JP2008085354A - Semiconductor manufacturing device - Google Patents

Semiconductor manufacturing device Download PDF

Info

Publication number
JP2008085354A
JP2008085354A JP2007273415A JP2007273415A JP2008085354A JP 2008085354 A JP2008085354 A JP 2008085354A JP 2007273415 A JP2007273415 A JP 2007273415A JP 2007273415 A JP2007273415 A JP 2007273415A JP 2008085354 A JP2008085354 A JP 2008085354A
Authority
JP
Japan
Prior art keywords
semiconductor
film
cutting
held
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007273415A
Other languages
Japanese (ja)
Inventor
Tetsuya Kurosawa
哲也 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007273415A priority Critical patent/JP2008085354A/en
Publication of JP2008085354A publication Critical patent/JP2008085354A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]

Landscapes

  • Die Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce defect rate of semiconductor devices in processes from a dicing process to a die-bonding process, by suppressing chipping produced at the time of dicing a thin shaped semiconductor wafer. <P>SOLUTION: A semiconductor manufacturing device 11 comprises a pickup part 12 for picking up in order two or more semiconductor elements formed by separation processing from a semiconductor wafer 16; a film adhesion part 13 for adhering in order films for element adhesion formed by separation processing according to element shapes in the rear surface of two or more semiconductor elements; and an element bonding part 14 for bonding two or more semiconductor elements in order on a substrate for semiconductor device formation. The semiconductor elements are held and picked up by a porous suction collet. The film for element adhesion is cut while being held by porous suction member. The film for element adhesion held at the porous suction member is adhered to the semiconductor element held by the porous suction collet. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は半導体製造装置に関する。   The present invention relates to a semiconductor manufacturing apparatus.

半導体装置の製造工程は、半導体ウエーハ(半導体基板)の表面部に種々の素子パターンを形成する工程と、半導体ウエーハを半導体素子毎に分離し、これら半導体素子を個々にパッケージで封止する工程とに大別される。近年、半導体装置の製造コストの低減を図るために、ウエーハの大口径化が推進されている。さらに、半導体素子の高密度実装を可能にするために、半導体ウエーハの薄型化が進められている。   The manufacturing process of a semiconductor device includes a step of forming various element patterns on a surface portion of a semiconductor wafer (semiconductor substrate), a step of separating the semiconductor wafer for each semiconductor element, and individually sealing these semiconductor elements with a package. It is divided roughly into. In recent years, an increase in wafer diameter has been promoted in order to reduce the manufacturing cost of semiconductor devices. Further, in order to enable high-density mounting of semiconductor elements, semiconductor wafers are being made thinner.

図18Aないし図18Dを参照して、従来の半導体ウエーハのダイシング工程について説明する。例えば、特許文献1や特許文献2に記載されているように、表面部1aに素子パターンが形成された半導体ウエーハ1を用意する(図18A)。このような半導体ウエーハ1の裏面部1bを、機械研削で所定の厚さまで研削する(図18B)。また、機械研削した後に、エッチング(ウエットエッチング/ガスエッチング)やCMP等を施す場合もある。なお、予め半導体ウエーハの表面側から溝を形成しておき、そのような半導体ウエーハの裏面側を研削する方法も知られている(特許文献3参照)。   A conventional semiconductor wafer dicing process will be described with reference to FIGS. 18A to 18D. For example, as described in Patent Document 1 and Patent Document 2, a semiconductor wafer 1 having an element pattern formed on the surface portion 1a is prepared (FIG. 18A). The back surface portion 1b of such a semiconductor wafer 1 is ground to a predetermined thickness by mechanical grinding (FIG. 18B). In some cases, etching (wet etching / gas etching), CMP, or the like is performed after mechanical grinding. A method is also known in which grooves are formed in advance from the front side of a semiconductor wafer and the back side of such a semiconductor wafer is ground (see Patent Document 3).

次に、半導体ウエーハ1の裏面部1bにダイボンディング用フィルム(ダイアタッチフィルム等)2とダイシング用テープ3を順に貼り付ける(図18C)。ダイシング用テープ3はウエーハリング4に張設されている。次いで、ブレード5等を用いて半導体ウエーハ1を機械的に切削して切断し、半導体素子6、6…毎に個片化する。この際に、ダイボンディング用フィルム2も切断することで、個々にダイボンディング用フィルム2が貼り付けられた半導体素子6を作製する(図18D)。ダイシング用テープ3はその表面側から一部のみが切断され、半導体素子6を保持した状態が維持される。   Next, a die bonding film (such as a die attach film) 2 and a dicing tape 3 are sequentially attached to the back surface 1b of the semiconductor wafer 1 (FIG. 18C). The dicing tape 3 is stretched around the wafer ring 4. Next, the semiconductor wafer 1 is mechanically cut and cut using a blade 5 or the like, and is separated into pieces for each of the semiconductor elements 6, 6. At this time, the die bonding film 2 is also cut to produce the semiconductor elements 6 to which the die bonding film 2 is individually attached (FIG. 18D). Only a part of the dicing tape 3 is cut from the surface side, and the state where the semiconductor element 6 is held is maintained.

このように、従来の半導体ウエーハ1のダイシング工程においては、ダイボンディング用フィルム2およびダイシング用テープ3の一部も切断している。このため、ブレード5の目詰まりを誘発して切れ味が悪くなりやすい。これが半導体素子6の裏面部に大きなチッピング(欠け)を発生させ、半導体素子6の不良原因になっている。特に、高密度実装を図るために薄型化した半導体素子6では、裏面部のチッピングが素子領域まで到達しやすいことから、不良発生率の増加を招いている。チッピングが素子領域まで到達した半導体素子は、素子機能自体も損なわれてしまう。   Thus, in the dicing process of the conventional semiconductor wafer 1, part of the die bonding film 2 and the dicing tape 3 are also cut. For this reason, clogging of the blade 5 is induced and the sharpness tends to be deteriorated. This causes large chipping (chips) on the back surface of the semiconductor element 6, which causes the semiconductor element 6 to be defective. In particular, in the semiconductor element 6 thinned for high-density mounting, the chipping of the back surface portion easily reaches the element region, resulting in an increase in defect occurrence rate. A semiconductor element whose chipping reaches the element region also loses the element function itself.

ダイシング工程で個片化された半導体素子6は、それぞれピックアップされてダイボンディング工程に供される。ダイシング工程を経た半導体素子6は、その裏面部がダイシング用テープ3に貼り付けられた状態とされている。このため、例えば図19に示すように、半導体素子6を吸着コレット7で保持した後、裏面部側から数本の突き上げピン8を押し当ることによって、半導体素子6をダイシング用テープ3から剥離している。半導体素子6の裏面部にチッピングが生じていると、半導体素子6の裏面部を突き上げた際の応力でチッピングが進展し、半導体素子6をクラックさせてしまうおそれがある。   The semiconductor elements 6 separated in the dicing process are picked up and used for the die bonding process. The semiconductor element 6 that has undergone the dicing process is in a state in which the back surface portion thereof is attached to the dicing tape 3. Therefore, for example, as shown in FIG. 19, after holding the semiconductor element 6 with the suction collet 7, the semiconductor element 6 is peeled from the dicing tape 3 by pressing several push-up pins 8 from the back surface side. ing. If chipping occurs on the back surface of the semiconductor element 6, chipping may develop due to stress generated when the back surface of the semiconductor element 6 is pushed up, and the semiconductor element 6 may be cracked.

ピックアップされた半導体素子6は、リードフレームや基板等の各種外囲器上に接着される。最近では薄型化された半導体素子6を多段に積層して実装密度を高めることも行われている。この多段積層にあたって、例えば図20に示すように、下部の半導体素子6の外形から上部の半導体素子6がはみ出すように積層する場合がある。半導体素子6の裏面部にチッピングが生じていると、ワイヤボンディング時の荷重でチッピングが進展し、半導体素子6をクラックさせてしまうおそれがある。   The picked-up semiconductor element 6 is bonded onto various envelopes such as a lead frame and a substrate. Recently, thinned semiconductor elements 6 are stacked in multiple stages to increase the mounting density. In this multi-stage stacking, for example, as shown in FIG. 20, the upper semiconductor element 6 may be stacked so as to protrude from the outer shape of the lower semiconductor element 6. If chipping occurs on the back surface of the semiconductor element 6, chipping may develop due to a load during wire bonding, and the semiconductor element 6 may be cracked.

特許文献4には、薄型化した半導体ウエーハの裏面にダイボンディグ用接着剤を熱圧着する際のクラックや反りを防止する接着剤フィルムが記載されている。ここでは、接着剤フィルムの熱圧着時のクラックや反りを防止しているものの、ダイシング時に接着剤フィルムを半導体ウエーハと共に切断している。従って、接着剤フィルムがブレードの切れ味を低下させるため、半導体素子の裏面部に大きなチッピングが生じやすい点については特許文献1や特許文献2と同様である。   Patent Document 4 describes an adhesive film that prevents cracks and warpage when thermobonding a die bonding adhesive to the back surface of a thinned semiconductor wafer. Here, although the crack and curvature at the time of thermocompression bonding of the adhesive film are prevented, the adhesive film is cut together with the semiconductor wafer at the time of dicing. Therefore, since the adhesive film reduces the sharpness of the blade, the point that large chipping is likely to occur on the back surface of the semiconductor element is the same as in Patent Document 1 and Patent Document 2.

上述したように、従来の半導体ウエーハのダイシング工程においては、半導体ウエーハの裏面部に貼り付けたダイボンディング用フィルムを、半導体ウエーハと共に切断している。このため、ダイボンディング用フィルムが切断用ブレードの目詰まりを誘発して切れ味を低下させ、これによって半導体素子の裏面部に大きなチッピングが生じやすい。大きなチッピングは半導体素子の不良原因となる。特に、薄型化した半導体素子では、裏面部のチッピングが素子領域まで到達しやすいことに加えて、その後のピックアップ工程や実装工程でチッピングが進展しやすいため、半導体素子の不良発生率の増加を招いている。
特開平8−51142号公報 特開2002−256235号公報 特開2001−35817号公報 特開2000−104040号公報
As described above, in the conventional semiconductor wafer dicing process, the die bonding film attached to the back surface of the semiconductor wafer is cut together with the semiconductor wafer. For this reason, the die bonding film induces clogging of the cutting blade to reduce the sharpness, and thereby large chipping tends to occur on the back surface portion of the semiconductor element. Large chipping causes a failure of the semiconductor element. In particular, in the thinned semiconductor element, the chipping of the back surface portion easily reaches the element region, and the chipping easily progresses in the subsequent pick-up process and mounting process. It is.
JP-A-8-51142 JP 2002-256235 A JP 2001-35817 A JP 2000-104040 A

本発明は半導体ウエーハ、特に薄型化された半導体ウエーハのダイシング時に生じる裏面側のチッピングに起因する半導体素子の不良発生を抑制することを課題としている。すなわち、ダイシング工程からダイボンディング工程における不良発生率を低減することを可能にした半導体製造装置を提供することを目的としている。   An object of the present invention is to suppress the occurrence of defects in semiconductor elements caused by chipping on the back surface side that occurs during dicing of a semiconductor wafer, particularly a thinned semiconductor wafer. That is, an object of the present invention is to provide a semiconductor manufacturing apparatus capable of reducing the defect occurrence rate from the dicing process to the die bonding process.

本発明の態様に係る半導体製造装置は、個片化された複数の半導体素子を保持部材で保持した半導体ウエーハから、前記複数の半導体素子を多孔質吸着コレットで順に保持してピックアップするピックアップ部と、多孔質状吸着部材に保持された素子接着用フィルムを前記半導体素子の形状に応じて切断して個片化するフィルム切断機構を備え、前記多孔質状吸着部材に全面で保持された前記個片化された素子接着用フィルムと前記多孔質吸着コレットに全面で保持された前記半導体素子とを圧着し、前記複数の半導体素子の裏面部に前記個片化された素子接着用フィルムを順に貼り付けるフィルム貼り付け部と、前記素子接着用フィルムが貼り付けられた前記複数の半導体素子を半導体装置形成用基材上に順に接着する素子接着部とを具備することを特徴としている。   A semiconductor manufacturing apparatus according to an aspect of the present invention includes a pickup unit that picks up a plurality of semiconductor elements that are held in order by a porous adsorption collet from a semiconductor wafer that holds a plurality of separated semiconductor elements by a holding member. A film cutting mechanism for cutting the element bonding film held on the porous adsorbing member into individual pieces by cutting according to the shape of the semiconductor element, and the individual held on the entire surface of the porous adsorbing member The separated element bonding film and the semiconductor element held on the entire surface of the porous adsorption collet are pressure-bonded, and the separated element bonding film is sequentially attached to the back surface of the plurality of semiconductor elements. A film affixing part to be attached; and an element adhering part for adhering the plurality of semiconductor elements to which the element adhering film is affixed in order on a substrate for forming a semiconductor device. It is characterized in Rukoto.

本発明の態様に係る半導体製造装置によれば、ダイシング工程における半導体素子の裏面部のチッピング発生を抑制することができる。従って、半導体ウエーハのダイシング工程、およびその後のピックアップ工程やダイボンディング工程等における不良発生率を低減することが可能となる。   According to the semiconductor manufacturing apparatus according to the aspect of the present invention, occurrence of chipping of the back surface portion of the semiconductor element in the dicing process can be suppressed. Therefore, it is possible to reduce the defect occurrence rate in the semiconductor wafer dicing process and the subsequent pickup process, die bonding process, and the like.

本発明の一実施態様によれば、まず表面部に素子領域が形成された半導体ウエーハを切断して各半導体素子に個片化する。この状態において、複数の半導体素子は保持部材に保持されている。次に、複数の半導体素子を保持部材から順にピックアップした後、これら各半導体素子の裏面部に素子形状に応じて個片化された素子接着用フィルムを貼り付ける。この後、各半導体素子の裏面部に貼り付けられた素子接着用フィルムを用いて、複数の半導体素子を半導体装置形成用基材上に順に接着する。   According to one embodiment of the present invention, first, a semiconductor wafer having an element region formed on a surface portion is cut into individual semiconductor elements. In this state, the plurality of semiconductor elements are held by the holding member. Next, after picking up a plurality of semiconductor elements in order from the holding member, an element bonding film separated according to the element shape is attached to the back surface of each semiconductor element. Thereafter, a plurality of semiconductor elements are sequentially bonded onto the substrate for forming a semiconductor device by using an element bonding film attached to the back surface of each semiconductor element.

本発明の一実施態様において、保持部材としては粘着性テープ等の保持テープが用いられる。また、保持テープに代えて、真空吸引等で半導体素子を保持する保持テーブルを使用してもよい。素子接着用フィルムとしては、ダイアタッチフィルム等の熱可塑性もしくは熱硬化性の樹脂フィルムが用いられる。半導体素子を接着する半導体装置形成用基材としては、リードフレーム、配線基板、放熱基板等の各種外囲器が用いられる。また、半導体素子を多段に積層する場合には、例えば基板上に接着された半導体素子が半導体装置形成用基材となる。   In one embodiment of the present invention, a holding tape such as an adhesive tape is used as the holding member. Further, instead of the holding tape, a holding table that holds the semiconductor element by vacuum suction or the like may be used. As the element bonding film, a thermoplastic or thermosetting resin film such as a die attach film is used. Various envelopes such as a lead frame, a wiring board, and a heat dissipation board are used as a base for forming a semiconductor device to which a semiconductor element is bonded. When semiconductor elements are stacked in multiple stages, for example, a semiconductor element bonded on a substrate serves as a base for forming a semiconductor device.

本発明の一実施態様によれば、半導体ウエーハから各半導体素子を個片化した後に、各半導体素子の裏面部に、素子形状に応じて個片化した素子接着用テープを貼り付けている。すなわち、半導体ウエーハをダイシングする際に、ダイアタッチフィルム等の素子接着用テープまで切断することがない。これによって、ダイシング工程における素子裏面部のチッピングを抑制することができる。従って、半導体ウエーハのダイシング工程、およびその後のピックアップ工程やダイボンディング工程等における半導体素子の不良発生率を大幅に低減することが可能となる。   According to one embodiment of the present invention, after each semiconductor element is separated from the semiconductor wafer, the element bonding tape separated according to the element shape is attached to the back surface of each semiconductor element. That is, when the semiconductor wafer is diced, the element bonding tape such as a die attach film is not cut. Thereby, chipping of the element back surface portion in the dicing process can be suppressed. Accordingly, it is possible to greatly reduce the defect occurrence rate of the semiconductor element in the semiconductor wafer dicing process and the subsequent pick-up process, die bonding process, and the like.

本発明の実施態様においては、半導体ウエーハの裏面部に保持部材を貼り付けた後、半導体ウエーハを切断して、半導体素子を保持部材で保持された状態を維持しつつ個片化する。本発明の他の実施態様は、半導体ウエーハの表面部側から完成時の素子厚さより深い溝または改質層を形成する工程と、半導体ウエーハの表面部に第1の保持部材を貼りつけた後、半導体ウエーハの裏面部側を研削および研磨して、半導体素子を第1の保持部材で保持された状態を維持しつつ個片化する工程と、半導体素子の裏面部に第2の保持部材を貼り付けると共に、第1の保持部材を剥離する工程とを有する。   In an embodiment of the present invention, a holding member is attached to the back surface of the semiconductor wafer, and then the semiconductor wafer is cut to singulate the semiconductor element while maintaining the state of being held by the holding member. In another embodiment of the present invention, a step of forming a groove or a modified layer deeper than the element thickness at the time of completion from the surface portion side of the semiconductor wafer, and after attaching the first holding member to the surface portion of the semiconductor wafer A step of grinding and polishing the back surface side of the semiconductor wafer to separate the semiconductor element while maintaining the state of being held by the first holding member; and a second holding member on the back surface portion of the semiconductor element. And a step of peeling off the first holding member.

本発明の実施態様において、長尺な素子接着用フィルムを巻き取った供給ロールから素子接着用フィルムを供給し、この長尺な素子接着用フィルムを機械切断またはレーザ切断により半導体素子の形状に応じて切断して個片化する。本発明の他の実施態様においては、個片化された素子接着用フィルムを多孔質状吸着部材で保持し、この吸着部材に保持された素子接着用フィルムを半導体素子の裏面側に貼り付ける。   In an embodiment of the present invention, an element bonding film is supplied from a supply roll wound with a long element bonding film, and the long element bonding film is mechanically cut or laser cut according to the shape of the semiconductor element. Cut into pieces. In another embodiment of the present invention, the separated element bonding film is held by a porous adsorbing member, and the element adhering film held by the adsorbing member is attached to the back side of the semiconductor element.

本発明の実施態様において、半導体製造装置は長尺な素子接着用フィルムを巻き取った供給ロールから素子接着用フィルムを供給するフィルム供給部と、供給ロールから供給された素子接着用フィルムを機械切断またはレーザ切断により半導体素子の形状に応じて切断するフィルム切断部とを有するフィルム貼り付け部を具備する。フィルム切断部は、例えば素子接着用フィルムを保持する吸着部材と、吸着部材に保持された素子接着用フィルムを打抜いて切断する切断機とを有する。   In an embodiment of the present invention, the semiconductor manufacturing apparatus mechanically cuts a film supply unit that supplies an element adhesive film from a supply roll wound with a long element adhesive film, and an element adhesive film supplied from the supply roll. Or the film sticking part which has a film cutting part cut | disconnected according to the shape of a semiconductor element by laser cutting is comprised. The film cutting unit includes, for example, an adsorbing member that holds an element adhering film and a cutting machine that punches and cuts the element adhering film held on the adsorbing member.

本発明の実施態様において、フィルム切断部は素子接着用フィルムを保持する吸着部材と、吸着部材に保持された素子接着用フィルムを切断するレーザ切断機と、レーザ切断機または吸着部材を前記半導体素子の形状に応じて移動させる移動機構とを有する。これらの実施態様において、吸着部材は例えば多孔質金属により構成される。多孔質状吸着部材は多孔質セラミックス等で形成してもよい。   In an embodiment of the present invention, the film cutting unit includes an adsorbing member that holds an element adhering film, a laser cutting machine that cuts an element adhering film held on the adsorbing member, and a laser cutting machine or an adsorbing member as the semiconductor element. And a moving mechanism that moves according to the shape. In these embodiments, the adsorbing member is made of, for example, a porous metal. The porous adsorbing member may be formed of porous ceramics or the like.

本発明の他の実施態様において、半導体製造装置は半導体素子を保持する吸着コレットと、吸着コレットに保持された半導体素子を裏面側から突き上げて保持部材から剥離する突き上げ機構とを有するピックアップ部を具備する。吸着コレットは例えば多孔質金属により構成される。多孔質吸着コレットは多孔質セラミックス等で形成してもよい。さらに他の実施態様においては、半導体素子に貼り付けられた素子接着用フィルムの裏面部側に設けられた保護フィルムを剥離するフィルム剥離部を有する。   In another embodiment of the present invention, the semiconductor manufacturing apparatus includes a pickup unit having a suction collet that holds a semiconductor element, and a push-up mechanism that pushes up the semiconductor element held by the suction collet from the back side and peels it from the holding member. To do. The adsorption collet is made of, for example, a porous metal. The porous adsorption collet may be formed of porous ceramics or the like. Furthermore, in another embodiment, it has a film peeling part which peels off the protective film provided in the back surface part side of the film for element bonding affixed on the semiconductor element.

以下、本発明の半導体製造装置の実施形態について、図面を参照して説明する。図1は本発明の一実施形態による半導体製造装置の概略構造を示す図である。同図に示す半導体製造装置11は、ピックアップ部12とフィルム貼り付け部13と素子接着部14とを有している。ピックアップ部12のテーブル15上には半導体ウエーハ16が載置される。図2に示すように、半導体ウエーハ16は個片化された複数の半導体素子21、21…を有し、これら半導体素子21を保持テープ22で保持したものである。保持テープ22はウエーハリング23に張設されている。   Embodiments of a semiconductor manufacturing apparatus according to the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a schematic structure of a semiconductor manufacturing apparatus according to an embodiment of the present invention. A semiconductor manufacturing apparatus 11 shown in FIG. 1 has a pickup unit 12, a film pasting unit 13, and an element bonding unit 14. A semiconductor wafer 16 is placed on the table 15 of the pickup unit 12. As shown in FIG. 2, the semiconductor wafer 16 has a plurality of individual semiconductor elements 21, 21..., And these semiconductor elements 21 are held by a holding tape 22. The holding tape 22 is stretched around the wafer ring 23.

このような半導体ウエーハ16は、図3または図4に示すダイシング工程を経て作製される。まず、図3Aないし図3Cに示すダイシング工程について述べる。図3Aに示すように、表面部24aに素子領域が形成された半導体ウエーハ24を用意する。この半導体ウエーハ24の裏面部24bを、図3Bに示すように、機械研削等で所定の厚さまで研削する。また、機械研削した後に、ウエットエッチング、ガスエッチング、CMP、ドライポリッシュ、RIE、プラズマ処理等を施してもよい。研削および研磨後の半導体ウエーハ24の厚さは、完成時の素子厚さに応じて設定する。   Such a semiconductor wafer 16 is manufactured through the dicing process shown in FIG. 3 or FIG. First, the dicing process shown in FIGS. 3A to 3C will be described. As shown in FIG. 3A, a semiconductor wafer 24 having an element region formed on a surface portion 24a is prepared. As shown in FIG. 3B, the back surface portion 24b of the semiconductor wafer 24 is ground to a predetermined thickness by mechanical grinding or the like. Further, after mechanical grinding, wet etching, gas etching, CMP, dry polishing, RIE, plasma treatment, or the like may be performed. The thickness of the semiconductor wafer 24 after grinding and polishing is set according to the element thickness at the time of completion.

次いで、研削および研磨加工した半導体ウエーハ24の裏面部24bに、保持テープ22としてダイシング用テープを貼り付ける。ダイシング用テープ22はウエーハリング23に張設されている。次に、図3Cに示すように、ブレード25等を用いて半導体ウエーハ24を機械的に切削して切断し、各半導体素子21をそれぞれ個片化する。このようにして、半導体素子21が保持テープ22で保持された状態を維持しつつ、半導体素子21を個片化した半導体ウエーハ16を作製する。   Next, a dicing tape is attached as the holding tape 22 to the back surface portion 24 b of the semiconductor wafer 24 that has been ground and polished. The dicing tape 22 is stretched around the wafer ring 23. Next, as shown in FIG. 3C, the semiconductor wafer 24 is mechanically cut and cut using a blade 25 or the like, and each semiconductor element 21 is separated into pieces. In this way, the semiconductor wafer 16 in which the semiconductor elements 21 are separated into individual pieces is manufactured while maintaining the state where the semiconductor elements 21 are held by the holding tape 22.

上述した半導体ウエーハ24のダイシング工程において、ダイシング用テープ22の表面側の一部は半導体ウエーハ24と共に切断される。しかしながら、従来のダイシング工程のように、ダイボンディング用テープを同時に切断していないため、ブレード25の目詰まりは大幅に低減される。従って、半導体素子21の裏面部におけるチッピングの発生を大幅に抑制することが可能となる。すなわち、ブレード25の切れ味が維持されるため、切れ味の低下によるチッピングの発生を抑制することができる。   In the dicing process of the semiconductor wafer 24 described above, a part of the surface side of the dicing tape 22 is cut together with the semiconductor wafer 24. However, since the die bonding tape is not cut at the same time as in the conventional dicing process, clogging of the blade 25 is greatly reduced. Therefore, the occurrence of chipping at the back surface of the semiconductor element 21 can be greatly suppressed. That is, since the sharpness of the blade 25 is maintained, the occurrence of chipping due to the reduction in sharpness can be suppressed.

特に、半導体素子21の完成厚さが200μm以下、さらには20μm以上100μm以下というように、薄型化(薄肉化)された半導体素子21では、ブレード25の目詰まりによる切れ味の低下がチッピングの発生に大きく影響する。例えば、50μm程度のチッピングでも素子領域に到達しやすいため、半導体素子21の不良原因となる。さらに、10μm程度の小さいチッピングであっても、後工程で応力が加わった際にチッピングが進展してクラックが生じやすい。これも半導体素子21の不良原因となる。図3に示すダイシング工程によれば、不良原因となるチッピングの発生を抑制することができる。   In particular, in the semiconductor element 21 that has been thinned (thinned) such that the completed thickness of the semiconductor element 21 is 200 μm or less, and further 20 μm or more and 100 μm or less, the reduction in sharpness due to clogging of the blade 25 causes chipping. A big influence. For example, chipping of about 50 μm easily reaches the element region, which causes a failure of the semiconductor element 21. Furthermore, even if the chipping is as small as about 10 μm, the chipping progresses when a stress is applied in a subsequent process, and cracks are likely to occur. This also causes a failure of the semiconductor element 21. According to the dicing process shown in FIG. 3, it is possible to suppress the occurrence of chipping that causes a defect.

次に、図4に示すダイシング工程について述べる。図3に示したダイシング工程と同様に、表面部24aに素子領域が形成された半導体ウエーハ24を用意する。図4Aに示すように、半導体ウエーハ24の表面部24aにブレード25等を用いて所定の深さの溝26を形成する。溝26の深さは完成時の素子厚さより深く設定する。溝26はエッチング等で形成してもよい。また、機械的研削やエッチング等による溝26に代えて、半導体ウエーハ24の表面部24aにレーザを照射して改質層を形成してもよく、この改質層は溝26と同様に機能する。改質層の深さは溝26の深さと同等とする。   Next, the dicing process shown in FIG. 4 will be described. Similar to the dicing process shown in FIG. 3, a semiconductor wafer 24 having an element region formed on the surface portion 24a is prepared. As shown in FIG. 4A, a groove 26 having a predetermined depth is formed on the surface portion 24a of the semiconductor wafer 24 using a blade 25 or the like. The depth of the groove 26 is set deeper than the element thickness at the time of completion. The groove 26 may be formed by etching or the like. Further, instead of the groove 26 formed by mechanical grinding or etching, a modified layer may be formed by irradiating the surface portion 24a of the semiconductor wafer 24 with a laser, and this modified layer functions similarly to the groove 26. . The depth of the modified layer is the same as the depth of the groove 26.

図4Bに示すように、溝26を形成した半導体ウエーハ24の表面部24aに第1の保持部材として表面保護テープ27を貼りつけた後、半導体ウエーハ24の裏面部24bを機械研削等で溝26に達するまで研削する。また、機械研削した後に、ウエットエッチング、ガスエッチング、CMP、ドライポリッシュ、RIE、プラズマ処理等を施してもよい。溝26に達する研削および研磨工程によって、半導体素子21が表面保護テープ27で保持された状態を維持しつつ、半導体素子21をそれぞれ個片化する。   As shown in FIG. 4B, after a surface protective tape 27 is applied as a first holding member to the surface portion 24a of the semiconductor wafer 24 in which the grooves 26 are formed, the back surface portion 24b of the semiconductor wafer 24 is grooved by mechanical grinding or the like. Grind until reached. Further, after mechanical grinding, wet etching, gas etching, CMP, dry polishing, RIE, plasma treatment, or the like may be performed. The semiconductor elements 21 are separated into individual pieces while maintaining the state in which the semiconductor elements 21 are held by the surface protection tape 27 by the grinding and polishing processes reaching the grooves 26.

この後、図4Cに示すように、個片化された半導体素子21の裏面部側に第2の保持部材として保持テープ22を貼り付けた後、表面保護テープ27を剥離する。保持テープ22にはピックアップテープ等が用いられる。このようにして、半導体素子21が保持テープ22で保持された状態を維持しつつ、半導体素子21を個片化した半導体ウエーハ16を作製する。半導体ウエーハ24のダイシングを先に実施することによって、半導体素子21の裏面部におけるチッピングの発生をさらに抑制することができる。従って、チッピングがほとんどない半導体素子21を得ることが可能となる。   Thereafter, as shown in FIG. 4C, the holding tape 22 is attached as the second holding member to the back surface side of the separated semiconductor element 21, and then the surface protection tape 27 is peeled off. A pickup tape or the like is used for the holding tape 22. In this way, the semiconductor wafer 16 in which the semiconductor elements 21 are separated into individual pieces is manufactured while maintaining the state where the semiconductor elements 21 are held by the holding tape 22. By performing the dicing of the semiconductor wafer 24 first, it is possible to further suppress the occurrence of chipping at the back surface portion of the semiconductor element 21. Therefore, it is possible to obtain the semiconductor element 21 having almost no chipping.

個片化された半導体素子21を有する半導体ウエーハ16は、保持テープ22に代えて、真空吸引等で半導体素子21を保持する保持テーブル、例えば2ブロック以上の吸着エリアに分離された多孔質体からなる吸着部を有する保持テーブルに貼り替えてもよい。このような保持テーブルの吸着エリアは、半導体素子の形成列に応じて設置される。各吸着エリアは2系統の真空排気系、すなわち表面保護テープ27を剥離するまで半導体ウエーハ16を吸着保持する第1の真空排気系と、表面保護テープ27を剥離した後の半導体素子21を吸着保持する第2の真空排気系とを有し、これら2系統の真空排気系を切り替えて使用する。第2の真空排気系は半導体素子21をピックアップすることが可能なように設定されている。   The semiconductor wafer 16 having the separated semiconductor elements 21 is replaced with a holding table for holding the semiconductor elements 21 by vacuum suction or the like instead of the holding tape 22, for example, a porous body separated into two or more block adsorption areas. You may replace with the holding table which has the adsorption | suction part which becomes. Such a suction area of the holding table is set according to the formation row of the semiconductor elements. Each suction area has two vacuum evacuation systems, that is, a first evacuation system that sucks and holds the semiconductor wafer 16 until the surface protective tape 27 is peeled off, and a semiconductor element 21 after the surface protective tape 27 is peeled and held. A second evacuation system that switches between these two evacuation systems. The second evacuation system is set so that the semiconductor element 21 can be picked up.

上述した個片化された半導体素子21を有する半導体ウエーハ16は、ピックアップ部12のテーブル15上にセットされ、このピックアップ部12で個片化された半導体素子21が素子毎に保持テープ22から剥離されてピックアップされる。図5に示すように、ピックアップテーブル15の上方には、半導体素子21を保持する第1の吸着コレット31を有し、半導体素子21をフィルム貼り付け部13に移動させる移動機構32が配置されている。ピックアップテーブル15の下方には、半導体素子21を裏面側から突き上げて保持テープ22から剥離する突き上げ機構33が配置されている。   The semiconductor wafer 16 having the above-described individual semiconductor elements 21 is set on the table 15 of the pickup section 12, and the semiconductor elements 21 separated by the pickup section 12 are peeled from the holding tape 22 for each element. Being picked up. As shown in FIG. 5, a moving mechanism 32 that has a first suction collet 31 that holds the semiconductor element 21 and moves the semiconductor element 21 to the film pasting portion 13 is disposed above the pickup table 15. Yes. Below the pickup table 15, a push-up mechanism 33 that pushes up the semiconductor element 21 from the back side and peels it from the holding tape 22 is disposed.

第1の吸着コレット31は例えば多孔質金属からなり、半導体素子21を全面(平面)で吸着保持することが可能とされている。薄型化された半導体素子21を全面で吸着保持することによって、クラックや反り等の発生を抑制することができる。第1の吸着コレット31やそれを支持する軸部には、ヒータ等の加熱機構を内蔵させてもよい。これによって、半導体素子21と後述する素子接着用フィルムとの接着性を高めることができる。また、突き上げ機構33は半導体素子21を裏面側から突き上げる数本の突き上げピン34を有している。   The first adsorption collet 31 is made of, for example, a porous metal, and is capable of adsorbing and holding the semiconductor element 21 over the entire surface (planar surface). By attracting and holding the thinned semiconductor element 21 over the entire surface, generation of cracks, warpage, and the like can be suppressed. A heating mechanism such as a heater may be incorporated in the first adsorption collet 31 and the shaft portion that supports the first adsorption collet 31. Thereby, the adhesiveness of the semiconductor element 21 and the film for element adhesion mentioned later can be improved. The push-up mechanism 33 has several push-up pins 34 that push up the semiconductor element 21 from the back side.

上記したような第1の吸着コレット31で吸着保持した半導体素子21を上昇させつつ、その裏面側から突き上げピン34を押し当てることによって、半導体素子21を保持テープ22から剥離する。このようにしてピックアップされた半導体素子21は、第1の吸着コレット31を有する移動機構32でフィルム貼り付け部13に送られる。なお、第2の保持部材として真空吸引式の保持テーブルを使用する場合には、突き上げ機構33を用いることなく、半導体素子21をピックアップすることができる。   The semiconductor element 21 is peeled from the holding tape 22 by raising the semiconductor element 21 adsorbed and held by the first adsorbing collet 31 as described above and pressing the push pin 34 from the back side. The semiconductor element 21 picked up in this way is sent to the film pasting unit 13 by the moving mechanism 32 having the first suction collet 31. When a vacuum suction type holding table is used as the second holding member, the semiconductor element 21 can be picked up without using the push-up mechanism 33.

フィルム貼り付け部13は、素子接着用フィルムを半導体素子21の形状に応じて切断して個片化するフィルム切断機構を有する。フィルム切断機構としては、例えば図6および図7に示すような機械式切断機構、もしくは図8および図9に示すようなレーザ式切断機構等が用いられる。図6および図7に示す機械式切断機構は、所定の幅を有する長尺な素子接着用フィルム41をロール状に巻き取った供給ロール(図示せず)を、フィルム供給部として有している。素子接着用フィルム41には、ダイアタッチフィルム等の熱可塑性もしくは熱硬化性の樹脂フィルムが用いられる。   The film bonding unit 13 has a film cutting mechanism that cuts the element bonding film into pieces according to the shape of the semiconductor element 21. As the film cutting mechanism, for example, a mechanical cutting mechanism as shown in FIGS. 6 and 7, or a laser cutting mechanism as shown in FIGS. 8 and 9 is used. The mechanical cutting mechanism shown in FIGS. 6 and 7 has, as a film supply unit, a supply roll (not shown) obtained by winding a long element bonding film 41 having a predetermined width into a roll shape. . For the element bonding film 41, a thermoplastic or thermosetting resin film such as a die attach film is used.

供給ロールから供給された素子接着用フィルム41は、フィルム切断位置に送られる。フィルム切断位置には、素子形状に応じた貫通孔を有する上下一対の枠型42、43と、これら枠型42、43の貫通孔内に下方から挿入され、素子接着用フィルム41を切断する打抜き型44とを有する切断機45が配置されている。打抜き型44の先端部には、素子接着用フィルム41を保持する吸着部材46が設置されている。吸着部材46は例えば多孔質金属からなり、素子接着用フィルム41を全面(平面)で保持することが可能とされている。打抜き型44や吸着部材46はヒータ等の加熱機構を内蔵していてもよい。素子接着用フィルム41の固定部材には種々の形状の型等を用いることができる。   The element bonding film 41 supplied from the supply roll is sent to the film cutting position. At the film cutting position, a pair of upper and lower frame molds 42 and 43 having through holes corresponding to the element shape, and punching that is inserted from below into the through holes of these frame molds 42 and 43 to cut the element bonding film 41 A cutting machine 45 having a mold 44 is arranged. A suction member 46 for holding the element bonding film 41 is installed at the tip of the punching die 44. The adsorbing member 46 is made of, for example, a porous metal, and can hold the element bonding film 41 over the entire surface (planar surface). The punching die 44 and the suction member 46 may incorporate a heating mechanism such as a heater. Various types of molds can be used for the fixing member of the element bonding film 41.

このような機械式のフィルム切断機構を有するフィルム貼り付け部13においては、まず図6Aおよび図7Aに示すように、フィルム切断位置に送られた長尺な素子接着用フィルム41を上下の枠型42、43で挟み込む。次いで、図6Bおよび図7Bに示すように、枠型43の下方から打抜き型44を上昇させて、長尺な素子接着用フィルム41を半導体素子21の形状に応じて切断する。このようにして、半導体素子21に形状に応じて個片化された素子接着用フィルム47を作製する。この際、個片状素子接着用フィルム47を吸着部材46で真空吸引し、打抜き性を高めると共に、打抜き後に吸着部材46から外れないようにする。   In the film affixing unit 13 having such a mechanical film cutting mechanism, first, as shown in FIGS. 6A and 7A, the long element bonding film 41 sent to the film cutting position is formed into upper and lower frame shapes. 42, 43. Next, as shown in FIGS. 6B and 7B, the punching die 44 is raised from below the frame die 43, and the long element bonding film 41 is cut according to the shape of the semiconductor element 21. In this way, the element bonding film 47 is produced which is separated into pieces according to the shape of the semiconductor element 21. At this time, the individual element adhesive film 47 is vacuum-sucked by the suction member 46 so as to improve the punchability and prevent it from being detached from the suction member 46 after punching.

次に、図6Cおよび図7Cに示すように、第1の吸着コレット31に保持された半導体素子21と吸着部材46に保持された個片状素子接着用フィルム47の位置を検出器で読取り、これらの位置補正を行った後、半導体素子21を個片状素子接着用フィルム47上にセットし、これらを圧着する。すなわち、図6Dおよび図7Dに示すように、裏面部に個片状素子接着用フィルム47が貼り付けられた半導体素子21を作製する。個片状素子接着用フィルム47は必要に応じて、第1の吸着コレット31や打抜き型44に内蔵されたヒータで加熱されつつ圧着される。   Next, as shown in FIG. 6C and FIG. 7C, the position of the semiconductor element 21 held on the first suction collet 31 and the piece-like element bonding film 47 held on the suction member 46 are read by a detector, After performing these position corrections, the semiconductor element 21 is set on the piece-like element bonding film 47, and these are pressure-bonded. That is, as shown in FIG. 6D and FIG. 7D, the semiconductor element 21 in which the piece-like element bonding film 47 is attached to the back surface portion is manufactured. The piece-like element bonding film 47 is pressure-bonded while being heated by a heater built in the first suction collet 31 or the punching die 44 as necessary.

図8および図9に示すレーザ式切断機構は、機械式切断機構と同様に、所定の幅を有する長尺な素子接着用フィルム41をロール状に巻き取った供給ロール(図示せず)を、フィルム供給部として有している。供給ロールから供給された素子接着用フィルム41は、フィルム切断位置に送られる。フィルム切断位置には、素子接着用フィルム41を真空吸引して保持する吸着部48とレーザ照射部49とが配置されている。レーザ照射部49は図示を省略した移動機構によって、素子形状に応じて移動可能とされている。なお、吸着部48側を移動可能に構成してもよい。   The laser cutting mechanism shown in FIG. 8 and FIG. 9 is similar to the mechanical cutting mechanism in that a supply roll (not shown) obtained by winding a long element bonding film 41 having a predetermined width into a roll shape, It has as a film supply part. The element bonding film 41 supplied from the supply roll is sent to the film cutting position. At the film cutting position, an adsorption portion 48 and a laser irradiation portion 49 for holding the element bonding film 41 by vacuum suction are arranged. The laser irradiation unit 49 can be moved according to the element shape by a moving mechanism (not shown). In addition, you may comprise the adsorption | suction part 48 side so that a movement is possible.

なお、レーザ切断に伴ってガスを発生するおそれがある場合には、吸着部48の周囲に吸引ユニット50が設けられる。吸着部48と吸引ユニット50との間には、レーザを案内する溝が設けられている。吸着部48は上述した機械式切断機構と同様に多孔質金属等で構成され、素子接着用フィルム41を全面(平面)で保持することが可能とされている。また、吸着部48はヒータ等の加熱機構を内蔵していてもよい。   Note that a suction unit 50 is provided around the suction portion 48 when there is a possibility of generating gas along with laser cutting. A groove for guiding the laser is provided between the suction unit 48 and the suction unit 50. The adsorption portion 48 is made of a porous metal or the like, similar to the mechanical cutting mechanism described above, and can hold the element bonding film 41 on the entire surface (plane). Moreover, the adsorption | suction part 48 may incorporate heating mechanisms, such as a heater.

レーザ式のフィルム切断機構を有するフィルム貼り付け部13においては、まず図8Aに示すように、フィルム切断位置に送られた長尺な素子接着用フィルム41を吸着部48で真空吸引して保持する。図8Bおよび図9Bに示すように、吸着部48に保持された素子接着用フィルム41上に、第1の吸着コレット31に保持された半導体素子21をセットする。半導体素子21の真空吸引を維持した状態で、レーザ照射部49を素子形状に応じて移動させることによって、長尺な素子接着用フィルム41を半導体素子21の形状に応じて切断する。図10に示すように、吸着部48側を移動させて素子接着用フィルム41を素子形状に応じて切断するようにしてもよい。   In the film affixing unit 13 having a laser type film cutting mechanism, first, as shown in FIG. 8A, the long element bonding film 41 sent to the film cutting position is vacuum-sucked and held by the adsorption unit 48. . As shown in FIGS. 8B and 9B, the semiconductor element 21 held by the first suction collet 31 is set on the element bonding film 41 held by the suction portion 48. In a state where the vacuum suction of the semiconductor element 21 is maintained, the laser irradiation unit 49 is moved according to the element shape, whereby the long element bonding film 41 is cut according to the shape of the semiconductor element 21. As shown in FIG. 10, the element adhering film 41 may be cut according to the element shape by moving the suction portion 48 side.

このようにして、素子接着用フィルム41を半導体素子21の形状に応じて切断して個片化する。この後、半導体素子21と個片状素子接着用フィルム47とを圧着、また必要に応じて熱圧着することによって、図8Cおよび図9Cに示すように、裏面部に個片状素子接着用フィルム47が貼り付けられた半導体素子21を作製する。なお、図8Dおよび図9Dは半導体素子21を移動させた後の状態を示している。素子接着用フィルム41は半導体素子21を配置する前に単体で切断するようにしてもよい。   In this way, the element bonding film 41 is cut into pieces according to the shape of the semiconductor element 21. Thereafter, the semiconductor element 21 and the piece-like element bonding film 47 are pressure-bonded, and if necessary, heat-pressed, and as shown in FIGS. The semiconductor element 21 to which 47 is attached is manufactured. 8D and 9D show a state after the semiconductor element 21 is moved. The element bonding film 41 may be cut alone before the semiconductor element 21 is disposed.

上述した各切断機構を利用した素子接着用フィルム47の圧着(貼り付け)工程においては、チッピングの発生を抑制した半導体素子21の裏面部に、素子形状に応じて個片化した素子接着用フィルム47を貼り付けている。従って、素子接着用フィルムを半導体ウエーハと同時に切断して個片化していた従来工程のように、素子接着用フィルム47の個片化に起因して半導体素子21の裏面部にチッピングを発生させることがない。これによって、チッピングに起因する半導体素子の不良発生率を低減することが可能となる。特に、薄型化された半導体素子21の不良発生率が大幅に低減される。   In the pressure bonding (sticking) step of the element bonding film 47 using each of the cutting mechanisms described above, the element bonding film separated into pieces according to the element shape on the back surface of the semiconductor element 21 in which the occurrence of chipping is suppressed. 47 is pasted. Therefore, chipping is generated on the back surface portion of the semiconductor element 21 due to the separation of the element bonding film 47 as in the conventional process in which the element bonding film is cut and separated into pieces at the same time as the semiconductor wafer. There is no. As a result, it is possible to reduce the defect occurrence rate of the semiconductor element due to chipping. In particular, the defect occurrence rate of the thinned semiconductor element 21 is greatly reduced.

さらに、上記した素子接着用フィルム47の圧着(貼り付け)工程において、半導体素子21と素子接着用フィルム47はいずれも平面状態を維持するように真空吸着されているため、圧着時における半導体素子21のクラックや反りの発生、また貼り付け面における未接着部(空孔)の発生等を抑制することができる。未接着部(空孔)の発生は、半導体素子21からの熱放散性の低下等を招く。このような不良要因を低減ないしは排除することによって、半導体素子21ひいてはそれを用いた半導体装置の製造歩留りを向上させることが可能となる。   Furthermore, since the semiconductor element 21 and the element bonding film 47 are vacuum-sucked so as to maintain a flat state in the above-described pressure bonding (sticking) step of the element bonding film 47, the semiconductor element 21 at the time of pressure bonding is used. Generation of cracks and warpage, and occurrence of unbonded portions (holes) on the attachment surface can be suppressed. Generation | occurrence | production of an unbonded part (hole) causes the fall of the heat dissipation from the semiconductor element 21, etc .. By reducing or eliminating such a failure factor, it is possible to improve the manufacturing yield of the semiconductor element 21 and thus the semiconductor device using it.

素子接着用フィルム47が貼り付けられた半導体素子21は、再度検出器で位置を検出して位置補正された後、図6Eおよび図7Eに示すように、第2の吸着コレット51に吸引保持されて素子接着部14に送られる。第2の吸着コレット51は素子接着部14の移動機構の先端に設けられており、具体的な構成は第1の吸着コレット31と同様とされている。なお、第1の吸着コレット31のみでピックアップ部12から素子接着部14まで移動されるように構成してもよい。   The semiconductor element 21 to which the element bonding film 47 is attached is detected by the detector again and corrected for position, and then sucked and held by the second suction collet 51 as shown in FIGS. 6E and 7E. To the element bonding portion 14. The second suction collet 51 is provided at the tip of the moving mechanism of the element bonding portion 14, and the specific configuration is the same as that of the first suction collet 31. Note that the first adsorbing collet 31 alone may be used to move from the pickup unit 12 to the element bonding unit 14.

素子接着部14において、素子接着用フィルム47が貼り付けられた半導体素子21はリードフレーム、配線基板、放熱基板等の各種外囲器、あるいは多段積層する場合には基板上に接着された半導体素子上に接着される。例えば図11に示すように、第2の吸着コレット51に保持された半導体素子21は、配線基板52上の所定の位置に送られた後、素子接着用フィルム47に荷重を加えることで配線基板52に接着される。フィルム貼り付け部13や素子接着部14における荷重は、それぞれのステージで適切に制御される。この後、半導体素子21と配線基板52の端子間をボンディングワイヤで接続する。   In the element bonding portion 14, the semiconductor element 21 to which the element bonding film 47 is attached is a variety of envelopes such as a lead frame, a wiring board, and a heat dissipation board, or a semiconductor element bonded on the board when multi-layered. Glued on top. For example, as shown in FIG. 11, the semiconductor element 21 held by the second suction collet 51 is sent to a predetermined position on the wiring board 52, and then a load is applied to the element bonding film 47 to apply the wiring board. Glued to 52. The load in the film sticking part 13 and the element adhesion part 14 is appropriately controlled by each stage. Thereafter, the terminals of the semiconductor element 21 and the wiring board 52 are connected by bonding wires.

図12は半導体素子21を多段に積層した状態を示している。すなわち、配線基板52上に接着した第1の半導体素子21をワイヤボンディングした後、再度基板52を半導体製造装置11に搭載する。そして、同様な工程を経て第1の半導体素子21上に第2の半導体素子21を接着する。図12に示すように、第2の半導体素子21を第1の半導体素子21からはみ出して積層する場合、第2の半導体素子21をワイヤボンディングする際に曲げ応力が加わる。このような場合においても、半導体素子21のチッピングが抑制されているため、チッピングの進展によるクラックの発生を防ぐことができる。   FIG. 12 shows a state in which the semiconductor elements 21 are stacked in multiple stages. That is, after the first semiconductor element 21 bonded on the wiring substrate 52 is wire-bonded, the substrate 52 is mounted on the semiconductor manufacturing apparatus 11 again. Then, the second semiconductor element 21 is bonded onto the first semiconductor element 21 through the same process. As shown in FIG. 12, when the second semiconductor element 21 is stacked so as to protrude from the first semiconductor element 21, bending stress is applied when wire bonding the second semiconductor element 21. Even in such a case, since the chipping of the semiconductor element 21 is suppressed, the occurrence of cracks due to the progress of chipping can be prevented.

半導体素子21の多段積層は図12に示す形態に限られるものではなく、図13に示すように上側の半導体素子21が小さい場合や、上下の半導体素子21が同形状でかつ同方向に積層する場合等、種々の積層形態を適用することができる。いずれの場合においても、半導体素子21の不良発生を抑制することが可能である。さらに、裏面部に素子接着用フィルム47が貼り付けられた半導体素子21は、例えば図14に示すように、一旦トレー53に移し替えた後に基板等に接着してもよい。   The multi-layer stacking of the semiconductor elements 21 is not limited to the form shown in FIG. 12, but the upper semiconductor element 21 is small as shown in FIG. 13, or the upper and lower semiconductor elements 21 are stacked in the same shape and in the same direction. In various cases, various lamination forms can be applied. In any case, it is possible to suppress the occurrence of defects in the semiconductor element 21. Further, the semiconductor element 21 having the element bonding film 47 attached to the back surface portion may be once transferred to the tray 53 and then bonded to the substrate or the like as shown in FIG.

上述した半導体装置の製造工程によれば、半導体素子21の裏面部に生じるチッピングを抑制しているため、不良発生率を大幅に低減することができる。これは、半導体ウエーハ24のダイシング工程における不良発生率を低下させていることに加えて、その後のピックアップ工程やワイヤボンディング工程等におけるクラックの発生を抑制しているためである。これらによって、特に薄型化された半導体素子21のチッピングに起因する不良発生率を大幅に低下させることができる。すなわち、例えば厚さが200μm以下、さらには20μm以上100μm以下というような半導体素子21を用いて、薄型化された半導体装置や高密度実装を実現した半導体装置を高歩留りで作製することが可能となる。   According to the manufacturing process of the semiconductor device described above, since the chipping generated on the back surface portion of the semiconductor element 21 is suppressed, the defect occurrence rate can be greatly reduced. This is because, in addition to reducing the defect occurrence rate in the dicing process of the semiconductor wafer 24, the generation of cracks in the subsequent pick-up process, wire bonding process, and the like is suppressed. As a result, it is possible to significantly reduce the rate of occurrence of defects due to chipping of the semiconductor element 21 that is particularly thin. That is, for example, by using the semiconductor element 21 having a thickness of 200 μm or less, further 20 μm or more and 100 μm or less, a thinned semiconductor device or a semiconductor device that realizes high-density mounting can be manufactured with a high yield. Become.

ところで、素子接着用フィルムは粘着層で半導体素子に接着するタイプのものもあり、その場合には素子接着用フィルムの一面に保護フィルムが貼り付けられている。このような素子接着用フィルムを用いる場合には、例えば図15に示すように、保護フィルムの剥離部61を有するフィルム貼り付け部13を適用する。保護フィルムの剥離部61は、保護フィルム63を剥離する粘着性テープ62を有している。素子接着用フィルム47が貼り付けられた半導体素子21は一旦粘着性テープ62に押し当てられ、裏面側の保護フィルム63を粘着性テープ62で剥離した後に素子接着部14に送られる。   By the way, there is a type in which an element bonding film is bonded to a semiconductor element with an adhesive layer. In that case, a protective film is attached to one surface of the element bonding film. When such an element bonding film is used, for example, as shown in FIG. 15, a film attaching portion 13 having a protective film peeling portion 61 is applied. The peeling part 61 of the protective film has an adhesive tape 62 that peels off the protective film 63. The semiconductor element 21 to which the element adhesion film 47 is attached is once pressed against the adhesive tape 62, and the protective film 63 on the back side is peeled off with the adhesive tape 62 and then sent to the element adhesion portion 14.

図15は保護フィルムの剥離部61とフィルム貼り付け部13とを半導体素子の移動方向に配置した装置構造を示しているが、これらは移動方向に対して直交する方向に配置(平行配置)してもよい。また、保護フィルムの剥離部61は、例えば図16や図17に示すように、半導体素子21に押し当てられた粘着性テープ62を、下方に移動させて保護フィルムを剥離する機構64を有していてもよい。粘着性テープ62は左右の剥離部材を同時に下方に移動させてもよいし、これら左右の剥離部材を順に(例えば右→左)移動させるようにしてもよい。   FIG. 15 shows an apparatus structure in which the protective film peeling portion 61 and the film attaching portion 13 are arranged in the moving direction of the semiconductor element. These are arranged in a direction orthogonal to the moving direction (parallel arrangement). May be. Further, as shown in FIGS. 16 and 17, for example, the protective film peeling portion 61 has a mechanism 64 for peeling the protective film by moving the adhesive tape 62 pressed against the semiconductor element 21 downward. It may be. The adhesive tape 62 may move the left and right peeling members downward at the same time, or may move these left and right peeling members in order (for example, from right to left).

本発明の実施形態による半導体製造装置を示す斜視図である。1 is a perspective view showing a semiconductor manufacturing apparatus according to an embodiment of the present invention. 個片化された半導体素子を保持部材で保持した半導体ウエーハの一例を示す断面図である。It is sectional drawing which shows an example of the semiconductor wafer which hold | maintained the separated semiconductor element with the holding member. 本発明の実施形態によるダイシング工程の一例を示す図であって、半導体ウエーハの準備段階を示す断面図である。It is a figure which shows an example of the dicing process by embodiment of this invention, Comprising: It is sectional drawing which shows the preparatory stage of a semiconductor wafer. 本発明の実施形態によるダイシング工程の一例を示す図であって、半導体ウエーハの裏面部の研削段階を示す断面図である。It is a figure which shows an example of the dicing process by embodiment of this invention, Comprising: It is sectional drawing which shows the grinding | polishing stage of the back surface part of a semiconductor wafer. 本発明の実施形態によるダイシング工程の一例を示す図であって、半導体ウエーハの切断段階を示す断面図である。It is a figure which shows an example of the dicing process by embodiment of this invention, Comprising: It is sectional drawing which shows the cutting step of a semiconductor wafer. 本発明の実施形態によるダイシング工程の他の例を示す図であって、半導体ウエーハの表面部への溝形成段階を示す断面図である。It is a figure which shows the other example of the dicing process by embodiment of this invention, Comprising: It is sectional drawing which shows the groove | channel formation step in the surface part of a semiconductor wafer. 本発明の実施形態によるダイシング工程の他の例を示す図であって、半導体ウエーハの裏面部の研削段階を示す断面図である。It is a figure which shows the other example of the dicing process by embodiment of this invention, Comprising: It is sectional drawing which shows the grinding | polishing stage of the back surface part of a semiconductor wafer. 本発明の実施形態によるダイシング工程の他の例を示す図であって、半導体ウエーハの裏面部への保持テープの貼り付け段階を示す断面図である。It is a figure which shows the other example of the dicing process by embodiment of this invention, Comprising: It is sectional drawing which shows the affixing step of the holding tape to the back surface part of a semiconductor wafer. 本発明の実施形態によるピックアップ工程の一例を示す図である。It is a figure which shows an example of the pick-up process by embodiment of this invention. 実施形態の半導体製造装置による素子接着用フィルムの切断工程の一例を示す図であって、素子接着用フィルムの準備段階を示す側面図である。It is a figure which shows an example of the cutting process of the element adhesion film by the semiconductor manufacturing apparatus of embodiment, Comprising: It is a side view which shows the preparation step of the element adhesion film. 実施形態の半導体製造装置による素子接着用フィルムの切断工程の一例を示す図であって、素子接着用フィルムの切断段階を示す側面図である。It is a figure which shows an example of the cutting process of the film for element bonding by the semiconductor manufacturing apparatus of embodiment, Comprising: It is a side view which shows the cutting step of the film for element bonding. 実施形態の半導体製造装置による素子接着用フィルムの切断工程の一例を示す図であって、素子接着用フィルムと半導体素子の圧着段階を示す側面図である。It is a figure which shows an example of the cutting process of the element adhesion film by the semiconductor manufacturing apparatus of embodiment, Comprising: It is a side view which shows the crimping | compression-bonding stage of an element adhesion film and a semiconductor element. 実施形態の半導体製造装置による素子接着用フィルムの切断工程の一例を示す図であって、裏面部に素子接着用フィルムが貼り付けられた半導体素子の作製段階を示す側面図である。It is a figure which shows an example of the cutting process of the element adhesion film by the semiconductor manufacturing apparatus of embodiment, Comprising: It is a side view which shows the preparation step of the semiconductor element by which the film for element adhesion was affixed on the back surface part. 実施形態の半導体製造装置による素子接着用フィルムの切断工程の一例を示す図であって、裏面部に素子接着用フィルムが貼り付けられた半導体素子の移送段階を示す側面図である。It is a figure which shows an example of the cutting process of the film for element adhesion by the semiconductor manufacturing apparatus of embodiment, Comprising: It is a side view which shows the transfer step of the semiconductor element by which the film for element adhesion was affixed on the back surface part. 図6Aに示す素子接着用フィルムの準備段階の斜視図である。It is a perspective view of the preparatory stage of the film for element bonding shown to FIG. 6A. 図6Bに示す素子接着用フィルムの切断段階の斜視図である。FIG. 6B is a perspective view of the element bonding film shown in FIG. 6B at a cutting stage. 図6Cに示す素子接着用フィルムと半導体素子との圧着段階の斜視図である。FIG. 6C is a perspective view of a pressure bonding stage between the element bonding film and the semiconductor element shown in FIG. 6C. 図6Dに示す裏面部に素子接着用フィルムが貼り付けられた半導体素子の作製段階の斜視図である。FIG. 6D is a perspective view of a manufacturing step of a semiconductor element in which an element bonding film is attached to the back surface portion illustrated in FIG. 6D. 図6Eに示す裏面部に素子接着用フィルムが貼り付けられた半導体素子の移送段階の斜視図である。FIG. 6B is a perspective view of a semiconductor element transfer stage in which an element bonding film is attached to the back surface portion shown in FIG. 6E. 実施形態の半導体製造装置による素子接着用フィルムの切断工程の他の例を示す図であって、素子接着用フィルムの準備段階を示す側面図である。It is a figure which shows the other example of the cutting process of the film for element adhesion by the semiconductor manufacturing apparatus of embodiment, Comprising: It is a side view which shows the preparatory step of the film for element adhesion. 実施形態の半導体製造装置による素子接着用フィルムの切断工程の他の例を示す図であって、素子接着用フィルムの切断段階を示す側面図である。It is a figure which shows the other example of the cutting process of the film for element bonding by the semiconductor manufacturing apparatus of embodiment, Comprising: It is a side view which shows the cutting step of the film for element bonding. 実施形態の半導体製造装置による素子接着用フィルムの切断工程の他の例を示す図であって、裏面部に素子接着用フィルムが貼り付けられた半導体素子の作製段階を示す側面図である。It is a figure which shows the other example of the cutting process of the film for element adhesion by the semiconductor manufacturing apparatus of embodiment, Comprising: It is a side view which shows the preparation stage of the semiconductor element by which the film for element adhesion was affixed on the back surface part. 実施形態の半導体製造装置による素子接着用フィルムの切断工程の他の例を示す図であって、半導体素子の移送後の状態を示す側面図である。It is a figure which shows the other example of the cutting process of the film for element bonding by the semiconductor manufacturing apparatus of embodiment, Comprising: It is a side view which shows the state after the transfer of a semiconductor element. 図8Aに示す素子接着用フィルムの準備段階前の状態の斜視図である。It is a perspective view of the state before the preparatory stage of the film for element bonding shown to FIG. 8A. 図8Bに示す素子接着用フィルムの切断段階の斜視図である。It is a perspective view of the cutting step of the film for element bonding shown in FIG. 8B. 図8Cに示す裏面部に素子接着用フィルムが貼り付けられた半導体素子の作製段階の斜視図である。FIG. 8D is a perspective view of a manufacturing step of a semiconductor element in which an element bonding film is attached to the back surface portion illustrated in FIG. 8C. 図8Dに示す半導体素子の移送後の状態の斜視図である。It is a perspective view of the state after the transfer of the semiconductor element shown in FIG. 8D. 図9Bの変形例を示す斜視図である。It is a perspective view which shows the modification of FIG. 9B. 実施形態の半導体製造装置を用いた半導体素子の接着構造の一例を示す斜視図である。It is a perspective view which shows an example of the adhesion structure of the semiconductor element using the semiconductor manufacturing apparatus of embodiment. 実施形態の半導体製造装置を用いた半導体素子の接着構造の他の例を示す斜視図である。It is a perspective view which shows the other example of the adhesion structure of the semiconductor element using the semiconductor manufacturing apparatus of embodiment. 実施形態の半導体製造装置を用いた半導体素子の接着構造のさらに他の例を示す斜視図である。It is a perspective view which shows the further another example of the adhesion structure of the semiconductor element using the semiconductor manufacturing apparatus of embodiment. 図11の変形例を示す斜視図である。It is a perspective view which shows the modification of FIG. 本発明の他の実施形態による半導体製造装置を示す斜視図である。It is a perspective view which shows the semiconductor manufacturing apparatus by other embodiment of this invention. 図15に示す半導体製造装置における保護フィルムの剥離部の一構成例を示す断面図である。It is sectional drawing which shows one structural example of the peeling part of the protective film in the semiconductor manufacturing apparatus shown in FIG. 図15に示す半導体製造装置における保護フィルムの剥離部の他の構成例を示す断面図である。It is sectional drawing which shows the other structural example of the peeling part of the protective film in the semiconductor manufacturing apparatus shown in FIG. 従来のダイシング工程の一例を示す図であって、半導体ウエーハの準備段階を示す断面図である。It is a figure which shows an example of the conventional dicing process, Comprising: It is sectional drawing which shows the preparatory stage of a semiconductor wafer. 従来のダイシング工程の一例を示す図であって、半導体ウエーハの裏面部の研削段階を示す断面図である。It is a figure which shows an example of the conventional dicing process, Comprising: It is sectional drawing which shows the grinding | polishing stage of the back surface part of a semiconductor wafer. 従来のダイシング工程の一例を示す図であって、半導体ウエーハの裏面部へのダイシング用テープの貼り付け段階を示す断面図である。It is a figure which shows an example of the conventional dicing process, Comprising: It is sectional drawing which shows the affixing step of the tape for dicing on the back surface part of a semiconductor wafer. 従来のダイシング工程の一例を示す図であって、半導体ウエーハの切断段階を示す断面図である。It is a figure which shows an example of the conventional dicing process, Comprising: It is sectional drawing which shows the cutting step of a semiconductor wafer. 従来のピックアップ工程の一例を示す図である。It is a figure which shows an example of the conventional pick-up process. 従来の半導体素子の接着構造の一例を示す斜視図である。It is a perspective view which shows an example of the adhesion structure of the conventional semiconductor element.

符号の説明Explanation of symbols

11…半導体製造装置、12…ピックアップ部、13…フィルム貼り付け部、14…素子接着部、16…個片化された半導体素子を有する半導体ウエーハ、21…半導体素子、22…保持テープ、24…半導体ウエーハ、31,51…吸着コレット、41,47…素子接着用フィルム、45…機械式切断機、46,48…吸着部材、49…レーザ照射部、52…基板。   DESCRIPTION OF SYMBOLS 11 ... Semiconductor manufacturing apparatus, 12 ... Pickup part, 13 ... Film sticking part, 14 ... Element adhesion part, 16 ... Semiconductor wafer which has the semiconductor element separated into pieces, 21 ... Semiconductor element, 22 ... Holding tape, 24 ... Semiconductor wafer 31, 51 ... Adsorption collet, 41, 47 ... Element adhesion film, 45 ... Mechanical cutting machine, 46, 48 ... Adsorption member, 49 ... Laser irradiation part, 52 ... Substrate.

