(直径76mm)上にも酸化珪素膜1を成膜した。
<Example 1>
In an electron beam heating vacuum deposition apparatus, a silicon oxide material was irradiated with an electron beam emitted from an electron gun inside an evaporation apparatus having an openable / closable shutter to evaporate the silicon oxide material. Then, by opening the shutter, evaporated silicon oxide particles were sprayed onto the transparent polymer film substrate 2 installed in the vacuum deposition apparatus to form a silicon oxide film 1. As the transparent polymer film substrate 2, a 25 μm thick film of PET (polyethylene terephthalate, T60 manufactured by Toray Industries, Inc.) was used. A silicon oxide material (SiO, manufactured by Canon Optron) was heated with an acceleration voltage of an electron beam emitted from an electron gun of an evaporation apparatus being 40 kV and an electron beam current being 0.25 A. Then, 1 sccm of water vapor and 3 sccm of carbon dioxide were introduced by pipe method on the locus where the evaporated particles of silicon oxide adhered to the transparent polymer film substrate 2. When the evaporation of the silicon oxide material begins, the shutter of the evaporation device is opened, and the film formation time is set so that a transparent gas barrier film in which the silicon oxide film 1 is laminated on the transparent polymer film substrate 2 is formed to a thickness of 250 nm. It was adjusted. The pressure was 0.043 Pa. At the same time, a silicon oxide film 1 was formed on a silicon wafer (diameter 76 mm).

<実施例2>
実施例1と同様の透明高分子フィルム基材2と酸化珪素材料の加熱条件で、蒸発装置内に水蒸気を3sccm、二酸化炭素を5sccm導入した。透明高分子フィルム基材2の上に酸化珪素膜1が50nm積層された透明ガスバリア性フィルムが形成されるように成膜時間を調整した。圧力は0.043Paであった。同時に、シリコンウェハ(直径76mm)上にも酸化珪素膜1を成膜した。
<Example 2>
Under the same heating conditions for the transparent polymer film substrate 2 and the silicon oxide material as in Example 1, 3 sccm of water vapor and 5 sccm of carbon dioxide were introduced into the evaporator. The film formation time was adjusted so that a transparent gas barrier film in which the silicon oxide film 1 was laminated to 50 nm on the transparent polymer film substrate 2 was formed. The pressure was 0.043 Pa. At the same time, a silicon oxide film 1 was formed on a silicon wafer (diameter 76 mm).

<実施例3>
実施例1と同様の透明高分子フィルム基材2と酸化珪素材料の加熱条件で、酸化珪素の蒸発粒子が透明高分子フィルム基材2へ付着する軌跡上にパイプ方式で水蒸気を10sccm、二酸化炭素を2sccm導入した。酸化珪素材料の蒸発が始まった時点で蒸発装置のシャッターを開け、酸化珪素膜1が50nm積層された透明ガスバリア性フィルムが形成されるように成膜時間を調整した。圧力は0.049Paであった。同時に、シリコンウェハ(直径76mm)上にも酸化珪素膜1を成膜した。
<Example 3>
Under the same heating conditions of the transparent polymer film substrate 2 and silicon oxide material as in Example 1, the steam is 10 sccm and carbon dioxide in a pipe system on the locus where the evaporated particles of silicon oxide adhere to the transparent polymer film substrate 2. 2 sccm was introduced. When the evaporation of the silicon oxide material began, the shutter of the evaporation device was opened, and the film formation time was adjusted so that a transparent gas barrier film in which the silicon oxide film 1 was laminated to 50 nm was formed. The pressure was 0.049 Pa. At the same time, a silicon oxide film 1 was formed on a silicon wafer (diameter 76 mm).

<比較例1>
実施例1と同様の透明高分子フィルム基材2と酸化珪素材料の加熱条件で、蒸発装置内に水蒸気を3sccm導入し、二酸化炭素を入れずに成膜をした。膜厚は250nmとなるように成膜時間を調整した。圧力は0.031Paであった。同時に、シリコンウェハ(直径76mm)上にも酸化珪素膜1を成膜した。
<Comparative Example 1>
Under the same heating conditions of the transparent polymer film substrate 2 and the silicon oxide material as in Example 1, 3 sccm of water vapor was introduced into the evaporator, and the film was formed without carbon dioxide. The film formation time was adjusted so that the film thickness was 250 nm. The pressure was 0.031 Pa. At the same time, a silicon oxide film 1 was formed on a silicon wafer (diameter 76 mm).

