JP2004174879A - Barrier film with converting suitability - Google Patents

Barrier film with converting suitability Download PDF

Info

Publication number
JP2004174879A
JP2004174879A JP2002343300A JP2002343300A JP2004174879A JP 2004174879 A JP2004174879 A JP 2004174879A JP 2002343300 A JP2002343300 A JP 2002343300A JP 2002343300 A JP2002343300 A JP 2002343300A JP 2004174879 A JP2004174879 A JP 2004174879A
Authority
JP
Japan
Prior art keywords
film
converting
aluminum oxide
deposited
barrier film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002343300A
Other languages
Japanese (ja)
Other versions
JP4269664B2 (en
Inventor
Hiroshi Suzuki
浩 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2002343300A priority Critical patent/JP4269664B2/en
Publication of JP2004174879A publication Critical patent/JP2004174879A/en
Application granted granted Critical
Publication of JP4269664B2 publication Critical patent/JP4269664B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive barrier film which prevents the barrier deterioration in converting a vapor deposition film. <P>SOLUTION: The barrier film having converting suitability is provided with an aluminum oxide deposited film 3 having a gradient structure to prevent the deterioration of a barrier property at a time of converting, at least on one surface of a base material 2 composed of a polymeric material. The gradient structure continuously changes from the base material side toward the film surface of the film within a range of A1:O=1:2 to 1:1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、食品、医薬品、精密電子部品等の包装分野に用いられる透明性を有するコンバーティング適性を有するガスバリアフィルムに関する。
【0002】
【従来の技術】
近年、食品、医薬品、精密電子部品等の包装に用いられる包装材料は、内容物の変質、特に食品においては蛋白質や油脂等の酸化、変質を抑制し、さらに味、鮮度を保持するために、また無菌状態での取扱いが必要とされる医薬品においては有効成分の変質を抑制し、効能を維持するために、さらに精密電子部品においては金属部分の腐食、絶縁不良等を防止するために、包装材料を透過する酸素、水蒸気、その他内容物を変質させる気体による影響を防止する必要があり、これら気体(ガス)を遮断するガスバリア性を備えることが求められている。
【0003】
そのため、従来から塩化ビニリデン樹脂をコートしたポリプロピレン(KOP)やポリエチレンテレフタレート(KPET)或いはエチレンビニルアルコール共重合体(EVOH)など一般にガスバリア性が比較的高いと言われる高分子樹脂組成物をガスバリア材として包装材料に用いた包装フィルムや、アルミニウム(Al)などの金属からなる金属箔、適当な高分子樹脂組成物(単独では、高いガスバリア性を有していない樹脂であっても)に、Alなどの金属又は金属化合物を蒸着した金属蒸着フィルムを包装材料に用いた包装フィルムが一般的に使用されてきた。