Claims (6)

個片化された複数の半導体素子を保持部材で保持した半導体ウエーハから、前記複数の半導体素子を多孔質吸着コレットで順に保持してピックアップするピックアップ部と、
多孔質状吸着部材に保持された素子接着用フィルムを前記半導体素子の形状に応じて切断して個片化するフィルム切断機構を備え、前記多孔質状吸着部材に全面で保持された前記個片化された素子接着用フィルムと前記多孔質吸着コレットに全面で保持された前記半導体素子とを圧着し、前記複数の半導体素子の裏面部に前記個片化された素子接着用フィルムを順に貼り付けるフィルム貼り付け部と、
前記素子接着用フィルムが貼り付けられた前記複数の半導体素子を半導体装置形成用基材上に順に接着する素子接着部と
を具備することを特徴とする半導体製造装置。
From a semiconductor wafer holding a plurality of separated semiconductor elements with a holding member, a pick-up unit for sequentially holding and picking up the plurality of semiconductor elements with a porous adsorption collet;
The individual piece held on the entire surface of the porous adsorbing member, comprising a film cutting mechanism for cutting the element adhering film held on the porous adsorbing member into individual pieces by cutting according to the shape of the semiconductor element The element bonding film thus formed and the semiconductor element held on the entire surface of the porous adsorption collet are pressure-bonded, and the separated element bonding films are sequentially attached to the back surfaces of the plurality of semiconductor elements. A film pasting section;
A device for manufacturing a semiconductor, comprising: an element bonding portion for sequentially bonding the plurality of semiconductor elements to which the element bonding film is attached on a substrate for forming a semiconductor device.
請求項1記載の半導体製造装置において、
前記フィルム貼り付け部は、長尺な前記素子接着用フィルムを巻き取った供給ロールから前記素子接着用フィルムを供給するフィルム供給部と、前記供給ロールから供給された前記素子接着用フィルムを、機械切断またはレーザ切断により前記半導体素子の形状に応じて切断するフィルム切断部とを有することを特徴とする半導体製造装置。
The semiconductor manufacturing apparatus according to claim 1.
The film affixing unit includes a film supply unit that supplies the element adhesion film from a supply roll obtained by winding the long element adhesion film, and the element adhesion film that is supplied from the supply roll. A semiconductor manufacturing apparatus, comprising: a film cutting unit that cuts according to a shape of the semiconductor element by cutting or laser cutting.
請求項2記載の半導体製造装置において、
前記フィルム切断部は、前記多孔質状吸着部材に保持された前記素子接着用フィルムを打抜いて切断する切断機を有することを特徴とする半導体製造装置。
The semiconductor manufacturing apparatus according to claim 2.
The semiconductor cutting apparatus, wherein the film cutting unit has a cutting machine that punches and cuts the element bonding film held by the porous adsorbing member.
請求項2記載の半導体製造装置において、
前記フィルム切断部は、前記多孔質状吸着部材に保持された前記素子接着用フィルムを切断するレーザ切断機と、前記レーザ切断機または前記多孔質状吸着部材を前記半導体素子の形状に応じて移動させる移動機構とを有することを特徴とする半導体製造装置。
The semiconductor manufacturing apparatus according to claim 2.
The film cutting part moves a laser cutting machine that cuts the element bonding film held by the porous adsorption member, and moves the laser cutting machine or the porous adsorption member according to the shape of the semiconductor element. And a moving mechanism that moves the semiconductor manufacturing apparatus.
請求項1ないし請求項4のいずれか1項記載の半導体製造装置において、
前記ピックアップ部は、前記多孔質吸着コレットに保持された前記半導体素子を裏面側から突き上げて前記保持部材から剥離する突き上げ機構を有することを特徴とする半導体製造装置。
The semiconductor manufacturing apparatus according to any one of claims 1 to 4,
The pick-up unit has a push-up mechanism that pushes up the semiconductor element held by the porous adsorption collet from the back surface side and peels it from the holding member.
請求項1ないし請求項5のいずれか1項記載の半導体製造装置において、
前記フィルム貼り付け部は、前記半導体素子に貼り付けられた前記素子接着用フィルムの裏面部側に設けられた保護フィルムを剥離するフィルム剥離部を有することを特徴とする半導体製造装置。
The semiconductor manufacturing apparatus according to any one of claims 1 to 5,
The said film sticking part has a film peeling part which peels the protective film provided in the back surface part side of the said film for element adhesion | attachment stuck on the said semiconductor element, The semiconductor manufacturing apparatus characterized by the above-mentioned.
JP2007273415A 2007-10-22 2007-10-22 Semiconductor manufacturing device Pending JP2008085354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007273415A JP2008085354A (en) 2007-10-22 2007-10-22 Semiconductor manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007273415A JP2008085354A (en) 2007-10-22 2007-10-22 Semiconductor manufacturing device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003277591A Division JP2005045023A (en) 2003-07-22 2003-07-22 Manufacturing method of semiconductor device and manufacturing device for semiconductor

Publications (1)

Publication Number Publication Date
JP2008085354A true JP2008085354A (en) 2008-04-10

Family

ID=39355803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007273415A Pending JP2008085354A (en) 2007-10-22 2007-10-22 Semiconductor manufacturing device

Country Status (1)

Country Link
JP (1) JP2008085354A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016213223A (en) * 2015-04-30 2016-12-15 三菱電機株式会社 Semiconductor device manufacturing method
CN110504204A (en) * 2018-05-16 2019-11-26 普因特工程有限公司 Micro- LED adsorbent

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348433A (en) * 1989-04-05 1991-03-01 Fujitsu Ltd Semiconductor manufacturing device
JPH0617233U (en) * 1992-08-06 1994-03-04 澁谷工業株式会社 Workpiece suction part in chip bonding machine
JPH1056028A (en) * 1996-04-25 1998-02-24 Toshiba Corp Manufacturing method of semiconductor device
JPH10107048A (en) * 1996-08-06 1998-04-24 Hitachi Chem Co Ltd Multichip mounting method, adhesive-applied chip set, and manufacture of adhesive-applied chip
JPH10209211A (en) * 1997-01-21 1998-08-07 Sony Corp Method and device for supplying film, and method and device for mounting film
JPH1131702A (en) * 1997-07-11 1999-02-02 Hitachi Cable Ltd Method for adhering adhesive sheet
JP2002368023A (en) * 2001-06-06 2002-12-20 Hitachi Ltd Method of manufacturing semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348433A (en) * 1989-04-05 1991-03-01 Fujitsu Ltd Semiconductor manufacturing device
JPH0617233U (en) * 1992-08-06 1994-03-04 澁谷工業株式会社 Workpiece suction part in chip bonding machine
JPH1056028A (en) * 1996-04-25 1998-02-24 Toshiba Corp Manufacturing method of semiconductor device
JPH10107048A (en) * 1996-08-06 1998-04-24 Hitachi Chem Co Ltd Multichip mounting method, adhesive-applied chip set, and manufacture of adhesive-applied chip
JPH10209211A (en) * 1997-01-21 1998-08-07 Sony Corp Method and device for supplying film, and method and device for mounting film
JPH1131702A (en) * 1997-07-11 1999-02-02 Hitachi Cable Ltd Method for adhering adhesive sheet
JP2002368023A (en) * 2001-06-06 2002-12-20 Hitachi Ltd Method of manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016213223A (en) * 2015-04-30 2016-12-15 三菱電機株式会社 Semiconductor device manufacturing method
CN110504204A (en) * 2018-05-16 2019-11-26 普因特工程有限公司 Micro- LED adsorbent

Similar Documents

Publication Publication Date Title
KR100609806B1 (en) Manufacturing method of semiconductor device
KR100506109B1 (en) Separation mechanism for adhesive tape, separation apparatus for adhesive tape, separation method for adhesive tape, pickup apparatus for semiconductor chip, pickup method for semiconductor chip, manufacturing method for semiconductor apparatus, and manufacturing apparatus for semiconductor apparatus
JP4406300B2 (en) Semiconductor device and manufacturing method thereof
JP4546626B2 (en) Method for picking up semiconductor element
KR100759687B1 (en) Method for thinning substrate and method for manufacturing circuit device
JP2011181822A (en) Method of fabricating semiconductor device
JP2007250886A (en) Manufacturing method of semiconductor device
US7262114B2 (en) Die attaching method of semiconductor chip using warpage prevention material
JP2005045023A (en) Manufacturing method of semiconductor device and manufacturing device for semiconductor
EP2671249A2 (en) Pre- cut wafer applied underfill film
JP4528758B2 (en) Transfer tape and semiconductor device manufacturing method using the transfer tape
KR20060044663A (en) Process and equipment for manufacturing extremely thin chip
JP2008085354A (en) Semiconductor manufacturing device
JP4768963B2 (en) Wafer transfer method
JP2005209940A (en) Method for manufacturing semiconductor device
JP2011054648A (en) Method of manufacturing semiconductor device
JP2005175207A (en) Manufacturing method of semiconductor device, reinforcement member for grinding and bonding method thereof
JP2007281415A (en) Adhesive sheet
JP2007149832A (en) Method for die bonding
JP2013219245A (en) Method for manufacturing semiconductor device
JP2005243910A (en) Manufacturing method of semiconductor chip
WO2017168871A1 (en) Substrate transfer method and substrate transfer device
WO2023136004A1 (en) Laminated film and support piece manufacturing method
KR102585352B1 (en) A method of handling thin wafer using foam tape
WO2004012247A1 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101228