<比較例2>
実施例1と同様の透明高分子フィルム基材2と酸化珪素材料、加熱条件で、蒸発装置内に水蒸気を入れずに、二酸化炭素を5sccm導入し、透明高分子フィルム基材2の上に成膜をした。酸化珪素膜1が膜厚50nm積層された透明ガスバリア性フィルムが形成されるように成膜時間を調整した。圧力は0.033Paであった。同時に、シリコンウェハ(直径76mm)上にも酸化珪素膜1を成膜した。
<Comparative example 2>
In the same manner as in Example 1, the transparent polymer film substrate 2 and the silicon oxide material were heated, and 5 sccm of carbon dioxide was introduced into the evaporator without introducing water vapor into the evaporator, and the film was formed on the transparent polymer film substrate 2. Made a membrane. The film formation time was adjusted so that a transparent gas barrier film in which the silicon oxide film 1 was laminated to a thickness of 50 nm was formed. The pressure was 0.033 Pa. At the same time, a silicon oxide film 1 was formed on a silicon wafer (diameter 76 mm).

<比較例3>
実施例1と同様の透明高分子フィルム基材2と酸化珪素材料の加熱条件で、蒸発装置内に水蒸気も二酸化炭素も入れず、透明高分子フィルム基材2の上に成膜をした。圧力は0.028Paであった。酸化珪素膜1の膜厚が50nm積層された透明ガスバリア性フィルムが形成されるように成膜時間を調整した。同時に、シリコンウェハ(直径76mm)上にも酸化珪素膜1を成膜した。
<Comparative Example 3>
Under the same heating conditions of the transparent polymer film substrate 2 and the silicon oxide material as those in Example 1, water vapor and carbon dioxide were not put in the evaporator, and a film was formed on the transparent polymer film substrate 2. The pressure was 0.028 Pa. The film formation time was adjusted so that a transparent gas barrier film in which the silicon oxide film 1 had a thickness of 50 nm was formed. At the same time, a silicon oxide film 1 was formed on a silicon wafer (diameter 76 mm).

以下に実施例、比較例で作成した透明ガスバリア性フィルムとシリコンウェハの酸化珪素膜1の評価方法を示す。   The evaluation methods of the transparent gas barrier film prepared in Examples and Comparative Examples and the silicon oxide film 1 of the silicon wafer are shown below.

○透明ガスバリア性フィルムの評価方法
1)光線透過率・・・分光光度計(島津製作所社製 UV−3100)を用いて、波長400nmの光の透過率を測定
2)水蒸気透過率・・・モダンコントロール社製(MOCON PERMATRAN W3/33)を用いて、40℃−90%RH雰囲気下で測定した。
3)元素組成比・・・ESCA(島津製作所社製 ESCA−3200)により、SiとOの元素組成比を測定。酸化珪素膜1表面とエッチング(120sec)により酸化珪素膜1内部の炭素成分濃度を測定。
4)圧縮応力・・・基材の反り量をマイクロメータで実測し、Es(基材のヤング率):4GPa、νs(基材のポワソン比):0.3、tsは基材の厚さ、tfは6)によって得られた酸化珪素膜1の膜厚を代入して算出。
○ Evaluation method for transparent gas barrier film
1) Light transmittance: The transmittance of light with a wavelength of 400 nm is measured using a spectrophotometer (Shimadzu Corporation UV-3100).
2) Water vapor transmission rate: Measured in a 40 ° C.-90% RH atmosphere using a modern control (MOCON PERMATRAN W3 / 33).
3) Element composition ratio: The element composition ratio of Si and O was measured by ESCA (ESCA-3200, manufactured by Shimadzu Corporation). The carbon component concentration in the silicon oxide film 1 is measured by etching the surface of the silicon oxide film 1 and etching (120 sec).
4) Compressive stress: The amount of warpage of the base material was measured with a micrometer, Es (Young's modulus of the base material): 4 GPa, ν s (Poisson's ratio of the base material): 0.3, t s The thickness and t f are calculated by substituting the thickness of the silicon oxide film 1 obtained in 6).

○ シリコンウェハの酸化珪素膜1の評価方法
5)酸化珪素膜の圧縮応力・・・薄膜応力測定装置(Tensor社製、FLX2320)を用いて、6)によって得られた酸化珪素膜1の膜厚を代入し測定
6)酸化珪素膜の膜厚・・・X線反射法によって測定(リガク社製、ATX-G)
表1、表2に評価した結果を示す。
○ Evaluation method of silicon oxide film 1 on a silicon wafer
5) Compressive stress of silicon oxide film: Measured by substituting the film thickness of silicon oxide film 1 obtained in 6) using a thin film stress measuring device (Tensor, FLX2320).
6) Thickness of silicon oxide film: Measured by X-ray reflection method (Rigaku, ATX-G)
Tables 1 and 2 show the evaluation results.

表1から、実施例1〜3までは、酸化珪素膜1の圧縮応力が200MPa以下70MPa以上、かつ透明ガスバリア性フィルムの光線透過率が84%以上あった。そして、透明ガスバリア性フィルムは、SiOxのxが1.8を超えるものであっても水蒸気透過率が1.3g/m2-day以下であり十分なガスバリア性能を有した。一方、比較例1〜3いずれも、水蒸気透過率が8g/m2-day以上で大きく、透明ガスバリア性フィルムのガスバリア性能は不十分だ
った。水蒸気を導入しなかった場合を実験した比較例2及び3では、酸化珪素膜1の組成のSiOxの酸化度を表わすxの値が1.8未満であり、酸化度が悪かったが、この場合のガスバリア性能は悪かった。水蒸気を導入し二酸化炭素を導入しない場合を実験した比較例1では、酸化度xの値は1.8以上になったが、酸化珪素膜1の圧縮応力が70MPa未満であり、圧縮応力が不十分であり、この場合のガスバリア性能は悪かった。
From Table 1, in Examples 1 to 3, the compressive stress of the silicon oxide film 1 was 200 MPa or less and 70 MPa or more, and the light transmittance of the transparent gas barrier film was 84% or more. The transparent gas barrier film had a sufficient gas barrier performance with a water vapor transmission rate of 1.3 g / m 2 -day or less even when x of SiOx exceeded 1.8. On the other hand, in all of Comparative Examples 1 to 3, the water vapor permeability was large at 8 g / m 2 -day or more, and the gas barrier performance of the transparent gas barrier film was insufficient. In Comparative Examples 2 and 3 in which the case where water vapor was not introduced was tested, the value of x representing the degree of oxidation of SiOx in the composition of the silicon oxide film 1 was less than 1.8 and the degree of oxidation was poor. The gas barrier performance of was poor. In Comparative Example 1 in which steam was introduced and carbon dioxide was not introduced, the value of the oxidation degree x was 1.8 or more, but the compressive stress of the silicon oxide film 1 was less than 70 MPa, and the compressive stress was not high. The gas barrier performance in this case was poor.

比較例1では、酸化珪素膜1の組成のSiOxの酸化度xの値が1.8以上あったが、圧縮応力が小さく70MPaに達しないため、ガスバリア性能が悪くなったと考える。酸化珪素膜1の圧縮応力を増すためには二酸化炭素の導入が必要であった。また、実施例1から3まで水蒸気濃度を増すと圧縮応力は低下するが、圧縮応力が70MPa以上あればガスバリア性能は十分あった。比較例2では酸化珪素膜1の圧縮応力が200MPa以上あったが、酸化度xの値が1.8未満だったのでガスバリア性能が悪かったと考える。比較例3では、透明ガスバリア性フィルムの光線透過率が低く黄色化した。表2から、実施例1〜3が比較例1〜3と特に異なる点は、実施例1〜3では、酸化珪素膜1の最表面の炭素濃度が酸化珪素膜1の内部の炭素濃度の6倍以下で3倍以上あることだった。最表面の炭素濃と内部の炭素濃度の3倍以上の違いが、良いガスバリア性能を与える酸化珪素膜1の特徴であった。   In Comparative Example 1, the value of the oxidation degree x of SiOx in the composition of the silicon oxide film 1 was 1.8 or more. However, since the compressive stress is small and does not reach 70 MPa, it is considered that the gas barrier performance is deteriorated. In order to increase the compressive stress of the silicon oxide film 1, it was necessary to introduce carbon dioxide. Further, when the water vapor concentration was increased from Examples 1 to 3, the compressive stress decreased, but if the compressive stress was 70 MPa or more, the gas barrier performance was sufficient. In Comparative Example 2, the compressive stress of the silicon oxide film 1 was 200 MPa or more, but since the value of the oxidation degree x was less than 1.8, it is considered that the gas barrier performance was poor. In Comparative Example 3, the light transmittance of the transparent gas barrier film was low and yellowed. From Table 2, Examples 1 to 3 are particularly different from Comparative Examples 1 to 3 in that, in Examples 1 to 3, the carbon concentration on the outermost surface of the silicon oxide film 1 is 6% of the carbon concentration inside the silicon oxide film 1. It was less than twice and more than three times. The difference of three times or more between the carbon concentration on the outermost surface and the carbon concentration on the inner surface is a feature of the silicon oxide film 1 that gives good gas barrier performance.

