JP7156592B2 - Gas barrier aluminum deposition film and laminated film using the same - Google Patents

Gas barrier aluminum deposition film and laminated film using the same Download PDF

Info

Publication number
JP7156592B2
JP7156592B2 JP2018567382A JP2018567382A JP7156592B2 JP 7156592 B2 JP7156592 B2 JP 7156592B2 JP 2018567382 A JP2018567382 A JP 2018567382A JP 2018567382 A JP2018567382 A JP 2018567382A JP 7156592 B2 JP7156592 B2 JP 7156592B2
Authority
JP
Japan
Prior art keywords
film
gas barrier
layer
aluminum
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018567382A
Other languages
Japanese (ja)
Other versions
JPWO2018147137A1 (en
Inventor
孝司 鈴木
貴宏 石井
俊樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Advanced Film Co Ltd
Original Assignee
Toray Advanced Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Advanced Film Co Ltd filed Critical Toray Advanced Film Co Ltd
Publication of JPWO2018147137A1 publication Critical patent/JPWO2018147137A1/en
Application granted granted Critical
Publication of JP7156592B2 publication Critical patent/JP7156592B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2518/00Other type of polymers
    • B05D2518/10Silicon-containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier

Description

本発明は、優れた酸素および水蒸気バリア性能を有し、ラミネート強度、耐屈曲性、耐引張性を有するガスバリア性アルミニウム蒸着フィルムに関する。 TECHNICAL FIELD The present invention relates to a gas barrier aluminum deposited film having excellent oxygen and water vapor barrier properties, lamination strength, bending resistance and tensile resistance.

アルミニウム箔を用いた包装材料は、金属光沢による意匠性に加え、光遮断性・優れたガスバリア性能を有することから、レトルト食品用包装材料をはじめとする包装材料や、冷蔵庫用の断熱材、住宅用の断熱パネル等の真空断熱材用外層包装材料として用いられている。しかし、アルミニウム箔を用いた包装材料は、ピンホールが発生しやすいことからアルミニウム箔の取り扱いが難しく、焼却後の残渣のために焼却炉に対する負荷が大きいという問題があった。 Packaging materials using aluminum foil, in addition to the metallic luster of the design, have light shielding properties and excellent gas barrier performance. It is used as an outer layer packaging material for vacuum insulation materials such as insulation panels for However, packaging materials using aluminum foil have problems in that handling of the aluminum foil is difficult because pinholes are likely to occur, and the residue after incineration places a large load on the incinerator.

上記のアルミニウム箔の問題点を解消するため、ポリエステルフィルム等の熱可塑性フィルムに真空蒸着法等の物理気相成長法を用いたアルミニウム蒸着フィルムがアルミニウム箔代替品として使用されている。しかし、アルミニウム蒸着フィルムは、ボイル・レトルト食品用途にはガスバリア性能が不十分であり、さらにボイル・レトルト殺菌時に蒸着アルミニウム層が消失し、ガスバリア性能が大幅に悪化することから使用できるものではなかった。 In order to solve the above-mentioned problems of aluminum foil, an aluminum vapor-deposited film obtained by using a physical vapor deposition method such as a vacuum vapor deposition method on a thermoplastic film such as a polyester film is used as a substitute for the aluminum foil. However, aluminum-deposited films have insufficient gas barrier performance for boiled/retort food applications, and the vapor-deposited aluminum layer disappears during boil/retort sterilization, resulting in a significant deterioration in gas barrier performance, making them unusable. .

ボイル・レトルト食品用途のためのガスバリア性フィルムとして、プラスチックフィルムの少なくとも片面に、無機酸化物もしくは無機窒化物で構成される蒸着層と、特定の樹脂層を積層したガスバリア性フィルムが開示されている(例えば特許文献1を参照)。 As a gas barrier film for boiled and retort food applications, a gas barrier film is disclosed in which a vapor deposition layer composed of an inorganic oxide or inorganic nitride and a specific resin layer are laminated on at least one side of a plastic film. (See Patent Document 1, for example).

また、アルミニウム蒸着フィルムの耐アルカリボイル性、耐酢酸レトルト性を向上させ、アルミニウム蒸着層の外観変化を抑えるため、基材(a)、金属蒸着層(b)および保護層(c)がこの順序で積層されてなる積層体であり、保護層(c)が特定のダイマー酸系ポリアミド樹脂を含有するものが開示されている(例えば特許文献2を参照)。 In order to improve the alkali boiling resistance and acetic acid retort resistance of the aluminum vapor deposition film and suppress changes in the appearance of the aluminum vapor deposition layer, the substrate (a), the metal vapor deposition layer (b) and the protective layer (c) are arranged in this order. and the protective layer (c) contains a specific dimer acid-based polyamide resin (see, for example, Patent Document 2).

一方で、アルミニウムの熱伝導率は約200W/m・Kであり、代表的な包装材料の素材であるポリエチレンテレフタレートの熱伝導率の約0.14W/m・Kや空気の熱伝導率約0.02W/m・Kに比べ大きいことから、アルミニウム箔を積層した断熱材は、熱がアルミニウム箔部分を伝って移動するヒートブリッジが発生し、真空断熱材の断熱性能が大幅に低下するという問題があった。また、真空断熱材用フィルムは、外部からのガス(空気)の侵入を防ぎ、長期間の真空状態を保持するために優れたガスバリア性能が求められる。さらに、近年、真空断熱材の周囲のヒレ部(溶着シールした部分)は、芯材が入っている部分に比べて断熱性能が低く、全体の断熱性能を保つために、ヒレ部は折り曲げられ、また、真空断熱材自体も、複雑な形状(例えば、円弧形状や直角形状)の箇所に用いられる場合、収納スペースの形状に従って変形されるようになっている。以上のことより、真空断熱材用フィルムには、折り曲げや変形に際してガスバリア性能が低下しないことも求められている。 On the other hand, the thermal conductivity of aluminum is about 200 W/m K, which is about 0.14 W/m K, which is the thermal conductivity of polyethylene terephthalate, which is a typical packaging material, and about 0 W/m K, which is the thermal conductivity of air. Since it is larger than 0.02 W/m·K, heat bridges occur where heat is transferred through the aluminum foil portion of the heat insulating material laminated with aluminum foil, and the heat insulating performance of the vacuum heat insulating material is greatly reduced. was there. In addition, films for vacuum insulation materials are required to have excellent gas barrier performance in order to prevent gas (air) from entering from the outside and to maintain a vacuum state for a long period of time. Furthermore, in recent years, the fins around the vacuum insulation material (welded and sealed parts) have lower insulation performance than the part containing the core material, and the fins are bent to maintain the overall insulation performance. Also, the vacuum insulation material itself is deformed according to the shape of the storage space when it is used in a place with a complicated shape (for example, an arc shape or a right angle shape). In view of the above, it is also required that the film for vacuum insulation material does not deteriorate in gas barrier performance when it is bent or deformed.

この真空断熱用途におけるアルミニウム箔の問題を解消するため、すなわち真空断熱材のヒートブリッジ低減とガスバリア性の向上とを両立するため、無機酸化物もしくは無機窒化物で構成される蒸着層と、特定の樹脂層を積層したガスバリア性フィルムを積層した真空断熱材料が開発されている(例えば特許文献3を参照)。 また、2枚の透明バリアフィルムをポリオレフィン樹脂で押出ラミネーションにより貼り合せた真空断熱材用フィルムが提案されている(例えば特許文献4を参照)。 In order to solve the problem of aluminum foil in vacuum insulation applications, that is, in order to achieve both reduction of heat bridges and improvement of gas barrier properties of the vacuum insulation material, a vapor deposition layer composed of an inorganic oxide or inorganic nitride and a specific A vacuum heat insulating material has been developed in which a gas barrier film laminated with a resin layer is laminated (see, for example, Patent Document 3). Also, a film for a vacuum heat insulating material has been proposed in which two transparent barrier films are laminated with a polyolefin resin by extrusion lamination (see, for example, Patent Document 4).

特開2010-131756号公報JP 2010-131756 A 特開2012-210744号公報JP 2012-210744 A 特開2005-132004号公報Japanese Patent Application Laid-Open No. 2005-132004 特開2007-290222号公報JP 2007-290222 A

しかしながら、特許文献1に係るガスバリア性フィルムは、透明なガスバリア性フィルムであって、アルミニウム箔に代わるものではない。 However, the gas barrier film according to Patent Document 1 is a transparent gas barrier film and does not replace aluminum foil.

特許文献2に係る積層体は、ガスバリア性能が十分なものではなかった。 The laminate according to Patent Document 2 did not have sufficient gas barrier performance.

