JP4870504B2 - Manufacturing method of laminated core - Google Patents

Manufacturing method of laminated core Download PDF

Info

Publication number
JP4870504B2
JP4870504B2 JP2006255234A JP2006255234A JP4870504B2 JP 4870504 B2 JP4870504 B2 JP 4870504B2 JP 2006255234 A JP2006255234 A JP 2006255234A JP 2006255234 A JP2006255234 A JP 2006255234A JP 4870504 B2 JP4870504 B2 JP 4870504B2
Authority
JP
Japan
Prior art keywords
magnetic plate
resin
plate material
core
laminated core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006255234A
Other languages
Japanese (ja)
Other versions
JP2008078345A (en
Inventor
斉 太田
展明 三宅
裕治 中原
行庸 唐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006255234A priority Critical patent/JP4870504B2/en
Publication of JP2008078345A publication Critical patent/JP2008078345A/en
Application granted granted Critical
Publication of JP4870504B2 publication Critical patent/JP4870504B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Punching Or Piercing (AREA)

Description

この発明は、モータ、発電機、トランス等に使用される磁性板材を積層した積層コアの製造方法に関するものである。 The present invention, a motor, a generator, in which relates to the production how a laminated core formed by laminating magnetic plate material used in transformers.

従来の積層コアの製造方法では、打抜き時にコア部材をかしめて積層する。すなわち、打抜くコア部材の板厚方向に例えば表側に凸部を、裏側に凹部を形成して、連続的に打抜いて積層することにより、凹凸部が圧入されてコア部材同士が固定される(例えば、特許文献1参照)。   In a conventional method for manufacturing a laminated core, the core member is caulked and laminated at the time of punching. That is, by forming, for example, a convex portion on the front side and a concave portion on the back side in the thickness direction of the core member to be punched, the concave and convex portions are press-fitted and the core members are fixed to each other by stacking. (For example, refer to Patent Document 1).

また、コア部材に絶縁性の接着剤を塗布して積層する方法が示されており、接着剤としてワニスを塗布したり、積層したコア部材を接着剤に浸漬することによって、コア部材同士を接着している(例えば、特許文献2参照)。   In addition, a method is shown in which an insulating adhesive is applied to the core member and laminated, and the core members are bonded together by applying varnish as an adhesive or immersing the laminated core member in the adhesive. (For example, refer to Patent Document 2).

特開平6−165447([0007]〜[0009]、図5)JP-A-6-165447 ([0007] to [0009], FIG. 5) 特開2003−324869([0017]、[0018]、図1)JP 2003-324869 ([0017], [0018], FIG. 1)

従来から積層コアの製造方法として用いられているコア部材をかしめる方法では、コア部材に凹凸を設ける必要があるが、積層するコア部材間で凹凸部の位置精度を確保するために、多数のプレス工程が必要となる。このため、金型が大きくなって、プレス機械そのものが大きくなり、複数個の金型が必要となって、設備が高価になる問題がある。   In a method of caulking a core member that has been conventionally used as a method for manufacturing a laminated core, it is necessary to provide irregularities on the core member. However, in order to ensure the positional accuracy of the irregularities between the laminated core members, A pressing process is required. For this reason, there exists a problem that a metal mold | die becomes large, a press machine itself becomes large, a some metal mold | die is needed, and an installation becomes expensive.

また、薄いコア部材に凹凸部を形成したり、かしめたりすることによって、コア部材に加工歪が生じて、磁気特性を劣化させるなどの問題があった。製品が小さくなるとかしめによる加工歪が磁気特性に与える影響は大きくなり、小型化が困難になる問題があった。   In addition, there is a problem in that, by forming an uneven portion on a thin core member or caulking, processing distortion occurs in the core member and the magnetic characteristics are deteriorated. As the product becomes smaller, the influence of the processing strain due to caulking on the magnetic characteristics becomes larger, which makes it difficult to reduce the size.

また、磁気特性を向上させるために薄いコア部材を積層することにより渦電流を抑制する方法があるが、板厚が薄くなると凹凸の形成が困難になるなどの問題があった。   In addition, there is a method of suppressing eddy current by laminating a thin core member in order to improve magnetic characteristics, but there is a problem that it becomes difficult to form unevenness when the plate thickness is reduced.

かしめ部は圧入によって固定されているだけであるため、積層する全てのコア部材が完全に固定されているわけではく、凹凸間にすき間が発生している箇所もある。このため、使用時にコア部材同士が相対的に滑り、騒音を発生するなどの問題があった。   Since the caulking portion is only fixed by press fitting, not all the core members to be laminated are completely fixed, and there is a portion where a gap is generated between the irregularities. For this reason, there was a problem that the core members slip relative to each other during use and generate noise.

加工歪による磁気特性の劣化を抑制する方法として、コア部材を接着剤で固定する方法があるが、接着剤の塗布厚さがばらつくために、寸法精度が劣化するなどの問題がある。   As a method for suppressing the deterioration of magnetic characteristics due to processing strain, there is a method of fixing the core member with an adhesive, but there is a problem that the dimensional accuracy is deteriorated because the coating thickness of the adhesive varies.

また、積層したコア部材を接着剤に浸漬したり、打抜いたコア部材間のすき間に接着剤を浸透させる方法もあるが、大気中で接着剤をすき間に浸透させることは困難であり、ワニスなどは、真空中で含浸させることが多い。   There are also methods to immerse the laminated core member in the adhesive or to infiltrate the adhesive between the punched core members, but it is difficult to allow the adhesive to penetrate into the air in the atmosphere. Are often impregnated in a vacuum.

また、接着剤を用いると、積層したコア部材間で接着剤が漏れることがあり、はみ出した接着剤を除去する工程が必要になるなど、製造コストが高くなるなどの問題があった。   In addition, when an adhesive is used, the adhesive may leak between the laminated core members, and there is a problem that the manufacturing cost becomes high, such as a step of removing the protruding adhesive.

この発明は上記のような従来の課題を解消するためになされたものであり、コア部材を積層する際のかしめが不要となり、コア部材の厚み偏差による累積誤差を吸収し高精度な形状を有する積層コアの製造方法を提供する。 The present invention has been made in order to solve the above-described conventional problems, and does not require caulking when the core members are laminated, and has a highly accurate shape that absorbs accumulated errors due to thickness deviation of the core members. to provide a manufacturing how of the laminated core.

この発明による積層コアの製造方法は、熱可塑性樹脂である固体の糸状樹脂を往復部材に設置して上記往復部材を磁性板材上で往復動させることにより上記糸状樹脂を上記磁性板材のコア部材の全面でなく部分的に配置して加熱により固着する第1の固着工程と、上記熱可塑性樹脂を固着した上記磁性板材を複数個のコア部材に打ち抜き積層する工程と、上記積層したコア部材のうち積層方向両端に配置されるコア部材が平行状態を保つように加圧しながら加熱して、上記積層したコア部材同士を上記熱可塑性樹脂により固着する第2の固着工程とからなる。 The method for producing a laminated core according to the present invention includes the step of placing a solid thread resin, which is a thermoplastic resin, on a reciprocating member, and reciprocating the reciprocating member on the magnetic plate material, thereby causing the thread resin to be contained in the core member of the magnetic plate material. one of the first fixing step and a step of punching laminating the magnetic plate which is fixed to the thermoplastic resin into a plurality of core members, the core member having the stacked to fix by partially disposed to heat rather than the entire surface It consists of a second fixing step in which the core members arranged at both ends in the laminating direction are heated while being pressed so as to maintain a parallel state, and the laminated core members are fixed together by the thermoplastic resin.

この発明によれば、熱可塑性樹脂により各コア部材が固着されているので、かしめが不要となり、型代を安くして安価に積層コアを製造することができる。 By the present invention lever, since the core member by a thermoplastic resin is fixed, caulking is not necessary, can be produced inexpensively laminated core and cheap die cost.

また、かしめが不要となるため、コア部材に発生する加工歪を低減でき、磁気特性が良好な積層コアを得ることができる。   Further, since caulking is not necessary, it is possible to reduce processing strain generated in the core member and obtain a laminated core having good magnetic properties.

また、コア部材を熱可塑性樹脂で固着することによって、接着強度が向上してコア部材同士が相対的に滑ることがなく、コイルの巻線時に外力が作用しても形状が崩れ難く、精度が高い積層コアを得ることができる。   In addition, by fixing the core member with a thermoplastic resin, the adhesive strength is improved and the core members do not slide relative to each other, and even if an external force is applied during winding of the coil, the shape is not easily collapsed, and the accuracy is high. A high laminated core can be obtained.

さらに、積層コアを分解するときには、加熱することにより、熱可塑性樹脂は再度溶融されてコア部材が分解され、リサイクルコストを低減することができる。   Furthermore, when the laminated core is disassembled, by heating, the thermoplastic resin is melted again, the core member is disassembled, and the recycling cost can be reduced.

特に、積層したコア部材のうち積層方向両端に配置されるコア部材が平行状態を保つように加圧して、各コア部材の全面ではなく部分的に配置された熱可塑性樹脂が溶融することにより各コア部材が固着されるので、加熱された熱可塑性樹脂はコア部材間に薄く形成され、渦電流損の低減によって鉄損が減り、コア部材の厚み偏差による累積誤差を吸収し高精度な形状を得ることができる。このため、積層コアから発するうなり音等の騒音を低減することができ、エネルギー変換効率が高く電磁騒音や振動の少ないモータ等を得ることができる。 In particular, the core members arranged at both ends in the lamination direction among the laminated core members are pressurized so as to maintain a parallel state, and the thermoplastic resin partially arranged instead of the entire surface of each core member is melted to each. Since the core member is fixed, the heated thermoplastic resin is thinly formed between the core members, the iron loss is reduced by reducing the eddy current loss, and the accumulated error due to the thickness deviation of the core member is absorbed, resulting in a highly accurate shape. Obtainable. For this reason, it is possible to reduce noises such as a beat sound emitted from the laminated core, and to obtain a motor having high energy conversion efficiency and less electromagnetic noise and vibration.

実施の形態1.
図1はこの発明の実施の形態1による積層コアの製造装置及び製造方法を示す要部断面図である。厚みが1mm以下の鉄板や電磁鋼板等の磁性板材1を巻いた板材ロール10から磁性板材1を送り出すと共に、同じくロール状に巻かれた一対の熱可塑性樹脂の樹脂ロール20(図1では樹脂ロール20は1個しか示されていないが、紙面垂直方向にもう1個配置されている)から直径約200μmの糸状樹脂2を送り出して磁性板材1上に配置する。磁性板材1と糸状樹脂2は上ローラ3及び下ロータ4で挟持されて送られ、上ローラ3には例えばヒータ(図示せず)を内蔵して加熱するようにしておく。糸状樹脂2の融点にほぼ等しい温度に上ローラ3を加熱しておくことによって、糸状樹脂2は磁性板材1に溶着する。糸状樹脂2が溶着された磁性板材1は、型機構を構成する上型5と下型6の間に搬送されて打ち抜かれる。このようにして、順次、磁性板材1の搬送と型による打抜きを繰り返して、糸状樹脂2が溶着された磁性板材1が積層される。図2(a)は、この場合の磁性板材1の打抜きの様子を示した概念図である。図2(a)の例では、磁性板材1は、ヨーク部1aと、ヨーク部1aから突出したティース部1bと、ティース部1bの先端に位置するティース先端部1cから成る略T字形状のコア部材1Aに打ち抜かれる。また、熱可塑性の糸状樹脂2としては、ナイロン、塩化ビニル、ポリプロピレン、ポリスチレン、ポリエチレンなどの熱可塑性の材料を使用することができる。
Embodiment 1 FIG.
1 is a cross-sectional view of a principal part showing a laminated core manufacturing apparatus and manufacturing method according to Embodiment 1 of the present invention. A magnetic plate material 1 is fed from a plate material roll 10 around which a magnetic plate material 1 such as an iron plate or an electromagnetic steel plate having a thickness of 1 mm or less is wound, and a pair of thermoplastic resin resin rolls 20 (in FIG. 1, resin rolls are also wound). 20 is shown, but another one is arranged in the direction perpendicular to the paper surface), and the thread-like resin 2 having a diameter of about 200 μm is fed out and arranged on the magnetic plate 1. The magnetic plate material 1 and the thread-like resin 2 are nipped and fed between the upper roller 3 and the lower rotor 4, and the upper roller 3 is heated by incorporating a heater (not shown), for example. By heating the upper roller 3 to a temperature substantially equal to the melting point of the filamentous resin 2, the filamentous resin 2 is welded to the magnetic plate material 1. The magnetic plate 1 to which the thread-like resin 2 is welded is conveyed and punched between the upper mold 5 and the lower mold 6 constituting the mold mechanism. In this way, the magnetic plate 1 to which the thread-like resin 2 is welded is laminated by sequentially repeating the conveyance of the magnetic plate 1 and the punching by the mold. FIG. 2A is a conceptual diagram showing how the magnetic plate 1 is punched in this case. In the example of FIG. 2A, the magnetic plate 1 has a substantially T-shaped core comprising a yoke part 1a, a tooth part 1b protruding from the yoke part 1a, and a tooth tip part 1c located at the tip of the tooth part 1b. Punched into member 1A. Moreover, as the thermoplastic thread-like resin 2, thermoplastic materials such as nylon, vinyl chloride, polypropylene, polystyrene, and polyethylene can be used.

上ローラ3と下ローラ4で糸状樹脂2と磁性板材1を挟んだ場合、長期の使用によって、上ローラ3にも糸状樹脂2が部分的に付着して、磁性板材1に連続的に溶着できない場合も生じる。このため、図1(b)に示すように、上ローラ3の表面には、表面エネルギが小さな被覆材7を形成しておく。ここで、表面エネルギーについて簡単に説明する。固体の表面は半面を異種の物質で囲まれているので、内側と比べて高いエネルギー状態にある。表面が持つこの過剰エネルギーを表面エネルギーという。本実施の形態では、低表面エネルギの被覆材7を設けることによって、糸状樹脂2は上ローラ4に付着し難くなり、メインテナンスフリーとなって製造コストを低減することができる。被覆材7の材料としては、PTFE(ポリテトラフルオロエチレン)を塗布、焼付けする手法、PTFE以外では、PFA(パーフルオロアルコキシ)、FEP(フッ化エチレンプロピレン)、CF3系のポリマー等を塗布または焼付ける手法がある。   When the thread-shaped resin 2 and the magnetic plate 1 are sandwiched between the upper roller 3 and the lower roller 4, the thread-shaped resin 2 partially adheres to the upper roller 3 and cannot be continuously welded to the magnetic sheet 1 due to long-term use. Sometimes it happens. For this reason, as shown in FIG. 1B, a coating material 7 having a small surface energy is formed on the surface of the upper roller 3. Here, the surface energy will be briefly described. Since the surface of the solid is surrounded by a different kind of material, the solid surface is in a higher energy state than the inside. This excess energy on the surface is called surface energy. In the present embodiment, the provision of the low surface energy coating material 7 makes it difficult for the filamentous resin 2 to adhere to the upper roller 4 and is maintenance-free, thereby reducing manufacturing costs. As a material of the covering material 7, a method of applying and baking PTFE (polytetrafluoroethylene), other than PTFE, applying or baking PFA (perfluoroalkoxy), FEP (fluorinated ethylene propylene), CF3 polymer, or the like. There is a technique to attach.

打抜いて積層された磁性板材1と糸状樹脂2は、例えば、図3(a)に示すように、位置決めピン8aを備えた位置決め治具8上に配置して、図3(b)に示すように、押圧治具9により積層された磁性板材1を押付けて加圧し、この状態で加熱炉に所定の時間放置することにより糸状樹脂2を溶融する。そして、加熱炉から磁性板材1と位置決め治具8を取り出して冷却し、積層された磁性板材1は糸状樹脂2で固着される。図2(b)は、積層された磁性板材1が糸状樹脂2で固着されて積層コア100を作成したときの様子を示した斜視図である。   For example, as shown in FIG. 3 (a), the magnetic plate material 1 and the thread-like resin 2 that are punched and laminated are arranged on a positioning jig 8 provided with positioning pins 8a and are shown in FIG. 3 (b). As described above, the magnetic plate material 1 laminated by the pressing jig 9 is pressed and pressurized, and in this state, the filamentous resin 2 is melted by being left in a heating furnace for a predetermined time. Then, the magnetic plate material 1 and the positioning jig 8 are taken out from the heating furnace and cooled, and the laminated magnetic plate material 1 is fixed by the thread-like resin 2. FIG. 2B is a perspective view showing a state in which the laminated magnetic plate material 1 is fixed with the thread-like resin 2 to create the laminated core 100.

図3に示した例では、積層された磁性板材1を加熱炉に放置して固着しているが、図4(a)に示すように、位置決め治具8にヒータ11aを配置して加熱しても良い。また、加熱の方法は、誘導加熱、レーザ照射などの方法もある。また、図4(b)に示すように、超音波振動子11bを押圧治具9に備え付けて、磁性板材1を超音波振動させることによって、糸状樹脂2を溶融して磁性板材1を固着することもできる。図4(b)に示した例では、押圧治具9に超音波振動子11bを取付けているが、位置決め治具8に取付けても良く、糸状樹脂2を溶融して磁性板材1を固着することができる。   In the example shown in FIG. 3, the laminated magnetic plate 1 is left and fixed in a heating furnace. However, as shown in FIG. 4A, a heater 11a is arranged on the positioning jig 8 and heated. May be. In addition, there are heating methods such as induction heating and laser irradiation. Further, as shown in FIG. 4B, the ultrasonic vibrator 11b is provided in the pressing jig 9, and the magnetic plate material 1 is ultrasonically vibrated, thereby melting the filamentous resin 2 and fixing the magnetic plate material 1. You can also. In the example shown in FIG. 4B, the ultrasonic vibrator 11b is attached to the pressing jig 9, but it may be attached to the positioning jig 8, and the magnetic plate material 1 is fixed by melting the filamentous resin 2. be able to.

また、図1に示した例では、ロール状の糸状樹脂2は一対しか配置されていないが、図5に示すように、ロール状の糸状樹脂2を3個以上の複数個設置して、糸状樹脂2を複数本磁性板材1上に配置することにより、磁性板材1同士の接着強度を高くして、信頼性を向上することができる。また、糸状樹脂2を1本だけ配置するようにしても良い。   Further, in the example shown in FIG. 1, only one pair of roll-shaped thread-like resins 2 is arranged. However, as shown in FIG. By disposing a plurality of resins 2 on the magnetic plate material 1, the adhesive strength between the magnetic plate materials 1 can be increased and the reliability can be improved. Further, only one thread-like resin 2 may be arranged.

次に、本実施の形態において、糸状樹脂2を磁性板材1間の全面でなく部分的に配置することにより、磁性板材1の板厚偏差を吸収して積層コア全面にわたり一定の積層高さを得る効果について説明する。図6に示すように、糸状樹脂2を磁性板材1の全面でなく部分的に配置(図6の例では2列に配置)して、上下の磁性部材1−1と1−4が平行状態を保つように加圧する。このとき、板厚偏差を有する磁性板材(図6では板材1−3)が存在しても、糸状樹脂2が図示の様に樹脂厚さが薄い部分と厚い部分に分かれて、上記板厚偏差を吸収するように溶融することにより、磁性板材1(コア部材1A)の全面において積層コア100の高さは所定の積層高さHに保たれる。   Next, in the present embodiment, by disposing the filamentous resin 2 partially rather than between the magnetic plates 1, the thickness deviation of the magnetic plate 1 is absorbed and a constant laminated height is obtained over the entire laminated core. The effect to be obtained will be described. As shown in FIG. 6, the filamentous resin 2 is partially arranged on the magnetic plate 1 rather than the entire surface (in two rows in the example of FIG. 6), and the upper and lower magnetic members 1-1 and 1-4 are in a parallel state. Pressurize to maintain. At this time, even if a magnetic plate material having a plate thickness deviation (plate plate 1-3 in FIG. 6) exists, the thread-like resin 2 is divided into a thin resin portion and a thick portion as shown in the figure, and the above plate thickness deviation. By melting so as to absorb, the height of the laminated core 100 is maintained at a predetermined laminated height H over the entire surface of the magnetic plate 1 (core member 1A).

ここで、磁性板材1上への糸状樹脂2の好適な配置について考察する。図7には、磁性板材1を打ち抜いたコア部材1Aに、2本の熱可塑性の糸状樹脂2を配置した例を示す。熱可塑性樹脂の面積をそれぞれS1、S2とし、その図心をG1、G2とする。コア部材1Aの図心Oから各熱可塑性樹脂の図心G1、G2までの距離をr1、r2、熱可塑性樹脂の密度をρ、図心Oを通る主軸(図7において図心Oを通る紙面と垂直な軸)と図心G1、G2の成す角θ1、θ2とすると、主軸方向の熱可塑性樹脂のモーメントの和がほぼ零になること、すなわち、ρ・r1・S1・sinθ1+ρ・r2・S2・sinθ2=0を満たすと、熱可塑性樹脂の配置バランスがより良くなり、より一層、磁性板材1の板厚偏差を吸収して積層コア全面にわたり一定の積層高さを得ることができる。   Here, a suitable arrangement of the thread-like resin 2 on the magnetic plate material 1 will be considered. FIG. 7 shows an example in which two thermoplastic thread-like resins 2 are arranged on the core member 1A from which the magnetic plate material 1 is punched. The areas of the thermoplastic resin are S1 and S2, respectively, and the centroids are G1 and G2. The distances from the centroid O of the core member 1A to the centroids G1 and G2 of the thermoplastic resins are r1 and r2, the density of the thermoplastic resin is ρ, and the main axis passes through the centroid O (the paper plane passing through the centroid O in FIG. 7). ) And the centroids G1 and G2, the sum of the moments of the thermoplastic resin in the principal axis direction becomes substantially zero, that is, ρ · r1 · S1 · sinθ1 + ρ · r2 · S2. When satisfying sin θ2 = 0, the arrangement balance of the thermoplastic resin is improved, and the plate thickness deviation of the magnetic plate 1 can be further absorbed to obtain a constant stacking height over the entire surface of the stacked core.

ここで、上記式を一般化すると、熱可塑性樹脂の面積をS1、S2、・・・、Sn、その図心をG1、G2、・・・、Gnとする。コア部材1Aの図心Oから各熱可塑性樹脂の図心G1、G2、・・・、Gnまでの距離をr1、r2、・・・、rn、熱可塑性樹脂の密度をρ、図心Oを通る主軸と図心G1、G2、・・・、Gnの成す角θ1、θ2、・・・、θnとするとき、主軸方向の熱可塑性樹脂のモーメントの和がほぼ零になること、すなわち下記の式(1)を満たすと、熱可塑性樹脂の配置バランスがより良くなる。   Here, when the above equation is generalized, the area of the thermoplastic resin is S1, S2,..., Sn, and the centroids are G1, G2,. The distance from the centroid O of the core member 1A to the centroids G1, G2,..., Gn of each thermoplastic resin is r1, r2,..., Rn, the density of the thermoplastic resin is ρ, and the centroid O is When the angles θ1, θ2,..., Θn formed by the main axis passing through and the centroids G1, G2,..., Gn are substantially zero, the sum of the moments of the thermoplastic resin in the main axis direction is substantially zero. When Expression (1) is satisfied, the arrangement balance of the thermoplastic resin is improved.

Figure 0004870504
Figure 0004870504

また、本実施の形態によれば、熱可塑性の糸状樹脂2により磁性板材1を接着することにより、かしめが不要となり、磁性板材1を打抜くための型代を安くして安価に積層コアを製造することができる。従来のかしめにより結合した積層コアでは、凹凸部の圧入部で全ての磁性板材1が固定される訳ではなく、磁性板材1の寸法誤差に起因して部分的に凹凸部ですき間が発生することもある。しかし、本実施の形態では、熱可塑性の糸状樹脂2で磁性板材1を固着することにより、磁性板材1間にずれがなく、寸法精度が良好な積層コアを得ることができる。   Further, according to the present embodiment, by bonding the magnetic plate material 1 with the thermoplastic thread-like resin 2, caulking is unnecessary, and the die cost for punching the magnetic plate material 1 is reduced, so that the laminated core can be manufactured at low cost. Can be manufactured. In the conventional laminated core bonded by caulking, not all the magnetic plate 1 is fixed at the press-fitting portion of the uneven portion, and a gap is partially generated at the uneven portion due to the dimensional error of the magnetic plate 1. There is also. However, in the present embodiment, by fixing the magnetic plate 1 with the thermoplastic thread-like resin 2, there can be obtained a laminated core with good dimensional accuracy without deviation between the magnetic plates 1.

また、磁性板材1をかしめた場合には、磁性板材1が反ったりなどして、磁性板材1間のすき間が不均一になって、渦電流損失が増加したり、寸法精度が劣化することがあったが、部分的に磁性板材1を接着することによって、薄く均一なすき間が形成され、寸法精度が良好な積層コアを得ることができる。   In addition, when the magnetic plate 1 is caulked, the magnetic plate 1 is warped, the gaps between the magnetic plates 1 become non-uniform, eddy current loss increases, and dimensional accuracy deteriorates. However, when the magnetic plate material 1 is partially bonded, a thin and uniform gap is formed, and a laminated core with good dimensional accuracy can be obtained.

さらに、積層コア100を廃却するときには、加熱することにより、糸状樹脂2は再度溶融されて積層コア100を分解することが可能であり、リサイクルコストを低減することができる。   Further, when the laminated core 100 is discarded, by heating, the filamentous resin 2 can be melted again and the laminated core 100 can be decomposed, and the recycling cost can be reduced.

実施の形態2.
実施の形態1では、糸状樹脂2をロール状にして、樹脂ロール20を回転させながら磁性板材1上に配置しているが、図8(a)に示すように、糸状樹脂2をシャトル12に設置して磁性板材1の幅方向にシャトル12を往復動させることにより、糸状樹脂2を磁性板材1に配置することができる。シャトル12は、ガイド13により案内支持され、磁性板材1上で往復動し、ガイド13は磁性板材1の搬送方向に対して斜めまたは直角に配置される。このため、図8(b)に示すように、磁性板材1において糸状樹脂1本当りの接着面積が増え、磁性板材1間の接着力を大きくして、信頼性を向上することができる。また、シャトル12を案内するガイド13は、図8(c)に示すように、シャトル12の周囲を覆う形状のものを準備することにより、例えば、空気流に乗せて飛ばすことにより、シャトル12を往復動させることができる。
Embodiment 2. FIG.
In the first embodiment, the thread-shaped resin 2 is formed into a roll shape and is disposed on the magnetic plate 1 while rotating the resin roll 20. However, as illustrated in FIG. By installing and reciprocating the shuttle 12 in the width direction of the magnetic plate 1, the filamentous resin 2 can be disposed on the magnetic plate 1. The shuttle 12 is guided and supported by a guide 13 and reciprocates on the magnetic plate 1, and the guide 13 is disposed obliquely or perpendicularly to the conveying direction of the magnetic plate 1. For this reason, as shown in FIG. 8B, the adhesion area per thread-like resin in the magnetic plate material 1 is increased, and the adhesive force between the magnetic plate materials 1 can be increased to improve the reliability. Further, as shown in FIG. 8C, the guide 13 for guiding the shuttle 12 is prepared so as to cover the periphery of the shuttle 12, for example, by flying on the air flow, the shuttle 12 is moved. It can be reciprocated.

本実施の形態によれば、糸状樹脂2を設置したシャトル12を往復動させることにより、短時間で磁性板材1上に熱可塑性樹脂を配置することができる。また、シャトル12の往復動の速度を調整することによって、磁性板材1上に配置する熱可塑性樹脂の量を自在に調整できるため、製造コストを低減することができる。   According to the present embodiment, the thermoplastic resin can be arranged on the magnetic plate 1 in a short time by reciprocating the shuttle 12 on which the thread-like resin 2 is installed. Moreover, since the amount of the thermoplastic resin arranged on the magnetic plate 1 can be freely adjusted by adjusting the reciprocating speed of the shuttle 12, the manufacturing cost can be reduced.

実施の形態3.
実施の形態1では、糸状樹脂2の磁性板材1への溶着は加熱したローラ3で行っているが、糸状樹脂2の全体を磁性板材1に溶着する必要はない。すなわち、糸状樹脂2は、磁性板材1が打抜かれるまでに脱落しなければ良いので、糸状樹脂2は磁性板材1に部分的に固定されているだけで良い。したがって、図9に示すように、レーザ光発射器14からレーザ光を磁性板材1上に照射することによって、短時間で糸状樹脂2の溶着ができる。その結果、磁性板材1の送りを早くして製造に要する時間を短縮することができる。
Embodiment 3 FIG.
In the first embodiment, the thread-like resin 2 is welded to the magnetic plate material 1 with the heated roller 3, but it is not necessary to weld the whole thread-like resin 2 to the magnetic plate material 1. That is, since the thread-like resin 2 does not have to fall off before the magnetic plate 1 is punched out, the thread-like resin 2 only needs to be partially fixed to the magnetic plate 1. Therefore, as shown in FIG. 9, by irradiating the laser beam from the laser beam emitter 14 onto the magnetic plate 1, the filamentous resin 2 can be welded in a short time. As a result, it is possible to shorten the time required for manufacturing by speeding up the feeding of the magnetic plate material 1.

レーザー光の他の糸状樹脂2の溶着法としては、図10に示すように、滴下治具15に溶剤や湯等を入れておき、磁性板材1上に滴下することよって糸状樹脂2を溶融して、磁性板材1に糸状樹脂2を固着することも可能である。溶剤や湯等で樹脂を部分的に溶着することによって製造設備が安価となり、製造コストを低減できる効果がある。   As shown in FIG. 10, another method for welding the laser-like thread-like resin 2 is to put a solvent, hot water, or the like in the dropping jig 15 and drop it on the magnetic plate 1 to melt the thread-like resin 2. Thus, the thread-like resin 2 can be fixed to the magnetic plate material 1. By partially welding the resin with a solvent, hot water, etc., the manufacturing equipment becomes inexpensive and the manufacturing cost can be reduced.

また、ヒータを用いて糸状樹脂2を磁性板材1に溶着することもできる。図11に示すように、磁性板材1の上に加熱ヒータ16を配置して、磁性板材1と糸状樹脂2を加熱して、糸状樹脂2を溶融させる。このようにすれば、簡便に設備を構成することができ、設備費とメインテナンスコストを削減することができる。そして、図12に示すように、加熱ヒータ16の近傍に、上ローラ3と下ローラ4を配置して、磁性板材1と糸状樹脂2を挟むことにより、糸状樹脂2の厚さを均一にすることができ、積層コア100の寸法精度を向上することができる。また、糸状樹脂2の厚さを薄く磁性板材1上に形成できるので、渦電流損失や鉄損などが小さい磁気特性が良好な積層コア100を得ることができる。図11及び図12では、熱源としてヒータを用いているが、図13に示すように、加熱用コイル17に通電して、磁性板材1に渦電流を発生させる誘導加熱によって、磁性板材1と糸状樹脂2を加熱し、固着することも可能である。   Further, the filamentous resin 2 can be welded to the magnetic plate 1 using a heater. As shown in FIG. 11, a heater 16 is disposed on the magnetic plate 1 to heat the magnetic plate 1 and the thread resin 2 and melt the thread resin 2. In this way, the facility can be configured easily, and the facility cost and the maintenance cost can be reduced. Then, as shown in FIG. 12, the upper roller 3 and the lower roller 4 are arranged in the vicinity of the heater 16, and the thickness of the thread resin 2 is made uniform by sandwiching the magnetic plate material 1 and the thread resin 2. Therefore, the dimensional accuracy of the laminated core 100 can be improved. In addition, since the thread-like resin 2 can be formed on the magnetic plate 1 with a small thickness, it is possible to obtain the laminated core 100 with good magnetic characteristics such as eddy current loss and iron loss. 11 and 12, a heater is used as a heat source. However, as shown in FIG. 13, the magnetic plate material 1 and the filamentous material are fed by induction heating that energizes the heating coil 17 to generate an eddy current in the magnetic plate material 1. The resin 2 can be heated and fixed.

実施の形態4.
上記実施の形態では、糸状樹脂2を加熱して磁性板材1に融着させる方法について述べたが、超音波振動により糸状樹脂2を磁性板材1に固着させることもできる。図14に示すように、例えば、下側に配置した振動型ローラ18を超音波振動させることにより、糸状樹脂2と磁性板材1を固着することができる。図15(a)に示すように、被覆材7を形成した上ローラ3を磁性板材1の上面に配置し、上ローラ3に対向する磁性板材1の下面には圧子19と振動子20で構成した振動型ローラ18を取付ける。磁性板材1と糸状樹脂2を上ローラ3と振動型ローラ18で挟んで摩擦させることにより、糸状樹脂2は磁性板材1に固着される。振動子20には、例えば、図15(b)に示したように、積層型の圧電素子やバイモルフ型の振動子を用いることができる。また、振動型ローラ18は、上ローラ3側に取付けても同様の効果を奏する。
Embodiment 4 FIG.
In the embodiment described above, the method of heating the thread-like resin 2 and fusing it to the magnetic plate 1 has been described. However, the thread-like resin 2 can be fixed to the magnetic plate 1 by ultrasonic vibration. As shown in FIG. 14, for example, the thread-like resin 2 and the magnetic plate material 1 can be fixed by ultrasonically vibrating the vibration type roller 18 disposed on the lower side. As shown in FIG. 15A, the upper roller 3 on which the covering material 7 is formed is arranged on the upper surface of the magnetic plate material 1, and the lower surface of the magnetic plate material 1 facing the upper roller 3 is composed of an indenter 19 and a vibrator 20. The vibration type roller 18 is attached. The thread-like resin 2 is fixed to the magnetic plate 1 by sandwiching the magnetic sheet 1 and the thread-like resin 2 between the upper roller 3 and the vibration roller 18 and causing friction. As the vibrator 20, for example, as shown in FIG. 15B, a stacked piezoelectric element or a bimorph vibrator can be used. The vibration type roller 18 has the same effect even if it is attached to the upper roller 3 side.