生産性も高く、安価に透明かつ高いガスバリア性能を持つ透明ガスバリア性フィルムを提供できることで、食品、日用品、医薬品等の包装分野あるいは非包装分野での酸素および水蒸気を遮断が必要な部材分野に広く適応でき、透明でありながらも保存性や耐久性を大きく向上できる。   The ability to provide transparent gas barrier films that are highly productive, transparent and have high gas barrier performance, and can be widely used in the field of components that need to block oxygen and water vapor in the packaging and non-packaging fields of food, daily necessities, pharmaceuticals, etc. It is adaptable and can improve storage stability and durability while being transparent.

本発明の透明ガスバリア性フィルムの断面図である。It is sectional drawing of the transparent gas barrier film of this invention.

符号の説明Explanation of symbols

1・・・酸化珪素膜
2・・・透明高分子フィルム基材
DESCRIPTION OF SYMBOLS 1 ... Silicon oxide film 2 ... Transparent polymer film base material

Claims (3)

透明高分子フィルム基材の片面もしくは両面に、反応性ガスに少なくとも二酸化炭素を用いた蒸着により形成した酸化珪素膜を有し、前記酸化珪素膜の組成のSiOxの酸化度のxが1.8以上で2以下であり、前記酸化珪素膜の圧縮応力が70MPa以上で200MPa以下であることを特徴とする透明ガスバリア性フィルム。   A transparent polymer film base material has a silicon oxide film formed by vapor deposition using at least carbon dioxide as a reactive gas on one surface or both surfaces of the transparent polymer film substrate, and the oxidation degree x of SiOx in the composition of the silicon oxide film is 1.8. The transparent gas barrier film according to claim 1, which has a compressive stress of 70 MPa or more and 200 MPa or less. 前記酸化珪素膜の最表面の炭素濃度が前記酸化珪素膜の内部の炭素濃度の3倍以上6倍以下であることを特徴とする請求項1記載の透明ガスバリア性フィルム。   2. The transparent gas barrier film according to claim 1, wherein the carbon concentration of the outermost surface of the silicon oxide film is 3 to 6 times the carbon concentration inside the silicon oxide film. 減圧下で酸化珪素材料をビーム加熱蒸着法により蒸発させることで酸化珪素粒子を得、かつ、前記酸化珪素材料の近傍に水蒸気および二酸化炭素の反応性ガスを導入し、前記酸化珪素粒子を透明高分子フィルム基材の片面もしくは両面に蒸着することで前記透明高分子フィルム基材上に酸化珪素膜を形成することを特徴とする透明ガスバリア性フィルムの製造方法。   Silicon oxide particles are evaporated by a beam heating vapor deposition method under reduced pressure to obtain silicon oxide particles, and a reactive gas such as water vapor and carbon dioxide is introduced in the vicinity of the silicon oxide material to make the silicon oxide particles transparent A method for producing a transparent gas barrier film, characterized in that a silicon oxide film is formed on the transparent polymer film substrate by vapor deposition on one or both surfaces of the molecular film substrate.
JP2006267314A 2006-09-29 2006-09-29 Transparent gas barrier film and method for producing the same Expired - Fee Related JP4797919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006267314A JP4797919B2 (en) 2006-09-29 2006-09-29 Transparent gas barrier film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006267314A JP4797919B2 (en) 2006-09-29 2006-09-29 Transparent gas barrier film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008087182A true JP2008087182A (en) 2008-04-17
JP4797919B2 JP4797919B2 (en) 2011-10-19

Family

ID=39371851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006267314A Expired - Fee Related JP4797919B2 (en) 2006-09-29 2006-09-29 Transparent gas barrier film and method for producing the same

Country Status (1)