特許文献3に係る真空断熱材料は、透明なガスバリア性フィルムであって、熱伝導のうち輻射に対しては、熱が赤外線として伝わることにより、真空中でも熱が伝導してしまうため、赤外線反射率が十分なものではなかった。 The vacuum insulation material according to Patent Document 3 is a transparent gas barrier film, and for radiation among heat conduction, heat is transmitted as infrared rays, and heat is conducted even in a vacuum. was not good enough.

特許文献4に係る真空断熱材用フィルムは、透明バリアフィルムに押出されたポリオレフィン樹脂の熱によって、蒸着層が劣化しガスバリア性が低下するという問題を有していた。 The film for a vacuum heat insulating material according to Patent Document 4 has a problem that the heat of the polyolefin resin extruded into the transparent barrier film deteriorates the vapor deposition layer and lowers the gas barrier properties.

本発明は、優れた酸素および水蒸気バリア性能を有し、ラミネート強度、耐屈曲性、耐引張性を有するガスバリア性アルミニウム蒸着フィルムおよびそれを用いた積層フィルムを提供することを目的とする。 An object of the present invention is to provide a gas-barrier aluminum vapor-deposited film having excellent oxygen and water vapor barrier properties, lamination strength, bending resistance and tensile resistance, and a laminated film using the same.

上記課題を解決するために、本発明は以下の構成をとる。 In order to solve the above problems, the present invention has the following configurations.

(1)基材フィルム表面の少なくとも片面に、膜厚が25nm以上、125nm以下のアルミニウム金属層から膜厚が5nm以上、25nm以下の酸化アルミニウム層に連続的に組成変化する蒸着層が形成され、さらにその上に膜厚が0.1~4μmのガスバリア樹脂層が積層され、該ガスバリア樹脂層はビニルアルコール系樹脂とアルコキシ基を有する有機珪素化合物を重縮合して得られるガスバリア性組成物からなり、蒸着層とガスバリア樹脂層の間の密着強度が3.0N/15mm以上であり、5%引っ張り後の水蒸気透過率が0.1g/m ・24hr以下であり、酸素透過率が0.1cc/m ・24hr・atm以下であり、屈曲疲労試験後の水蒸気透過率が0.5g/m ・24hr以下であり、酸素透過率が0.2cc/m ・24hr・atm以下であり、赤外分光光度計を使用して、反射装置の相対反射角度12度で測定をした赤外線反射率が60%以上であることを特徴とするガスバリア性アルミニウム蒸着フィルム。 (1) A deposited layer whose composition changes continuously from an aluminum metal layer with a thickness of 25 nm or more and 125 nm or less to an aluminum oxide layer with a thickness of 5 nm or more and 25 nm or less is formed on at least one side of the substrate film surface, Furthermore, a gas barrier resin layer having a thickness of 0.1 to 4 μm is laminated thereon, and the gas barrier resin layer is made of a gas barrier composition obtained by polycondensation of a vinyl alcohol resin and an organic silicon compound having an alkoxy group. In addition, the adhesive strength between the vapor deposition layer and the gas barrier resin layer is 3.0 N/15 mm or more, the water vapor transmission rate after 5% tension is 0.1 g/m 2 ·24 hr or less, and the oxygen transmission rate is 0.1 g/m 2 ·24 hr or less. 1 cc/m 2 ·24 hr·atm or less, a water vapor transmission rate after a bending fatigue test of 0.5 g/m 2 ·24 hr or less, and an oxygen transmission rate of 0.2 cc/m 2 ·24 hr·atm or less. A gas-barrier aluminum vapor-deposited film characterized by having an infrared reflectance of 60% or more measured at a relative reflection angle of 12 degrees using an infrared spectrophotometer .

)シーラントフィルムとガスバリア性フィルムとプラスチックフィルムがこの順で積層され、ガスバリア性フィルムが、上記のいずれかに記載のガスバリア性アルミニウム蒸着フィルムからなることを特徴とする積層フィルム。 ( 2 ) A laminated film comprising a sealant film, a gas-barrier film and a plastic film laminated in this order, wherein the gas-barrier film comprises the gas-barrier aluminum-deposited film according to any one of the above.

本発明によれば、優れた酸素および水蒸気バリア性能を有し、ラミネート強度、耐屈曲性、耐引張性を有するガスバリア性アルミニウム蒸着フィルムおよびそれを用いた積層フィルムが得られる。 INDUSTRIAL APPLICABILITY According to the present invention, a gas barrier aluminum vapor-deposited film having excellent oxygen and water vapor barrier properties, lamination strength, bending resistance and tensile resistance, and a laminated film using the same can be obtained.

以下に本発明を詳細に説明する。 The present invention will be described in detail below.

本発明のガスバリア性アルミウム蒸着フィルムは、基材フィルム表面の少なくとも片面に、膜厚が25nm以上のアルミニウム金属層から膜厚が5nm以上の酸化アルミニウム層に連続的に組成変化する蒸着層が形成され、さらにその上に膜厚が0.1~4μmのガスバリア樹脂層が積層され、該ガスバリア樹脂層はビニルアルコール系樹脂とアルコキシ基を有する有機珪素化合物を重縮合して得られるガスバリア性組成物からなることを特徴とする。 In the gas-barrier aluminum vapor-deposited film of the present invention, a vapor-deposited layer whose composition changes continuously from an aluminum metal layer with a thickness of 25 nm or more to an aluminum oxide layer with a thickness of 5 nm or more is formed on at least one side of the substrate film surface. Furthermore, a gas barrier resin layer having a thickness of 0.1 to 4 μm is laminated thereon, and the gas barrier resin layer is made of a gas barrier composition obtained by polycondensation of a vinyl alcohol resin and an organic silicon compound having an alkoxy group. characterized by becoming

背景技術で述べたように、従来技術によるアルミニウム蒸着フィルムのガスバリア性能はアルミニウム箔に比べて不十分であるが、アルミニウム金属層から酸化アルミニウム層に連続的に組成変化する蒸着層と特定のガスバリア樹脂層を設けることで、アルミニウム金属層の不完全なガスバリア性能を補うだけではなく、酸化アルミニウム蒸着層が蒸着層とガスバリア樹脂層との密着強化層の効果を発揮し、ガスバリア樹脂層を構成する樹脂が本来有するガスバリア性能を発揮する。 As described in Background Art, the gas barrier performance of conventional aluminum vapor deposition films is inadequate compared to aluminum foil. By providing a layer, not only does the imperfect gas barrier performance of the aluminum metal layer be compensated for, but the aluminum oxide vapor deposition layer exerts the effect of a layer that strengthens the adhesion between the vapor deposition layer and the gas barrier resin layer, and the resin that constitutes the gas barrier resin layer. exhibits its inherent gas barrier performance.

[基材フィルム]
本発明のガスバリア性アルミニウム蒸着フィルムにおける基材フィルムとしては、用途により耐薬品性、機械的強度(フィルムのコシ、外部からの磨耗、突き刺し強度)、耐熱性、耐候性などの特性を考慮する限り特に制限はされないが、例えば、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム、ナイロンフィルムなどが用いられる。好ましくはポリエチレンテレフタレートフィルムが実用的である。
[Base film]
As the base film for the gas barrier aluminum vapor-deposited film of the present invention, as long as characteristics such as chemical resistance, mechanical strength (film stiffness, external abrasion, puncture strength), heat resistance, and weather resistance are taken into consideration depending on the application. Although not particularly limited, for example, polyethylene terephthalate film, polypropylene film, nylon film and the like are used. A polyethylene terephthalate film is preferred for practical use.

基材フィルムは、未延伸フィルムであってもよいが、通常延伸(一軸または二軸)されているものが機械特性や厚さの均一性に優れ、二軸延伸フィルムがより好ましい。延伸法としては、ロール延伸、圧延延伸、ベルト延伸、テンター延伸、チューブ延伸や、これらを組み合わせた延伸などの慣用の延伸法が適用できる。 The substrate film may be an unstretched film, but a stretched (uniaxially or biaxially) film is usually excellent in mechanical properties and thickness uniformity, and a biaxially stretched film is more preferable. As the stretching method, conventional stretching methods such as roll stretching, roll stretching, belt stretching, tenter stretching, tube stretching, and stretching in combination thereof can be applied.

基材フィルムの厚さは特に制限はないが、ポリエチレンテレフタレートフィルムであれば6μm~30μm程度、ポリプロピレンフィルムであれば20μm~40μm程度、ナイロンフィルムであれば10μm~30μm程度が実用的である。 Although the thickness of the base film is not particularly limited, it is practically about 6 μm to 30 μm for polyethylene terephthalate film, about 20 μm to 40 μm for polypropylene film, and about 10 μm to 30 μm for nylon film.