【0004】
ところが、上述の高分子樹脂組成物のみを用いてなる包装フィルムは、Alなどの金属又は金属化合物を用いた箔や、蒸着層を形成した金属蒸着フィルムに比べると、ガスバリア性に劣るだけでなく、温度・湿度の影響を受けやすく、その変化によってはさらにガスバリア性が劣化することがる。一方、Alなどの金属又は金属化合物を用いた箔や蒸着層を形成した金属蒸着フィルムは、温度・湿度などの影響を受けることは少なく、ガスバリア性に優れるが、包装体の内容物を透視して確認することができないとする欠点を有していた。
【0005】
そこで、これらの欠点を克服した包装用材料として、最近では、蒸着などの形成手段により基材上にセラミック薄膜が形成された透明性を有する高分子材料からなる蒸着フィルムが市販されている。
【0006】
セラミック薄膜の材料としては、酸化アルミニウム(AlO)、一酸化珪素(SiO)などの珪素酸化物、酸化マグネシウム、酸化カルシウムなどが、安全性、原材料価格の点などから候補となり得る。しかしながら、珪素酸化物は、材料特有の色があるため、高透明にはなり得ず、また酸化マグネシウム、酸化カルシウムは原材料の昇華温度が高く、そのために蒸着工程における蒸発速度が低くなる。そのためバリア性を発現させるのに十分な200Å程度の薄膜を付着させようとすると、製膜時間が長時間になり、高コストに繋がるため商業的採算が合わない。
【0007】
上記理由から、酸化アルミニウムの反応蒸着が、原材料の安さと透明性から、最も注目される材料である。
【0008】
しかしながら、従来のように酸化アルミニウムの膜組成を、厚さ方向に対し均一に蒸着した蒸着膜では、膜表面が塑性変形に弱いため、印刷、押し出しラミネートなどのコンバーティング(加工処理)を行うと、バリア性が急激に悪化してしまうと言う欠点があった。このため蒸着層上にポリビニルアルコールなどの保護コーティングを行うことが必要で有り、生産コストの上昇に繋がっていた。
【0009】
【発明が解決しようとする課題】
本発明は、蒸着膜のコンバーティング時のバリア劣化を防止し、安価なバリアフィルムを作製することを目的とする。
【0010】
【課題を解決するための手段】
本発明は上記課題を解決すべくなされたものであり、本発明の請求項1に係る発明は、高分子材料からなる基材の少なくとも一方の面に、酸化アルミニウム蒸着膜が設けられ、該酸化アルミニウム蒸着膜のアルミニウムと酸素の組成比率Al/Oが、前記基材側から蒸着膜の膜表面の方向に増大する組成傾斜構造を有していることを特徴とするコンバーティング適性を有するバリアフィルムである。
【0011】
本発明の請求項2に係る発明は、上記請求項1に係るコンバーティング適性を有するバリアフィルムにおいて、前記傾斜構造が、前記基材側から蒸着膜の膜表面の方向に、アルミニウムと酸素の組成比率Al/O=1/2から1/1の範囲で連続的に増大変化していることを特徴とするコンバーティング適性を有するバリアフィルムである。
【0012】
本発明の請求項3に係る発明は、上記請求項1又は2に係るコンバーティング適性を有するバリアフィルムにおいて、前記酸化アルミニウム蒸着膜の厚さが50〜3000Åの範囲内であることを特徴とするコンバーティング適性を有するバリアフィルムである。
【0013】
【作用】
本発明は、透明性を有する高分子材料からなる基材の少なくとも一方の面に、酸化アルミニウムを蒸着して蒸着膜を形成し、その蒸着膜の膜厚方向に対し、蒸着膜の膜組成に傾斜構造を持たせ、膜表面の塑性変形耐性を向上させたことを特徴とするものである。
【0014】
前記酸化アルミニウム蒸着膜の膜の傾斜構造は、基材側から蒸着膜の膜表面に向かって、アルミニウム:酸素の膜組成比を、Al:O=1:2から1:1の範囲で連続的に変化させ、総膜厚を50〜3000Åの範囲内に設定したものである。
【0015】
本発明によれば、基材近傍の蒸着膜の組成は、酸素成分の多い酸化アルミニウム膜になる。この蒸着膜は、基材表面の官能基との親和性が高いため、基材と酸化アルミニウム膜の密着性が向上する。
【0016】
さらに、その蒸着膜の表面(基材面に対して遠い面)は、アルミニウム成分の多い酸化アルミニウム膜になる。金属成分の多い膜表面を形成することで、膜表面の塑性変形耐性が向上し、印刷や押し出しラミネートと言ったコンバーティング(加工処理)時のバリア劣化が防止されるものである。
【0017】
【発明の実施の形態】
本発明のコンバーティング適性を有するバリアフィルムの実施の形態を図面を用いて詳細に説明する。図1は、本発明の透明なガスバリアフィルムを説明する側断面図である。
【0018】
1は本発明のバリアフィルムであり、フィルム基材2の表面に、無機化合物である酸化アルミニウム蒸着膜3が形成されている。この蒸着膜3は基材2の両面に形成してもよく、また多層に形成してもよい。
【0019】
基材2は透明性を有する高分子材料であり、とくに無色透明であればよく、通常、包装材料として用いられるものが好ましい。例えば、ポリエチレンテレフタレート(PET)、二軸延伸ポリプロピレン(OPP)、二軸延伸ナイロン(ONy)など機械的強度、寸法安定性を有するものであり、これらをフィルム状に加工して用いられる。さらに平滑性が優れ、かつ添加剤の量が少ないフィルムが好ましい。また、この基材2の表面に、薄膜の密着性を良くするために、前処理としてコロナ処理、低温プラズマ処理、イオンボンバード処理を施しておいてもよく、さらに薬品処理、溶剤処理などを施してもよい。
【0020】
基材2の厚さは、特に制限を受けるものではないが、包装材料としての適性、他の層を積層する場合もあること、蒸着膜3を形成する場合の加工性を考慮すると、5〜100μmの範囲が好ましいと言える。
【0021】
また量産性を考慮すれば、連続的に蒸着手段により薄膜を形成できるように長尺状フィルムとすることが望ましい。
【0022】
酸化アルミニウム蒸着膜3の蒸着方法としては、アルミニウムを蒸発材料として、酸素、炭酸ガスと不活性ガスなどとの混合ガスの存在下で薄膜形成を行う、いわゆる反応性蒸着の他に、反応性スパッタリング、反応性イオンプレーティングにより連続的に酸化物の薄膜層を形成する方法がある。
【0023】
上記の方式は、膜形成装置が簡単で容易に実施できるものであり、生産性の点から望ましい方法である。本発明における薄膜3を基材2上に形成する方法としては種々あり、ここに記載した形成方法に限定されるものではない。
【0024】
本発明における薄膜3の厚さは、50〜3000Åの範囲内であることが望ましく、その値は適宜選択される。これは、膜厚が50Å以下であると、基材2の全面が膜にならないことがあり、ガスバリア材としての機能を十分に果たすことができない場合があり、また膜厚を3000Å以上にした場合は、薄膜にフレキシビリティを保持させることができず、成膜後の折り曲げ、引っ張りなどの外的要因により、薄膜に亀裂を生じるおそれがあるためである。
【0025】
蒸着膜に傾斜を持たせる方法としては、酸化アルミニウムの反応蒸着の際に酸素の導入の方法を変化させることにより成すことができる。蒸着装置への酸素の導入を、蒸着装置の長尺状基材2の巻き出し導入側からのみ導入することで、蒸着装置内に導入直後の基材2表面近傍の酸化度は大きくなり、そして基材2が蒸着装置内にて蒸着され、その基材2が、蒸着装置の酸素導入の少ない基材排出側に向けて送行移動することにより、徐々に蒸着膜3の表面に向けて酸化度が小さくなっていく傾斜構造を作成することができる。
【0026】
【実施例】
本発明のガスバリアフィルムを、以下に具体的な実施例を挙げて説明する。
<実施例1>
フィルム基材2(厚12μm、ポリエチレンテレフタレート(PET)フィルム)の片面に、電子線加熱方式を用いた反応蒸着により、蒸着膜の厚さ方向に徐々にアルミニウムと酸素の組成比率Al/Oが大きくなる傾斜組成をもつ酸化アルミニウム蒸着膜3を、膜厚約200Åに形成して、透明な本発明のガスバリアフィルム1(酸化アルミニウム蒸着フィルム)を得た。
【0027】
<比較例1>
基材2(厚12μm、ポリエチレンテレフタレート(PET)フィルム)の片面に、上記実施例1と同様に反応蒸着により、蒸着膜の厚さ方向に、アルミニウムと酸素の組成比率Al/Oが均一な組成をもつ酸化アルミニウム蒸着膜3を、膜厚約200Åに形成して、透明な比較例1のガスバリアフィルム(酸化アルミニウム蒸着フィルム)を得た。
【0028】
<比較テスト>
上記実施例1と比較例1により得られた各々ガスバリアフィルム(サンプル)の表面に、グラビアコーティングにより印刷し、更に該ガスバリアフィルムを、押し出しラミネートによりコンバーティング(ラミネート加工)して、ガスバリアフィルム/厚15μmサンドポリエチレン/厚25μm直鎖型低密度ポリエチレンのバリアフィルム積層体を作製した。
【0029】
<評価結果>
実施例1及び比較例1の各々ガスバリアフィルム(サンプル)の光線透過率、及びコンバーティングした各々バリアフィルム積層体の酸素透過率及び水蒸気透過率を測定し、フィルムの透明性及びガスバリア性を評価し、その結果を下記表1に示す。なお、表1の特性値の単位は、透明性(光透過率%)、酸素透過率(cm/m/day)、水蒸気透過率(g/m/day)である。
【0030】
以下に光線透過率及びガスバリア性を評価するための各測定方法について説明する。
・光線透過率・・・分光光度計((株)島津製作所製、UV−3100)を用いて、波長400nmの光の透過率を測定。
・酸素透過率・・・酸素透過率測定機(モダンコントロール社製、MOCON OXTRAN 10/50A)を用いて30℃−70%RH雰囲気下で測定。
・水蒸気透過率(初期)・・・水蒸気透過率測定機(モダンコントロール社製、MOCON PERMATRAN W6)を用いて40℃−90%RH雰囲気下で測定した。
【0031】
【表1】

Figure 2004174879
【0032】
比較例1は、印刷、押し出しラミネートによるコンバーティング後のバリア性が劣化していることが分かる。これに対し、実施例1では、印刷、押し出しラミネート後のバリア性の劣化は殆ど見られない。
【0033】
【発明の効果】
以上述べたように、本発明によれば、透明でガスバリア性に優れ、しかもコンバーティング性に優れたセラミック蒸着フィルムである酸化アルミニウム蒸着フィルムを作成することが可能であり、食品、医薬品、精密電子部品等の包装分野に用いられる、透明性を有し、良好なコンバーティング適性を備えたガスバリアフィルムを提供できるものである。
【図面の簡単な説明】
【図1】本発明のバリアフィルムの部分断面図。
【符号の説明】
1…バリアフィルム
2…プラスチック材料からなる基材
3…酸化アルミニウム蒸着膜[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a gas barrier film having transparency and suitable for converting, which is used in the field of packaging foods, pharmaceuticals, precision electronic components, and the like.
[0002]
[Prior art]
In recent years, packaging materials used for packaging of foods, pharmaceuticals, precision electronic parts, etc., suppress the deterioration of contents, especially in foods, such as oxidation and deterioration of proteins and oils and fats, and to maintain taste and freshness. In the case of pharmaceuticals that need to be handled under aseptic conditions, packaging is required to prevent deterioration of the active ingredient and maintain its efficacy, and to prevent corrosion of metal parts and insulation failure in precision electronic components. It is necessary to prevent the effects of oxygen, water vapor, and other gases that alter the contents of the material, and it is required to have a gas barrier property that blocks these gases.
[0003]
Therefore, a polymer resin composition which is generally said to have relatively high gas barrier properties, such as polypropylene (KOP), polyethylene terephthalate (KPET) or ethylene vinyl alcohol copolymer (EVOH) coated with vinylidene chloride resin, is used as a gas barrier material. Packaging film used for packaging material, metal foil made of metal such as aluminum (Al), suitable polymer resin composition (even if it does not have high gas barrier properties by itself), Al A packaging film using a metal-deposited film on which a metal or a metal compound is deposited as a packaging material has been generally used.
[0004]
However, the packaging film using only the above-described polymer resin composition is not only inferior in gas barrier property, but also in comparison with a foil using a metal or a metal compound such as Al or a metal vapor-deposited film formed with a vapor-deposited layer. In addition, the gas barrier property is easily affected by temperature and humidity, and the change may further deteriorate the gas barrier property. On the other hand, a metal-deposited film on which a foil or a vapor-deposited layer is formed using a metal or a metal compound such as Al is less affected by temperature, humidity, etc., and is excellent in gas barrier properties. And it cannot be confirmed.
[0005]
Accordingly, as a packaging material that has overcome these drawbacks, a vapor-deposited film made of a transparent polymer material in which a ceramic thin film is formed on a substrate by a forming means such as vapor-deposition has recently been marketed.
[0006]
As the material of the ceramic thin film, silicon oxide such as aluminum oxide (AlO x ) and silicon monoxide (SiO), magnesium oxide, calcium oxide, and the like can be candidates in terms of safety, raw material price, and the like. However, silicon oxide cannot be made highly transparent because of its material-specific color, and magnesium oxide and calcium oxide have high sublimation temperatures of raw materials, so that the evaporation rate in the vapor deposition process is low. Therefore, if it is attempted to deposit a thin film having a thickness of about 200 ° which is sufficient to exhibit the barrier property, the film-forming time becomes long, leading to high cost, which is not commercially viable.
[0007]
For the above reasons, reactive evaporation of aluminum oxide is the most noticeable material because of its low cost and transparency.
[0008]
However, in the case of a conventionally deposited film in which the film composition of aluminum oxide is uniformly deposited in the thickness direction as in the conventional case, since the film surface is weak in plastic deformation, printing (extruding lamination) or other converting (processing) is performed. However, there is a drawback that the barrier property is rapidly deteriorated. For this reason, it is necessary to apply a protective coating such as polyvinyl alcohol on the deposited layer, which has led to an increase in production cost.
[0009]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to prevent a barrier deterioration at the time of converting a deposited film and to produce an inexpensive barrier film.
[0010]
[Means for Solving the Problems]
The present invention has been made to solve the above problems, and the invention according to claim 1 of the present invention is characterized in that an aluminum oxide vapor-deposited film is provided on at least one surface of a base material made of a polymer material. A barrier film having converting suitability, characterized in that the aluminum / oxygen composition ratio Al / O of the aluminum deposited film has a composition gradient structure in which the composition ratio increases in the direction from the substrate side to the film surface of the deposited film. It is.
[0011]
The invention according to claim 2 of the present invention is the barrier film having converting suitability according to claim 1, wherein the inclined structure has a composition of aluminum and oxygen in a direction from the substrate side to a film surface of the deposited film. A barrier film having converting aptitude characterized by continuously increasing and changing in a ratio of Al / O = 1/2 to 1/1.
[0012]
The invention according to claim 3 of the present invention is characterized in that, in the barrier film having converting suitability according to claim 1 or 2, the thickness of the deposited aluminum oxide film is in the range of 50 to 3000 °. It is a barrier film having converting aptitude.
[0013]
[Action]
The present invention provides a method for forming a vapor-deposited film by vapor-depositing aluminum oxide on at least one surface of a substrate made of a polymer material having transparency, and forming a film composition of the vapor-deposited film in the thickness direction of the vapor-deposited film. It is characterized by having a slope structure to improve the plastic deformation resistance of the film surface.
[0014]
The inclined structure of the aluminum oxide vapor-deposited film has a film composition ratio of aluminum: oxygen continuously from Al: O = 1: 2 to 1: 1 from the substrate side toward the film surface of the vapor-deposited film. And the total film thickness is set in the range of 50 to 3000 °.
[0015]
According to the present invention, the composition of the deposited film in the vicinity of the substrate is an aluminum oxide film having a high oxygen content. Since this deposited film has a high affinity for the functional groups on the surface of the substrate, the adhesion between the substrate and the aluminum oxide film is improved.
[0016]
Further, the surface of the deposited film (the surface far from the substrate surface) becomes an aluminum oxide film containing a large amount of aluminum components. By forming a film surface containing a large amount of metal components, the plastic deformation resistance of the film surface is improved, and barrier deterioration during converting (processing) such as printing and extrusion lamination is prevented.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the barrier film having converting suitability of the present invention will be described in detail with reference to the drawings. FIG. 1 is a side sectional view illustrating a transparent gas barrier film of the present invention.
[0018]
Reference numeral 1 denotes a barrier film of the present invention, and an aluminum oxide deposited film 3 that is an inorganic compound is formed on the surface of a film substrate 2. The vapor deposition film 3 may be formed on both surfaces of the substrate 2 or may be formed in a multilayer.
[0019]
The substrate 2 is a polymer material having transparency, and it is sufficient that the substrate 2 is colorless and transparent. For example, it has mechanical strength and dimensional stability, such as polyethylene terephthalate (PET), biaxially oriented polypropylene (OPP), and biaxially oriented nylon (ONy). These are processed into a film and used. Further, a film having excellent smoothness and a small amount of the additive is preferable. The surface of the substrate 2 may be subjected to corona treatment, low-temperature plasma treatment, or ion bombardment treatment as a pretreatment in order to improve the adhesiveness of the thin film, and may be further subjected to a chemical treatment, a solvent treatment, or the like. You may.
[0020]
The thickness of the base material 2 is not particularly limited, but considering the suitability as a packaging material, the fact that other layers may be laminated, and the workability when forming the vapor-deposited film 3, 5 to 5 It can be said that a range of 100 μm is preferable.
[0021]
Further, in consideration of mass productivity, it is desirable to use a long film so that a thin film can be continuously formed by vapor deposition means.
[0022]
As a method of depositing the aluminum oxide deposited film 3, a thin film is formed using aluminum as an evaporation material in the presence of a mixed gas of oxygen, carbon dioxide, and an inert gas. And a method of continuously forming an oxide thin film layer by reactive ion plating.
[0023]
The above method is a method that is simple and easy to implement with a film forming apparatus, and is desirable from the viewpoint of productivity. There are various methods for forming the thin film 3 on the substrate 2 in the present invention, and the method is not limited to the method described here.
[0024]
The thickness of the thin film 3 in the present invention is desirably in the range of 50 to 3000 °, and the value is appropriately selected. This is because when the film thickness is 50 ° or less, the entire surface of the base material 2 may not be formed into a film, may not be able to sufficiently function as a gas barrier material, and when the film thickness is 3000 ° or more. This is because the flexibility of the thin film cannot be maintained, and the thin film may be cracked by external factors such as bending and pulling after film formation.
[0025]
The method of imparting a gradient to the deposited film can be achieved by changing the method of introducing oxygen during the reactive deposition of aluminum oxide. By introducing oxygen into the vapor deposition device only from the unwinding introduction side of the long substrate 2 of the vapor deposition device, the degree of oxidation near the surface of the substrate 2 immediately after introduction into the vapor deposition device is increased, and The substrate 2 is vapor-deposited in the vapor deposition device, and the substrate 2 moves toward the substrate discharge side of the vapor deposition device where oxygen is less introduced, so that the oxidation degree gradually increases toward the surface of the vapor deposition film 3. Can be created.
[0026]
【Example】
The gas barrier film of the present invention will be described below with reference to specific examples.
<Example 1>
On one surface of the film substrate 2 (thickness: 12 μm, polyethylene terephthalate (PET) film), the composition ratio Al / O of aluminum and oxygen gradually increased in the thickness direction of the deposited film by reactive vapor deposition using an electron beam heating method. An aluminum oxide deposited film 3 having the following gradient composition was formed to a thickness of about 200 ° to obtain a transparent gas barrier film 1 (aluminum oxide deposited film) of the present invention.
[0027]
<Comparative Example 1>
One side of a base material 2 (thickness: 12 μm, polyethylene terephthalate (PET) film) was subjected to reactive deposition in the same manner as in Example 1 above, so that the composition ratio of aluminum and oxygen was uniform in the thickness direction of the deposited film. Was formed to a thickness of about 200 ° to obtain a transparent gas barrier film (aluminum oxide deposited film) of Comparative Example 1.
[0028]
<Comparison test>
The surface of each gas barrier film (sample) obtained in Example 1 and Comparative Example 1 was printed by gravure coating, and the gas barrier film was converted by extrusion lamination (lamination) to obtain a gas barrier film / thickness. A barrier film laminate of 15 μm sand polyethylene / 25 μm thick linear low density polyethylene was prepared.
[0029]
<Evaluation results>
The light transmittance of each gas barrier film (sample) of Example 1 and Comparative Example 1, and the oxygen transmittance and water vapor transmittance of each converted barrier film laminate were measured, and the transparency and gas barrier properties of the film were evaluated. The results are shown in Table 1 below. The units of the characteristic values in Table 1 are transparency (light transmittance%), oxygen transmittance (cm 3 / m 2 / day), and water vapor transmittance (g / m 2 / day).
[0030]
Hereinafter, measurement methods for evaluating light transmittance and gas barrier properties will be described.
Light transmittance: The transmittance of light having a wavelength of 400 nm was measured using a spectrophotometer (UV-3100, manufactured by Shimadzu Corporation).
Oxygen permeability: Measured under an atmosphere of 30 ° C. and 70% RH using an oxygen permeability measuring instrument (MOCON OXTRAN 10 / 50A, manufactured by Modern Control).
-Water vapor transmission rate (initial): Measured in a 40 ° C-90% RH atmosphere using a water vapor transmission rate measuring instrument (MOCON PERMATRAN W6 manufactured by Modern Control Co., Ltd.).
[0031]
[Table 1]
Figure 2004174879
[0032]
In Comparative Example 1, it can be seen that the barrier properties after converting by printing and extrusion laminating are deteriorated. On the other hand, in Example 1, almost no deterioration in the barrier properties after printing and extrusion lamination was observed.
[0033]
【The invention's effect】
As described above, according to the present invention, it is possible to produce an aluminum oxide vapor-deposited film that is a ceramic vapor-deposited film that is transparent, has excellent gas barrier properties, and also has excellent converting properties. An object of the present invention is to provide a gas barrier film having transparency and good converting suitability, which is used in the field of packaging parts and the like.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view of a barrier film of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Barrier film 2 ... Substrate made of a plastic material 3 ... Aluminum oxide vapor deposition film

Claims (3)

高分子材料からなる基材の少なくとも一方の面に、酸化アルミニウム蒸着膜が設けられ、該酸化アルミニウム蒸着膜のアルミニウムと酸素の組成比率Al/Oが、前記基材側から蒸着膜の膜表面の方向に増大する組成傾斜構造を有していることを特徴とするコンバーティング適性を有するバリアフィルム。An aluminum oxide deposition film is provided on at least one surface of a base material made of a polymer material, and the aluminum / oxygen composition ratio Al / O of the aluminum oxide deposition film is changed from the base material side to the film surface of the deposition film. A barrier film having converting aptitude characterized by having a composition gradient structure that increases in a direction. 前記傾斜構造が、前記基材側から蒸着膜の膜表面の方向に、アルミニウムと酸素の組成比率Al/O=1/2から1/1の範囲で連続的に増大変化していることを特徴とする請求項1記載のコンバーティング適性を有するバリアフィルム。The inclined structure continuously increases and changes in the direction from the substrate side to the film surface of the deposited film in a range of Al / O = 1/2 to 1/1 in a composition ratio of aluminum and oxygen. The barrier film having converting suitability according to claim 1. 前記酸化アルミニウム蒸着膜の厚さが、50〜3000Åの範囲内であることを特徴とする請求項1又は2記載のコンバーティング適性を有するバリアフィルム。3. The barrier film having converting aptitude according to claim 1, wherein the thickness of the aluminum oxide vapor-deposited film is in a range of 50 to 3000 °. 4.
JP2002343300A 2002-11-27 2002-11-27 Method for producing barrier film having converting aptitude Expired - Fee Related JP4269664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002343300A JP4269664B2 (en) 2002-11-27 2002-11-27 Method for producing barrier film having converting aptitude

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002343300A JP4269664B2 (en) 2002-11-27 2002-11-27 Method for producing barrier film having converting aptitude

Publications (2)

Publication Number Publication Date
JP2004174879A true JP2004174879A (en) 2004-06-24
JP4269664B2 JP4269664B2 (en) 2009-05-27

Family

ID=32705103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002343300A Expired - Fee Related JP4269664B2 (en) 2002-11-27 2002-11-27 Method for producing barrier film having converting aptitude

Country Status (1)

Country Link
JP (1) JP4269664B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125455A (en) * 2004-10-27 2006-05-18 Kubota Ci Kk Sleeve
JP2006183716A (en) * 2004-12-27 2006-07-13 Kubota Ci Kk Conduit
JP2007261134A (en) * 2006-03-29 2007-10-11 Toppan Printing Co Ltd Antistatic barrier film
JP2011043242A (en) * 2010-11-29 2011-03-03 Kubota-Ci Co Sleeve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125455A (en) * 2004-10-27 2006-05-18 Kubota Ci Kk Sleeve
JP2006183716A (en) * 2004-12-27 2006-07-13 Kubota Ci Kk Conduit
JP2007261134A (en) * 2006-03-29 2007-10-11 Toppan Printing Co Ltd Antistatic barrier film
JP2011043242A (en) * 2010-11-29 2011-03-03 Kubota-Ci Co Sleeve

Also Published As

Publication number Publication date
JP4269664B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
KR100864612B1 (en) Deposition film
JPH11221874A (en) Silicon oxide membrane laminated gas barrier film
JP5521360B2 (en) Method for producing gas barrier film
JP2013253319A (en) Gas barrier film and method for producing the same
JP2007290144A (en) Gas barrier laminate
TW201226606A (en) Gas-barrier laminate film
JP2004174879A (en) Barrier film with converting suitability
CA3072406C (en) Gas barrier laminated body
WO2013168739A1 (en) Gas barrier film and method for producing same
JP2003251732A (en) Transparent gas-barrier thin coating film
JP2007261134A (en) Antistatic barrier film
JP4028339B2 (en) Method for forming laminate with gas barrier film
JP4501057B2 (en) Gas barrier film
JPH05179033A (en) Gas barrier film and film for packaging or gas isolation
JP2003071968A (en) Gas barrier film
JPH05214135A (en) Transparent gas barrier film
JP3279728B2 (en) Transparent gas barrier film
JP3266211B2 (en) Transparent gas barrier film
JP3095153B2 (en) Transparent gas barrier film
JP4182723B2 (en) High barrier film
JP2002234104A (en) High-degree vapor barrier film
JPH1170611A (en) Transparent gas barrier film
JPH05186622A (en) Thin silicon oxide film-laminated gas barrier film
JP4340962B2 (en) Laminated transparent gas barrier film
JPS6049934A (en) Transparent plastic having dampproofing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4269664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees