WO2018147137A1 - Gas-barrier aluminum vapor deposition film and laminated film using same - Google Patents

Gas-barrier aluminum vapor deposition film and laminated film using same Download PDF

Info

Publication number
WO2018147137A1
WO2018147137A1 PCT/JP2018/003152 JP2018003152W WO2018147137A1 WO 2018147137 A1 WO2018147137 A1 WO 2018147137A1 JP 2018003152 W JP2018003152 W JP 2018003152W WO 2018147137 A1 WO2018147137 A1 WO 2018147137A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
gas barrier
aluminum
layer
vapor deposition
Prior art date
Application number
PCT/JP2018/003152
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 孝司
貴宏 石井
俊樹 小林
Original Assignee
東レフィルム加工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レフィルム加工株式会社 filed Critical 東レフィルム加工株式会社
Priority to KR1020197025266A priority Critical patent/KR102484868B1/en
Priority to JP2018567382A priority patent/JP7156592B2/en
Priority to CN201880015709.5A priority patent/CN110382233B/en
Publication of WO2018147137A1 publication Critical patent/WO2018147137A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2518/00Other type of polymers
    • B05D2518/10Silicon-containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier

Definitions

  • the present invention relates to a gas barrier aluminum deposited film having excellent oxygen and water vapor barrier properties and having laminate strength, flex resistance and tensile resistance.
  • Packaging materials using aluminum foil have light shielding properties and excellent gas barrier performance in addition to the design properties of metallic luster, so packaging materials such as packaging materials for retort foods, heat insulating materials for refrigerators, and housing It is used as an outer packaging material for vacuum heat insulating materials such as heat insulating panels.
  • the packaging material using aluminum foil has a problem that it is difficult to handle the aluminum foil because pinholes are easily generated, and the load on the incinerator is large due to residues after incineration.
  • an aluminum vapor deposited film using a physical vapor deposition method such as a vacuum vapor deposition method is used as a substitute for the aluminum foil on a thermoplastic film such as a polyester film.
  • a physical vapor deposition method such as a vacuum vapor deposition method
  • the aluminum vapor deposition film was not usable because it had insufficient gas barrier performance for boil and retort food applications, and further, the vapor deposited aluminum layer disappeared during boil and retort sterilization, and the gas barrier performance deteriorated significantly.
  • a gas barrier film for use in boil and retort foods, a gas barrier film is disclosed in which a vapor-deposited layer composed of an inorganic oxide or an inorganic nitride and a specific resin layer are laminated on at least one side of a plastic film.
  • a vapor-deposited layer composed of an inorganic oxide or an inorganic nitride and a specific resin layer are laminated on at least one side of a plastic film.
  • a base material (a), a metal vapor deposition layer (b), and a protective layer (c) are this order.
  • a protective layer (c) containing a specific dimer acid-based polyamide resin is disclosed (for example, see Patent Document 2).
  • the thermal conductivity of aluminum is about 200 W / m ⁇ K.
  • the thermal conductivity of polyethylene terephthalate, which is a typical packaging material, is about 0.14 W / m ⁇ K, and the thermal conductivity of air is about 0.
  • the heat insulation material laminated with aluminum foil generates a heat bridge in which heat travels through the aluminum foil part, and the heat insulation performance of the vacuum heat insulation material is greatly reduced because it is larger than 0.02 W / m ⁇ K. was there.
  • the film for a vacuum heat insulating material is required to have excellent gas barrier performance in order to prevent gas (air) from entering from the outside and maintain a vacuum state for a long period of time.
  • the fin portion around the vacuum heat insulating material (welded and sealed portion) has lower heat insulating performance than the portion containing the core material, and the fin portion is bent to maintain the overall heat insulating performance, Further, when the vacuum heat insulating material itself is used in a place having a complicated shape (for example, an arc shape or a right angle shape), it is deformed according to the shape of the storage space. From the above, the film for vacuum heat insulating material is also required not to deteriorate the gas barrier performance upon bending or deformation.
  • a vapor deposition layer composed of an inorganic oxide or an inorganic nitride, and a specific A vacuum heat insulating material in which a gas barrier film in which a resin layer is laminated is laminated has been developed (see, for example, Patent Document 3).
  • a film for vacuum heat insulating material in which two transparent barrier films are bonded together by extrusion lamination with a polyolefin resin has been proposed (see, for example, Patent Document 4).
  • the gas barrier film according to Patent Document 1 is a transparent gas barrier film and is not a substitute for aluminum foil.
  • the laminate according to Patent Document 2 did not have sufficient gas barrier performance.
  • the vacuum heat insulating material according to Patent Document 3 is a transparent gas barrier film, and heat is transmitted as infrared rays to heat among heat conduction, so that heat is conducted even in vacuum. Was not enough.
  • the film for a vacuum heat insulating material according to Patent Document 4 has a problem that a vapor deposition layer is deteriorated and gas barrier properties are lowered by heat of a polyolefin resin extruded onto a transparent barrier film.
  • An object of the present invention is to provide a gas barrier aluminum deposited film having excellent oxygen and water vapor barrier performance and having laminate strength, flex resistance and tensile resistance, and a laminated film using the same.
  • the present invention has the following configuration.
  • a vapor deposition layer whose composition changes continuously from an aluminum metal layer having a film thickness of 25 nm or more to an aluminum oxide layer having a film thickness of 5 nm or more is further formed.
  • a gas barrier resin layer is formed of a gas barrier composition obtained by polycondensation of a vinyl alcohol resin and an organosilicon compound having an alkoxy group, wherein a gas barrier resin layer of 0.1 to 4 ⁇ m is laminated. Porous aluminum film.
  • a gas barrier aluminum vapor-deposited film having excellent oxygen and water vapor barrier properties, laminate strength, flex resistance, and tensile resistance, and a laminated film using the same are obtained.
  • a vapor deposition layer whose composition changes continuously from an aluminum metal layer having a film thickness of 25 nm or more to an aluminum oxide layer having a film thickness of 5 nm or more is formed on at least one surface of the substrate film surface. Further, a gas barrier resin layer having a thickness of 0.1 to 4 ⁇ m is laminated thereon, and the gas barrier resin layer is formed from a gas barrier composition obtained by polycondensation of a vinyl alcohol resin and an organosilicon compound having an alkoxy group. It is characterized by becoming.
  • the gas barrier performance of the aluminum vapor deposition film according to the prior art is insufficient as compared with the aluminum foil, but the vapor deposition layer and the specific gas barrier resin continuously change in composition from the aluminum metal layer to the aluminum oxide layer.
  • the aluminum oxide vapor deposition layer exhibits the effect of an adhesion strengthening layer between the vapor deposition layer and the gas barrier resin layer, and the resin constituting the gas barrier resin layer Exerts its inherent gas barrier performance.
  • Base film As a base film in the gas barrier aluminum vapor deposition film of the present invention, as long as characteristics such as chemical resistance, mechanical strength (film stiffness, external wear, puncture strength), heat resistance, weather resistance and the like are considered depending on the application. Although not particularly limited, for example, a polyethylene terephthalate film, a polypropylene film, a nylon film, or the like is used. A polyethylene terephthalate film is preferably practical.
  • the base film may be an unstretched film, but a stretched film (uniaxial or biaxial) is excellent in mechanical properties and thickness uniformity, and a biaxially stretched film is more preferable.
  • a conventional stretching method such as roll stretching, roll stretching, belt stretching, tenter stretching, tube stretching, or a combination of these can be applied.
  • the thickness of the base film is not particularly limited, but about 6 ⁇ m to 30 ⁇ m for a polyethylene terephthalate film, about 20 ⁇ m to 40 ⁇ m for a polypropylene film, and about 10 ⁇ m to 30 ⁇ m for a nylon film are practical.
  • the vapor deposition layer which changes a composition continuously from an aluminum metal layer to an aluminum oxide layer is formed on the said base film.
  • the vapor deposition layer whose composition changes continuously from the aluminum metal layer to the aluminum oxide layer is a vapor deposition layer having an inclined structure in which an aluminum metal layer is formed at the initial stage of vapor deposition and changes into aluminum oxide as the film grows.
  • a thin natural oxide film is formed on the surface of the aluminum metal film when it is taken out to the atmosphere after vapor deposition. This natural oxide film is about 3 nm at most, and the aluminum oxide layer in the present invention is described later.
  • the thickness is preferably 10 to 25 nm. If it exceeds 25 nm, the metallic appearance of the aluminum metal layer may be impaired, and the infrared reflectance may be lowered.
  • the film thickness of the aluminum metal layer is 25 nm or more. If it is less than 25 nm, the gas barrier performance is insufficient, and the metallic appearance may be insufficient. Moreover, in a vacuum heat insulating material use, an infrared reflectance may be less than 60% and a heat insulation performance may become inadequate. Preferably, it is 40 to 125 nm. Even when the thickness exceeds 125 nm, the gas barrier performance reaches a peak, the cohesive energy during aluminum metal layer deposition increases, the base film is deformed by heat, and the appearance may not be practical.
  • the total thickness of the deposited layer whose composition changes continuously from the aluminum metal layer to the aluminum oxide layer is preferably 30 to 150 nm.
  • the film thickness is less than 30 nm, it becomes difficult to express the target oxygen barrier performance and water vapor barrier performance.
  • the thickness is 150 nm or more, the cohesive force of the vapor deposition layer decreases, peeling occurs due to cohesive failure in the vapor deposition layer, and the apparent laminate strength decreases.
  • the cohesive energy at the time of vapor deposition becomes large, the base film may be deformed by heat, and the appearance may be unpractical.
  • the method for producing a vapor deposition layer whose composition changes continuously from the aluminum metal layer to the aluminum oxide layer is preferably a method in which a vapor deposition layer whose composition changes continuously from the aluminum metal layer to the aluminum oxide layer is formed in a vacuum chamber.
  • the method for vapor deposition may be performed by a known method such as vapor deposition or sputtering, but the method by vapor deposition is preferable from the viewpoint of productivity, and for that purpose, heating and evaporation of aluminum are also performed by resistance heating, high-frequency heating, electron beam heating, and the like. Is applicable. In these vapor deposition methods, it is preferable to form a vapor deposition layer whose composition changes continuously from an aluminum metal layer to an aluminum oxide layer by reactive vapor deposition.
  • the base film is generally long and is supplied in a roll shape, unwound from the roll in a vacuum chamber and vapor deposited and then wound up again in a roll shape.
  • An aluminum metal layer is formed, oxygen is introduced into the latter half of the vapor deposition, and aluminum oxide is formed by the reaction between the metal aluminum and oxygen.
  • Oxygen introduced in the latter half of the vapor deposition diffuses from the winding side to the unwinding side of the base film, so that the metal aluminum layer and the aluminum oxide layer are not strictly separated and formed.
  • the reaction of oxygen continuously proceeds from the aluminum metal layer to the aluminum oxide layer, and an inclined structure in which the composition continuously changes in the film thickness direction is formed.
  • the gas barrier resin layer is formed by applying a gas barrier resin obtained by polycondensation of a vinyl alcohol resin and an organosilicon compound having an alkoxy group.
  • a gas barrier resin obtained by polycondensation of a vinyl alcohol resin and an organosilicon compound having an alkoxy group.
  • the aluminum vapor deposition layer which is a base layer can be protected and gas barrier property can be improved. That is, a vapor deposition layer made of aluminum metal and aluminum oxide may cause defects such as pinholes, cracks, and grain boundaries, which may deteriorate the gas barrier properties, and the gas barrier resin layer is a defect of the vapor deposition layer.
  • the gas barrier performance itself can be enhanced.
  • a specific method for forming the gas barrier resin layer is based on a vinyl alcohol resin having a high affinity for the vapor deposition layer, an aqueous solution containing either an organosilicon compound having an alkoxy group and a hydrolyzate thereof, or It is formed from an alcohol-mixed aqueous solution.
  • the vinyl alcohol resin as the main agent for forming the gas barrier resin layer is not particularly limited as long as it is a vinyl alcohol resin such as polyvinyl alcohol, ethylene / vinyl alcohol copolymer, and modified polyvinyl alcohol. Among them, particularly when polyvinyl alcohol is used for the coating material of the present invention, it is more preferable because of its excellent gas barrier properties.
  • Polyvinyl alcohol as used herein is generally obtained by saponifying polyvinyl acetate, and may be partial saponification obtained by saponifying a part of the acetate group or complete saponification, and is not particularly limited. .
  • An organic silicon compound having an alkoxy group is further added to the coating material for forming the gas barrier resin layer.
  • An alkoxy group has a structure of RO— in which an alkyl group R is bonded to oxygen, and is converted to a silanol group through a dealcoholization reaction by hydrolysis.
  • Typical examples include a methoxy group and an ethoxy group. It is.
  • silicon compound having an alkoxy group examples include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxylane, dimethyldiethoxysilane, n-propyltrimethoxysilane, n- Examples thereof include propyltriethoxysilane, hexyltrimethoxysilane, and hexyltriethoxysilane. Among them, tetraethoxysilane is preferable because it is relatively stable in an aqueous solvent after hydrolysis.
  • the range of 40/60 to 60/40 is more preferable.
  • the mass ratio converted to SiO 2 is a value converted from the number of moles of silicon atoms in the organosilicon compound to SiO 2 mass, and is represented by vinyl alcohol resin / organosilicon compound (mass ratio). When this value exceeds 85/15, the vinyl alcohol resin cannot be fixed, and the gas barrier performance may be deteriorated. On the other hand, if it is less than 15/85, the ratio of the organosilicon compound is increased and the gas barrier resin layer is hardened, so that the bending resistance and the tensile performance may be lowered.
  • the gas barrier resin layer is formed by using a coating material comprising an aqueous solution or an alcohol mixed aqueous solution containing at least one of the above vinyl alcohol resin, one or more organosilicon compounds having an alkoxy group and a hydrolyzate thereof. Is done.
  • a coating material comprising an aqueous solution or an alcohol mixed aqueous solution containing at least one of the above vinyl alcohol resin, one or more organosilicon compounds having an alkoxy group and a hydrolyzate thereof.
  • a resin composition comprising a vinyl alcohol resin and an organosilicon compound having an alkoxy group
  • an inorganic structure having a siloxane bond as a skeleton formed by polycondensation between organosilicon compounds and a hydrogen atom at each hydroxyl group of the vinyl alcohol resin By forming a resin composition comprising a vinyl alcohol resin and an organosilicon compound having an alkoxy group, an inorganic structure having a siloxane bond as a skeleton formed by polycondensation between organosilicon compounds and a hydrogen atom at each hydroxyl group of the vinyl alcohol resin.
  • a so-called organic-inorganic hybrid structure having a Si—O— covalent bond via oxygen is formed by dehydration reaction. In such a structure, the molecular chain is more restrained than a single vinyl alcohol resin, and water vapor barrier performance can be exhibited.
  • gas barrier resin layer there is no restriction
  • printing methods such as offset printing method, gravure printing method, silk screen printing method, roll coating method, dip coating method, bar coating method, die coating method, knife edge coating method, gravure coating method, kiss coating method, spin coating method
  • the coating liquid may be coated using a method such as a combination of these.
  • the film thickness of the gas barrier resin layer provided on the vapor deposition layer whose composition changes continuously from the aluminum metal layer to the aluminum oxide layer needs to be 0.1 to 4 ⁇ m, more preferably 0.2 to 1 ⁇ m.
  • the thickness of the gas barrier resin layer is 0.1 ⁇ m or less, gas barrier performance may not be exhibited.
  • the film thickness of the gas barrier resin layer exceeds 4 ⁇ m, the cohesive force of the gas barrier resin layer decreases, peeling occurs due to cohesive failure in the gas barrier resin layer, and the apparent laminate strength decreases.
  • the coating drying conditions require a high temperature for a long time, and the manufacturing cost increases.
  • the laminated film prepared using the gas barrier aluminum deposited film of the present invention is formed by laminating a sealant film as a heat-fusible layer, a gas barrier film, and a plastic film as a surface protective layer in this order.
  • the sealant film is not particularly limited as long as it takes into consideration the chemical resistance, mechanical strength (film stiffness, external wear, puncture strength), heat resistance, weather resistance, etc. depending on the application, but polypropylene film, polyethylene film Etc. are used. A polyethylene film is preferable for practical use, and a linear low density polyethylene film is particularly preferable.
  • the gas barrier aluminum vapor deposition film which is a gas barrier film, may have a vapor deposition surface on the plastic film side or a sealant film side, and is selected according to the design.
  • the gas barrier film may be a laminate of a plurality of gas barrier aluminum vapor deposition films as necessary.
  • the vapor deposition surfaces may be bonded together, or the substrate film surfaces may be bonded together.
  • the vapor deposition surface and the substrate film surface may be bonded together.
  • a laminate film of the present invention is constituted by laminating a sealant film on one side of the laminate and a plastic film on the other side.
  • the plastic film is not particularly limited as long as it considers properties such as chemical resistance, mechanical strength (film stiffness, external wear, puncture strength), heat resistance, and weather resistance depending on the application.
  • polyethylene terephthalate film, Polypropylene film, nylon film, etc. are used.
  • an unstretched film may be used, a stretched film (uniaxial or biaxial) is excellent in mechanical properties and thickness uniformity, and a biaxially stretched film is more preferable.
  • the thickness is not particularly limited, but a polyethylene terephthalate film is about 6 ⁇ m to 30 ⁇ m, a polypropylene film is about 20 ⁇ m to 40 ⁇ m, and a nylon film is about 10 ⁇ m to 30 ⁇ m.
  • a laminate of a plurality of these plastic films as required may be used as the surface protective layer.
  • a method for producing a laminated film produced using the gas barrier aluminum deposited film of the present invention can employ a dry laminating method or an extrusion laminating method using a two-component curable urethane adhesive, but is particularly limited. It is not a thing.
  • Adhesion strength between the vapor deposition layer and the gas barrier resin layer (N / 15 mm) A 40 ⁇ m film thickness as a sealant film is formed on the vapor-deposited surface of the gas barrier film through an adhesive composed of a polyester urethane main agent (manufactured by DIC Corporation, LX500) and an aromatic isocyanate curing agent (manufactured by DIC Corporation, KW75).
  • the linear low density polyethylene film was laminated by a dry laminating method to produce a laminated film.
  • the laminated film is cut into a width of 15 mm and a length of 150 mm to prepare a cut sample, and a T-peel method using a tensile tester (Tensilon) as an interface between the gas barrier film and the linear low-density polyethylene film.
  • the peel strength (laminate strength) was measured at a pulling speed of 50 mm / min, and the adhesion strength between the vapor deposition layer and the gas barrier resin layer was evaluated.
  • the adhesion strength value was determined to be 3.0 N / 15 mm or more.
  • Oxygen permeability (cc / m 2 ⁇ 24 hr ⁇ atm) Based on the isobaric method described in JIS K7126-2: 2006, a gas barrier film was used under the conditions of a temperature of 23 ° C. and a humidity of 0% RH using an oxygen transmission meter (OXTRAN 2/20) manufactured by MOCON, USA. The oxygen transmission rate was measured. The value of oxygen permeability was 0.1 cc / m 2 ⁇ 24 hr ⁇ atm or less.
  • Infrared reflectance (%) The gas barrier film is reflected in the wavelength range of 240 nm to 2600 nm including the infrared wavelength region with an infrared spectrophotometer (Hitachi High-Technologies Corporation, U-4000) at a relative reflection angle of 12 degrees of the reflection device. The light intensity was measured. Among these, with respect to the reflected light intensity at three points of wavelengths 1500 nm, 2000 nm, and 2500 nm, the ratio of the reflected light intensity of the gas barrier film to the reflected light intensity of the aluminum vapor deposition flat mirror used as a reference is infrared reflectance (%). The average value of the points was calculated. This value means that the closer to 100%, the better the reflection characteristics, and the value of infrared reflectance is 60% or more.
  • the gas barrier film is linearly low with a film thickness of 40 ⁇ m as a sealant film through an adhesive composed of a polyester urethane base agent (LX500 manufactured by DIC Corporation) and an aromatic isocyanate curing agent (KW75 manufactured by DIC Corporation).
  • Density polyethylene film Tiix FC-S manufactured by Mitsui Chemicals Tosero Co., Ltd.
  • biaxially stretched nylon film OMM manufactured by Unitika Co., Ltd.
  • a laminated film was produced by laminating by a dry laminating method so as to be on the plastic film side.
  • the puncture strength of the laminated film was measured based on the method described in JIS Z1707-1997 by using a 50 mm ⁇ 50 mm sample piece and using a tensile tester (Tensilon).
  • Deposition film thickness measurement Depth direction composition analysis evaluation is performed with a scanning Auger electron spectrometer (SAM-670 model manufactured by ULVAC-PHI), and the film configuration of aluminum oxide / metal aluminum is confirmed by the depth profile. did. Focusing on the Al concentration and O concentration, collecting data while performing Ar ion etching from the surface layer of the deposited film, and when the concentration ratio of the Al concentration and O concentration is 50:50 is defined as the interface The film thicknesses of the aluminum oxide vapor deposition layer and the aluminum vapor deposition layer were calculated.
  • SAM-670 model manufactured by ULVAC-PHI scanning Auger electron spectrometer
  • a metal aluminum film whose thickness is known by cross-sectional observation with a transmission electron microscope is etched by the same etching method, and the etching time is converted into the absolute value of the etching depth by calculating the etching rate. did.
  • Example 1 A 12 ⁇ m-thick biaxially stretched polyethylene terephthalate film (“Lumirror” (registered trademark) P60, manufactured by Toray Industries, Inc.) is used as the base film, and high-frequency induction heating crucible type aluminum using a roll-to-roll vacuum deposition machine Using an evaporation source, the film was continuously formed so that the aluminum metal layer thickness was 40 nm and the aluminum oxide layer thickness was 10 nm. On the base film, a film having a composition corresponding to the position is sequentially formed in the thickness direction in a zone having a constant width in the base film traveling direction on the cooled rotating drum. By supplying oxygen from the position where vapor deposition is finally received, a vapor deposition layer that continuously changes from an aluminum metal layer to an aluminum oxide layer was formed.
  • Limirror registered trademark
  • P60 manufactured by Toray Industries, Inc.
  • an aqueous solution having the following composition was applied and dried by a gravure coating method to form a gas barrier resin layer having a film thickness of 0.3 ⁇ m, thereby producing a gas barrier aluminum vapor deposition film.
  • the mixing ratio (% by weight) with (A liquid) / (B liquid) having the following composition was 35/65.
  • Liquid A Hydrochloric acid (0.1N) was added to tetraethoxysilane (TEOS) and hydrolyzed by stirring for 120 minutes to prepare liquid A (solid content 30 wt%: converted to SiO 2 ).
  • Liquid B A 10% by weight aqueous solution of polyvinyl alcohol (PVA, polymerization degree 1,700, saponification degree 98.5%) and methyl alcohol were mixed at 35/65 (weight ratio) and stirred, liquid B Adjusted.
  • PVA polyvinyl alcohol
  • Example 2 A gas barrier aluminum deposited film was obtained in the same manner as in Example 1 except that the deposited layer had an aluminum metal layer thickness of 25 nm and an aluminum oxide layer thickness of 5 nm.
  • Example 3 A gas barrier aluminum deposited film was obtained in the same manner as in Example 1 except that the deposited layer had an aluminum metal layer thickness of 80 nm and an aluminum oxide layer thickness of 20 nm.
  • Example 4 A gas barrier aluminum deposited film was obtained in the same manner as in Example 1 except that the thickness of the gas barrier resin layer was 0.1 ⁇ m.
  • Example 1 A gas barrier aluminum deposited film was obtained in the same manner as in Example 1 except that the film thickness was 50 nm with only the aluminum metal layer without supplying oxygen to the deposited layer.
  • Example 2 A gas barrier aluminum vapor deposition film was obtained in the same manner as in Example 1 except that metal aluminum was evaporated while supplying oxygen gas to the entire surface of the vapor deposition layer, and the film thickness was 10 nm only with the aluminum oxide layer.
  • Example 3 A gas barrier aluminum deposited film was obtained in the same manner as in Example 1 except that the thickness of the gas barrier resin layer was 5 ⁇ m.
  • Example 4 A gas barrier aluminum deposited film was obtained in the same manner as in Example 1 except that the thickness of the gas barrier resin layer was 0.05 ⁇ m.
  • Example 5 A gas barrier aluminum deposited film was obtained in the same manner as in Example 1 except that an aqueous solution having the following composition was applied by a gravure coating method and dried to form a gas barrier resin layer having a film thickness of 0.3 ⁇ m.
  • the mixing ratio (% by weight) with (A liquid) / (B liquid) having the following composition was 20/80.
  • liquid B Xylylene diisocyanate and methyl ethyl ketone were blended at 10/90 and stirred to prepare liquid B.
  • Table 1 shows the composition and characteristics of the films prepared in Examples and Comparative Examples.
  • the gas barrier film is an aluminum foil having a thickness of 6 ⁇ m, and a linear low density polyethylene film having a thickness of 40 ⁇ m is used as a sealant film as in Example 1, and a biaxially stretched nylon film having a thickness of 15 ⁇ m is used as a plastic film by a dry laminating method. It laminated
  • the gas barrier aluminum deposited film of the present invention is excellent in oxygen barrier performance and water vapor barrier performance, and can maintain these gas barrier performance against tension and bending. there were.
  • Comparative Example 1 has inferior laminate strength due to low adhesion between the aluminum layer and the gas barrier resin layer
  • Comparative Example 2 has inferior infrared reflectance because there is no aluminum layer
  • Comparative Example 3 has a thick gas barrier resin layer. Peeling occurred due to cohesive failure in the gas barrier resin layer, resulting in low adhesion strength between the vapor deposition layer and the gas barrier resin layer.
  • the gas barrier resin layer is thin and the barrier property is poor
  • the gas barrier resin layer is not an organosilicon compound having a vinyl alcohol resin and an alkoxy group. Performance and water vapor barrier properties decreased.
  • the gas barrier aluminum deposited film of the present invention has excellent oxygen barrier performance and water vapor barrier performance, and is therefore useful as a vacuum heat insulating material exterior material that requires high gas barrier properties.

Abstract

The purpose of the present invention is to provide a gas-barrier aluminum vapor deposition film characterized by: being produced by forming a vapor deposition layer on at least one surface of a base material film surface, the composition of the vapor deposition layer continually changing from an aluminum metal layer having a film thickness of 25 nm or more to an aluminum oxide layer having a film thickness of 5 nm or more, and further laminating thereon a gas-barrier resin layer having a film thickness of 0.1 to 4 μm; and the gas barrier resin layer being formed of a gas-barrier composition obtained by polycondensation of a vinyl alcohol-based resin and an organic silicon compound having an alkoxy group. Provided are: a gas-barrier aluminum vapor deposition film that has excellent oxygen and water vapor barrier properties, laminate strength, flex resistance, and tensile resistance; and a laminated film using the same.

Description

ガスバリア性アルミニウム蒸着フィルムおよびそれを用いた積層フィルムGas barrier aluminum deposited film and laminated film using the same
 本発明は、優れた酸素および水蒸気バリア性能を有し、ラミネート強度、耐屈曲性、耐引張性を有するガスバリア性アルミニウム蒸着フィルムに関する。 The present invention relates to a gas barrier aluminum deposited film having excellent oxygen and water vapor barrier properties and having laminate strength, flex resistance and tensile resistance.
 アルミニウム箔を用いた包装材料は、金属光沢による意匠性に加え、光遮断性・優れたガスバリア性能を有することから、レトルト食品用包装材料をはじめとする包装材料や、冷蔵庫用の断熱材、住宅用の断熱パネル等の真空断熱材用外層包装材料として用いられている。しかし、アルミニウム箔を用いた包装材料は、ピンホールが発生しやすいことからアルミニウム箔の取り扱いが難しく、焼却後の残渣のために焼却炉に対する負荷が大きいという問題があった。 Packaging materials using aluminum foil have light shielding properties and excellent gas barrier performance in addition to the design properties of metallic luster, so packaging materials such as packaging materials for retort foods, heat insulating materials for refrigerators, and housing It is used as an outer packaging material for vacuum heat insulating materials such as heat insulating panels. However, the packaging material using aluminum foil has a problem that it is difficult to handle the aluminum foil because pinholes are easily generated, and the load on the incinerator is large due to residues after incineration.
 上記のアルミニウム箔の問題点を解消するため、ポリエステルフィルム等の熱可塑性フィルムに真空蒸着法等の物理気相成長法を用いたアルミニウム蒸着フィルムがアルミニウム箔代替品として使用されている。しかし、アルミニウム蒸着フィルムは、ボイル・レトルト食品用途にはガスバリア性能が不十分であり、さらにボイル・レトルト殺菌時に蒸着アルミニウム層が消失し、ガスバリア性能が大幅に悪化することから使用できるものではなかった。 In order to solve the problems of the aluminum foil described above, an aluminum vapor deposited film using a physical vapor deposition method such as a vacuum vapor deposition method is used as a substitute for the aluminum foil on a thermoplastic film such as a polyester film. However, the aluminum vapor deposition film was not usable because it had insufficient gas barrier performance for boil and retort food applications, and further, the vapor deposited aluminum layer disappeared during boil and retort sterilization, and the gas barrier performance deteriorated significantly. .
 ボイル・レトルト食品用途のためのガスバリア性フィルムとして、プラスチックフィルムの少なくとも片面に、無機酸化物もしくは無機窒化物で構成される蒸着層と、特定の樹脂層を積層したガスバリア性フィルムが開示されている(例えば特許文献1を参照)。 As a gas barrier film for use in boil and retort foods, a gas barrier film is disclosed in which a vapor-deposited layer composed of an inorganic oxide or an inorganic nitride and a specific resin layer are laminated on at least one side of a plastic film. (For example, refer to Patent Document 1).
 また、アルミニウム蒸着フィルムの耐アルカリボイル性、耐酢酸レトルト性を向上させ、アルミニウム蒸着層の外観変化を抑えるため、基材(a)、金属蒸着層(b)および保護層(c)がこの順序で積層されてなる積層体であり、保護層(c)が特定のダイマー酸系ポリアミド樹脂を含有するものが開示されている(例えば特許文献2を参照)。 Moreover, in order to improve the alkali boil resistance and acetic acid retort resistance of an aluminum vapor deposition film, and to suppress the external appearance change of an aluminum vapor deposition layer, a base material (a), a metal vapor deposition layer (b), and a protective layer (c) are this order. And a protective layer (c) containing a specific dimer acid-based polyamide resin is disclosed (for example, see Patent Document 2).
 一方で、アルミニウムの熱伝導率は約200W/m・Kであり、代表的な包装材料の素材であるポリエチレンテレフタレートの熱伝導率の約0.14W/m・Kや空気の熱伝導率約0.02W/m・Kに比べ大きいことから、アルミニウム箔を積層した断熱材は、熱がアルミニウム箔部分を伝って移動するヒートブリッジが発生し、真空断熱材の断熱性能が大幅に低下するという問題があった。また、真空断熱材用フィルムは、外部からのガス(空気)の侵入を防ぎ、長期間の真空状態を保持するために優れたガスバリア性能が求められる。さらに、近年、真空断熱材の周囲のヒレ部(溶着シールした部分)は、芯材が入っている部分に比べて断熱性能が低く、全体の断熱性能を保つために、ヒレ部は折り曲げられ、また、真空断熱材自体も、複雑な形状(例えば、円弧形状や直角形状)の箇所に用いられる場合、収納スペースの形状に従って変形されるようになっている。以上のことより、真空断熱材用フィルムには、折り曲げや変形に際してガスバリア性能が低下しないことも求められている。 On the other hand, the thermal conductivity of aluminum is about 200 W / m · K. The thermal conductivity of polyethylene terephthalate, which is a typical packaging material, is about 0.14 W / m · K, and the thermal conductivity of air is about 0. The heat insulation material laminated with aluminum foil generates a heat bridge in which heat travels through the aluminum foil part, and the heat insulation performance of the vacuum heat insulation material is greatly reduced because it is larger than 0.02 W / m · K. was there. Further, the film for a vacuum heat insulating material is required to have excellent gas barrier performance in order to prevent gas (air) from entering from the outside and maintain a vacuum state for a long period of time. Furthermore, in recent years, the fin portion around the vacuum heat insulating material (welded and sealed portion) has lower heat insulating performance than the portion containing the core material, and the fin portion is bent to maintain the overall heat insulating performance, Further, when the vacuum heat insulating material itself is used in a place having a complicated shape (for example, an arc shape or a right angle shape), it is deformed according to the shape of the storage space. From the above, the film for vacuum heat insulating material is also required not to deteriorate the gas barrier performance upon bending or deformation.
 この真空断熱用途におけるアルミニウム箔の問題を解消するため、すなわち真空断熱材のヒートブリッジ低減とガスバリア性の向上とを両立するため、無機酸化物もしくは無機窒化物で構成される蒸着層と、特定の樹脂層を積層したガスバリア性フィルムを積層した真空断熱材料が開発されている(例えば特許文献3を参照)。 また、2枚の透明バリアフィルムをポリオレフィン樹脂で押出ラミネーションにより貼り合せた真空断熱材用フィルムが提案されている(例えば特許文献4を参照)。 In order to eliminate the problem of the aluminum foil in this vacuum insulation application, that is, to achieve both reduction of the heat bridge of the vacuum insulation material and improvement of gas barrier properties, a vapor deposition layer composed of an inorganic oxide or an inorganic nitride, and a specific A vacuum heat insulating material in which a gas barrier film in which a resin layer is laminated is laminated has been developed (see, for example, Patent Document 3). In addition, a film for vacuum heat insulating material in which two transparent barrier films are bonded together by extrusion lamination with a polyolefin resin has been proposed (see, for example, Patent Document 4).
特開2010-131756号公報JP 2010-131756 A 特開2012-210744号公報JP 2012-210744 A 特開2005-132004号公報Japanese Patent Laid-Open No. 2005-132004 特開2007-290222号公報JP 2007-290222 A
 しかしながら、特許文献1に係るガスバリア性フィルムは、透明なガスバリア性フィルムであって、アルミニウム箔に代わるものではない。 However, the gas barrier film according to Patent Document 1 is a transparent gas barrier film and is not a substitute for aluminum foil.
 特許文献2に係る積層体は、ガスバリア性能が十分なものではなかった。 The laminate according to Patent Document 2 did not have sufficient gas barrier performance.
 特許文献3に係る真空断熱材料は、透明なガスバリア性フィルムであって、熱伝導のうち輻射に対しては、熱が赤外線として伝わることにより、真空中でも熱が伝導してしまうため、赤外線反射率が十分なものではなかった。 The vacuum heat insulating material according to Patent Document 3 is a transparent gas barrier film, and heat is transmitted as infrared rays to heat among heat conduction, so that heat is conducted even in vacuum. Was not enough.
 特許文献4に係る真空断熱材用フィルムは、透明バリアフィルムに押出されたポリオレフィン樹脂の熱によって、蒸着層が劣化しガスバリア性が低下するという問題を有していた。 The film for a vacuum heat insulating material according to Patent Document 4 has a problem that a vapor deposition layer is deteriorated and gas barrier properties are lowered by heat of a polyolefin resin extruded onto a transparent barrier film.
 本発明は、優れた酸素および水蒸気バリア性能を有し、ラミネート強度、耐屈曲性、耐引張性を有するガスバリア性アルミニウム蒸着フィルムおよびそれを用いた積層フィルムを提供することを目的とする。 An object of the present invention is to provide a gas barrier aluminum deposited film having excellent oxygen and water vapor barrier performance and having laminate strength, flex resistance and tensile resistance, and a laminated film using the same.
 上記課題を解決するために、本発明は以下の構成をとる。 In order to solve the above problems, the present invention has the following configuration.
 (1)基材フィルム表面の少なくとも片面に、膜厚が25nm以上のアルミニウム金属層から膜厚が5nm以上の酸化アルミニウム層に連続的に組成変化する蒸着層が形成され、さらにその上に膜厚が0.1~4μmのガスバリア樹脂層が積層され、該ガスバリア樹脂層はビニルアルコール系樹脂とアルコキシ基を有する有機珪素化合物を重縮合して得られるガスバリア性組成物からなることを特徴とするガスバリア性アルミニウム蒸着フィルム。 (1) On at least one side of the surface of the base film, a vapor deposition layer whose composition changes continuously from an aluminum metal layer having a film thickness of 25 nm or more to an aluminum oxide layer having a film thickness of 5 nm or more is further formed. A gas barrier resin layer is formed of a gas barrier composition obtained by polycondensation of a vinyl alcohol resin and an organosilicon compound having an alkoxy group, wherein a gas barrier resin layer of 0.1 to 4 μm is laminated. Porous aluminum film.
 (2)アルミニウム金属層の膜厚が40~125nmの範囲であり、酸化アルミニウム層の膜厚が10~25nmの範囲である上記のガスバリア性アルミニウム蒸着フィルム。 (2) The gas barrier aluminum deposited film as described above, wherein the aluminum metal layer has a thickness of 40 to 125 nm and the aluminum oxide layer has a thickness of 10 to 25 nm.
 (3)蒸着層とガスバリア樹脂層の間の密着強度が3.0N/15mm以上である上記のガスバリア性アルミニウム蒸着フィルム。 (3) The gas barrier aluminum vapor deposition film as described above, wherein the adhesion strength between the vapor deposition layer and the gas barrier resin layer is 3.0 N / 15 mm or more.
 (4)5%引張り後の水蒸気透過率が0.1g/m・24hr以下であり、酸素透過率が0.1cc/m・24hr・atm以下である上記のガスバリア性アルミニウム蒸着フィルム。 (4) The gas barrier aluminum vapor-deposited film as described above, wherein the water vapor permeability after 5% tension is 0.1 g / m 2 · 24 hr or less and the oxygen permeability is 0.1 cc / m 2 · 24 hr · atm or less.
 (5)屈曲疲労試験後の水蒸気透過率が0.5g/m・24hr以下であり、酸素透過率が0.2cc/m・24hr・atm以下である上記のガスバリア性アルミニウム蒸着フィルム。 (5) The above gas barrier aluminum deposited film having a water vapor permeability of 0.5 g / m 2 · 24 hr or less after bending fatigue test and an oxygen permeability of 0.2 cc / m 2 · 24 hr · atm or less.
 (6)赤外分光光度計を使用して、反射装置の相対反射角度12度で測定をした赤外線反射率が60%以上である上記のガスバリア性アルミニウム蒸着フィルム。 (6) The above gas barrier aluminum deposited film having an infrared reflectance of 60% or more measured using an infrared spectrophotometer at a relative reflection angle of 12 degrees of the reflection device.
 (7)シーラントフィルムとガスバリア性フィルムとプラスチックフィルムがこの順で積層され、ガスバリア性フィルムが、上記のいずれかに記載のガスバリア性アルミニウム蒸着フィルムからなることを特徴とする積層フィルム。 (7) A laminated film in which a sealant film, a gas barrier film, and a plastic film are laminated in this order, and the gas barrier film is formed of any one of the gas barrier aluminum deposited films described above.
 本発明によれば、優れた酸素および水蒸気バリア性能を有し、ラミネート強度、耐屈曲性、耐引張性を有するガスバリア性アルミニウム蒸着フィルムおよびそれを用いた積層フィルムが得られる。 According to the present invention, a gas barrier aluminum vapor-deposited film having excellent oxygen and water vapor barrier properties, laminate strength, flex resistance, and tensile resistance, and a laminated film using the same are obtained.
 以下に本発明を詳細に説明する。 The present invention will be described in detail below.
 本発明のガスバリア性アルミウム蒸着フィルムは、基材フィルム表面の少なくとも片面に、膜厚が25nm以上のアルミニウム金属層から膜厚が5nm以上の酸化アルミニウム層に連続的に組成変化する蒸着層が形成され、さらにその上に膜厚が0.1~4μmのガスバリア樹脂層が積層され、該ガスバリア樹脂層はビニルアルコール系樹脂とアルコキシ基を有する有機珪素化合物を重縮合して得られるガスバリア性組成物からなることを特徴とする。 In the gas barrier aluminum vapor deposition film of the present invention, a vapor deposition layer whose composition changes continuously from an aluminum metal layer having a film thickness of 25 nm or more to an aluminum oxide layer having a film thickness of 5 nm or more is formed on at least one surface of the substrate film surface. Further, a gas barrier resin layer having a thickness of 0.1 to 4 μm is laminated thereon, and the gas barrier resin layer is formed from a gas barrier composition obtained by polycondensation of a vinyl alcohol resin and an organosilicon compound having an alkoxy group. It is characterized by becoming.
 背景技術で述べたように、従来技術によるアルミニウム蒸着フィルムのガスバリア性能はアルミニウム箔に比べて不十分であるが、アルミニウム金属層から酸化アルミニウム層に連続的に組成変化する蒸着層と特定のガスバリア樹脂層を設けることで、アルミニウム金属層の不完全なガスバリア性能を補うだけではなく、酸化アルミニウム蒸着層が蒸着層とガスバリア樹脂層との密着強化層の効果を発揮し、ガスバリア樹脂層を構成する樹脂が本来有するガスバリア性能を発揮する。 As described in the background art, the gas barrier performance of the aluminum vapor deposition film according to the prior art is insufficient as compared with the aluminum foil, but the vapor deposition layer and the specific gas barrier resin continuously change in composition from the aluminum metal layer to the aluminum oxide layer. By providing a layer, not only the incomplete gas barrier performance of the aluminum metal layer is compensated, but the aluminum oxide vapor deposition layer exhibits the effect of an adhesion strengthening layer between the vapor deposition layer and the gas barrier resin layer, and the resin constituting the gas barrier resin layer Exerts its inherent gas barrier performance.
 [基材フィルム]
 本発明のガスバリア性アルミニウム蒸着フィルムにおける基材フィルムとしては、用途により耐薬品性、機械的強度(フィルムのコシ、外部からの磨耗、突き刺し強度)、耐熱性、耐候性などの特性を考慮する限り特に制限はされないが、例えば、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム、ナイロンフィルムなどが用いられる。好ましくはポリエチレンテレフタレートフィルムが実用的である。
[Base film]
As a base film in the gas barrier aluminum vapor deposition film of the present invention, as long as characteristics such as chemical resistance, mechanical strength (film stiffness, external wear, puncture strength), heat resistance, weather resistance and the like are considered depending on the application. Although not particularly limited, for example, a polyethylene terephthalate film, a polypropylene film, a nylon film, or the like is used. A polyethylene terephthalate film is preferably practical.
 基材フィルムは、未延伸フィルムであってもよいが、通常延伸(一軸または二軸)されているものが機械特性や厚さの均一性に優れ、二軸延伸フィルムがより好ましい。延伸法としては、ロール延伸、圧延延伸、ベルト延伸、テンター延伸、チューブ延伸や、これらを組み合わせた延伸などの慣用の延伸法が適用できる。 The base film may be an unstretched film, but a stretched film (uniaxial or biaxial) is excellent in mechanical properties and thickness uniformity, and a biaxially stretched film is more preferable. As the stretching method, a conventional stretching method such as roll stretching, roll stretching, belt stretching, tenter stretching, tube stretching, or a combination of these can be applied.
 基材フィルムの厚さは特に制限はないが、ポリエチレンテレフタレートフィルムであれば6μm~30μm程度、ポリプロピレンフィルムであれば20μm~40μm程度、ナイロンフィルムであれば10μm~30μm程度が実用的である。 The thickness of the base film is not particularly limited, but about 6 μm to 30 μm for a polyethylene terephthalate film, about 20 μm to 40 μm for a polypropylene film, and about 10 μm to 30 μm for a nylon film are practical.
 [アルミニウム金属層から酸化アルミニウム層に連続的に組成変化する蒸着層]
 本発明においては、上記基材フィルム上にアルミニウム金属層から酸化アルミニウム層に連続的に組成変化する蒸着層を形成する。アルミニウム金属層から酸化アルミニウム層に連続的に組成変化する蒸着層とは、蒸着の初期にはアルミニウム金属層が形成され、膜が成長するにつれ酸化アルミニウムに変化する傾斜構造を有する蒸着層である。ところで、アルミニウム蒸着層は、蒸着後大気に取り出した段階でアルミニウム金属膜表面に薄い自然酸化膜が形成されるが、この自然酸化膜は高々3nm程度であり、本発明における酸化アルミニウム層は、後述する分析法によれば5nm以上である。好ましくは10~25nmである。25nmを超えるとアルミニウム金属層の金属調の外観が損なわれ、赤外線反射率が低下することがある。
[Vapor deposition layer whose composition changes continuously from aluminum metal layer to aluminum oxide layer]
In this invention, the vapor deposition layer which changes a composition continuously from an aluminum metal layer to an aluminum oxide layer is formed on the said base film. The vapor deposition layer whose composition changes continuously from the aluminum metal layer to the aluminum oxide layer is a vapor deposition layer having an inclined structure in which an aluminum metal layer is formed at the initial stage of vapor deposition and changes into aluminum oxide as the film grows. By the way, as for the aluminum vapor deposition layer, a thin natural oxide film is formed on the surface of the aluminum metal film when it is taken out to the atmosphere after vapor deposition. This natural oxide film is about 3 nm at most, and the aluminum oxide layer in the present invention is described later. According to the analysis method to be used, it is 5 nm or more. The thickness is preferably 10 to 25 nm. If it exceeds 25 nm, the metallic appearance of the aluminum metal layer may be impaired, and the infrared reflectance may be lowered.
 アルミニウム金属層の膜厚は25nm以上であることが重要である。25nm未満ではガスバリア性能が不十分であり、金属調の外観も不十分なものとなる場合がある。また、真空断熱材用途においては、赤外線反射率が60%未満となり断熱性能が不十分なものとなる場合がある。好ましくは40~125nmである。125nmを超えてもガスバリア性能は頭打ちであり、アルミニウム金属層蒸着時の凝集エネルギーが大きくなり、基材フィルムが熱で変形し、外観が実用に耐えない場合がある。 It is important that the film thickness of the aluminum metal layer is 25 nm or more. If it is less than 25 nm, the gas barrier performance is insufficient, and the metallic appearance may be insufficient. Moreover, in a vacuum heat insulating material use, an infrared reflectance may be less than 60% and a heat insulation performance may become inadequate. Preferably, it is 40 to 125 nm. Even when the thickness exceeds 125 nm, the gas barrier performance reaches a peak, the cohesive energy during aluminum metal layer deposition increases, the base film is deformed by heat, and the appearance may not be practical.
 アルミニウム金属層から酸化アルミニウム層に連続的に組成変化する蒸着層の全膜厚は、30~150nmであることが好ましい。膜厚が30nm未満では、目的とする酸素バリア性能、水蒸気バリア性能を発現することが困難となる。150nm以上では、蒸着層の凝集力が低下し、剥離が蒸着層内での凝集破壊によるものとなり、見かけのラミネート強度が低くなる。また、蒸着時の凝集エネルギーが大きくなり、基材フィルムが熱で変形し、外観が実用に耐えない状態になることがある。 The total thickness of the deposited layer whose composition changes continuously from the aluminum metal layer to the aluminum oxide layer is preferably 30 to 150 nm. When the film thickness is less than 30 nm, it becomes difficult to express the target oxygen barrier performance and water vapor barrier performance. When the thickness is 150 nm or more, the cohesive force of the vapor deposition layer decreases, peeling occurs due to cohesive failure in the vapor deposition layer, and the apparent laminate strength decreases. Moreover, the cohesive energy at the time of vapor deposition becomes large, the base film may be deformed by heat, and the appearance may be unpractical.
 アルミニウム金属層から酸化アルミニウム層に連続的に組成変化する蒸着層の作成方法は、真空槽内でアルミニウム金属層から酸化アルミニウム層に連続的に組成変化する蒸着層が形成される方法が好ましい。蒸着のための方式は蒸着やスパッタリング等の公知の方法により行えばよいが、蒸着による方式が生産性の点から好ましく、そのためのアルミニウムの加熱蒸発も抵抗加熱、高周波加熱、電子ビーム加熱などの方法が適用できる。これら蒸着による方法において、反応性蒸着によりアルミニウム金属層から酸化アルミニウム層に連続的に組成変化する蒸着層を形成することが好ましい。すなわち、基材フィルムは一般に長尺であって、ロール状で供給され、真空槽中でロールから巻き出され蒸着が行われて再びロール状に巻き取られるが、蒸着の初期の段階で通常のアルミニウム金属層が形成され、蒸着の後半部分に酸素が導入され、金属アルミニウムと酸素の反応により酸化アルミニウムが形成されるというものである。蒸着の後半部分に導入した酸素は、基材フィルムの巻取り側から巻出し側に向って拡散するため、金属アルミニウム層と酸化アルミニウム層が厳密に分離して形成されるのではなく、基材フィルムが通過する蒸着ゾーンの位置に従ってアルミニウム金属層から酸化アルミニウム層に酸素の反応が連続的に進み、組成が膜厚方向に連続的に変化する傾斜構造を形成する。 The method for producing a vapor deposition layer whose composition changes continuously from the aluminum metal layer to the aluminum oxide layer is preferably a method in which a vapor deposition layer whose composition changes continuously from the aluminum metal layer to the aluminum oxide layer is formed in a vacuum chamber. The method for vapor deposition may be performed by a known method such as vapor deposition or sputtering, but the method by vapor deposition is preferable from the viewpoint of productivity, and for that purpose, heating and evaporation of aluminum are also performed by resistance heating, high-frequency heating, electron beam heating, and the like. Is applicable. In these vapor deposition methods, it is preferable to form a vapor deposition layer whose composition changes continuously from an aluminum metal layer to an aluminum oxide layer by reactive vapor deposition. That is, the base film is generally long and is supplied in a roll shape, unwound from the roll in a vacuum chamber and vapor deposited and then wound up again in a roll shape. An aluminum metal layer is formed, oxygen is introduced into the latter half of the vapor deposition, and aluminum oxide is formed by the reaction between the metal aluminum and oxygen. Oxygen introduced in the latter half of the vapor deposition diffuses from the winding side to the unwinding side of the base film, so that the metal aluminum layer and the aluminum oxide layer are not strictly separated and formed. According to the position of the vapor deposition zone through which the film passes, the reaction of oxygen continuously proceeds from the aluminum metal layer to the aluminum oxide layer, and an inclined structure in which the composition continuously changes in the film thickness direction is formed.
 [ガスバリア樹脂層]
 本発明において、ガスバリア樹脂層は、ビニルアルコール系樹脂とアルコキシ基を有する有機珪素化合物を重縮合して得られるガスバリア樹脂を塗布してなるものである。これにより、下地層であるアルミニウム蒸着層を保護しガスバリア性を向上させることができる。すなわち、アルミニウム金属および酸化アルミニウムからなる蒸着層はピンホール、クラック、粒界などの欠陥が生じる可能性があり、それによりガスバリア性が劣化する恐れがあり、ガスバリア樹脂層は蒸着層のこれらの欠陥を補うとともにガスバリア性能そのものを強化することができる。
[Gas barrier resin layer]
In the present invention, the gas barrier resin layer is formed by applying a gas barrier resin obtained by polycondensation of a vinyl alcohol resin and an organosilicon compound having an alkoxy group. Thereby, the aluminum vapor deposition layer which is a base layer can be protected and gas barrier property can be improved. That is, a vapor deposition layer made of aluminum metal and aluminum oxide may cause defects such as pinholes, cracks, and grain boundaries, which may deteriorate the gas barrier properties, and the gas barrier resin layer is a defect of the vapor deposition layer. As well as supplementing, the gas barrier performance itself can be enhanced.
 ガスバリア性樹脂層を形成するための具体的方法は、蒸着層に対して親和性の高いビニルアルコール系樹脂を主剤とし、アルコキシ基を有する有機珪素化合物およびその加水分解物のいずれかを含む水溶液またはアルコール混合水溶液から形成される。   A specific method for forming the gas barrier resin layer is based on a vinyl alcohol resin having a high affinity for the vapor deposition layer, an aqueous solution containing either an organosilicon compound having an alkoxy group and a hydrolyzate thereof, or It is formed from an alcohol-mixed aqueous solution.
 ガスバリア樹脂層を形成する主剤としてのビニルアルコール系樹脂としては、例えばポリビニルアルコール、エチレン・ビニルアルコール共重合体、変性ポリビニルアルコール等のビニルアルコール系樹脂であれば特に限定することはない。その中では、特に、ポリビニルアルコールを本発明の塗剤に用いた場合に、ガスバリア性が優れるのでより好ましい。ここでいうポリビニルアルコールは、一般にポリ酢酸ビニルをけん化して得られるものであり、酢酸基の一部をけん化して得られる部分けん化であっても、完全けん化であってもよく、特に限定されない。ガスバリア樹脂層を形成する塗剤には、さらにアルコキシ基を有する有機珪素化合物を添加する。アルコキシ基とは、アルキル基Rが酸素に結合したRO-の構造を有するものであり、加水分解による脱アルコール反応を経てシラノール基に変化するものであり、メトキシ基やエトキシ基が代表的なものである。これらアルコキシ基を有する珪素化合物とは、具体的にはテトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシラン、ジメチルジエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシランなどがあげられ、中でもテトラエトキシシランが加水分解後、水系の溶媒中において比較的安定であるので好ましい。 The vinyl alcohol resin as the main agent for forming the gas barrier resin layer is not particularly limited as long as it is a vinyl alcohol resin such as polyvinyl alcohol, ethylene / vinyl alcohol copolymer, and modified polyvinyl alcohol. Among them, particularly when polyvinyl alcohol is used for the coating material of the present invention, it is more preferable because of its excellent gas barrier properties. Polyvinyl alcohol as used herein is generally obtained by saponifying polyvinyl acetate, and may be partial saponification obtained by saponifying a part of the acetate group or complete saponification, and is not particularly limited. . An organic silicon compound having an alkoxy group is further added to the coating material for forming the gas barrier resin layer. An alkoxy group has a structure of RO— in which an alkyl group R is bonded to oxygen, and is converted to a silanol group through a dealcoholization reaction by hydrolysis. Typical examples include a methoxy group and an ethoxy group. It is. Specific examples of the silicon compound having an alkoxy group include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxylane, dimethyldiethoxysilane, n-propyltrimethoxysilane, n- Examples thereof include propyltriethoxysilane, hexyltrimethoxysilane, and hexyltriethoxysilane. Among them, tetraethoxysilane is preferable because it is relatively stable in an aqueous solvent after hydrolysis.
 ビニルアルコール系樹脂に対するアルコキシ基を有する有機珪素化合物の混合比率は、有機珪素化合物をSiO換算した質量比率で、ビニルアルコール系樹脂/有機珪素化合物=15/85~85/15の範囲が好ましく、40/60~60/40の範囲がさらに好ましい。SiO換算した質量比率とは、有機珪素化合物中の珪素原子のモル数からSiO質量に換算したものであり、ビニルアルコール系樹脂/有機珪素化合物(質量比)で表される。この値が85/15を超える場合は、ビニルアルコール系樹脂を固定化することができず、ガスバリア性能が低下する場合がある。一方、15/85未満であると、有機珪素化合物の比率が高くなり、ガスバリア樹脂層が固くなるため、耐屈曲性や引張性能が低下する場合がある。 The mixing ratio of the organosilicon compound having an alkoxy group with respect to the vinyl alcohol resin is preferably a range of vinyl alcohol resin / organosilicon compound = 15/85 to 85/15 in terms of mass ratio of the organosilicon compound in terms of SiO 2 . The range of 40/60 to 60/40 is more preferable. The mass ratio converted to SiO 2 is a value converted from the number of moles of silicon atoms in the organosilicon compound to SiO 2 mass, and is represented by vinyl alcohol resin / organosilicon compound (mass ratio). When this value exceeds 85/15, the vinyl alcohol resin cannot be fixed, and the gas barrier performance may be deteriorated. On the other hand, if it is less than 15/85, the ratio of the organosilicon compound is increased and the gas barrier resin layer is hardened, so that the bending resistance and the tensile performance may be lowered.
 本発明において、ガスバリア樹脂層は上記ビニルアルコール系樹脂と1種以上の上記のアルコキシ基を有する有機珪素化合物およびその加水分解物の少なくとも一方を含む水溶液あるいはアルコール混合水溶液からなる塗剤を用いて形成される。上記のビニルアルコール系樹脂単独では、塗膜として固化する過程で分子鎖中の水酸基同士が水素結合で結合することで分子鎖が拘束され、酸素や窒素等のガスに対しては優れたバリア性能を発現するが、水分子に対しては水素結合が可塑化するためにバリア性能を発現することはできない。ビニルアルコール系樹脂とアルコキシ基を有する有機珪素化合物からなる樹脂組成物とすることで、有機珪素化合物同士で重縮合したシロキサン結合を骨格とする無機構造と、ビニルアルコール系樹脂のお互いの水酸基で水素結合、さらには脱水反応で酸素を介してSi-O-の共有結合を有するいわゆる有機無機ハイブリッド構造が出現する。このような構造においては単独のビニルアルコール系樹脂よりも分子鎖の拘束が強固となり、水蒸気バリア性能を発現することができる。さらには、蒸着膜表面の水酸基と結合して密着力を向上させ、さらには蒸着層のピンホール、クラック、粒界などの欠陥を充填、補強することで緻密な構造を形成することができるため、折り曲げや変形に際してガスバリア性能の劣化を抑制することができる。 In the present invention, the gas barrier resin layer is formed by using a coating material comprising an aqueous solution or an alcohol mixed aqueous solution containing at least one of the above vinyl alcohol resin, one or more organosilicon compounds having an alkoxy group and a hydrolyzate thereof. Is done. With the above vinyl alcohol resin alone, the hydroxyl chain in the molecular chain is bound by hydrogen bonds in the process of solidifying as a coating film, the molecular chain is restrained, and excellent barrier performance against gases such as oxygen and nitrogen However, since water bonds are plasticized with respect to water molecules, the barrier performance cannot be expressed. By forming a resin composition comprising a vinyl alcohol resin and an organosilicon compound having an alkoxy group, an inorganic structure having a siloxane bond as a skeleton formed by polycondensation between organosilicon compounds and a hydrogen atom at each hydroxyl group of the vinyl alcohol resin. A so-called organic-inorganic hybrid structure having a Si—O— covalent bond via oxygen is formed by dehydration reaction. In such a structure, the molecular chain is more restrained than a single vinyl alcohol resin, and water vapor barrier performance can be exhibited. Furthermore, it is possible to form a dense structure by bonding with hydroxyl groups on the surface of the deposited film to improve adhesion and further filling and reinforcing defects such as pinholes, cracks and grain boundaries in the deposited layer. The deterioration of the gas barrier performance can be suppressed during bending and deformation.
 [ガスバリア樹脂層の形成]
 本発明におけるガスバリア樹脂層を形成する方法としては、特に制限はなく、基材フィルムに応じた方法で形成することができる。例えばオフセット印刷法、グラビア印刷法、シルクスクリーン印刷法などの印刷方式やロールコーティング法、ディップコーティング法、バーコーティング法、ダイコーティング法、ナイフエッジコーティング法、グラビアコーティング法、キスコーティング法、スピンコーティング法等やこれらを組み合わせた方法を用いて、コーティング液をコーティングすればよい。
[Formation of gas barrier resin layer]
There is no restriction | limiting in particular as a method of forming the gas barrier resin layer in this invention, It can form by the method according to a base film. For example, printing methods such as offset printing method, gravure printing method, silk screen printing method, roll coating method, dip coating method, bar coating method, die coating method, knife edge coating method, gravure coating method, kiss coating method, spin coating method The coating liquid may be coated using a method such as a combination of these.
 アルミニウム金属層から酸化アルミニウム層に連続的に組成変化する蒸着層上に設けるガスバリア樹脂層の膜厚は、0.1~4μmとする必要があり、より好ましくは0.2~1μmである。 The film thickness of the gas barrier resin layer provided on the vapor deposition layer whose composition changes continuously from the aluminum metal layer to the aluminum oxide layer needs to be 0.1 to 4 μm, more preferably 0.2 to 1 μm.
 ガスバリア樹脂層の膜厚が0.1μm以下であると、ガスバリア性能が発現しない場合がある。一方、ガスバリア樹脂層の膜厚が4μmを超えると、ガスバリア樹脂層の凝集力が低下し、剥離がガスバリア樹脂層内での凝集破壊によるものとなり、見かけのラミネート強度が低くなる。またコーティング乾燥条件が高温、長時間必要であり、製造コストが高騰するといった問題点も起こる。 If the thickness of the gas barrier resin layer is 0.1 μm or less, gas barrier performance may not be exhibited. On the other hand, when the film thickness of the gas barrier resin layer exceeds 4 μm, the cohesive force of the gas barrier resin layer decreases, peeling occurs due to cohesive failure in the gas barrier resin layer, and the apparent laminate strength decreases. In addition, the coating drying conditions require a high temperature for a long time, and the manufacturing cost increases.
 [積層フィルム]
 本発明のガスバリア性アルミニウム蒸着フィルムを用いて作成する積層フィルムは、熱融着層であるシーラントフィルムとガスバリア性フィルムと表面保護層であるプラスチックフィルムがこの順で積層されてなる。
[Laminated film]
The laminated film prepared using the gas barrier aluminum deposited film of the present invention is formed by laminating a sealant film as a heat-fusible layer, a gas barrier film, and a plastic film as a surface protective layer in this order.
 シーラントフィルムは、用途により耐薬品性、機械的強度(フィルムのコシ、外部からの磨耗、突き刺し強度)、耐熱性、耐候性などの特性を考慮する限り特に制限はされないが、ポリプロピレンフィルム、ポリエチレンフィルムなどが用いられる。好ましくはポリエチレンフィルムが実用的であり、特に直鎖状低密度ポリエチレンフィルムが好ましい。 The sealant film is not particularly limited as long as it takes into consideration the chemical resistance, mechanical strength (film stiffness, external wear, puncture strength), heat resistance, weather resistance, etc. depending on the application, but polypropylene film, polyethylene film Etc. are used. A polyethylene film is preferable for practical use, and a linear low density polyethylene film is particularly preferable.
 ガスバリア性フィルムであるガスバリア性アルミニウム蒸着フィルムは、蒸着面がプラスチックフィルム側になっても、シーラントフィルム側になってもよく、設計に応じて選択される。また、必要に応じてガスバリア性フィルムは、ガスバリア性アルミニウム蒸着フィルム同士を複数枚積層したものでもよく、その場合も蒸着面同士を貼り合せてもよく、基材フィルム面同士を貼り合せてもよく、蒸着面と基材フィルム面を貼り合せても良い。これらの複数のガスバリア性アルミニウム蒸着フィルムを積層した場合も、その積層体の一方の面にシーラントフィルムと、もう一方の面にプラスチックフィルムが積層されて本発明の積層フィルムが構成される。 The gas barrier aluminum vapor deposition film, which is a gas barrier film, may have a vapor deposition surface on the plastic film side or a sealant film side, and is selected according to the design. Moreover, the gas barrier film may be a laminate of a plurality of gas barrier aluminum vapor deposition films as necessary. In this case, the vapor deposition surfaces may be bonded together, or the substrate film surfaces may be bonded together. The vapor deposition surface and the substrate film surface may be bonded together. Even when these gas barrier aluminum deposited films are laminated, a laminate film of the present invention is constituted by laminating a sealant film on one side of the laminate and a plastic film on the other side.
 プラスチックフィルムは用途により耐薬品性、機械的強度(フィルムのコシ、外部からの磨耗、突き刺し強度)、耐熱性、耐候性などの特性を考慮する限り特に制限はされないが、例えば、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム、ナイロンフィルムなどが用いられる。未延伸フィルムであってもよいが、通常延伸(一軸または二軸)されているものが機械特性や厚さの均一性に優れ、二軸延伸フィルムがより好ましい。厚さは特に制限はないが、ポリエチレンテレフタレートフィルムであれば6μm~30μm程度、ポリプロピレンフィルムであれば20μm~40μm程度、ナイロンフィルムであれば10μm~30μm程度が実用的である。 The plastic film is not particularly limited as long as it considers properties such as chemical resistance, mechanical strength (film stiffness, external wear, puncture strength), heat resistance, and weather resistance depending on the application. For example, polyethylene terephthalate film, Polypropylene film, nylon film, etc. are used. Although an unstretched film may be used, a stretched film (uniaxial or biaxial) is excellent in mechanical properties and thickness uniformity, and a biaxially stretched film is more preferable. The thickness is not particularly limited, but a polyethylene terephthalate film is about 6 μm to 30 μm, a polypropylene film is about 20 μm to 40 μm, and a nylon film is about 10 μm to 30 μm.
 これらプラスチックフィルムを要求に応じて複数枚積層したものを表面保護層として使用してもよい。 A laminate of a plurality of these plastic films as required may be used as the surface protective layer.
 本発明のガスバリア性アルミニウム蒸着フィルムを用いて作成する積層フィルムの作成方法は、2液硬化型ウレタン系接着剤を用いたドライラミネート法や、エクストルージョンラミネート法などが採用できるが、特に制限されるものではない。 A method for producing a laminated film produced using the gas barrier aluminum deposited film of the present invention can employ a dry laminating method or an extrusion laminating method using a two-component curable urethane adhesive, but is particularly limited. It is not a thing.
 以下本発明を詳細に説明するため実施例を挙げるが、本発明は実施例に限定されるものではない。 Hereinafter, examples are given to describe the present invention in detail, but the present invention is not limited to the examples.
 (評価方法)
 (1)蒸着層とガスバリア樹脂層の間の密着強度(N/15mm)
 ガスバリア性フィルムの蒸着面に、ポリエステルウレタン系主剤(DIC(株)製、LX500)と芳香族イソシアネート硬化剤(DIC(株)製、KW75)からなる接着剤を介して、シーラントフィルムとして40μm膜厚の直鎖状低密度ポリエチレンフィルムをドライラミネート法により積層し、積層フィルムを作製した。次に積層フィルムを幅15mm、長さ150mmに切断してカットサンプルを作成し、引っ張り試験機(テンシロン)を使用してガスバリア性フィルムと直鎖状低密度ポリエチレンフィルム間を界面として、Tピール法により引っ張り速度50mm/minで剥離強度(ラミネート強度)を測定し、蒸着層とガスバリア樹脂層間の密着強度を評価した。密着強度の値は3.0N/15mm以上を合格とした。
(Evaluation methods)
(1) Adhesion strength between the vapor deposition layer and the gas barrier resin layer (N / 15 mm)
A 40 μm film thickness as a sealant film is formed on the vapor-deposited surface of the gas barrier film through an adhesive composed of a polyester urethane main agent (manufactured by DIC Corporation, LX500) and an aromatic isocyanate curing agent (manufactured by DIC Corporation, KW75). The linear low density polyethylene film was laminated by a dry laminating method to produce a laminated film. Next, the laminated film is cut into a width of 15 mm and a length of 150 mm to prepare a cut sample, and a T-peel method using a tensile tester (Tensilon) as an interface between the gas barrier film and the linear low-density polyethylene film. The peel strength (laminate strength) was measured at a pulling speed of 50 mm / min, and the adhesion strength between the vapor deposition layer and the gas barrier resin layer was evaluated. The adhesion strength value was determined to be 3.0 N / 15 mm or more.
 (2)酸素透過率(cc/m・24hr・atm)
 ガスバリア性フィルムを、温度23℃、湿度0%RHの条件で、米国MOCON社製の酸素透過率計(OXTRAN2/20)を使用して、JIS K7126-2:2006に記載の等圧法に基づいて酸素透過率を測定した。酸素透過率の値は0.1cc/m・24hr・atm以下を合格とした。
(2) Oxygen permeability (cc / m 2 · 24 hr · atm)
Based on the isobaric method described in JIS K7126-2: 2006, a gas barrier film was used under the conditions of a temperature of 23 ° C. and a humidity of 0% RH using an oxygen transmission meter (OXTRAN 2/20) manufactured by MOCON, USA. The oxygen transmission rate was measured. The value of oxygen permeability was 0.1 cc / m 2 · 24 hr · atm or less.
 (3)水蒸気透過率(g/m・24hr)
 ガスバリア性フィルムを、温度40℃、湿度90%RHの条件で、米国MOCON社製の酸素透過率計(PERMATRAN W3/31)を使用して、JIS K7129:2008 付属書Bに記載の赤外線センサ法に基づいて水蒸気透過率を測定した。水蒸気透過率の値は0.1g/m・24hr以下を合格とした。
(3) Water vapor transmission rate (g / m 2 · 24 hr)
Infrared sensor method described in Appendix B of JIS K7129: 2008 using a gas barrier film under conditions of a temperature of 40 ° C. and a humidity of 90% RH using an oxygen transmission meter (PERMATRAN W3 / 31) manufactured by MOCON, USA The water vapor transmission rate was measured based on this. The value of the water vapor transmission rate was determined to be 0.1 g / m 2 · 24 hr or less.
 (4)赤外線反射率(%)
 ガスバリア性フィルムを、赤外分光光度計((株)日立ハイテクノロジーズ、U-4000)を使用して、反射装置の相対反射角度12度で赤外線の波長領域を含む波長240nm~2600nmの範囲で反射光強度を測定した。このうち、波長1500nm・2000nm・2500nmの3点における反射光強度について、リファレンスとしたアルミニウム蒸着平面鏡の反射光強度に対して、ガスバリアフィルムの反射光強度の比率を赤外線反射率(%)とし、3点の平均値を計算した。この値は100%に近いほど反射特性に優れていることを意味し、赤外線反射率の値は60%以上を合格とした。
(4) Infrared reflectance (%)
The gas barrier film is reflected in the wavelength range of 240 nm to 2600 nm including the infrared wavelength region with an infrared spectrophotometer (Hitachi High-Technologies Corporation, U-4000) at a relative reflection angle of 12 degrees of the reflection device. The light intensity was measured. Among these, with respect to the reflected light intensity at three points of wavelengths 1500 nm, 2000 nm, and 2500 nm, the ratio of the reflected light intensity of the gas barrier film to the reflected light intensity of the aluminum vapor deposition flat mirror used as a reference is infrared reflectance (%). The average value of the points was calculated. This value means that the closer to 100%, the better the reflection characteristics, and the value of infrared reflectance is 60% or more.
 (5)5%引っ張り後の酸素透過率、水蒸気透過率
 ガスバリア性フィルムの140mm×90mmの試験片の90mm辺の両端から、速度5mm/minで5%(7mm)引っ張った試験片を用いて、酸素透過率と水蒸気透過率を測定した。
(5) Oxygen transmission rate after 5% stretching, water vapor transmission rate Using a test piece pulled 5% (7 mm) at a speed of 5 mm / min from both ends of a 90 mm side of a 140 mm × 90 mm test piece of a gas barrier film, The oxygen transmission rate and water vapor transmission rate were measured.
 (6)屈曲疲労試験後の酸素透過率、水蒸気透過率
 ガスバリア性フィルムの200mm×300mmの試験片の300mm辺の両端を貼り合せて円筒状に丸め、筒状にした試験片の両端を固定ヘッドと駆動ヘッドで保持し、440度のひねりを加えながら固定ヘッドと駆動ヘッドの間隔を7インチから3.5インチに狭めて、さらにひねりを加えたままヘッドの間隔を1インチまで狭め、その後ヘッドの間隔を3.5インチまで広げて、さらにひねりを戻しながらヘッドの間隔を7インチまで広げるという往復運動を40回/minの速さで、3回行なう屈曲疲労試験の前後の試験片を用いて、酸素透過率と水蒸気透過率を測定した。
(6) Oxygen transmission rate and water vapor transmission rate after bending fatigue test A 300 mm × 300 mm test piece of a gas barrier film is bonded to both ends of the 300 mm side and rounded into a cylindrical shape, and both ends of the cylindrical test piece are fixed heads. And holding the 440 degree twist, the distance between the fixed head and the drive head is reduced from 7 inches to 3.5 inches, and the head distance is reduced to 1 inch with further twist, and then the head The test piece before and after the bending fatigue test was performed three times at a speed of 40 times / min, with the distance between the heads increased to 3.5 inches and the head distance increased to 7 inches while returning the twist. Then, the oxygen transmission rate and the water vapor transmission rate were measured.
 (7)突き刺し強度測定(N)
 ガスバリア性フィルムに、ポリエステルウレタン系主剤(DIC(株)製LX500)と芳香族イソシアネート硬化剤(DIC(株)製KW75)からなる接着剤を介して、シーラントフィルムとして40μm膜厚の直鎖状低密度ポリエチレンフィルム(三井化学東セロ(株)製T.U.X FC-S)、プラスチックフィルムとして15μm膜厚の二軸延伸ナイロンフィルム(ユニチカ(株)製ONUM)を、ガスバリア性フィルムは蒸着面をプラスチックフィルム側となるようにドライラミネート法により積層し、積層フィルムを作製した。次に積層フィルムを50mm×50mmの試料片を引っ張り試験機(テンシロン)を使用して、JIS Z1707-1997に記載されている方法に基づき、突き刺し強度を測定した。
(7) Puncture strength measurement (N)
The gas barrier film is linearly low with a film thickness of 40 μm as a sealant film through an adhesive composed of a polyester urethane base agent (LX500 manufactured by DIC Corporation) and an aromatic isocyanate curing agent (KW75 manufactured by DIC Corporation). Density polyethylene film (Tuix FC-S manufactured by Mitsui Chemicals Tosero Co., Ltd.), biaxially stretched nylon film (ONUM manufactured by Unitika Co., Ltd.) with a thickness of 15 μm as a plastic film, and the gas barrier film has a deposition surface. A laminated film was produced by laminating by a dry laminating method so as to be on the plastic film side. Next, the puncture strength of the laminated film was measured based on the method described in JIS Z1707-1997 by using a 50 mm × 50 mm sample piece and using a tensile tester (Tensilon).
 (8)蒸着膜厚測定
 走査型オージェ電子分光装置(アルバックファイ(株)社製SAM-670型)で深さ方向組成分析評価を行い、デプスプロファイルにより、酸化アルミニウム/金属アルミニウムの膜構成を確認した。Al濃度とO濃度に注目し、蒸着膜の表層からArイオンエッチングを行いながらデータを収集し、そのAl濃度とO濃度の濃度比率が、50:50となる深さを界面と規定した時の酸化アルミニウム蒸着層とアルミニウム蒸着層の膜厚を算出した。別途、透過電子顕微鏡による断面観察で膜厚の分かっている金属アルミニウム膜を同様のエッチング方法でエッチングをし、エッチング速度を算出することで上記のデータのエッチング時間をエッチング深さの絶対値に変換した。
(8) Deposition film thickness measurement Depth direction composition analysis evaluation is performed with a scanning Auger electron spectrometer (SAM-670 model manufactured by ULVAC-PHI), and the film configuration of aluminum oxide / metal aluminum is confirmed by the depth profile. did. Focusing on the Al concentration and O concentration, collecting data while performing Ar ion etching from the surface layer of the deposited film, and when the concentration ratio of the Al concentration and O concentration is 50:50 is defined as the interface The film thicknesses of the aluminum oxide vapor deposition layer and the aluminum vapor deposition layer were calculated. Separately, a metal aluminum film whose thickness is known by cross-sectional observation with a transmission electron microscope is etched by the same etching method, and the etching time is converted into the absolute value of the etching depth by calculating the etching rate. did.
 (実施例1)
 基材フィルムとして12μm膜厚の二軸延伸ポリエチレンテレフタレートフィルム(東レ(株)製「ルミラー」(登録商標)P60)を使用し、ロール・ツー・ロール真空蒸着機により高周波誘導加熱のるつぼ方式のアルミニウム蒸発源を用い、アルミニウム金属層膜厚が40nmおよび酸化アルミニウム層膜厚が10nmになるように連続的に形成した。基材フィルムには、冷却された回転ドラム上で基材フィルム進行方向の一定幅のゾーン内でその位置に応じた組成の膜が厚さ方向に順次形成される。蒸着を最後に受ける位置から酸素を供給することで、アルミニウム金属層から酸化アルミニウム層に連続的に変化する蒸着層を形成した。
Example 1
A 12 μm-thick biaxially stretched polyethylene terephthalate film (“Lumirror” (registered trademark) P60, manufactured by Toray Industries, Inc.) is used as the base film, and high-frequency induction heating crucible type aluminum using a roll-to-roll vacuum deposition machine Using an evaporation source, the film was continuously formed so that the aluminum metal layer thickness was 40 nm and the aluminum oxide layer thickness was 10 nm. On the base film, a film having a composition corresponding to the position is sequentially formed in the thickness direction in a zone having a constant width in the base film traveling direction on the cooled rotating drum. By supplying oxygen from the position where vapor deposition is finally received, a vapor deposition layer that continuously changes from an aluminum metal layer to an aluminum oxide layer was formed.
 次に、上記で得られた蒸着層の上に、下記組成の水溶液をグラビアコート法により塗布、乾燥して膜厚0.3μmのガスバリア樹脂層を形成し、ガスバリア性アルミニウム蒸着フィルムを作製した。なお、下記組成の(A液)/(B液)との混合比(重量%)は35/65とした。 Next, on the vapor deposition layer obtained above, an aqueous solution having the following composition was applied and dried by a gravure coating method to form a gas barrier resin layer having a film thickness of 0.3 μm, thereby producing a gas barrier aluminum vapor deposition film. The mixing ratio (% by weight) with (A liquid) / (B liquid) having the following composition was 35/65.
 (ガスバリア樹脂層形成用の水溶液)
 (A液):テトラエトキシシラン(TEOS)に塩酸(0.1N)を加え、120分間攪拌して加水分解し、A液を調整した(固形分30重量%:SiO換算)。
(Aqueous solution for gas barrier resin layer formation)
(Liquid A): Hydrochloric acid (0.1N) was added to tetraethoxysilane (TEOS) and hydrolyzed by stirring for 120 minutes to prepare liquid A (solid content 30 wt%: converted to SiO 2 ).
 (B液):ポリビニルアルコール(PVA、重合度1,700、けん化度98.5%))の10重量%水溶液とメチルアルコールとを35/65(重量比)で配合して攪拌し、B液を調整した。 (Liquid B): A 10% by weight aqueous solution of polyvinyl alcohol (PVA, polymerization degree 1,700, saponification degree 98.5%) and methyl alcohol were mixed at 35/65 (weight ratio) and stirred, liquid B Adjusted.
 (実施例2)
 蒸着層を、アルミニウム金属層膜厚が25nmおよび酸化アルミニウム層膜厚が5nmとなるようにすること以外は、実施例1と同様にしてガスバリア性アルミニウム蒸着フィルムを得た。
(Example 2)
A gas barrier aluminum deposited film was obtained in the same manner as in Example 1 except that the deposited layer had an aluminum metal layer thickness of 25 nm and an aluminum oxide layer thickness of 5 nm.
 (実施例3)
 蒸着層を、アルミニウム金属層膜厚が80nmおよび酸化アルミニウム層膜厚が20nmとなるようにすること以外は、実施例1と同様にしてガスバリア性アルミニウム蒸着フィルムを得た。
(Example 3)
A gas barrier aluminum deposited film was obtained in the same manner as in Example 1 except that the deposited layer had an aluminum metal layer thickness of 80 nm and an aluminum oxide layer thickness of 20 nm.
 (実施例4)
 ガスバリア樹脂層厚さが0.1μmとなるようにすること以外は、実施例1と同様にしてガスバリア性アルミニウム蒸着フィルムを得た。
Example 4
A gas barrier aluminum deposited film was obtained in the same manner as in Example 1 except that the thickness of the gas barrier resin layer was 0.1 μm.
 (比較例1)
 蒸着層へ酸素を供給することなくアルミニウム金属層のみで膜厚を50nmとなるようにすること以外は、実施例1と同様にしてガスバリア性アルミニウム蒸着フィルムを得た。
(Comparative Example 1)
A gas barrier aluminum deposited film was obtained in the same manner as in Example 1 except that the film thickness was 50 nm with only the aluminum metal layer without supplying oxygen to the deposited layer.
 (比較例2)
 蒸着層全面へ酸素ガスを供給しながら金属アルミニウムを蒸発させ、酸化アルミニウム層のみで膜厚を10nmとなるようにすること以外は、実施例1と同様にしてガスバリア性アルミニウム蒸着フィルムを得た。
(Comparative Example 2)
A gas barrier aluminum vapor deposition film was obtained in the same manner as in Example 1 except that metal aluminum was evaporated while supplying oxygen gas to the entire surface of the vapor deposition layer, and the film thickness was 10 nm only with the aluminum oxide layer.
 (比較例3)
 ガスバリア樹脂層膜厚が5μmとなるようにすること以外は、実施例1と同様にしてガスバリア性アルミニウム蒸着フィルムを得た。
(Comparative Example 3)
A gas barrier aluminum deposited film was obtained in the same manner as in Example 1 except that the thickness of the gas barrier resin layer was 5 μm.
 (比較例4)
 ガスバリア樹脂層膜厚が0.05μmとなるようにすること以外は、実施例1と同様にしてガスバリア性アルミニウム蒸着フィルムを得た。
(Comparative Example 4)
A gas barrier aluminum deposited film was obtained in the same manner as in Example 1 except that the thickness of the gas barrier resin layer was 0.05 μm.
 (比較例5)
 ガスバリア樹脂層を、下記組成の水溶液をグラビアコート法により塗布、乾燥して膜厚0.3μmのガスバリア樹脂層とすること以外は、実施例1と同様にしてガスバリア性アルミニウム蒸着フィルムを得た。なお、下記組成の(A液)/(B液)との混合比(重量%)は20/80とした。
(Comparative Example 5)
A gas barrier aluminum deposited film was obtained in the same manner as in Example 1 except that an aqueous solution having the following composition was applied by a gravure coating method and dried to form a gas barrier resin layer having a film thickness of 0.3 μm. The mixing ratio (% by weight) with (A liquid) / (B liquid) having the following composition was 20/80.
 (ガスバリア樹脂層形成用の水溶液)
 (A液):アクリロニトリル(AN)、2-ヒドロキシエチルメタクリレート(HEMA)、メチルメタクリレート(MMA)の各モノマーをそれぞれ20/50/30重量%の割合で配合し、酢酸プロピル、プロピレングリコールモノメチルエーテル、n-プロピルアルコールの混合溶剤に溶解させてA液を調整した(固形分30重量%)。
(Aqueous solution for gas barrier resin layer formation)
(Liquid A): Each monomer of acrylonitrile (AN), 2-hydroxyethyl methacrylate (HEMA), and methyl methacrylate (MMA) was blended at a ratio of 20/50/30% by weight, respectively, propyl acetate, propylene glycol monomethyl ether, Solution A was prepared by dissolving in a mixed solvent of n-propyl alcohol (solid content 30% by weight).
 (B液):キシリレンジイソシアネート、メチルエチルケトンを10/90で配合して攪拌し、B液を調整した。 (Liquid B): Xylylene diisocyanate and methyl ethyl ketone were blended at 10/90 and stirred to prepare liquid B.
 実施例、比較例で作成したフィルムの構成、特性を表1に示した。 Table 1 shows the composition and characteristics of the films prepared in Examples and Comparative Examples.
 (参考例1)
 12μm膜厚のエチレン・ビニルアルコール共重合体フィルム((株)クラレ製「エバール(登録商標)」フィルムVMXL)を用い、実施例1と同じ条件でアルミニウム金属層と酸化アルミニウム層を蒸着し、蒸着層の上にはガスバリア樹脂層を設けないものを準備した。水蒸気透過率が2.0g/m・24hrと不十分であった。
(Reference Example 1)
Using an ethylene / vinyl alcohol copolymer film (“EVAL (registered trademark)” film VMXL, manufactured by Kuraray Co., Ltd.) having a film thickness of 12 μm, an aluminum metal layer and an aluminum oxide layer were vapor-deposited under the same conditions as in Example 1. The thing which does not provide a gas barrier resin layer on the layer was prepared. The water vapor transmission rate was insufficient at 2.0 g / m 2 · 24 hr.
 (参考例2)
 ガスバリア性フィルムを6μm膜厚のアルミニウム箔とし、実施例1と同様にシーラントフィルムとして40μm膜厚の直鎖状低密度ポリエチレンフィルム、プラスチックフィルムとして15μm膜厚の二軸延伸ナイロンフィルムをドライラミネート法により積層し、積層フィルムとした。突き刺し強度は9Nであり、本発明の実施例の積層フィルムと比べて小さな値となった。
(Reference Example 2)
The gas barrier film is an aluminum foil having a thickness of 6 μm, and a linear low density polyethylene film having a thickness of 40 μm is used as a sealant film as in Example 1, and a biaxially stretched nylon film having a thickness of 15 μm is used as a plastic film by a dry laminating method. It laminated | stacked and it was set as the laminated film. The puncture strength was 9N, which was a smaller value than the laminated film of the example of the present invention.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上の各実施例の結果より明らかなように、本発明のガスバリア性アルミニウム蒸着フィルムは、酸素バリア性能、水蒸気バリア性能に優れ、引っ張りや屈曲に対してもこれらガスバリア性能が維持できる良好なものであった。 As is clear from the results of the above examples, the gas barrier aluminum deposited film of the present invention is excellent in oxygen barrier performance and water vapor barrier performance, and can maintain these gas barrier performance against tension and bending. there were.
 一方、比較例1はアルミニウム層とガスバリア樹脂層の密着性が低いためにラミネート強度が劣り、比較例2はアルミニウム層がないため赤外線反射率が劣り、比較例3はガスバリア樹脂層が厚いために剥離がガスバリア樹脂層内での凝集破壊により発生し、蒸着層とガスバリア樹脂層間の密着強度が低いものとなった。比較例4はガスバリア樹脂層が薄くバリア性が劣り、比較例5はガスバリア樹脂層がビニルアルコール系樹脂とアルコキシ基を有する有機珪素化合物ではないため、5%引っ張り後および屈曲疲労試験後の酸素バリア性能、水蒸気バリア性が低下した。 On the other hand, Comparative Example 1 has inferior laminate strength due to low adhesion between the aluminum layer and the gas barrier resin layer, Comparative Example 2 has inferior infrared reflectance because there is no aluminum layer, and Comparative Example 3 has a thick gas barrier resin layer. Peeling occurred due to cohesive failure in the gas barrier resin layer, resulting in low adhesion strength between the vapor deposition layer and the gas barrier resin layer. In Comparative Example 4, the gas barrier resin layer is thin and the barrier property is poor, and in Comparative Example 5, the gas barrier resin layer is not an organosilicon compound having a vinyl alcohol resin and an alkoxy group. Performance and water vapor barrier properties decreased.
 本発明のガスバリア性アルミニウム蒸着フィルムは、優れた酸素バリア性能および水蒸気バリア性能を有するため、高いガスバリア性が要求される、真空断熱材外装材としても有用である。 The gas barrier aluminum deposited film of the present invention has excellent oxygen barrier performance and water vapor barrier performance, and is therefore useful as a vacuum heat insulating material exterior material that requires high gas barrier properties.

Claims (7)

  1.  基材フィルム表面の少なくとも片面に、膜厚が25nm以上のアルミニウム金属層から膜厚が5nm以上の酸化アルミニウム層に連続的に組成変化する蒸着層が形成され、さらにその上に膜厚が0.1~4μmのガスバリア樹脂層が積層され、該ガスバリア樹脂層はビニルアルコール系樹脂とアルコキシ基を有する有機珪素化合物を重縮合して得られるガスバリア性組成物からなることを特徴とするガスバリア性アルミニウム蒸着フィルム。 On at least one surface of the substrate film surface, a vapor deposition layer whose composition changes continuously from an aluminum metal layer having a film thickness of 25 nm or more to an aluminum oxide layer having a film thickness of 5 nm or more is formed. A gas barrier aluminum vapor deposition characterized by comprising a gas barrier resin layer having a thickness of 1 to 4 μm, and the gas barrier resin layer comprising a gas barrier composition obtained by polycondensation of a vinyl alcohol resin and an organosilicon compound having an alkoxy group the film.
  2.  アルミニウム金属層の膜厚が40~125nmの範囲であり、酸化アルミニウム層の膜厚が10~25nmの範囲である請求項1に記載のガスバリア性アルミニウム蒸着フィルム。 The gas barrier aluminum deposited film according to claim 1, wherein the aluminum metal layer has a thickness of 40 to 125 nm and the aluminum oxide layer has a thickness of 10 to 25 nm.
  3.  蒸着層とガスバリア樹脂層の間の密着強度が3.0N/15mm以上であることを特徴とする請求項1または2に記載のガスバリア性アルミニウム蒸着フィルム。 The gas barrier aluminum deposited film according to claim 1 or 2, wherein the adhesion strength between the deposited layer and the gas barrier resin layer is 3.0 N / 15 mm or more.
  4.  5%引っ張り後の水蒸気透過率が0.1g/m・24hr以下であり、酸素透過率が0.1cc/m・24hr・atm以下であることを特徴とする請求項1から3のいずれかに記載のガスバリア性アルミニウム蒸着フィルム。 The water vapor transmission rate after 5% pulling is 0.1 g / m 2 · 24 hr or less, and the oxygen transmission rate is 0.1 cc / m 2 · 24 hr · atm or less. A gas barrier aluminum deposited film according to claim 1.
  5.  屈曲疲労試験後の水蒸気透過率が0.5g/m・24hr以下であり、酸素透過率が0.2cc/m・24hr・atm以下であることを特徴とする請求項1または2に記載のガスバリア性アルミニウム蒸着フィルム。 The water vapor permeability after a bending fatigue test is 0.5 g / m 2 · 24 hr or less, and the oxygen permeability is 0.2 cc / m 2 · 24 hr · atm or less. Gas barrier aluminum deposited film.
  6.  赤外分光光度計を使用して、反射装置の相対反射角度12度で測定をした赤外線反射率が60%以上であることを特徴とする請求項1~4のいずれかに記載のガスバリア性アルミニウム蒸着フィルム。 The gas barrier aluminum according to any one of claims 1 to 4, wherein the infrared reflectance measured by using an infrared spectrophotometer at a relative reflection angle of 12 degrees of the reflection device is 60% or more. Deposition film.
  7.  シーラントフィルムとガスバリア性フィルムとプラスチックフィルムがこの順で積層され、ガスバリア性フィルムが、請求項1~5のいずれかに記載のガスバリア性アルミニウム蒸着フィルムからなることを特徴とする積層フィルム。
     
    A laminated film, wherein a sealant film, a gas barrier film, and a plastic film are laminated in this order, and the gas barrier film comprises the gas barrier aluminum deposited film according to any one of claims 1 to 5.
PCT/JP2018/003152 2017-02-07 2018-01-31 Gas-barrier aluminum vapor deposition film and laminated film using same WO2018147137A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197025266A KR102484868B1 (en) 2017-02-07 2018-01-31 Gas barrier aluminum deposited film and laminated film using the same
JP2018567382A JP7156592B2 (en) 2017-02-07 2018-01-31 Gas barrier aluminum deposition film and laminated film using the same
CN201880015709.5A CN110382233B (en) 2017-02-07 2018-01-31 Gas barrier aluminum vapor deposited film and laminated film using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017020180 2017-02-07
JP2017-020180 2017-02-07

Publications (1)

Publication Number Publication Date
WO2018147137A1 true WO2018147137A1 (en) 2018-08-16

Family

ID=63107483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003152 WO2018147137A1 (en) 2017-02-07 2018-01-31 Gas-barrier aluminum vapor deposition film and laminated film using same

Country Status (4)

Country Link
JP (1) JP7156592B2 (en)
KR (1) KR102484868B1 (en)
CN (1) CN110382233B (en)
WO (1) WO2018147137A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020049736A (en) * 2018-09-26 2020-04-02 東レ株式会社 Laminate and sealing member using the same
WO2020241621A1 (en) * 2019-05-31 2020-12-03 東洋紡株式会社 Transparent gas barrier film and method for producing same
JP2020198290A (en) * 2019-05-31 2020-12-10 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Lithium ion secondary battery, cell and negative electrode sheet
US20220298623A1 (en) * 2018-10-30 2022-09-22 Fres-Co System Usa, Inc. Methods of making films and laminates with high oxygen barrier
US11646424B2 (en) 2019-05-31 2023-05-09 Contemporary Amperex Technology Co., Limited Lithium-ion secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102305248B1 (en) * 2020-02-12 2021-09-24 도레이첨단소재 주식회사 Gas barrier aluminum deposition film and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11300875A (en) * 1998-04-23 1999-11-02 Toppan Printing Co Ltd High barrier polymer composite film and package
JP2000006305A (en) * 1998-04-24 2000-01-11 Toppan Printing Co Ltd Transparent gas barrier composite film material having ultraviolet cutting properties and package using the same
JP2003326636A (en) * 2002-05-16 2003-11-19 Toppan Printing Co Ltd Strong adhesion gas barrier transparent laminate
JP2004323616A (en) * 2003-04-23 2004-11-18 Toray Ind Inc Polyester film
JP2015030113A (en) * 2013-07-31 2015-02-16 大日本印刷株式会社 Packaging material
KR20160092526A (en) * 2014-12-30 2016-08-05 도레이첨단소재 주식회사 Transparent barrier film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003009998A1 (en) * 2001-07-24 2003-02-06 Toppan Printing Co., Ltd. Deposition film
JP2005132004A (en) 2003-10-31 2005-05-26 Toppan Printing Co Ltd Barrier exterior material for thermal insulation panel and thermal insulation panel
JP2007290222A (en) 2006-04-25 2007-11-08 Toppan Printing Co Ltd Facing material for vacuum insulating material and heat insulating material facing body
JP2010131756A (en) 2008-12-02 2010-06-17 Toray Advanced Film Co Ltd Gas barrier film
JP2012210744A (en) 2011-03-31 2012-11-01 Unitika Ltd Laminate and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11300875A (en) * 1998-04-23 1999-11-02 Toppan Printing Co Ltd High barrier polymer composite film and package
JP2000006305A (en) * 1998-04-24 2000-01-11 Toppan Printing Co Ltd Transparent gas barrier composite film material having ultraviolet cutting properties and package using the same
JP2003326636A (en) * 2002-05-16 2003-11-19 Toppan Printing Co Ltd Strong adhesion gas barrier transparent laminate
JP2004323616A (en) * 2003-04-23 2004-11-18 Toray Ind Inc Polyester film
JP2015030113A (en) * 2013-07-31 2015-02-16 大日本印刷株式会社 Packaging material
KR20160092526A (en) * 2014-12-30 2016-08-05 도레이첨단소재 주식회사 Transparent barrier film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020049736A (en) * 2018-09-26 2020-04-02 東レ株式会社 Laminate and sealing member using the same
JP7273475B2 (en) 2018-09-26 2023-05-15 東レフィルム加工株式会社 LAMINATED BODY AND SEALING MEMBER USING THE SAME
US20220298623A1 (en) * 2018-10-30 2022-09-22 Fres-Co System Usa, Inc. Methods of making films and laminates with high oxygen barrier
WO2020241621A1 (en) * 2019-05-31 2020-12-03 東洋紡株式会社 Transparent gas barrier film and method for producing same
JP2020198290A (en) * 2019-05-31 2020-12-10 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Lithium ion secondary battery, cell and negative electrode sheet
CN113874543A (en) * 2019-05-31 2021-12-31 东洋纺株式会社 Transparent gas barrier film and process for producing the same
US11611081B2 (en) 2019-05-31 2023-03-21 Contemporary Amperex Technology Co., Limited Lithium ion secondary battery, battery core, negative electrode plate, and apparatus
US11646424B2 (en) 2019-05-31 2023-05-09 Contemporary Amperex Technology Co., Limited Lithium-ion secondary battery
JP7271390B2 (en) 2019-05-31 2023-05-11 寧徳時代新能源科技股▲分▼有限公司 Lithium ion secondary battery, cell and negative electrode sheet
JP7472905B2 (en) 2019-05-31 2024-04-23 東洋紡株式会社 Transparent gas barrier film and its manufacturing method

Also Published As

Publication number Publication date
CN110382233B (en) 2021-12-07
CN110382233A (en) 2019-10-25
JPWO2018147137A1 (en) 2019-11-21
KR20190116340A (en) 2019-10-14
JP7156592B2 (en) 2022-10-19
KR102484868B1 (en) 2023-01-06

Similar Documents

Publication Publication Date Title
JP7156592B2 (en) Gas barrier aluminum deposition film and laminated film using the same
CN107969124B (en) Flexible multilayer packaging film with ultra-high barrier properties
JP4414748B2 (en) Gas barrier film, laminate material using the same, and image display medium
JPWO2019087960A1 (en) Laminated film, barrier laminated film, gas barrier packaging material using the barrier laminated film, gas barrier packaging
JPH1076593A (en) Barrier composite film and its manufacture
JP7434766B2 (en) Gas barrier vapor deposited films, gas barrier laminates, gas barrier packaging materials and gas barrier packaging bodies.
JP5381159B2 (en) Gas barrier laminate film and method for producing the same
KR20200135831A (en) Barrier resin film, barrier laminate, and packaging material using the barrier laminate
JP3441594B2 (en) Barrier composite film and method for producing the same
JP2010000447A (en) Gas-barrier laminated film and method for manufacturing the same
WO2018117043A1 (en) Gas barrier film
JP2007210262A (en) Transparent barrier film and its manufacturing method
JP2020070429A (en) Oxygen plasma treated resin film, gas barrier vapor deposition film and gas barrier laminate using the gas barrier vapor deposition film, gas barrier packaging material, gas barrier package, gas barrier packaging bag and manufacturing method of these
JP5381158B2 (en) Gas barrier laminate film and method for producing the same
JP6098957B2 (en) Barrier laminated film
JP5831025B2 (en) Gas barrier film
JP2021045929A (en) Barrier film, laminate using the barrier film, packaging product using the laminate
JP5892761B2 (en) Gas barrier laminate
JP5034257B2 (en) Barrier film and method for producing the same
JP2009137092A (en) Member for ink cartridge
JP5332281B2 (en) Gas barrier laminated film
JP4677738B2 (en) Vacuum insulator exterior and vacuum insulator
JP4501057B2 (en) Gas barrier film
JP2007211320A (en) Transparent vapor-deposited film and production method therefor
JP2008023848A (en) Transparent gas-barrier film, its manufacturing method, and packaging material using it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18752056

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018567382

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197025266

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18752056

Country of ref document: EP

Kind code of ref document: A1