[アルミニウム金属層から酸化アルミニウム層に連続的に組成変化する蒸着層]
本発明においては、上記基材フィルム上にアルミニウム金属層から酸化アルミニウム層に連続的に組成変化する蒸着層を形成する。アルミニウム金属層から酸化アルミニウム層に連続的に組成変化する蒸着層とは、蒸着の初期にはアルミニウム金属層が形成され、膜が成長するにつれ酸化アルミニウムに変化する傾斜構造を有する蒸着層である。ところで、アルミニウム蒸着層は、蒸着後大気に取り出した段階でアルミニウム金属膜表面に薄い自然酸化膜が形成されるが、この自然酸化膜は高々3nm程度であり、本発明における酸化アルミニウム層は、後述する分析法によれば5nm以上である。好ましくは10~25nmである。25nmを超えるとアルミニウム金属層の金属調の外観が損なわれ、赤外線反射率が低下することがある。
[Vapor deposition layer whose composition changes continuously from an aluminum metal layer to an aluminum oxide layer]
In the present invention, a deposited layer whose composition changes continuously from an aluminum metal layer to an aluminum oxide layer is formed on the substrate film. A vapor deposition layer whose composition changes continuously from an aluminum metal layer to an aluminum oxide layer is a vapor deposition layer having a gradient structure in which an aluminum metal layer is formed at the beginning of vapor deposition and changes to aluminum oxide as the film grows. By the way, in the vapor deposited aluminum layer, a thin natural oxide film is formed on the surface of the aluminum metal film when it is taken out to the atmosphere after vapor deposition. This natural oxide film is at most about 3 nm. It is 5 nm or more according to the analysis method. It is preferably 10 to 25 nm. If it exceeds 25 nm, the metallic appearance of the aluminum metal layer may be impaired, and the infrared reflectance may be lowered.

アルミニウム金属層の膜厚は25nm以上であることが重要である。25nm未満ではガスバリア性能が不十分であり、金属調の外観も不十分なものとなる場合がある。また、真空断熱材用途においては、赤外線反射率が60%未満となり断熱性能が不十分なものとなる場合がある。好ましくは40~125nmである。125nmを超えてもガスバリア性能は頭打ちであり、アルミニウム金属層蒸着時の凝集エネルギーが大きくなり、基材フィルムが熱で変形し、外観が実用に耐えない場合がある。 It is important that the film thickness of the aluminum metal layer is 25 nm or more. If the thickness is less than 25 nm, the gas barrier performance may be insufficient, and the metallic appearance may be insufficient. Moreover, in vacuum heat insulating material applications, the infrared reflectance may be less than 60%, resulting in insufficient heat insulating performance. It is preferably 40 to 125 nm. Even if it exceeds 125 nm, the gas barrier performance reaches a ceiling, and the cohesive energy during vapor deposition of the aluminum metal layer increases, the substrate film is deformed by heat, and the appearance may not be practical.

アルミニウム金属層から酸化アルミニウム層に連続的に組成変化する蒸着層の全膜厚は、30~150nmであることが好ましい。膜厚が30nm未満では、目的とする酸素バリア性能、水蒸気バリア性能を発現することが困難となる。150nm以上では、蒸着層の凝集力が低下し、剥離が蒸着層内での凝集破壊によるものとなり、見かけのラミネート強度が低くなる。また、蒸着時の凝集エネルギーが大きくなり、基材フィルムが熱で変形し、外観が実用に耐えない状態になることがある。 It is preferable that the total thickness of the deposition layer whose composition changes continuously from the aluminum metal layer to the aluminum oxide layer is 30 to 150 nm. If the film thickness is less than 30 nm, it is difficult to achieve the desired oxygen barrier performance and water vapor barrier performance. If the thickness is 150 nm or more, the cohesive force of the vapor deposition layer is lowered, and peeling is caused by cohesive failure within the vapor deposition layer, resulting in a low apparent lamination strength. In addition, the cohesive energy during vapor deposition increases, the substrate film is deformed by heat, and the appearance may become unusable.

アルミニウム金属層から酸化アルミニウム層に連続的に組成変化する蒸着層の作成方法は、真空槽内でアルミニウム金属層から酸化アルミニウム層に連続的に組成変化する蒸着層が形成される方法が好ましい。蒸着のための方式は蒸着やスパッタリング等の公知の方法により行えばよいが、蒸着による方式が生産性の点から好ましく、そのためのアルミニウムの加熱蒸発も抵抗加熱、高周波加熱、電子ビーム加熱などの方法が適用できる。これら蒸着による方法において、反応性蒸着によりアルミニウム金属層から酸化アルミニウム層に連続的に組成変化する蒸着層を形成することが好ましい。すなわち、基材フィルムは一般に長尺であって、ロール状で供給され、真空槽中でロールから巻き出され蒸着が行われて再びロール状に巻き取られるが、蒸着の初期の段階で通常のアルミニウム金属層が形成され、蒸着の後半部分に酸素が導入され、金属アルミニウムと酸素の反応により酸化アルミニウムが形成されるというものである。蒸着の後半部分に導入した酸素は、基材フィルムの巻取り側から巻出し側に向って拡散するため、金属アルミニウム層と酸化アルミニウム層が厳密に分離して形成されるのではなく、基材フィルムが通過する蒸着ゾーンの位置に従ってアルミニウム金属層から酸化アルミニウム層に酸素の反応が連続的に進み、組成が膜厚方向に連続的に変化する傾斜構造を形成する。 A preferred method for forming a deposited layer whose composition changes continuously from an aluminum metal layer to an aluminum oxide layer is a method in which a deposited layer whose composition changes continuously from an aluminum metal layer to an aluminum oxide layer is formed in a vacuum chamber. The vapor deposition may be carried out by known methods such as vapor deposition and sputtering, but the vapor deposition method is preferable from the viewpoint of productivity, and the heating and vaporization of aluminum for that purpose is a method such as resistance heating, high frequency heating, or electron beam heating. is applicable. In these vapor deposition methods, it is preferable to form a vapor deposition layer whose composition changes continuously from an aluminum metal layer to an aluminum oxide layer by reactive vapor deposition. That is, the base film is generally long and is supplied in a roll, is unwound from the roll in a vacuum chamber, vapor deposition is performed, and is wound again into a roll. An aluminum metal layer is formed, oxygen is introduced in the latter part of the deposition, and aluminum oxide is formed by the reaction of metallic aluminum and oxygen. Oxygen introduced in the second half of vapor deposition diffuses from the winding side of the substrate film toward the unwinding side, so that the metal aluminum layer and the aluminum oxide layer are not strictly separated from each other. Oxygen reacts continuously from the aluminum metal layer to the aluminum oxide layer according to the position of the vapor deposition zone through which the film passes, forming a gradient structure in which the composition continuously changes in the film thickness direction.

[ガスバリア樹脂層]
本発明において、ガスバリア樹脂層は、ビニルアルコール系樹脂とアルコキシ基を有する有機珪素化合物を重縮合して得られるガスバリア樹脂を塗布してなるものである。これにより、下地層であるアルミニウム蒸着層を保護しガスバリア性を向上させることができる。すなわち、アルミニウム金属および酸化アルミニウムからなる蒸着層はピンホール、クラック、粒界などの欠陥が生じる可能性があり、それによりガスバリア性が劣化する恐れがあり、ガスバリア樹脂層は蒸着層のこれらの欠陥を補うとともにガスバリア性能そのものを強化することができる。
[Gas barrier resin layer]
In the present invention, the gas barrier resin layer is formed by applying a gas barrier resin obtained by polycondensation of a vinyl alcohol resin and an organic silicon compound having an alkoxy group. As a result, it is possible to protect the deposited aluminum layer, which is the base layer, and improve the gas barrier properties. That is, the vapor-deposited layer made of aluminum metal and aluminum oxide may have defects such as pinholes, cracks, and grain boundaries, which may deteriorate the gas barrier properties. can be compensated for and the gas barrier performance itself can be strengthened.

ガスバリア性樹脂層を形成するための具体的方法は、蒸着層に対して親和性の高いビニルアルコール系樹脂を主剤とし、アルコキシ基を有する有機珪素化合物およびその加水分解物のいずれかを含む水溶液またはアルコール混合水溶液から形成される。 A specific method for forming the gas-barrier resin layer is an aqueous solution containing either an organosilicon compound having an alkoxy group or a hydrolyzate thereof, which is based on a vinyl alcohol-based resin that has a high affinity for the deposited layer, or Formed from an alcohol mixed aqueous solution.

ガスバリア樹脂層を形成する主剤としてのビニルアルコール系樹脂としては、例えばポリビニルアルコール、エチレン・ビニルアルコール共重合体、変性ポリビニルアルコール等のビニルアルコール系樹脂であれば特に限定することはない。その中では、特に、ポリビニルアルコールを本発明の塗剤に用いた場合に、ガスバリア性が優れるのでより好ましい。ここでいうポリビニルアルコールは、一般にポリ酢酸ビニルをけん化して得られるものであり、酢酸基の一部をけん化して得られる部分けん化であっても、完全けん化であってもよく、特に限定されない。ガスバリア樹脂層を形成する塗剤には、さらにアルコキシ基を有する有機珪素化合物を添加する。アルコキシ基とは、アルキル基Rが酸素に結合したRO-の構造を有するものであり、加水分解による脱アルコール反応を経てシラノール基に変化するものであり、メトキシ基やエトキシ基が代表的なものである。これらアルコキシ基を有する珪素化合物とは、具体的にはテトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシラン、ジメチルジエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシランなどがあげられ、中でもテトラエトキシシランが加水分解後、水系の溶媒中において比較的安定であるので好ましい。 The vinyl alcohol-based resin as the base material for forming the gas barrier resin layer is not particularly limited as long as it is a vinyl alcohol-based resin such as polyvinyl alcohol, ethylene-vinyl alcohol copolymer, modified polyvinyl alcohol, and the like. Among them, it is particularly preferable to use polyvinyl alcohol in the coating agent of the present invention because it has excellent gas barrier properties. Polyvinyl alcohol here is generally obtained by saponifying polyvinyl acetate, and may be partially saponified obtained by saponifying a part of the acetic acid group or completely saponified, and is not particularly limited. . An organic silicon compound having an alkoxy group is further added to the coating material for forming the gas barrier resin layer. An alkoxy group has a structure of RO- in which an alkyl group R is bonded to oxygen, and is changed to a silanol group through a dealcoholization reaction by hydrolysis, and a methoxy group or an ethoxy group is typical. is. These silicon compounds having an alkoxy group are specifically tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, n-propyltrimethoxysilane, n- Examples include propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, etc. Among them, tetraethoxysilane is preferred because it is relatively stable in an aqueous solvent after hydrolysis.

ビニルアルコール系樹脂に対するアルコキシ基を有する有機珪素化合物の混合比率は、有機珪素化合物をSiO換算した質量比率で、ビニルアルコール系樹脂/有機珪素化合物=15/85~85/15の範囲が好ましく、40/60~60/40の範囲がさらに好ましい。SiO換算した質量比率とは、有機珪素化合物中の珪素原子のモル数からSiO質量に換算したものであり、ビニルアルコール系樹脂/有機珪素化合物(質量比)で表される。この値が85/15を超える場合は、ビニルアルコール系樹脂を固定化することができず、ガスバリア性能が低下する場合がある。一方、15/85未満であると、有機珪素化合物の比率が高くなり、ガスバリア樹脂層が固くなるため、耐屈曲性や引張性能が低下する場合がある。The mixing ratio of the organosilicon compound having an alkoxy group to the vinyl alcohol resin is preferably in the range of vinyl alcohol resin/organosilicon compound = 15/85 to 85/15 in terms of mass ratio of the organosilicon compound converted to SiO2 . A range of 40/60 to 60/40 is more preferred. The mass ratio in terms of SiO 2 is obtained by converting the number of moles of silicon atoms in the organosilicon compound into the mass of SiO 2 , and is represented by vinyl alcohol resin/organosilicon compound (mass ratio). If this value exceeds 85/15, the vinyl alcohol-based resin cannot be immobilized, and the gas barrier performance may deteriorate. On the other hand, if it is less than 15/85, the ratio of the organosilicon compound will increase and the gas barrier resin layer will become hard, which may result in a decrease in flex resistance and tensile performance.

本発明において、ガスバリア樹脂層は上記ビニルアルコール系樹脂と1種以上の上記のアルコキシ基を有する有機珪素化合物およびその加水分解物の少なくとも一方を含む水溶液あるいはアルコール混合水溶液からなる塗剤を用いて形成される。上記のビニルアルコール系樹脂単独では、塗膜として固化する過程で分子鎖中の水酸基同士が水素結合で結合することで分子鎖が拘束され、酸素や窒素等のガスに対しては優れたバリア性能を発現するが、水分子に対しては水素結合が可塑化するためにバリア性能を発現することはできない。ビニルアルコール系樹脂とアルコキシ基を有する有機珪素化合物からなる樹脂組成物とすることで、有機珪素化合物同士で重縮合したシロキサン結合を骨格とする無機構造と、ビニルアルコール系樹脂のお互いの水酸基で水素結合、さらには脱水反応で酸素を介してSi-O-の共有結合を有するいわゆる有機無機ハイブリッド構造が出現する。このような構造においては単独のビニルアルコール系樹脂よりも分子鎖の拘束が強固となり、水蒸気バリア性能を発現することができる。さらには、蒸着膜表面の水酸基と結合して密着力を向上させ、さらには蒸着層のピンホール、クラック、粒界などの欠陥を充填、補強することで緻密な構造を形成することができるため、折り曲げや変形に際してガスバリア性能の劣化を抑制することができる。 In the present invention, the gas barrier resin layer is formed using an aqueous solution containing at least one of the vinyl alcohol resin and at least one of the above organosilicon compounds having an alkoxy group and a hydrolyzate thereof, or a coating agent consisting of an alcohol-mixed aqueous solution. be done. The above vinyl alcohol resin alone has excellent barrier performance against gases such as oxygen and nitrogen because the hydroxyl groups in the molecular chains are bound by hydrogen bonds during the process of solidifying as a coating film. However, the barrier performance cannot be expressed for water molecules because the hydrogen bonds are plasticized. By forming a resin composition comprising a vinyl alcohol-based resin and an organic silicon compound having an alkoxy group, an inorganic structure having a skeleton of a siloxane bond formed by polycondensation between the organic silicon compounds and a hydroxyl group of the vinyl alcohol-based resin can form hydrogen atoms. A so-called organic-inorganic hybrid structure having a covalent bond of Si--O-- through a bond and a dehydration reaction appears. In such a structure, the restraint of the molecular chains is stronger than that of a single vinyl alcohol-based resin, and the water vapor barrier performance can be exhibited. Furthermore, it is possible to form a dense structure by bonding with hydroxyl groups on the surface of the deposited film to improve adhesion, and by filling and reinforcing defects such as pinholes, cracks, and grain boundaries in the deposited layer. , the deterioration of the gas barrier performance can be suppressed during bending or deformation.

[ガスバリア樹脂層の形成]
本発明におけるガスバリア樹脂層を形成する方法としては、特に制限はなく、基材フィルムに応じた方法で形成することができる。例えばオフセット印刷法、グラビア印刷法、シルクスクリーン印刷法などの印刷方式やロールコーティング法、ディップコーティング法、バーコーティング法、ダイコーティング法、ナイフエッジコーティング法、グラビアコーティング法、キスコーティング法、スピンコーティング法等やこれらを組み合わせた方法を用いて、コーティング液をコーティングすればよい。
[Formation of gas barrier resin layer]
The method for forming the gas barrier resin layer in the present invention is not particularly limited, and can be formed by a method suitable for the substrate film. For example, printing methods such as offset printing method, gravure printing method, silk screen printing method, roll coating method, dip coating method, bar coating method, die coating method, knife edge coating method, gravure coating method, kiss coating method, spin coating method etc., or a combination of these methods may be used to coat the coating liquid.

アルミニウム金属層から酸化アルミニウム層に連続的に組成変化する蒸着層上に設けるガスバリア樹脂層の膜厚は、0.1~4μmとする必要があり、より好ましくは0.2~1μmである。 The film thickness of the gas barrier resin layer provided on the deposited layer whose composition changes continuously from the aluminum metal layer to the aluminum oxide layer should be 0.1 to 4 μm, more preferably 0.2 to 1 μm.

ガスバリア樹脂層の膜厚が0.1μm以下であると、ガスバリア性能が発現しない場合がある。一方、ガスバリア樹脂層の膜厚が4μmを超えると、ガスバリア樹脂層の凝集力が低下し、剥離がガスバリア樹脂層内での凝集破壊によるものとなり、見かけのラミネート強度が低くなる。またコーティング乾燥条件が高温、長時間必要であり、製造コストが高騰するといった問題点も起こる。 If the film thickness of the gas barrier resin layer is 0.1 μm or less, gas barrier performance may not be exhibited. On the other hand, when the thickness of the gas barrier resin layer exceeds 4 μm, the cohesive force of the gas barrier resin layer is reduced, and peeling is caused by cohesive failure within the gas barrier resin layer, resulting in a decrease in apparent lamination strength. Moreover, high temperature and long time are required for drying the coating, which raises the problem that the manufacturing cost rises.

[積層フィルム]
本発明のガスバリア性アルミニウム蒸着フィルムを用いて作成する積層フィルムは、熱融着層であるシーラントフィルムとガスバリア性フィルムと表面保護層であるプラスチックフィルムがこの順で積層されてなる。
[Laminated film]
The laminated film produced using the gas barrier aluminum deposited film of the present invention is formed by laminating a sealant film as a heat-sealable layer, a gas barrier film and a plastic film as a surface protective layer in this order.

シーラントフィルムは、用途により耐薬品性、機械的強度(フィルムのコシ、外部からの磨耗、突き刺し強度)、耐熱性、耐候性などの特性を考慮する限り特に制限はされないが、ポリプロピレンフィルム、ポリエチレンフィルムなどが用いられる。好ましくはポリエチレンフィルムが実用的であり、特に直鎖状低密度ポリエチレンフィルムが好ましい。 Depending on the application, the sealant film is not particularly limited as long as properties such as chemical resistance, mechanical strength (film stiffness, external abrasion, puncture resistance), heat resistance, weather resistance, etc. are taken into account, but polypropylene film, polyethylene film etc. are used. A polyethylene film is preferred for practical use, and a linear low-density polyethylene film is particularly preferred.

ガスバリア性フィルムであるガスバリア性アルミニウム蒸着フィルムは、蒸着面がプラスチックフィルム側になっても、シーラントフィルム側になってもよく、設計に応じて選択される。また、必要に応じてガスバリア性フィルムは、ガスバリア性アルミニウム蒸着フィルム同士を複数枚積層したものでもよく、その場合も蒸着面同士を貼り合せてもよく、基材フィルム面同士を貼り合せてもよく、蒸着面と基材フィルム面を貼り合せても良い。これらの複数のガスバリア性アルミニウム蒸着フィルムを積層した場合も、その積層体の一方の面にシーラントフィルムと、もう一方の面にプラスチックフィルムが積層されて本発明の積層フィルムが構成される。 The vapor-deposited surface of the gas-barrier aluminum vapor-deposited film, which is a gas-barrier film, may be the plastic film side or the sealant film side, which is selected according to the design. If necessary, the gas barrier film may be a laminate of a plurality of gas barrier aluminum deposited films. Alternatively, the deposition surface and the substrate film surface may be bonded together. When a plurality of these gas-barrier aluminum vapor-deposited films are laminated, the laminate film of the present invention is constructed by laminating a sealant film on one side of the laminate and a plastic film on the other side.

プラスチックフィルムは用途により耐薬品性、機械的強度(フィルムのコシ、外部からの磨耗、突き刺し強度)、耐熱性、耐候性などの特性を考慮する限り特に制限はされないが、例えば、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム、ナイロンフィルムなどが用いられる。未延伸フィルムであってもよいが、通常延伸(一軸または二軸)されているものが機械特性や厚さの均一性に優れ、二軸延伸フィルムがより好ましい。厚さは特に制限はないが、ポリエチレンテレフタレートフィルムであれば6μm~30μm程度、ポリプロピレンフィルムであれば20μm~40μm程度、ナイロンフィルムであれば10μm~30μm程度が実用的である。 The plastic film is not particularly limited as long as properties such as chemical resistance, mechanical strength (film stiffness, external abrasion, piercing strength), heat resistance, and weather resistance are taken into account, but examples include polyethylene terephthalate film, A polypropylene film, a nylon film, etc. are used. An unstretched film may be used, but a biaxially stretched film is more preferable because a film that is usually stretched (uniaxially or biaxially) is excellent in mechanical properties and thickness uniformity. Although the thickness is not particularly limited, it is practically about 6 μm to 30 μm for polyethylene terephthalate film, about 20 μm to 40 μm for polypropylene film, and about 10 μm to 30 μm for nylon film.

これらプラスチックフィルムを要求に応じて複数枚積層したものを表面保護層として使用してもよい。 A laminate of a plurality of these plastic films may be used as the surface protective layer as required.

本発明のガスバリア性アルミニウム蒸着フィルムを用いて作成する積層フィルムの作成方法は、2液硬化型ウレタン系接着剤を用いたドライラミネート法や、エクストルージョンラミネート法などが採用できるが、特に制限されるものではない。 As a method for producing a laminated film using the gas barrier aluminum vapor-deposited film of the present invention, a dry lamination method using a two-liquid curing urethane adhesive, an extrusion lamination method, or the like can be employed, but there are particular restrictions. not a thing

以下本発明を詳細に説明するため実施例を挙げるが、本発明は実施例に限定されるものではない。 EXAMPLES Hereinafter, examples will be given to describe the present invention in detail, but the present invention is not limited to the examples.

(評価方法)
(1)蒸着層とガスバリア樹脂層の間の密着強度(N/15mm)
ガスバリア性フィルムの蒸着面に、ポリエステルウレタン系主剤(DIC(株)製、LX500)と芳香族イソシアネート硬化剤(DIC(株)製、KW75)からなる接着剤を介して、シーラントフィルムとして40μm膜厚の直鎖状低密度ポリエチレンフィルムをドライラミネート法により積層し、積層フィルムを作製した。次に積層フィルムを幅15mm、長さ150mmに切断してカットサンプルを作成し、引っ張り試験機(テンシロン)を使用してガスバリア性フィルムと直鎖状低密度ポリエチレンフィルム間を界面として、Tピール法により引っ張り速度50mm/minで剥離強度(ラミネート強度)を測定し、蒸着層とガスバリア樹脂層間の密着強度を評価した。密着強度の値は3.0N/15mm以上を合格とした。
(Evaluation method)
(1) Adhesion strength between vapor deposition layer and gas barrier resin layer (N/15 mm)
A 40 μm-thick sealant film was applied to the vapor-deposited surface of the gas-barrier film via an adhesive consisting of a polyester urethane-based main agent (manufactured by DIC Corporation, LX500) and an aromatic isocyanate curing agent (manufactured by DIC Corporation, KW75). A laminated film was prepared by laminating the linear low-density polyethylene films of No. 1 by the dry lamination method. Next, the laminated film was cut to a width of 15 mm and a length of 150 mm to prepare a cut sample, and a tensile tester (Tensilon) was used to determine the interface between the gas barrier film and the linear low-density polyethylene film by the T-peel method. The peel strength (laminate strength) was measured at a tensile speed of 50 mm/min, and the adhesion strength between the vapor deposition layer and the gas barrier resin layer was evaluated. A value of adhesion strength of 3.0 N/15 mm or more was considered acceptable.

(2)酸素透過率(cc/m・24hr・atm)
ガスバリア性フィルムを、温度23℃、湿度0%RHの条件で、米国MOCON社製の酸素透過率計(OXTRAN2/20)を使用して、JIS K7126-2:2006に記載の等圧法に基づいて酸素透過率を測定した。酸素透過率の値は0.1cc/m・24hr・atm以下を合格とした。
( 2 ) Oxygen permeability (cc/m2.24hr.atm)
The gas barrier film is measured at a temperature of 23° C. and a humidity of 0% RH using an oxygen permeability meter (OXTRAN 2/20) manufactured by MOCON, USA, based on the isobaric method described in JIS K7126-2:2006. Oxygen permeability was measured. A value of oxygen transmission rate of 0.1 cc/m 2 ·24 hr·atm or less was considered acceptable.

(3)水蒸気透過率(g/m・24hr)
ガスバリア性フィルムを、温度40℃、湿度90%RHの条件で、米国MOCON社製の酸素透過率計(PERMATRAN W3/31)を使用して、JIS K7129:2008 付属書Bに記載の赤外線センサ法に基づいて水蒸気透過率を測定した。水蒸気透過率の値は0.1g/m・24hr以下を合格とした。
(3) Water vapor transmission rate (g/m 2 24 hr)
A gas barrier film is measured at a temperature of 40° C. and a humidity of 90% RH using an oxygen permeability meter (PERMATRAN W3/31) manufactured by MOCON in the United States according to the infrared sensor method described in JIS K7129:2008 Appendix B. The water vapor transmission rate was measured based on. A water vapor transmission rate of 0.1 g/m 2 ·24 hr or less was considered acceptable.

(4)赤外線反射率(%)
ガスバリア性フィルムを、赤外分光光度計((株)日立ハイテクノロジーズ、U-4000)を使用して、反射装置の相対反射角度12度で赤外線の波長領域を含む波長240nm~2600nmの範囲で反射光強度を測定した。このうち、波長1500nm・2000nm・2500nmの3点における反射光強度について、リファレンスとしたアルミニウム蒸着平面鏡の反射光強度に対して、ガスバリアフィルムの反射光強度の比率を赤外線反射率(%)とし、3点の平均値を計算した。この値は100%に近いほど反射特性に優れていることを意味し、赤外線反射率の値は60%以上を合格とした。
(4) Infrared reflectance (%)
Using an infrared spectrophotometer (U-4000, Hitachi High-Technologies Co., Ltd.), the gas barrier film is reflected in the wavelength range of 240 nm to 2600 nm including the infrared wavelength range at a relative reflection angle of 12 degrees of the reflector. Light intensity was measured. Of these, the ratio of the reflected light intensity of the gas barrier film to the reflected light intensity of the aluminum vapor-deposited plane mirror used as a reference for the reflected light intensity at the three points of wavelengths 1500 nm, 2000 nm, and 2500 nm is defined as the infrared reflectance (%). The average value of the points was calculated. The closer this value is to 100%, the better the reflective properties are, and the value of infrared reflectance of 60% or more was considered acceptable.