Country Link
JP (1) JP4797919B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011104781A (en) * 2009-11-12 2011-06-02 Toppan Printing Co Ltd Transparent barrier film
JP2012171238A (en) * 2011-02-22 2012-09-10 Kitagawa Ind Co Ltd Transparent gas barrier film
JP2015536154A (en) * 2012-12-04 2015-12-21 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Smoking articles with transparent wrappers
JP2016078372A (en) * 2014-10-20 2016-05-16 凸版印刷株式会社 Transparent gas barrier film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237630A (en) * 1996-04-12 1998-09-08 Asahi Glass Co Ltd Oxide coating, laminated body and heir production
JP2002307598A (en) * 2001-04-13 2002-10-23 Toyobo Co Ltd Gas barrier film
JP2003311865A (en) * 2002-04-25 2003-11-06 Toppan Printing Co Ltd Laminated film and its lamination method
JP2004168325A (en) * 2002-11-18 2004-06-17 Toppan Printing Co Ltd Plastic container with barrier property
JP2006082319A (en) * 2004-09-15 2006-03-30 Dainippon Printing Co Ltd Barrier film and laminated material using it
WO2006087941A1 (en) * 2005-02-17 2006-08-24 Konica Minolta Holdings, Inc. Gas-barrier film, process for producing gas-barrier film, resin base with the gas-barrier film for organic electroluminescent element, and organic electroluminescent element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237630A (en) * 1996-04-12 1998-09-08 Asahi Glass Co Ltd Oxide coating, laminated body and heir production
JP2002307598A (en) * 2001-04-13 2002-10-23 Toyobo Co Ltd Gas barrier film
JP2003311865A (en) * 2002-04-25 2003-11-06 Toppan Printing Co Ltd Laminated film and its lamination method
JP2004168325A (en) * 2002-11-18 2004-06-17 Toppan Printing Co Ltd Plastic container with barrier property
JP2006082319A (en) * 2004-09-15 2006-03-30 Dainippon Printing Co Ltd Barrier film and laminated material using it
WO2006087941A1 (en) * 2005-02-17 2006-08-24 Konica Minolta Holdings, Inc. Gas-barrier film, process for producing gas-barrier film, resin base with the gas-barrier film for organic electroluminescent element, and organic electroluminescent element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011104781A (en) * 2009-11-12 2011-06-02 Toppan Printing Co Ltd Transparent barrier film
JP2012171238A (en) * 2011-02-22 2012-09-10 Kitagawa Ind Co Ltd Transparent gas barrier film
JP2015536154A (en) * 2012-12-04 2015-12-21 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Smoking articles with transparent wrappers
US10602770B2 (en) 2012-12-04 2020-03-31 Philip Morris Products S.A. Smoking article with transparent wrapper
JP2016078372A (en) * 2014-10-20 2016-05-16 凸版印刷株式会社 Transparent gas barrier film

Also Published As

Publication number Publication date
JP4797919B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
JP5966928B2 (en) Gas barrier film
WO2014156888A1 (en) Laminate and gas barrier film
WO2018147137A1 (en) Gas-barrier aluminum vapor deposition film and laminated film using same
JP2010208029A (en) Gas barrier film, method and apparatus for producing the same
JP4797919B2 (en) Transparent gas barrier film and method for producing the same
JP3443976B2 (en) Method for producing transparent gas barrier film
JP2006096046A (en) Gas barrier film
ATE543924T1 (en) TRANSPARENT BARRIER FILMS FOR THE PACKAGING INDUSTRY
JP5493743B2 (en) Transparent barrier film
JPH11229119A (en) Transparent barrier film
JP2008114444A (en) Forming method of transparent multi-layer film, transparent multi-layer film having gas barrier property and sealing film formed thereby
JP4867906B2 (en) Transparent barrier film
JPH0780986A (en) Gas barrier film
JP3956627B2 (en) High water vapor barrier film and method for producing the same
JP5953921B2 (en) Gas barrier film
JPH10101825A (en) Transparent barrier film
JP2021186982A (en) Aluminum vapor deposition film and method for producing the same
JP2005111729A (en) Gas barrier film
JP2003285387A (en) Gas-barrier film roll, laminate and packaging bag using the roll
JP3208948B2 (en) Transparent gas barrier material
JP2004142351A (en) Laminated body having gas barrier film and its forming method
JP4028319B2 (en) Gas barrier film
JP4341290B2 (en) Manufacturing method of laminate
JP4182723B2 (en) High barrier film
JP3591136B2 (en) Transparent gas barrier film and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees