JP2008078346A - Manufacturing method and manufacturing apparatus for laminated core - Google Patents

Manufacturing method and manufacturing apparatus for laminated core Download PDF

Info

Publication number
JP2008078346A
JP2008078346A JP2006255235A JP2006255235A JP2008078346A JP 2008078346 A JP2008078346 A JP 2008078346A JP 2006255235 A JP2006255235 A JP 2006255235A JP 2006255235 A JP2006255235 A JP 2006255235A JP 2008078346 A JP2008078346 A JP 2008078346A
Authority
JP
Japan
Prior art keywords
resin
magnetic plate
thread
core
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006255235A
Other languages
Japanese (ja)
Other versions
JP4870505B2 (en
Inventor
Hitoshi Ota
斉 太田
Nobuaki Miyake
展明 三宅
Yuji Nakahara
裕治 中原
Yukiyasu Karata
行庸 唐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006255235A priority Critical patent/JP4870505B2/en
Publication of JP2008078346A publication Critical patent/JP2008078346A/en
Application granted granted Critical
Publication of JP4870505B2 publication Critical patent/JP4870505B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method and a manufacturing apparatus for laminated core that dispense with caulking, when laminating a core member, absorb accumulation errors due to the deviation in the thickness of the core member, and that can attain high-accuracy shape. <P>SOLUTION: A string-like thermoplastic resin 2, delivered from a resin roll 20, is arranged on a magnetic plate 1 delivered from a flat roll 10; the magnetic plate 1, where the string-like thermoplastic resin 2 is arranged is punched and laminated into a plurality of core members by an upper die 5 and a lower die 6; and the laminated core members are bonded by the heating of a heating element, or the like that is installed in the lower die 4. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、モータ、発電機、トランス等に使用される磁性板材を積層した積層コアの製造方法および製造装置に関するものである。   The present invention relates to a method and apparatus for manufacturing a laminated core in which magnetic plate materials used for motors, generators, transformers, and the like are laminated.

従来の積層コアの製造方法では、打抜き時にコア部材をかしめて積層する。すなわち、打抜くコア部材の板厚方向に例えば表側に凸部を、裏側に凹部を形成して、連続的に打抜いて積層することにより、凹凸部が圧入されてコア部材同士が固定される(例えば、特許文献1参照)。   In a conventional method for manufacturing a laminated core, the core member is caulked and laminated at the time of punching. That is, by forming, for example, a convex portion on the front side and a concave portion on the back side in the thickness direction of the core member to be punched, the concave and convex portions are press-fitted and the core members are fixed to each other by stacking. (For example, refer to Patent Document 1).

また、コア部材に絶縁性の接着剤を塗布して積層する方法が示されており、接着剤としてワニスを塗布したり、積層したコア部材を接着剤に浸漬することによって、コア部材同士を接着している(例えば、特許文献2参照)。   In addition, a method is shown in which an insulating adhesive is applied to the core member and laminated, and the core members are bonded together by applying varnish as an adhesive or immersing the laminated core member in the adhesive. (For example, refer to Patent Document 2).

特開平6−165447([0007]〜[0009]、図5)JP-A-6-165447 ([0007] to [0009], FIG. 5) 特開2003−324869([0017]、[0018]、図1)JP 2003-324869 ([0017], [0018], FIG. 1)

従来から積層コアの製造方法として用いられているコア部材をかしめる方法では、コア部材に凹凸を設ける必要があるが、積層するコア部材間で凹凸部の位置精度を確保するために、多数のプレス工程が必要となる。このため、金型が大きくなって、プレス機械そのものが大きくなり、複数個の金型が必要となって、設備が高価になる問題がある。   In a method of caulking a core member that has been conventionally used as a method for manufacturing a laminated core, it is necessary to provide irregularities on the core member. However, in order to ensure the positional accuracy of the irregularities between the laminated core members, A pressing process is required. For this reason, there exists a problem that a metal mold | die becomes large, a press machine itself becomes large, a some metal mold | die is needed, and an installation becomes expensive.

また、薄いコア部材に凹凸部を形成したり、かしめたりすることによって、コア部材に加工歪が生じて、磁気特性を劣化させるなどの問題があった。製品が小さくなるとかしめによる加工歪が磁気特性に与える影響は大きくなり、小型化が困難になる問題があった。   In addition, there is a problem in that, by forming an uneven portion on a thin core member or caulking, processing distortion occurs in the core member and the magnetic characteristics are deteriorated. As the product becomes smaller, the influence of the processing strain due to caulking on the magnetic characteristics becomes larger, which makes it difficult to reduce the size.

また、磁気特性を向上させるために薄いコア部材を積層することにより渦電流を抑制する方法があるが、板厚が薄くなると凹凸の形成が困難になるなどの問題があった。   In addition, there is a method of suppressing eddy current by laminating a thin core member in order to improve magnetic characteristics, but there is a problem that it becomes difficult to form unevenness when the plate thickness is reduced.

かしめ部は圧入によって固定されているだけであるため、積層する全てのコア部材が完全に固定されているわけではく、凹凸間にすき間が発生している箇所もある。このため、使用時にコア部材同士が相対的に滑り、騒音を発生するなどの問題があった。   Since the caulking portion is only fixed by press fitting, not all the core members to be laminated are completely fixed, and there is a portion where a gap is generated between the irregularities. For this reason, there was a problem that the core members slip relative to each other during use and generate noise.

加工歪による磁気特性の劣化を抑制する方法として、コア部材を接着剤で固定する方法があるが、接着剤の塗布厚さがばらつくために、寸法精度が劣化するなどの問題がある。   As a method for suppressing the deterioration of magnetic characteristics due to processing strain, there is a method of fixing the core member with an adhesive, but there is a problem that the dimensional accuracy is deteriorated because the coating thickness of the adhesive varies.

また、積層したコア部材を接着剤に浸漬したり、打抜いたコア部材間のすき間に接着剤を浸透させる方法もあるが、大気中で接着剤をすき間に浸透させることは困難であり、ワニスなどは、真空中で含浸させることが多い。   There are also methods to immerse the laminated core member in the adhesive or to infiltrate the adhesive between the punched core members, but it is difficult to allow the adhesive to penetrate into the air in the atmosphere. Are often impregnated in a vacuum.

また、接着剤を用いると、積層したコア部材間で接着剤が漏れることがあり、はみ出した接着剤を除去する工程が必要になるなど、製造コストが高くなるなどの問題があった。   In addition, when an adhesive is used, the adhesive may leak between the laminated core members, and there is a problem that the manufacturing cost becomes high, such as a step of removing the protruding adhesive.

この発明は上記のような従来の課題を解消するためになされたものであり、コア部材を積層する際のかしめが不要となり、コア部材の厚み偏差による累積誤差を吸収し高精度な形状を有する積層コアの製造方法及び製造装置を提供する。   The present invention has been made in order to solve the above-described conventional problems, and does not require caulking when the core members are laminated, and has a highly accurate shape that absorbs accumulated errors due to thickness deviation of the core members. A method and apparatus for manufacturing a laminated core are provided.

この発明による積層コアの製造方法は、磁性板材上に熱可塑性樹脂を配置して、磁性板材を複数個のコア部材に打ち抜き積層する工程と、積層したコア部材同士を熱可塑性樹脂により固着する工程からなる。   The method for producing a laminated core according to the present invention includes a step of arranging a thermoplastic resin on a magnetic plate material, stamping and laminating the magnetic plate material on a plurality of core members, and a step of fixing the laminated core members to each other with a thermoplastic resin. Consists of.

特に、熱可塑性樹脂は糸状樹脂であって、糸状樹脂がコア部材の全面ではなく部分的に配置されることを特徴とする。   In particular, the thermoplastic resin is a thread-shaped resin, and the thread-shaped resin is partially arranged rather than the entire surface of the core member.

この発明に係る積層コアの製造方法によれば、熱可塑性樹脂によりコア部材が固着されるので、かしめが不要となり、型代を安くして安価に積層コアを製造することができる。   According to the method for manufacturing a laminated core according to the present invention, since the core member is fixed by the thermoplastic resin, caulking is not required, and the laminated core can be produced at low cost by reducing the mold cost.

また、かしめが不要となるため、コア部材に発生する加工歪を低減でき、磁気特性が良好な積層コアを得ることができる。   Further, since caulking is not necessary, it is possible to reduce processing strain generated in the core member and obtain a laminated core having good magnetic properties.

また、コア部材を熱可塑性樹脂で固着することによって、接着強度が向上してコア部材同士が相対的に滑ることがなく、コイルの巻線時に外力が作用しても形状が崩れ難く、精度が高い積層コアを得ることができる。   In addition, by fixing the core member with a thermoplastic resin, the adhesive strength is improved and the core members do not slide relative to each other, and even if an external force is applied during winding of the coil, the shape is not easily collapsed, and the accuracy is high. A high laminated core can be obtained.

さらに、積層コアを分解するときには、加熱することにより、熱可塑性樹脂は再度溶融されてコア部材が分解され、リサイクルコストを低減することができる。   Furthermore, when the laminated core is disassembled, by heating, the thermoplastic resin is melted again, the core member is disassembled, and the recycling cost can be reduced.

特に、各コア部材の全面ではなく部分的に配置された熱可塑性樹脂が溶融することにより各コア部材が固着されるので、加熱された熱可塑性樹脂はコア部材間に薄く形成され、渦電流損の低減によって鉄損が減り、コア部材の厚み偏差による累積誤差を吸収し高精度な形状を得ることができる。このため、積層コアから発するうなり音等の騒音を低減することができ、エネルギー変換効率が高く電磁騒音や振動の少ないモータ等を得ることができる。   In particular, since each core member is fixed by melting the thermoplastic resin that is partially arranged rather than the entire surface of each core member, the heated thermoplastic resin is thinly formed between the core members, and the eddy current loss is reduced. By reducing the iron loss, the accumulated error due to the thickness deviation of the core member can be absorbed and a highly accurate shape can be obtained. For this reason, it is possible to reduce noises such as a beat sound emitted from the laminated core, and to obtain a motor having high energy conversion efficiency and less electromagnetic noise and vibration.

実施の形態1.
図1はこの発明の実施の形態1による積層コアの製造装置及び製造方法を示す要部断面図である。厚みが1mm以下の鉄板や電磁鋼板等の磁性板材1を巻いた板材ロール10から磁性板材1を送り出すと共に、同じくロール状に巻かれた一対の熱可塑性樹脂の樹脂ロール20を型機構(上型3、下型4)の近傍に配置し、この樹脂ロール20から直径約200μmの糸状樹脂2を送り出して磁性板材1上に配置する。そして、磁性板材1と糸状樹脂2は上型3と下型4の間に搬送され、上型3及び下型4で打抜かれる。このようにして、順次、磁性板材1の搬送と型による打抜きを繰り返して、糸状樹脂2が配置された磁性板材1が積層される。図2(a)は、この場合の磁性板材1の打抜きの様子を示した斜視図である。図2(a)の例では、磁性板材1は、ヨーク部1aと、ヨーク部1aから突出したティース部1bと、ティース部1bの先端に位置するティース先端部1cから成る略T字形状のコア部材1Aに打ち抜かれる。また、熱可塑性の糸状樹脂2としては、ナイロン、塩化ビニル、ポリプロピレン、ポリスチレン、ポリエチレンなどの熱可塑性の材料を使用することができる。
Embodiment 1 FIG.
1 is a cross-sectional view of a principal part showing a laminated core manufacturing apparatus and manufacturing method according to Embodiment 1 of the present invention. The magnetic plate material 1 is fed out from a plate material roll 10 around which a magnetic plate material 1 such as an iron plate or an electromagnetic steel plate having a thickness of 1 mm or less is wound, and a pair of thermoplastic resin rolls 20 that are also wound in a roll shape are used as a mold mechanism (upper die). 3. Arranged in the vicinity of the lower mold 4), the thread-like resin 2 having a diameter of about 200 μm is fed from the resin roll 20 and arranged on the magnetic plate material 1. Then, the magnetic plate material 1 and the thread-like resin 2 are conveyed between the upper die 3 and the lower die 4 and are punched by the upper die 3 and the lower die 4. In this manner, the magnetic plate material 1 on which the thread-like resin 2 is arranged is laminated by sequentially repeating the conveyance of the magnetic plate material 1 and punching with a mold. FIG. 2A is a perspective view showing how the magnetic plate 1 is punched in this case. In the example of FIG. 2A, the magnetic plate 1 has a substantially T-shaped core comprising a yoke part 1a, a tooth part 1b protruding from the yoke part 1a, and a tooth tip part 1c located at the tip of the tooth part 1b. Punched into member 1A. Moreover, as the thermoplastic thread-like resin 2, thermoplastic materials such as nylon, vinyl chloride, polypropylene, polystyrene, and polyethylene can be used.

上記の様に、打抜いて積層された磁性板材1と糸状樹脂2は、例えば、図3(a)に示すように、位置決めピン5aを備えた位置決め治具5上に配置して、図3(b)に示すように、押圧治具6により積層された磁性板材1を押付けて加圧し、この状態で加熱炉に所定の時間放置することにより糸状樹脂2を溶融する。そして、加熱炉から磁性板材1と位置決め治具5を取り出して冷却し、積層された磁性板材1は糸状樹脂2で固着される。図2(b)は、積層された磁性板材1が糸状樹脂2で固着されて積層コア100を製作したときの様子を示した斜視図である。   As described above, the punched and laminated magnetic plate material 1 and the thread-like resin 2 are arranged on a positioning jig 5 provided with positioning pins 5a as shown in FIG. As shown in (b), the magnetic plate material 1 laminated by the pressing jig 6 is pressed and pressurized, and in this state, the filamentous resin 2 is melted by being left in a heating furnace for a predetermined time. Then, the magnetic plate material 1 and the positioning jig 5 are taken out from the heating furnace and cooled, and the laminated magnetic plate material 1 is fixed by the thread-like resin 2. FIG. 2B is a perspective view showing a state in which the laminated core 100 is manufactured by fixing the laminated magnetic plate materials 1 with the thread-like resin 2.

図3に示した例では、積層された磁性板材1を加熱炉に放置して固着しているが、図4(a)に示すように、位置決め治具5にヒータ7を配置して加熱しても良い。また、加熱の方法は、誘導加熱、レーザ照射などの方法もある。また、図4(b)に示すように、超音波振動子8を押圧治具6に備え付けて、磁性板材1を超音波振動させることによって、糸状樹脂2を溶融して磁性板材1を固着することもできる。図4(b)に示した例では、押圧治具6に超音波振動子8を取付けているが、位置決め治具5に取付けても良く、糸状樹脂2を溶融して磁性板材1を固着することができる。   In the example shown in FIG. 3, the laminated magnetic plate 1 is left and fixed in a heating furnace. However, as shown in FIG. May be. In addition, there are heating methods such as induction heating and laser irradiation. Further, as shown in FIG. 4B, the ultrasonic vibrator 8 is provided in the pressing jig 6 and the magnetic plate material 1 is ultrasonically vibrated, thereby melting the filamentous resin 2 and fixing the magnetic plate material 1. You can also. In the example shown in FIG. 4B, the ultrasonic vibrator 8 is attached to the pressing jig 6. However, it may be attached to the positioning jig 5, and the magnetic resin 1 is fixed by melting the filamentous resin 2. be able to.

また、図1に示した例では、ロール状の糸状樹脂2は一対しか配置されていないが、図5に示すように、ロール状の糸状樹脂2を3個以上の複数個設置して、糸状樹脂2を複数本磁性板材1上に配置することにより、磁性板材1同士の接着強度を高くして、信頼性を向上することができる。また、糸状樹脂2を1本だけ配置するようにしても良い。   Further, in the example shown in FIG. 1, only one pair of roll-shaped thread-like resins 2 is arranged. However, as shown in FIG. By disposing a plurality of resins 2 on the magnetic plate material 1, the adhesive strength between the magnetic plate materials 1 can be increased and the reliability can be improved. Further, only one thread-like resin 2 may be arranged.

次に、本実施の形態において、糸状樹脂2を磁性板材1間の全面でなく部分的に配置することにより、磁性板材1の板厚偏差を吸収して積層コア全面にわたり一定の積層高さを得る効果について説明する。図6に示すように、糸状樹脂2を磁性板材1の全面でなく部分的に配置(図6の例では2列に配置)して、上下の磁性部材1−1と1−4が平行状態を保つように加圧する。このとき、板厚偏差を有する磁性板材(図6では板材1−3)が存在しても、糸状樹脂2が図示の様に樹脂厚さが薄い部分と厚い部分に分かれて、上記板厚偏差を吸収するように溶融することにより、磁性板材1(コア部材1A)の全面において積層コア100の高さは所定の積層高さHに保たれる。   Next, in the present embodiment, by disposing the filamentous resin 2 partially rather than between the magnetic plates 1, the thickness deviation of the magnetic plate 1 is absorbed and a constant laminated height is obtained over the entire laminated core. The effect to be obtained will be described. As shown in FIG. 6, the filamentous resin 2 is partially arranged on the magnetic plate 1 rather than the entire surface (in two rows in the example of FIG. 6), and the upper and lower magnetic members 1-1 and 1-4 are in a parallel state. Pressurize to maintain. At this time, even if a magnetic plate material having a plate thickness deviation (plate plate 1-3 in FIG. 6) exists, the thread-like resin 2 is divided into a thin resin portion and a thick portion as shown in the figure, and the above plate thickness deviation. By melting so as to absorb, the height of the laminated core 100 is maintained at a predetermined laminated height H over the entire surface of the magnetic plate 1 (core member 1A).

ここで、磁性板材1上への糸状樹脂2の好適な配置について考察する。図7には、磁性板材1を打ち抜いたコア部材1Aに、2本の熱可塑性の糸状樹脂2を配置した例を示す。熱可塑性樹脂の面積をそれぞれS1、S2とし、その図心をG1、G2とする。コア部材1Aの図心Oから各熱可塑性樹脂の図心G1、G2までの距離をr1、r2、熱可塑性樹脂の密度をρ、図心Oを通る主軸(図7において図心Oを通る紙面と垂直な軸)と図心G1、G2の成す角θ1、θ2とすると、主軸方向の熱可塑性樹脂のモーメントの和がほぼ零になること、すなわち、ρ・r1・S1・sinθ1+ρ・r2・S2・sinθ2=0を満たすと、熱可塑性樹脂の配置バランスがより良くなり、より一層、磁性板材1の板厚偏差を吸収して積層コア全面にわたり一定の積層高さを得ることができる。   Here, a suitable arrangement of the thread-like resin 2 on the magnetic plate material 1 will be considered. FIG. 7 shows an example in which two thermoplastic thread-like resins 2 are arranged on the core member 1A from which the magnetic plate material 1 is punched. The areas of the thermoplastic resin are S1 and S2, respectively, and the centroids are G1 and G2. The distances from the centroid O of the core member 1A to the centroids G1 and G2 of the thermoplastic resins are r1 and r2, the density of the thermoplastic resin is ρ, and the main axis passes through the centroid O (the paper plane passing through the centroid O in FIG. 7). ) And the centroids G1 and G2, the sum of the moments of the thermoplastic resin in the principal axis direction is almost zero, that is, ρ · r1 · S1 · sinθ1 + ρ · r2 · S2. When satisfying sin θ2 = 0, the arrangement balance of the thermoplastic resin is improved, and the plate thickness deviation of the magnetic plate 1 can be further absorbed to obtain a constant stacking height over the entire surface of the stacked core.

ここで、上記式を一般化すると、熱可塑性樹脂の面積をS1、S2、・・・、Sn、その図心をG1、G2、・・・、Gnとする。コア部材1Aの図心Oから各熱可塑性樹脂の図心G1、G2、・・・、Gnまでの距離をr1、r2、・・・、rn、熱可塑性樹脂の密度をρ、図心Oを通る主軸と図心G1、G2、・・・、Gnの成す角θ1、θ2、・・・、θnとするとき、主軸方向の熱可塑性樹脂のモーメントの和がほぼ零になること、すなわち下記の式(1)を満たすと、熱可塑性樹脂の配置バランスがより良くなる。   Here, when the above equation is generalized, the area of the thermoplastic resin is S1, S2,..., Sn, and the centroids are G1, G2,. The distance from the centroid O of the core member 1A to the centroids G1, G2,..., Gn of each thermoplastic resin is r1, r2,..., Rn, the density of the thermoplastic resin is ρ, and the centroid O is When the angles θ1, θ2,..., Θn formed by the main axis passing through and the centroids G1, G2,..., Gn are substantially zero, the sum of the moments of the thermoplastic resin in the main axis direction is substantially zero. When Expression (1) is satisfied, the arrangement balance of the thermoplastic resin is improved.

Figure 2008078346
Figure 2008078346

また、本実施の形態によれば、熱可塑性の糸状樹脂2により磁性板材1を接着することにより、かしめが不要となり、磁性板材1を打抜くための型代を安くして安価に積層コアを製造することができる。従来のかしめにより結合した積層コアでは、凹凸部の圧入部で全ての磁性板材1が固定される訳ではなく、磁性板材1の寸法誤差に起因して部分的に凹凸部ですき間が発生することもある。しかし、本実施の形態では、熱可塑性の糸状樹脂2で磁性板材1を固着することにより、磁性板材1間にずれがなく、寸法精度が良好な積層コアを得ることができる。   In addition, according to the present embodiment, by bonding the magnetic plate material 1 with the thermoplastic thread-like resin 2, caulking is unnecessary, and the die cost for punching the magnetic plate material 1 is reduced, and the laminated core can be manufactured at low cost. Can be manufactured. In the conventional laminated core bonded by caulking, not all the magnetic plate 1 is fixed at the press-fitting portion of the uneven portion, and a gap is partially generated at the uneven portion due to the dimensional error of the magnetic plate 1. There is also. However, in the present embodiment, by fixing the magnetic plate 1 with the thermoplastic thread-like resin 2, there can be obtained a laminated core with good dimensional accuracy without deviation between the magnetic plates 1.

また、磁性板材1をかしめた場合には、磁性板材1が反ったりなどして、磁性板材1間のすき間が不均一になって、渦電流損失が増加したり、寸法精度が劣化することがあったが、部分的に磁性板材1を接着することによって、薄く均一なすき間が形成され、寸法精度が良好な積層コアを得ることができる。   In addition, when the magnetic plate 1 is caulked, the magnetic plate 1 is warped, the gaps between the magnetic plates 1 become non-uniform, eddy current loss increases, and dimensional accuracy deteriorates. However, when the magnetic plate material 1 is partially bonded, a thin and uniform gap is formed, and a laminated core with good dimensional accuracy can be obtained.

また、積層コア100を廃却するときには、加熱することにより、糸状樹脂2は再度溶融されて積層コア100を分解することが可能であり、リサイクルコストを低減することができる。   Further, when the laminated core 100 is discarded, by heating, the filamentous resin 2 can be melted again and the laminated core 100 can be decomposed, and the recycling cost can be reduced.

また、本実施の形態によれば、糸状樹脂2の配置、磁性板材1の打抜き、積層、固着をほぼ同時に行うことができるため、製造に費やす時間を短縮でき、安価に性能が良好な積層コアを得ることができる。   In addition, according to the present embodiment, the arrangement of the thread-like resin 2 and the punching, lamination, and fixing of the magnetic plate material 1 can be performed almost simultaneously, so the time spent for manufacturing can be shortened, and the laminated core with good performance at low cost. Can be obtained.

磁性板材に接着剤を塗布する場合には、接着剤が漏れるために、接着剤の塗布と磁性板材の打抜き、積層をほぼ同時に行うと、漏れた接着剤が型に付着して積層コアの精度が劣化したり、メインテナンスに時間を要することがあるが、本実施の形態のように、糸状樹脂2を接着剤として用いることにより、型に樹脂が付着することがなく、安価に積層コアを製造することができる。   When applying an adhesive to a magnetic plate, the adhesive leaks, so if the adhesive is applied, the magnetic plate is punched out, and laminated almost simultaneously, the leaked adhesive will adhere to the mold and the accuracy of the laminated core May deteriorate or maintenance may take time, but as in this embodiment, by using the filamentous resin 2 as an adhesive, the resin does not adhere to the mold, and the laminated core can be manufactured at low cost. can do.

実施の形態2.
実施の形態1では、糸状樹脂2をロール状にして、樹脂ロール20を回転させながら磁性板材1上に配置しているが、図8に示すように、糸状樹脂2をシャトル12に設置してシャトル12をガイド13に沿って往復動させ、磁性板材1に配置することができる。例えば、図8(b)に示すように、ガイド13にシャトル12の両サイドを支持する穴形状を形成してシャトル12を挿入し、エアーで飛ばすなどの方法で、シャトル12を往復動させることができる。
Embodiment 2. FIG.
In the first embodiment, the thread-like resin 2 is made into a roll shape and is arranged on the magnetic plate 1 while rotating the resin roll 20. However, as shown in FIG. 8, the thread-like resin 2 is installed on the shuttle 12. The shuttle 12 can be reciprocated along the guide 13 and disposed on the magnetic plate 1. For example, as shown in FIG. 8B, the shuttle 12 is reciprocated by a method of forming a hole shape that supports both sides of the shuttle 12 in the guide 13 and inserting the shuttle 12 and flying with air. Can do.

図8に示した例では、ガイド13を磁性板材1の搬送方向と同じ向きに配置して、シャトル12が磁性板材1の搬送方向に往復動するようにしたが、図9(a)に示すように、ガイド13を磁性板材1の搬送方向に直角あるいは傾きを設けて配置することにより、図9(b)に示すように、糸状樹脂2は磁性板材1に対して斜めに配置される。糸状樹脂2を斜めに配置することにより、樹脂糸1本当りの接着面積が増え、磁性板材1の接着力を大きくして、信頼性を向上することができる。   In the example shown in FIG. 8, the guide 13 is arranged in the same direction as the conveyance direction of the magnetic plate material 1 so that the shuttle 12 reciprocates in the conveyance direction of the magnetic plate material 1. In this way, by arranging the guide 13 with a right angle or an inclination in the conveying direction of the magnetic plate 1, the filamentous resin 2 is arranged obliquely with respect to the magnetic plate 1 as shown in FIG. By disposing the thread-like resin 2 diagonally, the adhesion area per resin thread is increased, the adhesive force of the magnetic plate material 1 is increased, and the reliability can be improved.

本実施の形態によれば、糸状樹脂2を設置したシャトル12を往復動させることにより、短時間で磁性板材1上に熱可塑性樹脂を配置することができる。また、シャトル12の往復動の速度を調整することによって、磁性板材1上に配置する熱可塑性樹脂の量を自在に調整できるため、製造コストを低減することができる。   According to the present embodiment, the thermoplastic resin can be arranged on the magnetic plate 1 in a short time by reciprocating the shuttle 12 on which the thread-like resin 2 is installed. Moreover, since the amount of the thermoplastic resin arranged on the magnetic plate 1 can be freely adjusted by adjusting the reciprocating speed of the shuttle 12, the manufacturing cost can be reduced.

また、シャトル12は、図10に示すように、下型4内に設置することも可能である。下型4内に挿入穴13aを設けて、この挿入穴13aの中にシャトル12を配置する。シャトル12を下型4の中で往復させることにより、設備をコンパクトにできる効果がある。   The shuttle 12 can also be installed in the lower mold 4 as shown in FIG. An insertion hole 13a is provided in the lower mold 4 and the shuttle 12 is disposed in the insertion hole 13a. By reciprocating the shuttle 12 in the lower mold 4, there is an effect that the equipment can be made compact.

糸状樹脂2の磁性板材1への他の配置法としては、図11に示す方法がある。樹脂ロール20からの糸状樹脂2をノズル14に通し、ノズル14を型3,4の近傍に設置して、樹脂ロール20を回転させることにより、糸状樹脂2を磁性板材1上に配置することができる。ノズル14を用いて糸状樹脂2を送ることにより、糸状樹脂2の本数が増えても、糸状樹脂2の間隔がずれないようにして、精度良く磁性板材1上に糸状樹脂2を配置することができ、磁性板材1の接着力が向上し、機器の信頼性を向上することができる。   As another arrangement method of the filamentous resin 2 on the magnetic plate material 1, there is a method shown in FIG. The thread-like resin 2 from the resin roll 20 is passed through the nozzle 14, the nozzle 14 is placed in the vicinity of the molds 3 and 4, and the resin roll 20 is rotated, whereby the thread-like resin 2 can be arranged on the magnetic plate 1. it can. By feeding the filamentous resin 2 using the nozzle 14, even if the number of filamentous resins 2 increases, the filamentous resin 2 can be arranged on the magnetic plate 1 with high accuracy so that the interval between the filamentous resins 2 does not shift. It is possible to improve the adhesion of the magnetic plate 1 and improve the reliability of the device.

図11に示した方法では、糸状樹脂2が切れたり糸状樹脂2の交換等のメインテナンスのために、糸状樹脂2をノズル14に通す作業に時間を要することがある。このような問題を回避する方法として、糸状樹脂2をエアーで送ることも可能である。図12に示すように、エアー源15からエアー供給管16を通して、ノズル14にエアーを供給する。エアーで糸状樹脂2を飛ばすことによって、糸切れが発生しても、ノズル14の入り口に糸状樹脂2を持っていくだけで、負圧により糸状樹脂2を通すことができ、装置の停止時間や段取り時間を短縮することができる。また、細い糸状樹脂2であっても簡単に糸状樹脂2をノズル14に挿入することができる。   In the method shown in FIG. 11, it may take time to pass the thread-like resin 2 through the nozzle 14 for maintenance such as the breakage of the thread-like resin 2 or replacement of the thread-like resin 2. As a method of avoiding such a problem, it is also possible to send the filamentous resin 2 by air. As shown in FIG. 12, air is supplied from the air source 15 to the nozzle 14 through the air supply pipe 16. Even if thread breakage occurs by blowing the filamentous resin 2 with air, the filamentous resin 2 can be passed by negative pressure just by bringing the filamentous resin 2 to the inlet of the nozzle 14, and the stop time and setup of the device Time can be shortened. Further, even if the thin thread-like resin 2 is used, the thread-like resin 2 can be easily inserted into the nozzle 14.

また、ノズル14は、図13に示すように、下型4内に簡単に埋設することができ、装置をコンパクトにできる効果がある。   Further, as shown in FIG. 13, the nozzle 14 can be easily embedded in the lower mold 4, and there is an effect that the apparatus can be made compact.

エアーを使わずに、糸状樹脂2を搬送する方法としては、例えば図14に示す方法もある。ノズルを振動型ノズル17とし、振動型ノズル17を超音波振動させて糸状樹脂2を送ることができる。振動型ノズル17としては、図14(b)に示すように、積層型の圧電素子で形成することができる。このように、超音波で糸状樹脂2を送ることにより、細い糸であっても簡単にノズルに通すことができ、圧電素子を用いることにより、糸を送るための消費電力を節約することもできる。   As a method for conveying the filamentous resin 2 without using air, for example, there is a method shown in FIG. As the nozzle, the vibrating nozzle 17 is used, and the vibrating nozzle 17 can be ultrasonically vibrated to feed the filamentous resin 2. As the vibration type nozzle 17, as shown in FIG. 14B, it can be formed of a laminated piezoelectric element. As described above, by sending the filamentous resin 2 with ultrasonic waves, even a thin thread can be easily passed through the nozzle, and by using the piezoelectric element, power consumption for feeding the thread can be saved. .

実施の形態3.
上記実施の形態では、糸状樹脂2をそのまま磁性板材1上に配置する製造方法について述べたが、図15に示すように、糸状樹脂2を細かく刻んだ粉状の糸状樹脂18を混入容器17に入れ、エアー源20から供給されるエアーにより粉状の糸状樹脂18を飛ばすことも可能である。
Embodiment 3 FIG.
In the above embodiment, the manufacturing method in which the thread-like resin 2 is arranged on the magnetic plate 1 as it is has been described. However, as shown in FIG. 15, the powder-like thread-like resin 18 obtained by finely chopping the thread-like resin 2 is added to the mixing container 17. It is also possible to blow the powdery resin 18 by air supplied from the air source 20.

下型4内に吹出し口4aを設けて、粉状の糸状樹脂18をエアーに乗せて吹出し口4aから磁性板材1上にふりかけて、磁性板材1を積層することにより、磁性板材1間に粉状の糸状樹脂18を配置することができる。図15に示す装置の構成により、糸切れが発生することもなく、安定に多量の積層コアを製造することができる。また、磁性板材1上に均一に糸状樹脂2を配置することができるので、接着強度が高く、信頼性が高い機器を得ることができる。   By providing the outlet 4a in the lower mold 4 and putting the powdery thread-shaped resin 18 on the air and sprinkling the air from the outlet 4a onto the magnetic plate 1 and laminating the magnetic plate 1, the powder between the magnetic plates 1 is obtained. A thread-like resin 18 can be disposed. With the configuration of the apparatus shown in FIG. 15, a large number of laminated cores can be manufactured stably without causing yarn breakage. Moreover, since the filamentous resin 2 can be uniformly disposed on the magnetic plate material 1, a device having high adhesive strength and high reliability can be obtained.

実施の形態4.
上記実施の形態では、糸状樹脂2が配置された磁性板材1を打抜き、磁性板材1を積層した後に加熱して糸状樹脂2を溶融し、磁性板材1同士を固着する手法について述べたが、例えば、図16に示すように、下型4内に加熱ヒータ26を埋設することにより、下型4を常時所定の温度に保っておいても良い。下型4に打抜かれた磁性板材1は、下型4からの伝熱によって加熱され、磁性板材1が打抜かれると同時に糸状樹脂2が溶融して磁性板材1を接着することができる。なお、加熱ヒータ26は、図16(b)に示すように、磁性板材1(コア部材1A)の周辺を囲むように埋設しておけば良い。
Embodiment 4 FIG.
In the above embodiment, the magnetic plate material 1 on which the thread-like resin 2 is arranged is punched out, and after laminating the magnetic plate material 1, the heating is performed to melt the thread-like resin 2, and the magnetic plate materials 1 are fixed to each other. As shown in FIG. 16, the lower die 4 may be kept at a predetermined temperature at all times by embedding a heater 26 in the lower die 4. The magnetic plate material 1 punched into the lower die 4 is heated by heat transfer from the lower die 4, and the magnetic plate material 1 is punched, and at the same time, the filamentous resin 2 is melted to bond the magnetic plate material 1. In addition, what is necessary is just to embed the heater 26 so that the circumference | surroundings of the magnetic board | plate material 1 (core member 1A) may be enclosed, as shown in FIG.16 (b).

このように、下型4に加熱体を設けることにより、打抜きと同時に磁性板材1が糸状樹脂2で固着され、短時間で積層コアを製造することができ、安価な積層コアを得ることができる。   Thus, by providing the lower die 4 with a heating element, the magnetic plate 1 is fixed with the thread-like resin 2 at the same time as punching, and a laminated core can be manufactured in a short time, and an inexpensive laminated core can be obtained. .

また、上記の例では、下型4内に加熱ヒータ26を用いているが、加熱ヒータ26の代わりに、加熱用コイル27を図16と同じように埋設しておき、加熱用コイル27に通電することによって、下型4に渦電流を発生させて下型6を加熱しても良い。   In the above example, the heater 26 is used in the lower mold 4. However, instead of the heater 26, a heating coil 27 is embedded as in FIG. 16, and the heating coil 27 is energized. By doing so, an eddy current may be generated in the lower mold 4 to heat the lower mold 6.

図16に示した例では、加熱ヒータ26、加熱用コイル27などの加熱源を下型4に埋設する構成としたが、設備稼動までの起動時間が少々長くなっても良い場合には、図17に示すように、加熱ヒータ26、加熱用コイル27を下型4の下部に配置しておくだけでも同様の効果を得ることができる。この場合、下型4内に加熱体を設けなくても良いので下型4の製作費用を節約することができる。   In the example shown in FIG. 16, the heating source such as the heater 26 and the heating coil 27 is embedded in the lower mold 4. However, when the start-up time until the facility operation may be slightly longer, As shown in FIG. 17, the same effect can be obtained simply by disposing the heater 26 and the heating coil 27 below the lower mold 4. In this case, since it is not necessary to provide a heating body in the lower mold 4, the manufacturing cost of the lower mold 4 can be saved.

図16及び図17に示した例では、下型4に対して加熱体を設けているが、必ずしも下型4に加熱体を配置する必要はない。図18(a)に示すように、上型5に加熱ヒータ26や加熱用コイル27を埋設することができる。また、図18(b)に示すように、上型5の上部に加熱ヒータ26や加熱用コイル27を配置しても同様の効果を奏する。   In the example shown in FIGS. 16 and 17, the heating body is provided for the lower mold 4, but the heating body is not necessarily arranged on the lower mold 4. As shown in FIG. 18A, the heater 26 and the heating coil 27 can be embedded in the upper mold 5. Further, as shown in FIG. 18B, the same effect can be obtained even if the heater 26 and the heating coil 27 are arranged on the upper part of the upper mold 5.

さらに、図19に示すように、上型3と下型4の間にレーザ光発射器24のレーザ光を導入することにより、局所的に磁性板材1を加熱して、糸状樹脂2を溶融し、磁性板材1の打抜きと同時に磁性板材1を固着することが可能となる。レーザ光を用いることにより、非接触で短時間で加熱できるため、多量の積層コアを製造できる効果がある。また、磁性板材1を局所的に加熱するために熱可塑性樹脂が型に付着することがなく、型のメインテナンスコストを低減できる。   Further, as shown in FIG. 19, by introducing the laser beam from the laser beam emitter 24 between the upper mold 3 and the lower mold 4, the magnetic plate material 1 is locally heated to melt the filamentous resin 2. The magnetic plate 1 can be fixed simultaneously with the punching of the magnetic plate 1. By using laser light, heating can be performed in a short time without contact, and thus there is an effect that a large number of laminated cores can be manufactured. Further, since the magnetic plate 1 is locally heated, the thermoplastic resin does not adhere to the mold, and the mold maintenance cost can be reduced.

磁性板材1を局所的に加熱する方法としては、放電現象を利用することもできる。図20に示すように、コイル31を接続した1対の電極32に高電圧を印加することによって、電極32間にスパークを発生させる。電極32は磁性板材1が打抜かれるときには、型と干渉しないように、瞬時に移動させるようにしておく。上型3が上方に移動したときに、再度、電極32を上型3と下型4の間に移動させてスパークを発生させる動作を繰返す。このように、型で磁性板材1を打抜きながら、スパークを発生させて磁性板材1を局所的に加熱して糸状樹脂2を溶融し、磁性板材1を固着する。このように、磁性板材1を局所的に加熱するために熱可塑性樹脂が型に付着することがなく、型のメインテナンスコストを低減できる。また、レーザ光を用いる場合と比較して、設備費を節約することができ、安価に積層コアを製造することができる。   As a method of locally heating the magnetic plate 1, a discharge phenomenon can be used. As shown in FIG. 20, a spark is generated between the electrodes 32 by applying a high voltage to a pair of electrodes 32 connected to the coil 31. When the magnetic plate 1 is punched, the electrode 32 is moved instantaneously so as not to interfere with the mold. When the upper die 3 moves upward, the operation of moving the electrode 32 between the upper die 3 and the lower die 4 to generate a spark is repeated. Thus, while punching out the magnetic plate 1 with a mold, a spark is generated to locally heat the magnetic plate 1 to melt the filamentous resin 2 and fix the magnetic plate 1. As described above, since the magnetic plate material 1 is locally heated, the thermoplastic resin does not adhere to the mold, and the maintenance cost of the mold can be reduced. Moreover, compared with the case where a laser beam is used, an installation cost can be saved and a laminated core can be manufactured at low cost.

図20に示した例では、高電圧を印加してスパークを発生させているが、高圧電源の代わりに圧電素子を設置し、圧電素子に負荷を与えることによって、スパークを発生させても良い。   In the example shown in FIG. 20, a spark is generated by applying a high voltage. However, a spark may be generated by installing a piezoelectric element instead of a high-voltage power supply and applying a load to the piezoelectric element.

実施の形態5.
実施の形態4では、磁性板材1や型を加熱して糸状樹脂2を溶融する手法を示したが、超音波振動を利用して磁性板材1を固着することもできる。図21に示すように、下型4の下部に、圧子41、振動子42からなる内蔵型振動子43を配置して、打抜かれた磁性板材1を押付けるようにする。磁性板材1と糸状樹脂2を内蔵型振動子43で振動・摩擦させることにより、糸状樹脂2は磁性板材1に固着される。磁性板材1や型を加熱する必要がないため、付着した熱可塑性樹脂を除去するために必要となる型のメインテナンスや段取り時間を短くすることができる。
Embodiment 5. FIG.
In the fourth embodiment, the method of melting the filamentous resin 2 by heating the magnetic plate 1 or the mold is shown, but the magnetic plate 1 can be fixed using ultrasonic vibration. As shown in FIG. 21, a built-in type vibrator 43 including an indenter 41 and a vibrator 42 is arranged below the lower mold 4 so as to press the punched magnetic plate material 1. The filamentous resin 2 is fixed to the magnetic plate 1 by vibrating and rubbing the magnetic plate 1 and the filamentous resin 2 with the built-in vibrator 43. Since it is not necessary to heat the magnetic plate material 1 or the mold, it is possible to shorten the mold maintenance and setup time required to remove the attached thermoplastic resin.

また、図22に示すように、内蔵型振動子43を下型4の側面に配置して、磁性板材1を側面から振動させるようにしても良い。磁性板材1の下側でなくて側面に配置することによって、内蔵型振動子23を積層する磁性板材1の枚数の変化に応じて移動させる必要がなく、小型で安価な設備を得ることができ、製造コストを削減することができる。   Further, as shown in FIG. 22, the built-in vibrator 43 may be disposed on the side surface of the lower mold 4 to vibrate the magnetic plate 1 from the side surface. By arranging on the side instead of the lower side of the magnetic plate 1, there is no need to move the built-in vibrator 23 according to the change in the number of magnetic plates 1, and a small and inexpensive facility can be obtained. Manufacturing cost can be reduced.

この発明の実施の形態1による積層コアの製造装置及び製造方法を示す要部断面図である。It is principal part sectional drawing which shows the manufacturing apparatus and manufacturing method of the laminated core by Embodiment 1 of this invention. この発明の実施の形態1による磁性板材の打抜き及び積層の様子を示す斜視図である。It is a perspective view which shows the mode of the punching and lamination | stacking of the magnetic board | plate material by Embodiment 1 of this invention. この発明の実施の形態1による磁性板材の位置決めの様子を示す図である。It is a figure which shows the mode of the positioning of the magnetic board | plate material by Embodiment 1 of this invention. この発明の実施の形態1による積層された磁性板材の固着の様子を示す図である。It is a figure which shows the mode of the adhering of the laminated magnetic board material by Embodiment 1 of this invention. この発明の実施の形態1による他の例の積層コアの製造方法を示す図である。It is a figure which shows the manufacturing method of the laminated core of the other example by Embodiment 1 of this invention. この発明の実施の形態1による磁性板材の積層の状態を示す断面図である。It is sectional drawing which shows the state of lamination | stacking of the magnetic board | plate material by Embodiment 1 of this invention. この発明の実施の形態1による糸状樹脂の配置の様子を示す平面図である。It is a top view which shows the mode of arrangement | positioning of the filamentous resin by Embodiment 1 of this invention. この発明の実施の形態2による積層コアの製造装置及び製造方法を示す図である。It is a figure which shows the manufacturing apparatus and manufacturing method of the laminated core by Embodiment 2 of this invention. この発明の実施の形態2による積層コアの製造装置及び製造方法を示す図である。It is a figure which shows the manufacturing apparatus and manufacturing method of the laminated core by Embodiment 2 of this invention. この発明の実施の形態2による積層コアの製造装置及び製造方法を示す図である。It is a figure which shows the manufacturing apparatus and manufacturing method of the laminated core by Embodiment 2 of this invention. この発明の実施の形態2による積層コアの製造装置及び製造方法を示す図である。It is a figure which shows the manufacturing apparatus and manufacturing method of the laminated core by Embodiment 2 of this invention. この発明の実施の形態2による積層コアの製造装置及び製造方法を示す図である。It is a figure which shows the manufacturing apparatus and manufacturing method of the laminated core by Embodiment 2 of this invention. この発明の実施の形態2による積層コアの製造装置及び製造方法を示す図である。It is a figure which shows the manufacturing apparatus and manufacturing method of the laminated core by Embodiment 2 of this invention. この発明の実施の形態2による積層コアの製造装置及び製造方法を示す図である。It is a figure which shows the manufacturing apparatus and manufacturing method of the laminated core by Embodiment 2 of this invention. この発明の実施の形態3による積層コアの製造装置及び製造方法を示す図である。It is a figure which shows the manufacturing apparatus and manufacturing method of a laminated core by Embodiment 3 of this invention. この発明の実施の形態4による積層コアの製造装置及び製造方法を示す図である。It is a figure which shows the manufacturing apparatus and manufacturing method of a laminated core by Embodiment 4 of this invention. この発明の実施の形態4による積層コアの製造装置及び製造方法を示す図である。It is a figure which shows the manufacturing apparatus and manufacturing method of a laminated core by Embodiment 4 of this invention. この発明の実施の形態4による積層コアの製造装置及び製造方法を示す図である。It is a figure which shows the manufacturing apparatus and manufacturing method of a laminated core by Embodiment 4 of this invention. この発明の実施の形態4による積層コアの製造装置及び製造方法を示す図である。It is a figure which shows the manufacturing apparatus and manufacturing method of a laminated core by Embodiment 4 of this invention. この発明の実施の形態4による積層コアの製造装置及び製造方法を示す図である。It is a figure which shows the manufacturing apparatus and manufacturing method of a laminated core by Embodiment 4 of this invention. この発明の実施の形態5による積層コアの製造装置及び製造方法を示す図である。It is a figure which shows the manufacturing apparatus and manufacturing method of a laminated core by Embodiment 5 of this invention. この発明の実施の形態5による積層コアの製造装置及び製造方法を示す図である。It is a figure which shows the manufacturing apparatus and manufacturing method of a laminated core by Embodiment 5 of this invention.

符号の説明Explanation of symbols

1 磁性板材、1A コア部材、2 糸状樹脂、3 上型、4 下型、
5 位置決め治具、6 押圧治具、7 ヒータ、8 超音波振動子、10 樹脂ロール、12 シャトル、13 ガイド、14 ノズル、15 エアー源、16 エアー供給管、17 振動型ノズル、18 粉状の糸状樹脂、19 混入容器、20 エアー源、
26 加熱ヒータ、27 加熱用コイル、24 レーザ発射器、31 コイル、
32 電極、43 内蔵型振動子、100 積層コア。
1 magnetic plate material, 1A core member, 2 thread resin, 3 upper mold, 4 lower mold,
5 Positioning jig, 6 Pressing jig, 7 Heater, 8 Ultrasonic vibrator, 10 Resin roll, 12 Shuttle, 13 Guide, 14 Nozzle, 15 Air source, 16 Air supply pipe, 17 Vibrating nozzle, 18 Powdery Threaded resin, 19 mixed container, 20 air source,
26 heaters, 27 heating coils, 24 laser emitters, 31 coils,
32 electrodes, 43 built-in vibrator, 100 laminated core.

Claims (18)

磁性板材上に熱可塑性樹脂を配置して、上記磁性板材を複数個のコア部材に打ち抜き積層する工程と、上記積層したコア部材同士を上記熱可塑性樹脂により固着する工程からなる積層コアの製造方法。 A method for producing a laminated core comprising a step of arranging a thermoplastic resin on a magnetic plate material, punching and laminating the magnetic plate material on a plurality of core members, and a step of fixing the laminated core members together with the thermoplastic resin . 上記熱可塑性樹脂は糸状樹脂であって、上記糸状樹脂が上記コア部材の全面ではなく部分的に配置されることを特徴とする請求項1に記載の積層コアの製造方法。 The method for manufacturing a laminated core according to claim 1, wherein the thermoplastic resin is a thread-like resin, and the thread-like resin is partially arranged instead of the entire surface of the core member. 磁性板材上に熱可塑性樹脂を配置する機構と、上記熱可塑性樹脂を配置した上記磁性板材を複数個のコア部材に打ち抜き積層する上型及び下型からなる型機構からなる積層コアの製造装置。 An apparatus for manufacturing a laminated core comprising a mechanism for arranging a thermoplastic resin on a magnetic plate material, and a mold mechanism comprising an upper die and a lower die for punching and laminating the magnetic plate material having the thermoplastic resin arranged thereon to a plurality of core members. 上記熱可塑性樹脂は糸状樹脂であり、上記糸状樹脂が巻かれた樹脂ロールから上記磁性板材上に送り出されて上記磁性板材上に配置されることを特徴とする請求項3に記載の積層コアの製造装置。 4. The laminated core according to claim 3, wherein the thermoplastic resin is a thread-shaped resin, and is sent out from the resin roll around which the thread-shaped resin is wound onto the magnetic plate material and disposed on the magnetic plate material. Manufacturing equipment. 上記熱可塑性樹脂は糸状樹脂であり、上記糸状樹脂を配置したシャトルを往復動させることにより、上記磁性板材上に上記糸状樹脂を配置させることを特徴とする請求項3に記載の積層コアの製造装置。 4. The laminated core according to claim 3, wherein the thermoplastic resin is a thread resin, and the shuttle resin in which the thread resin is disposed is reciprocated to dispose the thread resin on the magnetic plate material. apparatus. 上記熱可塑性樹脂は糸状樹脂であり、上記糸状樹脂が巻かれた樹脂ロールからノズルに通され、上記ノズルを通して上記磁性板材上に上記糸状樹脂を配置させることを特徴とする請求項3に記載の積層コアの製造装置。 4. The thermoplastic resin according to claim 3, wherein the thermoplastic resin is a thread-like resin, is passed through a nozzle from a resin roll around which the thread-like resin is wound, and the thread-like resin is disposed on the magnetic plate through the nozzle. Laminate core manufacturing equipment. 上記ノズルに導入される空気流に乗せて上記糸状樹脂を飛ばし、上記ノズルを通して上記磁性板材上に上記糸状樹脂を配置させることを特徴とする請求項6に記載の積層コアの製造装置。 The apparatus for producing a laminated core according to claim 6, wherein the thread resin is blown on an air flow introduced into the nozzle, and the thread resin is disposed on the magnetic plate through the nozzle. 上記熱可塑性樹脂は糸状樹脂であり、上記糸状樹脂はノズルに導入され、上記ノズルを超音波振動させることにより上記磁性板材上に上記糸状樹脂を配置させることを特徴とする請求項3に記載の積層コアの製造装置。 4. The thermoplastic resin according to claim 3, wherein the thermoplastic resin is a thread-like resin, the thread-like resin is introduced into a nozzle, and the thread-like resin is arranged on the magnetic plate member by ultrasonically vibrating the nozzle. Laminate core manufacturing equipment. 上記ノズルは圧電性材料が積層されていることを特徴とする請求項8に記載の積層コアの製造装置。 9. The laminated core manufacturing apparatus according to claim 8, wherein the nozzle is laminated with a piezoelectric material. 上記シャトルまたは上記ノズルは、上記下型内に配設されることを特徴とする請求項5から請求項9のいずれか1項に記載の積層コアの製造装置。 The said shuttle or the said nozzle is arrange | positioned in the said lower mold | type, The manufacturing apparatus of the laminated core of any one of Claims 5-9 characterized by the above-mentioned. 上記熱可塑性樹脂は粉状の糸状樹脂であり、空気流に乗せて上記粉状の糸状樹脂を上記磁性板材に配置させることを特徴とする請求項3に記載の積層コアの製造装置。 The apparatus for producing a laminated core according to claim 3, wherein the thermoplastic resin is a powdery thread-like resin, and the powdery thread-like resin is placed on the magnetic plate member in an air stream. 磁性板材上に熱可塑性樹脂を配置して上記磁性板材を複数個のコア部材に打ち抜き積層すると同時に上記熱可塑性樹脂を溶着して上記磁性板材同士を固着する工程からなる積層コアの製造方法。 A method for producing a laminated core comprising a step of arranging a thermoplastic resin on a magnetic plate material, stamping and laminating the magnetic plate material on a plurality of core members, and simultaneously welding the thermoplastic resin to fix the magnetic plate materials together. 上記熱可塑性樹脂は糸状樹脂であって、上記糸状樹脂が上記コア部材の全面ではなく部分的に配置されることを特徴とする請求項12に記載の積層コアの製造方法。 The method for manufacturing a laminated core according to claim 12, wherein the thermoplastic resin is a thread-shaped resin, and the thread-shaped resin is partially disposed not on the entire surface of the core member. 磁性板材上に熱可塑性樹脂を配置する樹脂配置機構と、上記熱可塑性樹脂を配置した上記磁性板材を複数個のコア部材に打ち抜き積層すると同時に上記熱可塑性樹脂を溶着して上記磁性板材同士を固着する上型及び下型からなる型機構からなる積層コアの製造装置。 A resin arrangement mechanism that arranges a thermoplastic resin on a magnetic plate material, and the magnetic plate material on which the thermoplastic resin is arranged are punched and laminated on a plurality of core members, and at the same time, the thermoplastic resin is welded to fix the magnetic plate materials to each other. An apparatus for manufacturing a laminated core comprising a mold mechanism comprising an upper mold and a lower mold. 上記上型又は下型のいずれか一方に、複数個のコア部材に打ち抜き積層された上記磁性板材を加熱するための加熱体が配設されていることを特徴とする請求項14に記載の積層コアの製造装置。 The laminated body according to claim 14, wherein a heating body for heating the magnetic plate material punched and laminated on a plurality of core members is disposed on either the upper mold or the lower mold. Core manufacturing equipment. 複数個のコア部材に打ち抜き積層された直後にレーザ光を照射して加熱することにより、上記型機構内で上記熱可塑性樹脂を溶融し、上記磁性板材を固着することを特徴とする請求項14に記載の積層コアの製造装置。 15. The thermoplastic resin is melted and the magnetic plate material is fixed in the mold mechanism by irradiating and heating a laser beam immediately after being punched and laminated on a plurality of core members. The manufacturing apparatus of the lamination | stacking core of description. 複数個のコア部材に打ち抜き積層された直後に放電現象によるスパークを発生させることにより、上記型機構内で上記熱可塑性樹脂を溶融し、上記磁性板材を固着することを特徴とする請求項14に記載の積層コアの製造装置。 15. The method according to claim 14, wherein the thermoplastic resin is melted and the magnetic plate material is fixed in the mold mechanism by generating a spark due to a discharge phenomenon immediately after being punched and laminated on a plurality of core members. The manufacturing apparatus of the laminated core of description. 上記下型内に振動子を配設し、複数個のコア部材に打ち抜き積層された上記磁性板材を超音波振動させることにより、上記型機構内で上記磁性板材に固着することを特徴とする請求項14に記載の積層コアの製造装置。 An oscillator is disposed in the lower mold, and the magnetic plate material punched and laminated on a plurality of core members is ultrasonically vibrated to adhere to the magnetic plate material in the mold mechanism. Item 15. A laminated core manufacturing apparatus according to Item 14.
JP2006255235A 2006-09-21 2006-09-21 Manufacturing method of laminated core Active JP4870505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006255235A JP4870505B2 (en) 2006-09-21 2006-09-21 Manufacturing method of laminated core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006255235A JP4870505B2 (en) 2006-09-21 2006-09-21 Manufacturing method of laminated core

Publications (2)

Publication Number Publication Date
JP2008078346A true JP2008078346A (en) 2008-04-03
JP4870505B2 JP4870505B2 (en) 2012-02-08

Family

ID=39350113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006255235A Active JP4870505B2 (en) 2006-09-21 2006-09-21 Manufacturing method of laminated core

Country Status (1)

Country Link
JP (1) JP4870505B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7960890B2 (en) 2008-01-23 2011-06-14 Mitsubishi Electric Corporation Laminated core, method and apparatus for manufacturing laminated core, and stator
US11271458B2 (en) * 2016-08-22 2022-03-08 Bmc Co., Ltd. Laminated core manufacturing apparatus capable of heating inner diameter of laminated core
WO2023095496A1 (en) 2021-11-25 2023-06-01 日本製鉄株式会社 Laminated core and rotating electrical machine

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197310A (en) * 1988-07-08 1989-04-14 Fujikura Ltd Fire resisting electric wire
JPH01241506A (en) * 1988-03-24 1989-09-26 Yoichi Yabuki Diameter reducing method for pipe containing wire body
JPH03231412A (en) * 1990-02-07 1991-10-15 Murata Mfg Co Ltd Manufacture of thin-film laminated core
JPH0681458A (en) * 1992-09-04 1994-03-22 Soken Kagaku Kk Form sticking sheet
JP2000152570A (en) * 1998-11-06 2000-05-30 Toshiba Corp Manufacture of magnet core
JP2001016834A (en) * 1999-06-30 2001-01-19 Matsushita Electric Ind Co Ltd Manufacturing method for laminate
JP2001321850A (en) * 2000-05-16 2001-11-20 Koatekku:Kk Method and apparatus for manufacturing laminated core
JP2004084148A (en) * 2001-10-29 2004-03-18 Yotsuami:Kk Abrasion-resisting yarn thread adjustable in specific gravity and of low elongation
JP2006111256A (en) * 2004-09-17 2006-04-27 Eidai Kako Kk Sound absorbing mat and manufacturing method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01241506A (en) * 1988-03-24 1989-09-26 Yoichi Yabuki Diameter reducing method for pipe containing wire body
JPH0197310A (en) * 1988-07-08 1989-04-14 Fujikura Ltd Fire resisting electric wire
JPH03231412A (en) * 1990-02-07 1991-10-15 Murata Mfg Co Ltd Manufacture of thin-film laminated core
JPH0681458A (en) * 1992-09-04 1994-03-22 Soken Kagaku Kk Form sticking sheet
JP2000152570A (en) * 1998-11-06 2000-05-30 Toshiba Corp Manufacture of magnet core
JP2001016834A (en) * 1999-06-30 2001-01-19 Matsushita Electric Ind Co Ltd Manufacturing method for laminate
JP2001321850A (en) * 2000-05-16 2001-11-20 Koatekku:Kk Method and apparatus for manufacturing laminated core
JP2004084148A (en) * 2001-10-29 2004-03-18 Yotsuami:Kk Abrasion-resisting yarn thread adjustable in specific gravity and of low elongation
JP2006111256A (en) * 2004-09-17 2006-04-27 Eidai Kako Kk Sound absorbing mat and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7960890B2 (en) 2008-01-23 2011-06-14 Mitsubishi Electric Corporation Laminated core, method and apparatus for manufacturing laminated core, and stator
US8015691B2 (en) 2008-01-23 2011-09-13 Mitsubishi Electric Corporation Apparatus for manufacturing laminated core block
US11271458B2 (en) * 2016-08-22 2022-03-08 Bmc Co., Ltd. Laminated core manufacturing apparatus capable of heating inner diameter of laminated core
WO2023095496A1 (en) 2021-11-25 2023-06-01 日本製鉄株式会社 Laminated core and rotating electrical machine

Also Published As

Publication number Publication date
JP4870505B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
US8015691B2 (en) Apparatus for manufacturing laminated core block
JP4870504B2 (en) Manufacturing method of laminated core
JP2007311765A (en) Lamination, and lamination packing method, tool and device
JP2008067459A (en) Laminated core and stator
JP2002151339A (en) Laminated iron core manufacturing method and device
JP4870505B2 (en) Manufacturing method of laminated core
WO2014168111A1 (en) Welding device and welding method
JP2016140134A (en) Motor core and method of manufacturing motor core
US11451122B2 (en) Method for manufacturing laminated iron core product
JP2005527402A (en) Manufacturing apparatus and manufacturing method of composite layer structure
JP2016052147A (en) Magnet, laminated magnet, manufacturing method of laminated magnet, and manufacturing system for laminated magnet
US20050126676A1 (en) Arrangement and methods for the manufacture of composite layer structures
JP6673634B2 (en) Ultrasonic bonding method
JP7113694B2 (en) Iron core product manufacturing method and iron core product manufacturing apparatus
US7503991B2 (en) Film lamination method and lamination-apparatus
WO1980002480A1 (en) Method of connecting armature coil for rotary machine
JP7356307B2 (en) Manufacturing method of iron core products and iron core products
JP7282127B2 (en) POWDER COATING APPARATUS AND POWDER COATING METHOD
US20230396137A1 (en) Stacked core, stacked core manufacturing method, and stacked core manufacturing apparatus
CN112134426B (en) Method for manufacturing iron core product and iron core product
JP6626934B1 (en) Iron core product manufacturing method and iron core product
WO2016079850A1 (en) Laminated core manufacturing device, laminated core manufacturing method, and laminated core
JP5057824B2 (en) Manufacturing method of electronic parts
JP7278112B2 (en) LAMINATED PRODUCTION METHOD AND MANUFACTURING APPARATUS
WO2024043157A1 (en) Method for producing laminated core, production device of laminated core, laminated core, and rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111017

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4870505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250