(5)5%引っ張り後の酸素透過率、水蒸気透過率
ガスバリア性フィルムの140mm×90mmの試験片の90mm辺の両端から、速度5mm/minで5%(7mm)引っ張った試験片を用いて、酸素透過率と水蒸気透過率を測定した。
(5) Oxygen Permeability and Water Vapor Permeability after 5% Stretching Using a test piece that was pulled 5% (7 mm) at a speed of 5 mm/min from both ends of a 90 mm side of a 140 mm x 90 mm test piece of gas barrier film, Oxygen transmission rate and water vapor transmission rate were measured.

(6)屈曲疲労試験後の酸素透過率、水蒸気透過率
ガスバリア性フィルムの200mm×300mmの試験片の300mm辺の両端を貼り合せて円筒状に丸め、筒状にした試験片の両端を固定ヘッドと駆動ヘッドで保持し、440度のひねりを加えながら固定ヘッドと駆動ヘッドの間隔を7インチから3.5インチに狭めて、さらにひねりを加えたままヘッドの間隔を1インチまで狭め、その後ヘッドの間隔を3.5インチまで広げて、さらにひねりを戻しながらヘッドの間隔を7インチまで広げるという往復運動を40回/minの速さで、3回行なう屈曲疲労試験の前後の試験片を用いて、酸素透過率と水蒸気透過率を測定した。
(6) Oxygen Permeability and Water Vapor Permeability after Bending Fatigue Test A 200 mm x 300 mm test piece of a gas barrier film was pasted together at both ends of the 300 mm side and rolled into a cylindrical shape, and the both ends of the cylindrical test piece were fixed with a head. and drive head, and while applying a 440 degree twist, narrow the gap between the fixed head and the drive head from 7 inches to 3.5 inches, and while still adding a twist, narrow the gap between the heads to 1 inch, then the head The distance between the heads is widened to 3.5 inches, and the distance between the heads is widened to 7 inches while untwisting at a speed of 40 times/min. The oxygen transmission rate and water vapor transmission rate were measured.

(7)突き刺し強度測定(N)
ガスバリア性フィルムに、ポリエステルウレタン系主剤(DIC(株)製LX500)と芳香族イソシアネート硬化剤(DIC(株)製KW75)からなる接着剤を介して、シーラントフィルムとして40μm膜厚の直鎖状低密度ポリエチレンフィルム(三井化学東セロ(株)製T.U.X FC-S)、プラスチックフィルムとして15μm膜厚の二軸延伸ナイロンフィルム(ユニチカ(株)製ONUM)を、ガスバリア性フィルムは蒸着面をプラスチックフィルム側となるようにドライラミネート法により積層し、積層フィルムを作製した。次に積層フィルムを50mm×50mmの試料片を引っ張り試験機(テンシロン)を使用して、JIS Z1707-1997に記載されている方法に基づき、突き刺し強度を測定した。
(7) Puncture strength measurement (N)
An adhesive consisting of a polyester urethane-based main agent (LX500, manufactured by DIC Corporation) and an aromatic isocyanate curing agent (KW75, manufactured by DIC Corporation) was applied to the gas barrier film as a sealant film, and a straight-chain thin film having a thickness of 40 μm was applied. A density polyethylene film (T.U.X FC-S manufactured by Mitsui Chemicals Tohcello Co., Ltd.), a 15 μm-thick biaxially oriented nylon film (ONUM manufactured by Unitika Ltd.) as a plastic film, and a vapor-deposited surface of the gas barrier film. A laminate film was produced by laminating by a dry lamination method so that the plastic film side was formed. Next, a 50 mm×50 mm sample piece of the laminated film was used to measure the puncture strength using a tensile tester (Tensilon) based on the method described in JIS Z1707-1997.

(8)蒸着膜厚測定
走査型オージェ電子分光装置(アルバックファイ(株)社製SAM-670型)で深さ方向組成分析評価を行い、デプスプロファイルにより、酸化アルミニウム/金属アルミニウムの膜構成を確認した。Al濃度とO濃度に注目し、蒸着膜の表層からArイオンエッチングを行いながらデータを収集し、そのAl濃度とO濃度の濃度比率が、50:50となる深さを界面と規定した時の酸化アルミニウム蒸着層とアルミニウム蒸着層の膜厚を算出した。別途、透過電子顕微鏡による断面観察で膜厚の分かっている金属アルミニウム膜を同様のエッチング方法でエッチングをし、エッチング速度を算出することで上記のデータのエッチング時間をエッチング深さの絶対値に変換した。
(8) Evaporation film thickness measurement Perform depth direction composition analysis evaluation with a scanning Auger electron spectrometer (SAM-670 manufactured by ULVAC-PHI, Inc.), and confirm the film structure of aluminum oxide/metal aluminum by depth profile. did. Focusing on the Al concentration and O concentration, collecting data while performing Ar ion etching from the surface layer of the deposited film, and defining the depth at which the concentration ratio of the Al concentration and O concentration is 50:50 as the interface. The film thicknesses of the aluminum oxide deposition layer and the aluminum deposition layer were calculated. Separately, a metal aluminum film whose film thickness is known by cross-sectional observation with a transmission electron microscope is etched by the same etching method, and the etching rate is calculated to convert the etching time in the above data to the absolute value of the etching depth. did.

(実施例1)
基材フィルムとして12μm膜厚の二軸延伸ポリエチレンテレフタレートフィルム(東レ(株)製「ルミラー」(登録商標)P60)を使用し、ロール・ツー・ロール真空蒸着機により高周波誘導加熱のるつぼ方式のアルミニウム蒸発源を用い、アルミニウム金属層膜厚が40nmおよび酸化アルミニウム層膜厚が10nmになるように連続的に形成した。基材フィルムには、冷却された回転ドラム上で基材フィルム進行方向の一定幅のゾーン内でその位置に応じた組成の膜が厚さ方向に順次形成される。蒸着を最後に受ける位置から酸素を供給することで、アルミニウム金属層から酸化アルミニウム層に連続的に変化する蒸着層を形成した。
(Example 1)
A 12 μm-thick biaxially oriented polyethylene terephthalate film (“Lumirror” (registered trademark) P60 manufactured by Toray Industries, Inc.) was used as the base film, and high-frequency induction heating crucible aluminum was applied using a roll-to-roll vacuum deposition machine. Using an evaporation source, the aluminum metal layer was continuously formed to a thickness of 40 nm and the aluminum oxide layer to a thickness of 10 nm. On the base film, films having a composition corresponding to the position are sequentially formed in the thickness direction within a zone having a constant width in the traveling direction of the base film on a cooled rotating drum. Oxygen was supplied from the last position to be vapor-deposited to form a vapor-deposited layer that continuously changed from an aluminum metal layer to an aluminum oxide layer.

次に、上記で得られた蒸着層の上に、下記組成の水溶液をグラビアコート法により塗布、乾燥して膜厚0.3μmのガスバリア樹脂層を形成し、ガスバリア性アルミニウム蒸着フィルムを作製した。なお、下記組成の(A液)/(B液)との混合比(重量%)は35/65とした。 Next, an aqueous solution having the following composition was applied on the vapor-deposited layer obtained above by gravure coating and dried to form a gas barrier resin layer having a thickness of 0.3 μm, thereby producing a gas barrier aluminum vapor-deposited film. The mixing ratio (% by weight) of (solution A)/(solution B) having the following composition was 35/65.

(ガスバリア樹脂層形成用の水溶液)
(A液):テトラエトキシシラン(TEOS)に塩酸(0.1N)を加え、120分間攪拌して加水分解し、A液を調整した(固形分30重量%:SiO換算)。
(Aqueous solution for gas barrier resin layer formation)
(Liquid A): Hydrochloric acid (0.1N) was added to tetraethoxysilane (TEOS), and the mixture was stirred for 120 minutes for hydrolysis to prepare liquid A (solid content: 30% by weight, converted to SiO 2 ).

(B液):ポリビニルアルコール(PVA、重合度1,700、けん化度98.5%))の10重量%水溶液とメチルアルコールとを35/65(重量比)で配合して攪拌し、B液を調整した。 (B solution): A 10% by weight aqueous solution of polyvinyl alcohol (PVA, degree of polymerization: 1,700, degree of saponification: 98.5%)) and methyl alcohol were blended at a ratio of 35/65 (weight ratio) and stirred. adjusted.

(実施例2)
蒸着層を、アルミニウム金属層膜厚が25nmおよび酸化アルミニウム層膜厚が5nmとなるようにすること以外は、実施例1と同様にしてガスバリア性アルミニウム蒸着フィルムを得た。
(Example 2)
A gas-barrier aluminum vapor-deposited film was obtained in the same manner as in Example 1, except that the vapor-deposited layers were such that the aluminum metal layer had a thickness of 25 nm and the aluminum oxide layer had a thickness of 5 nm.

(実施例3)
蒸着層を、アルミニウム金属層膜厚が80nmおよび酸化アルミニウム層膜厚が20nmとなるようにすること以外は、実施例1と同様にしてガスバリア性アルミニウム蒸着フィルムを得た。
(Example 3)
A gas-barrier aluminum vapor-deposited film was obtained in the same manner as in Example 1, except that the vapor-deposited layers were such that the aluminum metal layer had a thickness of 80 nm and the aluminum oxide layer had a thickness of 20 nm.

(実施例4)
ガスバリア樹脂層厚さが0.1μmとなるようにすること以外は、実施例1と同様にしてガスバリア性アルミニウム蒸着フィルムを得た。
(Example 4)
A gas barrier aluminum deposited film was obtained in the same manner as in Example 1, except that the gas barrier resin layer thickness was adjusted to 0.1 μm.

(比較例1)
蒸着層へ酸素を供給することなくアルミニウム金属層のみで膜厚を50nmとなるようにすること以外は、実施例1と同様にしてガスバリア性アルミニウム蒸着フィルムを得た。
(Comparative example 1)
A gas-barrier aluminum vapor-deposited film was obtained in the same manner as in Example 1, except that the thickness of the aluminum metal layer alone was adjusted to 50 nm without supplying oxygen to the vapor-deposited layer.

(比較例2)
蒸着層全面へ酸素ガスを供給しながら金属アルミニウムを蒸発させ、酸化アルミニウム層のみで膜厚を10nmとなるようにすること以外は、実施例1と同様にしてガスバリア性アルミニウム蒸着フィルムを得た。
(Comparative example 2)
A gas-barrier aluminum vapor-deposited film was obtained in the same manner as in Example 1, except that metal aluminum was evaporated while oxygen gas was supplied to the entire surface of the vapor-deposited layer so that the film thickness of the aluminum oxide layer alone was 10 nm.

(比較例3)
ガスバリア樹脂層膜厚が5μmとなるようにすること以外は、実施例1と同様にしてガスバリア性アルミニウム蒸着フィルムを得た。
(Comparative Example 3)
A vapor-deposited gas-barrier aluminum film was obtained in the same manner as in Example 1, except that the film thickness of the gas-barrier resin layer was 5 μm.

(比較例4)
ガスバリア樹脂層膜厚が0.05μmとなるようにすること以外は、実施例1と同様にしてガスバリア性アルミニウム蒸着フィルムを得た。
(Comparative Example 4)
A vapor-deposited gas barrier aluminum film was obtained in the same manner as in Example 1, except that the film thickness of the gas barrier resin layer was adjusted to 0.05 μm.

(比較例5)
ガスバリア樹脂層を、下記組成の水溶液をグラビアコート法により塗布、乾燥して膜厚0.3μmのガスバリア樹脂層とすること以外は、実施例1と同様にしてガスバリア性アルミニウム蒸着フィルムを得た。なお、下記組成の(A液)/(B液)との混合比(重量%)は20/80とした。
(Comparative Example 5)
A vapor-deposited gas barrier aluminum film was obtained in the same manner as in Example 1, except that an aqueous solution having the following composition was applied by gravure coating and dried to form a gas barrier resin layer having a thickness of 0.3 μm. The mixing ratio (% by weight) of (solution A)/(solution B) having the following composition was set to 20/80.

(ガスバリア樹脂層形成用の水溶液)
(A液):アクリロニトリル(AN)、2-ヒドロキシエチルメタクリレート(HEMA)、メチルメタクリレート(MMA)の各モノマーをそれぞれ20/50/30重量%の割合で配合し、酢酸プロピル、プロピレングリコールモノメチルエーテル、n-プロピルアルコールの混合溶剤に溶解させてA液を調整した(固形分30重量%)。
(Aqueous solution for gas barrier resin layer formation)
(Liquid A): Acrylonitrile (AN), 2-hydroxyethyl methacrylate (HEMA), and methyl methacrylate (MMA) monomers are blended in proportions of 20/50/30% by weight, respectively, and propyl acetate, propylene glycol monomethyl ether, Liquid A was prepared by dissolving in a mixed solvent of n-propyl alcohol (solid content: 30% by weight).

(B液):キシリレンジイソシアネート、メチルエチルケトンを10/90で配合して攪拌し、B液を調整した。 (B solution): Xylylene diisocyanate and methyl ethyl ketone were blended at 10/90 and stirred to prepare B solution.

実施例、比較例で作成したフィルムの構成、特性を表1に示した。 Table 1 shows the structure and characteristics of the films prepared in Examples and Comparative Examples.

(参考例1)
12μm膜厚のエチレン・ビニルアルコール共重合体フィルム((株)クラレ製「エバール(登録商標)」フィルムVMXL)を用い、実施例1と同じ条件でアルミニウム金属層と酸化アルミニウム層を蒸着し、蒸着層の上にはガスバリア樹脂層を設けないものを準備した。水蒸気透過率が2.0g/m・24hrと不十分であった。
(Reference example 1)
Using a 12 μm-thick ethylene-vinyl alcohol copolymer film (“EVAL (registered trademark)” film VMXL manufactured by Kuraray Co., Ltd.), an aluminum metal layer and an aluminum oxide layer were vapor-deposited under the same conditions as in Example 1. A layer without a gas barrier resin layer was prepared. The water vapor transmission rate was insufficient at 2.0 g/m 2 ·24 hr.

(参考例2)
ガスバリア性フィルムを6μm膜厚のアルミニウム箔とし、実施例1と同様にシーラントフィルムとして40μm膜厚の直鎖状低密度ポリエチレンフィルム、プラスチックフィルムとして15μm膜厚の二軸延伸ナイロンフィルムをドライラミネート法により積層し、積層フィルムとした。突き刺し強度は9Nであり、本発明の実施例の積層フィルムと比べて小さな値となった。
(Reference example 2)
A 6 μm-thick aluminum foil was used as the gas barrier film, a 40 μm-thick linear low-density polyethylene film was used as the sealant film in the same manner as in Example 1, and a 15 μm-thick biaxially oriented nylon film was used as the plastic film. It was laminated to form a laminated film. The puncture strength was 9N, which was smaller than that of the laminated films of the examples of the present invention.

Figure 0007156592000001
Figure 0007156592000001

以上の各実施例の結果より明らかなように、本発明のガスバリア性アルミニウム蒸着フィルムは、酸素バリア性能、水蒸気バリア性能に優れ、引っ張りや屈曲に対してもこれらガスバリア性能が維持できる良好なものであった。 As is clear from the results of each of the above Examples, the gas-barrier aluminum vapor-deposited film of the present invention is excellent in oxygen barrier performance and water vapor barrier performance, and can maintain these gas barrier performances even when stretched or bent. there were.

一方、比較例1はアルミニウム層とガスバリア樹脂層の密着性が低いためにラミネート強度が劣り、比較例2はアルミニウム層がないため赤外線反射率が劣り、比較例3はガスバリア樹脂層が厚いために剥離がガスバリア樹脂層内での凝集破壊により発生し、蒸着層とガスバリア樹脂層間の密着強度が低いものとなった。比較例4はガスバリア樹脂層が薄くバリア性が劣り、比較例5はガスバリア樹脂層がビニルアルコール系樹脂とアルコキシ基を有する有機珪素化合物ではないため、5%引っ張り後および屈曲疲労試験後の酸素バリア性能、水蒸気バリア性が低下した。 On the other hand, in Comparative Example 1, the adhesion between the aluminum layer and the gas barrier resin layer is low, resulting in poor lamination strength. In Comparative Example 2, there is no aluminum layer, resulting in poor infrared reflectance. Peeling occurred due to cohesive failure within the gas barrier resin layer, and the adhesion strength between the vapor deposition layer and the gas barrier resin layer was low. In Comparative Example 4, the gas barrier resin layer was thin and poor in barrier properties. In Comparative Example 5, the gas barrier resin layer was not a vinyl alcohol resin and an organosilicon compound having an alkoxy group. Performance and water vapor barrier property decreased.

本発明のガスバリア性アルミニウム蒸着フィルムは、優れた酸素バリア性能および水蒸気バリア性能を有するため、高いガスバリア性が要求される、真空断熱材外装材としても有用である。 Since the gas-barrier aluminum vapor-deposited film of the present invention has excellent oxygen barrier performance and water vapor barrier performance, it is also useful as a vacuum insulation exterior material that requires high gas barrier performance.

Claims (2)

基材フィルム表面の少なくとも片面に、膜厚が25nm以上、125nm以下のアルミニウム金属層から膜厚が5nm以上、25nm以下の酸化アルミニウム層に連続的に組成変化する蒸着層が形成され、さらにその上に膜厚が0.1~4μmのガスバリア樹脂層が積層され、該ガスバリア樹脂層はビニルアルコール系樹脂とアルコキシ基を有する有機珪素化合物を重縮合して得られるガスバリア性組成物からなり、蒸着層とガスバリア樹脂層の間の密着強度が3.0N/15mm以上であり、5%引っ張り後の水蒸気透過率が0.1g/m ・24hr以下であり、酸素透過率が0.1cc/m ・24hr・atm以下であり、屈曲疲労試験後の水蒸気透過率が0.5g/m ・24hr以下であり、酸素透過率が0.2cc/m ・24hr・atm以下であり、赤外分光光度計を使用して、反射装置の相対反射角度12度で測定をした赤外線反射率が60%以上であることを特徴とするガスバリア性アルミニウム蒸着フィルム。 Formed on at least one surface of the substrate film surface is a deposited layer whose composition changes continuously from an aluminum metal layer with a thickness of 25 nm or more and 125 nm or less to an aluminum oxide layer with a thickness of 5 nm or more and 25 nm or less, and furthermore A gas barrier resin layer having a thickness of 0.1 to 4 μm is laminated on the substrate, and the gas barrier resin layer is composed of a gas barrier composition obtained by polycondensation of a vinyl alcohol resin and an organic silicon compound having an alkoxy group. The adhesion strength between the layer and the gas barrier resin layer is 3.0 N/15 mm or more, the water vapor permeability after 5% tension is 0.1 g/m 2 24 hr or less, and the oxygen permeability is 0.1 cc/m 2 · 24 hr · atm or less, a water vapor transmission rate after a bending fatigue test is 0.5 g / m 2 · 24 hr or less, an oxygen transmission rate is 0.2 cc / m 2 · 24 hr · atm or less, infrared A gas-barrier aluminum deposited film characterized by having an infrared reflectance of 60% or more as measured with a spectrophotometer at a relative reflection angle of 12 degrees of a reflector . シーラントフィルムとガスバリア性フィルムとプラスチックフィルムがこの順で積層され、ガスバリア性フィルムが、請求項1に記載のガスバリア性アルミニウム蒸着フィルムからなることを特徴とする積層フィルム。 A laminated film comprising a sealant film, a gas barrier film and a plastic film laminated in this order, wherein the gas barrier film comprises the gas barrier aluminum deposited film according to claim 1 .
JP2018567382A 2017-02-07 2018-01-31 Gas barrier aluminum deposition film and laminated film using the same Active JP7156592B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017020180 2017-02-07
JP2017020180 2017-02-07
PCT/JP2018/003152 WO2018147137A1 (en) 2017-02-07 2018-01-31 Gas-barrier aluminum vapor deposition film and laminated film using same

Publications (2)

Publication Number Publication Date
JPWO2018147137A1 JPWO2018147137A1 (en) 2019-11-21
JP7156592B2 true JP7156592B2 (en) 2022-10-19

Family

ID=63107483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018567382A Active JP7156592B2 (en) 2017-02-07 2018-01-31 Gas barrier aluminum deposition film and laminated film using the same

Country Status (4)

Country Link
JP (1) JP7156592B2 (en)
KR (1) KR102484868B1 (en)
CN (1) CN110382233B (en)
WO (1) WO2018147137A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7273475B2 (en) * 2018-09-26 2023-05-15 東レフィルム加工株式会社 LAMINATED BODY AND SEALING MEMBER USING THE SAME
US20200131626A1 (en) * 2018-10-30 2020-04-30 Fres-Co System Usa, Inc. Films and laminates with high oxygen barrier and methods of making the same
CA3141710A1 (en) * 2019-05-31 2020-12-03 Toyobo Co., Ltd. Transparent gas barrier film and method for producing same
CN111180737B (en) * 2019-05-31 2021-08-03 宁德时代新能源科技股份有限公司 Lithium ion secondary battery, battery cell and negative pole piece
CN110943215B (en) 2019-05-31 2020-12-04 宁德时代新能源科技股份有限公司 Lithium ion secondary battery
KR102305248B1 (en) * 2020-02-12 2021-09-24 도레이첨단소재 주식회사 Gas barrier aluminum deposition film and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323616A (en) 2003-04-23 2004-11-18 Toray Ind Inc Polyester film
JP2015030113A (en) 2013-07-31 2015-02-16 大日本印刷株式会社 Packaging material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11300875A (en) * 1998-04-23 1999-11-02 Toppan Printing Co Ltd High barrier polymer composite film and package
JP3788101B2 (en) * 1998-04-24 2006-06-21 凸版印刷株式会社 Transparent gas barrier composite film material having UV-cutting property and package using the same
WO2003009998A1 (en) * 2001-07-24 2003-02-06 Toppan Printing Co., Ltd. Deposition film
JP2003326636A (en) * 2002-05-16 2003-11-19 Toppan Printing Co Ltd Strong adhesion gas barrier transparent laminate
JP2005132004A (en) 2003-10-31 2005-05-26 Toppan Printing Co Ltd Barrier exterior material for thermal insulation panel and thermal insulation panel
JP2007290222A (en) 2006-04-25 2007-11-08 Toppan Printing Co Ltd Facing material for vacuum insulating material and heat insulating material facing body
JP2010131756A (en) 2008-12-02 2010-06-17 Toray Advanced Film Co Ltd Gas barrier film
JP2012210744A (en) 2011-03-31 2012-11-01 Unitika Ltd Laminate and method of manufacturing the same
KR101864878B1 (en) * 2014-12-30 2018-07-16 도레이첨단소재 주식회사 Transparent barrier film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323616A (en) 2003-04-23 2004-11-18 Toray Ind Inc Polyester film
JP2015030113A (en) 2013-07-31 2015-02-16 大日本印刷株式会社 Packaging material

Also Published As

Publication number Publication date
WO2018147137A1 (en) 2018-08-16
CN110382233B (en) 2021-12-07
CN110382233A (en) 2019-10-25
JPWO2018147137A1 (en) 2019-11-21
KR20190116340A (en) 2019-10-14
KR102484868B1 (en) 2023-01-06

Similar Documents

Publication Publication Date Title
JP7156592B2 (en) Gas barrier aluminum deposition film and laminated film using the same
JP4414748B2 (en) Gas barrier film, laminate material using the same, and image display medium
JP5381159B2 (en) Gas barrier laminate film and method for producing the same
WO2021020401A1 (en) Gas barrier laminate and packaging material using same
CN110603403A (en) Vacuum heat insulating material covering material, vacuum heat insulating material, and article with vacuum heat insulating material
KR102559143B1 (en) gas barrier film
JP2007210262A (en) Transparent barrier film and its manufacturing method
JP5381158B2 (en) Gas barrier laminate film and method for producing the same
JP7468798B2 (en) Packaging films, packaging containers and packaging products
JP2010221595A (en) Gas-barrier film and manufacturing method thereof
JP5831025B2 (en) Gas barrier film
JP4867906B2 (en) Transparent barrier film
JP5034257B2 (en) Barrier film and method for producing the same
JP4677738B2 (en) Vacuum insulator exterior and vacuum insulator
JP4241017B2 (en) Gas barrier laminate and method for producing the same
JP7056029B2 (en) Outer packaging material for vacuum heat insulating material, vacuum heat insulating material, and articles with vacuum heat insulating material
JP2010221596A (en) Gas-barrier laminated film and gas-barrier packaging material
JP2021098283A (en) Laminate and package using the same
JP7273475B2 (en) LAMINATED BODY AND SEALING MEMBER USING THE SAME
JP7279363B2 (en) gas barrier film and packaging film
JP7243905B2 (en) Laminates, packaging materials, and packages
WO2021220977A1 (en) Gas barrier laminate and packaging bag
JP2008023848A (en) Transparent gas-barrier film, its manufacturing method, and packaging material using it
JP2005313344A (en) Laminated material
JP2022149218A (en) Chemical-resistant and glossy shading film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211228

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220921

R150 Certificate of patent or registration of utility model

Ref document number: 7156592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150