JP2008084939A - 窒化物半導体レーザー素子 - Google Patents

窒化物半導体レーザー素子 Download PDF

Info

Publication number
JP2008084939A
JP2008084939A JP2006260631A JP2006260631A JP2008084939A JP 2008084939 A JP2008084939 A JP 2008084939A JP 2006260631 A JP2006260631 A JP 2006260631A JP 2006260631 A JP2006260631 A JP 2006260631A JP 2008084939 A JP2008084939 A JP 2008084939A
Authority
JP
Japan
Prior art keywords
active layer
rare earth
photonic crystal
wavelength
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006260631A
Other languages
English (en)
Inventor
Shinichi Tamai
慎一 玉井
Soichiro Arimura
聡一郎 有村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2006260631A priority Critical patent/JP2008084939A/ja
Publication of JP2008084939A publication Critical patent/JP2008084939A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】小型でコンパクトな、1チップで実現された緑色半導体レーザー素子が望まれていた。
【解決手段】InGaN活性層14中に、フォトニック結晶領域21および希土類ドープ領域22を形成する。活性層14中の、フォトニック結晶領域21および希土類ドープ領域は、一表面沿いに、互いに近接して形成する。フォトニック結晶領域21は、第1のパターンとして、活性層14の一表面沿いに形成され、励起光の波長に応じた間隔で平行に配列された複数の溝23を含む。希土類ドープ領域22は、第2のパターンとして、出力する緑色光の波長に応じた間隔で互いに平行に配列された複数の溝24を含む。
【選択図】図2

Description

この発明は、窒化物半導体レーザー素子に関し、特に、緑色レーザー光を出射する窒化物半導体レーザー素子に関する。
緑色レーザー光を実現するために、様々な方式が開発されている。たとえば古くはガスレーザー装置であり、また、近年ではLD励起SHG固体レーザーにより、緑色レーザー光が実現されている。
また、紫外域のレーザー光を発するレーザー光源を用い、緑色蛍光体を緑色に発光させるカラーレーザーディスプレイも提案されている(特許文献1参照)。
従来のガスレーザー装置は、緑色レーザー光を出力することができるが、装置が大型で、コストが非常に高いという課題があった。
また、LD励起SHG固体レーザーとして、たとえば、波長が1064nmのLD励起固体レーザーを用いた532nmの緑色波長を発するYAGレーザーは、ガスレーザーよりもエネルギー変換効率は高いが、レーザー光に縦モード競合というノイズが発生する。そしてノイズ発生を制御し、単一モード発振を行うには、ロスが大きすぎ、高出力が得られなくなるという課題がある。
さらに、近年の主流であるSHGを利用したDPSSレーザー(Diode Ponped Solid State Laser: 半導体レーザーで固体を励起して、固体レーザーを非線形結晶を通して2倍波を出すようにしたレーザー)は、温度特性効率に難があり、連続発振時間が短いという課題がある。
特開2000−314920号公報
半導体レーザー素子としての1チップによる緑色レーザー素子は未だ実現されてはおらず、コンパクトで高効率な緑色レーザー素子が求められている。
この発明は、かかる技術背景のもとになされたもので、1チップで緑色レーザー素子を得る技術を提供するものである。
すなわち、この発明の主たる目的は、1チップで実現された緑色半導体レーザー素子を提供することである。
この発明の他の目的は、低効率なSHG技術は用いず、技術的にある程度確立されているInGaN半導体発光素子および希土類により、1チップに融合された緑色半導体レーザー素子を提供することである。
この発明は、さらに、高効率、長寿命で高い出力安定性を有する緑色半導体レーザー素子を提供することをさらに他の目的とする。
請求項1記載の発明は、InGaNの活性層(14)を有する窒化物半導体レーザー素子(10)であって、前記活性層(14)中にフォトニック結晶用の第1のパターンが形成されたフォトニック結晶領域(21)と、前記活性層(14)中の、前記フォトニック結晶領域(21)に近接して形成され、希土類がドープされ、かつ、出力光共振用の第2のパターンが形成された希土類ドープ領域(22)と、を備えることを特徴とする窒化物半導体レーザー素子である。
括弧内の英数字は後述の実施形態における態様構成要素を表わす。以下、この項において同じ。
上記構成では、活性層(14)中において励起する光のうち、希土類の励起光となる波長の光が第1のパターンを備えるフォトニック結晶によって選択的に共振される。共振によって生じたレーザー光は、フォトニック結晶領域(21)に近接して形成された希土類ドープ領域(22)において、希土類を励起する。その結果、希土類が緑色光を発する。そして、希土類が発する光は第2のパターンによって共振され、緑色レーザー光が出力される。
フォトニック結晶領域(21)において励起する励起光の波長は、InGaN活性層中のIn組成およびフォトニック結晶の周期で制御することができる。フォトニック結晶の周期は、第1のパターンで設定でき、より具体的には、請求項2のフォトニック結晶領域(21)に形成された複数の溝(23)の間隔で決められる。
また、緑色を発光する希土類元素の具体例は、Pr(プラセオジウム、励起波長:440nm)、Tb(テルビウム、励起波長:410nm)、Er(エルビウム)を例示できる。
請求項2記載の発明は、前記フォトニック結晶領域(21)は、前記活性層(14)の一表面沿いに形成され、前記第1のパターンは、前記活性層(14)内で励起される励起光の波長λに対して約λ/2n(nは活性層の屈折率)の間隔で平行に配列された複数の溝(23)を含み、前記希土類ドープ領域(22)は、前記フォトニック結晶領域(21)の複数の溝(23)が形成された一表面と同一面沿いに形成され、前記第2のパターンは、出力光の波長λ′に対して約λ′/2n(nは活性層の屈折率)の間隔で互いに平行に配列されている複数の溝(24)を含むことを特徴とする請求項1記載の窒化物半導体レーザー素子である。
この構成によれば、フォトニック結晶領域(21)において、所定の波長の励起光を選択的に共振させることができる。
また、励起光を、近接領域である希土類ドープ領域(22)へ導くことにより、希土類が励起されて緑色光を発する。そして緑色光が第2のパターンによって共振されて、緑色光をシングルモード発振の緑色レーザー光として、希土類ドープ領域(22)の端面から出力することができる。
請求項3記載の発明は、前記フォトニック結晶領域(21)は、前記活性層(14)の一表面沿いに形成され、前記第1のパターンは、前記活性層(14)内で励起される励起光の波長λに対して約λ/2n(nは活性層の屈折率)の間隔で平行に配列された複数の溝(23)を含み、前記希土類ドープ領域(22)は、前記フォトニック結晶領域(21)の複数の溝(23)が形成された一表面と同一面沿いに形成され、前記第2のパターンは、互いに出力光の波長λ′に対して約λ′/2n(nは活性層の屈折率)の間隔で配置されている多数個のドット孔(25)を含むことを特徴とする、請求項1記載の窒化物半導体レーザー素子である。
上記構成では、請求項2の構成とは異なり、希土類ドープ領域において、第2のパターンとして多数個のドット孔が設けられている。このため、希土類ドープ領域(22)の上面から緑色レーザー光を出力できる。
この発明に係る窒化物半導体レーザー素子は、InGaN半導体発光素子と希土類ドープ領域とを、フォトニック結晶を介して1チップに融合させており、従来のSHGを用いたDPSSレーザー等と比較して、高効率、長寿命、高い出力安定性を持った緑色レーザー素子チップを得られるという大きな利点がある。
また、この発明に係る窒化物半導体レーザー素子は、希土類元素からの発光を利用したシングルモード発振が可能である。
この発明に係る緑色レーザーを出射する窒化物半導体レーザー素子は、フルカラーディスプレイ、レーザー加工機、緑色レーザーポインター、プロジェクター等の分野で広く利用することができる。
以下では図面を参照して、この発明の実施形態について具体的に説明をする。
図1は、この発明の一実施形態に係る窒化物半導体レーザー素子の模式的な縦断面図である。この実施形態に係る窒化物半導体レーザー素子10は、基板11の上にn型クラッド層12、n型ガイド層13、活性層14、p型ガイド層15、p型クラッド層16およびp型コンタクト層17が順次積層形成された構造をしている。
活性層14は、InGaNで構成されており、図2または図3に示す構造を有している。
図2は、活性層14の構成の一例を説明するための図解的な斜視図である。活性層14は、上述したように、InGaNで構成されている。活性層14にはフォトニック結晶領域21および希土類ドープ領域22が含まれており、これら2つの領域は活性層14の一表面(上面)に沿って、左右に隣接して形成されている。なお、実際の構造としては、フォトニック結晶領域21と希土類ドープ領域22とは、所定の間隔をあけて近接配置された構成であってもよい。
フォトニック結晶領域21には、活性層14の一表面に沿って、第1のパターンとして、活性層14の長手方向(矢印Aで示す方向)と直交方向に延びる複数の溝23が形成されている。各溝23は、互いに平行で、その間隔は、活性層14内で励起される励起光の波長λに対して約λ/2n(nは活性層14の屈折率)にされている。ここに、励起光とは、レーザー発光時に、活性層14内で電子および正孔の再結合が起こり発光する光のことで、この励起光の波長は、活性層14を構成するInGaNのInの組成割合を調整することによって制御することができる。
この実施形態では、励起光は、後述する希土類を励起するために必要な波長になるように、In組成が調整される。
形成された溝23は、空の状態(空気が満たされた状態)でよい。あるいは、溝23内に、たとえばSiO2やAlGaN等を満たした状態としてもよい。
一方、希土類ドープ領域22には、全面に特定の希土類がドープされており、かつ、その一表面(上面)沿いに、第2のパターンとして、活性層14の長手方向Aに対して直交方向に、複数本の溝24が形成されている。各溝24は、互いに平行である。溝14も、空の状態(空気が満たされた状態)でもよいし、SiO2等が満たされた状態でもよい。
溝24相互の間隔は、ドープされた希土類元素の発光波長λ′に対して、約λ′/2n(nは活性層の屈折率)とされている。ここに、Prの場合はλ′=522nm、Tbの場合はλ′=510nmである。
活性層14を、上述のフォトニック結晶領域21および希土類ドープ領域22を含む構成にした場合、レーザー発光時に、フォトニック結晶領域21において、特定の波長の光を励起光として選択的に共振させることができる。そして共振される特定波長のレーザー光は、希土類ドープ領域の希土類を励起する。希土類は励起によってLED的に発光する。そして、その発光は溝24の間隔が希土類の発する緑色発光の波長に対応する間隔になっているため、緑色発光が共振され、発振波長が1つに定まったシングルモード発振の緑色レーザー光が、希土類ドープ領域22の端面(図2において右側面)から出射される。
図3は、活性層14の他の構成例を説明するための図解的な斜視図である。
図3に示す活性層14の構成の特徴は、希土類ドープ領域22には、その一表面(上面)沿いに、第2のパターンとしての多数個のドット孔が形成されていることである。そして、各ドット孔25は、その形成間隔が、互いにおよそλ′/2n(λ′は希土類ドープ領域22にドープされた希土類元素の発光波長であり、nは活性層の屈折率である。)にされていることである。
その他の構成は、図2を参照して説明した活性層14の構成と同様である。
図3に示す活性層14では、フォトニック結晶領域21で生じた励起光により、希土類ドープ領域22にドープされた希土類元素が励起されてLED的に発光する。その発光は、各ドット孔25の間隔が発光波長に対応した間隔であるから、各ドット孔25により共振され、LED的発光から発振波長が1つに定まったシングルモードのレーザー発振となり、希土類ドープ領域22の上面から緑色レーザー光が面発光として出力される。
図4は、上述した活性層14の作成の一例を示す製造工程図である。
n型ガイド層13の上にInGaN活性層14が形成される。活性層14は、たとえばMOCVDなどの方法で成膜される(図4A)。
次いで、活性層14の表面にEBレジスト31が塗布される(図4B)。
そして、EB露光および現像が行われて、活性層14表面の、フォトニック結晶領域21における溝23、および希土類ドープ領域22における溝24(またはドット孔25)を形成する領域のEBレジストが除去される(図4C)。
次いで、たとえば塩素系ガスを用いてドライエッチングが行われると、活性層14のうち、EBレジスト31で覆われていない領域に溝23および溝24(またはドット孔25)が形成される(図4D)。
その後、EBレジスト31が剥離されると、表面に溝23および溝24(またはドット孔25)が形成された活性層14が作成される(図4E)。なお、EB描画に代えて、ナノインプリントなどの方法を用いて溝23、24を形成してもよい。
その後、活性層14上には、図1で説明したように、p型ガイド層15(p−GaNなど)が積層される。この積層にあたっては、p型ガイド層15を、MOCVDで再成長させると、活性層14に形成した溝23および溝24(またはドット孔25)が埋まってしまうので、p型ガイド層15は、融着により溶接する。なお、融着による溶接に代えて、プラズマ活性化接合をしてもよい。
図5は、活性層14の他の作成例を示す製造工程図である。
n型ガイド層13の上にInGaN活性層14を、MOCVDなどで成膜する(図5A)。
次に、活性層14表面に、スパッタなどでSiO2を成膜し、さらにその上にEBレジスト膜31を塗布する(図5B)。
そして、たとえばEB露光および現像を行うことにより、SiO2膜32の上のEBレジスト31が選択的に除去される(図5C)。このとき、EBレジストが選択的に除去された領域が、フォトニック結晶領域21における溝23、および希土類ドープ領域22における溝24(またはドット孔25)が形成されない領域となる。
次に、塩素系ガス等でドライエッチングを行うことにより、EBレジストで覆われていない領域のSiO2膜32が除去される(図5D)。
そして、EBレジスト31を剥離すれば、活性層14上に、溝23、および溝24(またはドット孔25)となるべきSiO2が平行に配列された状態となる(図5E)。
次に、活性層14およびその上に形成されたの畝状のSiO2(SiO2畝23および24)上に、p型ガイド層15となるたとえばp−GaNを形成し、この層15をMOCVDなどで再成長させる(図5F)。
この結果、SiO2が溝23としての役目を果たすフォトニック結晶領域21が形成される。同様に、SiO2が溝24(またはドット孔25)としての役目を果たす希土類ドープ領域22が形成される。
上記図4および図5で例示した製造工程において、希土類ドープ領域22に対しては、溝24(またはドット孔25)の作成の前または後のいずれかにおいて、所定の希土類が、イオン注入法などにより、全面にドープされる。
この発明は、以上説明した実施形態に限定されるものではなく、請求項記載の範囲内において種々の変更が可能である。
この発明の一実施形態に係る窒化物半導体レーザー素子の模式的な縦断面図である。 活性層の構成の一例を説明するための図解的な斜視図である。 活性層の他の構成例を説明するための図解的な斜視図である。 活性層の作成の一例を示す製造工程図である。 活性層の他の作成例を示す製造工程図である。
符号の説明
14 活性層
21 フォトニック結晶領域
22 希土類ドープ領域
23 溝
24 溝
25 ドット孔

Claims (3)

  1. InGaNの活性層を有する窒化物半導体レーザー素子であって、
    前記活性層中にフォトニック結晶用の第1のパターンが形成されたフォトニック結晶領域と、
    前記活性層中の、前記フォトニック結晶領域に近接して形成され、希土類がドープされ、かつ、出力光共振用の第2のパターンが形成された希土類ドープ領域と、
    を備えることを特徴とする窒化物半導体レーザー素子。
  2. 前記フォトニック結晶領域は、前記活性層の一表面沿いに形成され、前記第1のパターンは、前記活性層内で励起される励起光の波長λに対して約λ/2n(nは活性層の屈折率)の間隔で平行に配列された複数の溝を含み、
    前記希土類ドープ領域は、前記フォトニック結晶領域の複数の溝が形成された一表面と同一面沿いに形成され、前記第2のパターンは、出力光の波長λ′に対して約λ′/2n(nは活性層の屈折率)の間隔で互いに平行に配列されている複数の溝を含むことを特徴とする請求項1記載の窒化物半導体レーザー素子。
  3. 前記フォトニック結晶領域は、前記活性層の一表面沿いに形成され、前記第1のパターンは、前記活性層内で励起される励起光の波長λに対して約λ/2n(nは活性層の屈折率)の間隔で平行に配列された複数の溝を含み、
    前記希土類ドープ領域は、前記フォトニック結晶領域の複数の溝が形成された一表面と同一面沿いに形成され、前記第2のパターンは、互いに出力光の波長λ′に対して約λ′/2n(nは活性層の屈折率)の間隔で配置されている多数個のドット孔を含むことを特徴とする、請求項1記載の窒化物半導体レーザー素子。
JP2006260631A 2006-09-26 2006-09-26 窒化物半導体レーザー素子 Pending JP2008084939A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006260631A JP2008084939A (ja) 2006-09-26 2006-09-26 窒化物半導体レーザー素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006260631A JP2008084939A (ja) 2006-09-26 2006-09-26 窒化物半導体レーザー素子

Publications (1)

Publication Number Publication Date
JP2008084939A true JP2008084939A (ja) 2008-04-10

Family

ID=39355512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006260631A Pending JP2008084939A (ja) 2006-09-26 2006-09-26 窒化物半導体レーザー素子

Country Status (1)

Country Link
JP (1) JP2008084939A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104966984A (zh) * 2015-06-29 2015-10-07 中国科学院半导体研究所 锁模光子晶体半导体激光直接倍频产生短波长激光装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104966984A (zh) * 2015-06-29 2015-10-07 中国科学院半导体研究所 锁模光子晶体半导体激光直接倍频产生短波长激光装置

Similar Documents

Publication Publication Date Title
JP5518927B2 (ja) 発光ダイオード
TWI446012B (zh) 具降低斑點之寬頻雷射燈
US7813402B2 (en) Surface emitting laser and method of manufacturing the same
JP4921038B2 (ja) 共振器及びこれを用いた発光素子
JP2007155820A (ja) 蛍光ファイバを用いた白色発光装置
JP2009038063A (ja) 面発光レーザの製造方法
JP2008060132A (ja) 半導体発光素子およびその製造方法
JP2006190976A (ja) 複数の量子ウェルを有する外部共振器型の面発光レーザー素子
JP2007073945A (ja) 面発光レーザ、該面発光レーザにおける二次元フォトニック結晶の製造方法
US8513036B2 (en) Photonic quantum ring laser and fabrication method thereof
JPWO2018168430A1 (ja) 半導体レーザ装置、半導体レーザモジュール及び溶接用レーザ光源システム
JP2010245178A (ja) 面発光レーザ
JP2008177578A (ja) 半導体光素子及びその製造方法
JP2007157764A (ja) 蛍光ファイバを用いた多波長レーザ光源
JP2001085793A (ja) 半導体レーザ装置
JP2007250788A (ja) 側面発光半導体素子及び側面発光半導体素子の製造方法
JP2001251019A (ja) 高出力半導体レーザ素子
JP2008084939A (ja) 窒化物半導体レーザー素子
JP2010507920A (ja) 共添加された利得媒質を備えた光励起ソリッド・ステート・レーザ
JP2006303052A (ja) 半導体レーザ装置及び半導体レーザ装置の製造方法
JP2005166881A (ja) 窒化物半導体レーザ素子
JP2006253235A (ja) レーザダイオードチップ、レーザダイオード及びレーザダイオードチップの製造方法
JP2004014818A (ja) 半導体レーザ素子
JP2009218489A (ja) フォトニック結晶発光素子及び発光装置
JP2009272394A (ja) 3次元フォトニック結晶を用いた発光素子