実施の形態5.
実施の形態1では、糸状樹脂2が配置された磁性板材1を打抜き、磁性板材1を積層した後に加熱して糸状樹脂2を溶融し、磁性板材1同士を固着する手法について述べたが、例えば、図16に示すように、下型6内に加熱ヒータ26を埋設することにより、下型6を常時所定の温度に保っておいても良い。下型6に打抜かれた磁性板材1は、下型6からの伝熱によって加熱され、磁性板材1が打抜かれると同時に糸状樹脂2が溶融して磁性板材1を接着することができる。なお、加熱ヒータ26は、図16(b)に示すように、磁性板材1(コア部材1A)の周辺を囲むように埋設しておけば良い。
Embodiment 5 FIG.
In the first embodiment, the method of punching the magnetic plate material 1 on which the thread-like resin 2 is arranged, laminating the magnetic plate material 1 and heating it to melt the thread-like resin 2 and fixing the magnetic plate materials 1 to each other has been described. As shown in FIG. 16, the lower die 6 may be kept at a predetermined temperature at all times by embedding a heater 26 in the lower die 6. The magnetic plate material 1 punched into the lower die 6 is heated by heat transfer from the lower die 6, and at the same time as the magnetic plate material 1 is punched out, the filamentous resin 2 is melted to bond the magnetic plate material 1. In addition, what is necessary is just to embed the heater 26 so that the circumference | surroundings of the magnetic board | plate material 1 (core member 1A) may be enclosed, as shown in FIG.16 (b).

このように、下型6に加熱体を設けることにより、打抜きと同時に磁性板材1が糸状樹脂2で固着され、短時間で積層コアを製造することができ、安価な積層コアを得ることができる。   Thus, by providing the lower die 6 with the heating element, the magnetic plate 1 is fixed with the thread-like resin 2 at the same time as punching, and a laminated core can be manufactured in a short time, and an inexpensive laminated core can be obtained. .

また、上記例では、下型6内に加熱ヒータ26を用いているが、加熱ヒータ26の代わりに、加熱用コイル17を図16と同じように埋設しておき、加熱用コイル17に通電することによって、下型6に渦電流を発生させて下型6を加熱しても良い。   In the above example, the heater 26 is used in the lower mold 6. However, instead of the heater 26, the heating coil 17 is embedded in the same manner as in FIG. 16, and the heating coil 17 is energized. Accordingly, the lower mold 6 may be heated by generating an eddy current in the lower mold 6.

図16に示した例では、加熱ヒータ26、加熱用コイル27などの加熱源を下型6に埋設する構成としたが、設備稼動までの起動時間が少々長くなっても良い場合には、図17に示すように、加熱ヒータ26、加熱用コイル27を下型6の下部に配置しておくだけでも同様の効果を得ることができる。この場合、下型6内に加熱体を設けなくても良いので、下型6の製作費用を節約することができる。   In the example shown in FIG. 16, the heating source such as the heater 26 and the heating coil 27 is embedded in the lower mold 6. However, when the startup time until the equipment is operated may be slightly longer, As shown in FIG. 17, the same effect can be obtained simply by arranging the heater 26 and the heating coil 27 under the lower mold 6. In this case, since it is not necessary to provide a heating body in the lower mold 6, the manufacturing cost of the lower mold 6 can be saved.

図16及び図17に示した例では、下型6に対して加熱体を設けているが、必ずしも下型6に加熱体を配置する必要はない。図18(a)に示すように、上型5に加熱ヒータ26や加熱用コイル27を埋設することができる。また、図18(b)に示すように、上型5の上部に加熱ヒータ26や加熱用コイル27を配置しても同様の効果を奏する。   In the example shown in FIGS. 16 and 17, the heating element is provided for the lower mold 6, but it is not always necessary to arrange the heating element on the lower mold 6. As shown in FIG. 18A, the heater 26 and the heating coil 27 can be embedded in the upper mold 5. Further, as shown in FIG. 18B, the same effect can be obtained even if the heater 26 and the heating coil 27 are arranged on the upper part of the upper mold 5.

さらに、図19に示すように、上型5と下型6の間にレーザ光発射器24のレーザ光を導入することにより、局所的に磁性板材1を加熱して、糸状樹脂2を溶融し、磁性板材1の打抜きと同時に磁性板材1を固着することができる。レーザ光を用いることにより、非接触で短時間で加熱できるため、多量の積層コア100を製造できる効果がある。また、磁性板材1を局所的に加熱するために熱可塑性樹脂が型に付着することがなく、型のメインテナンスコストを低減できる。   Further, as shown in FIG. 19, by introducing the laser beam from the laser beam emitter 24 between the upper mold 5 and the lower mold 6, the magnetic plate material 1 is locally heated to melt the filamentous resin 2. The magnetic plate 1 can be fixed simultaneously with the punching of the magnetic plate 1. By using laser light, heating can be performed in a short time without contact, and thus there is an effect that a large amount of the laminated core 100 can be manufactured. Further, since the magnetic plate 1 is locally heated, the thermoplastic resin does not adhere to the mold, and the mold maintenance cost can be reduced.

磁性板材1を局所的に加熱する方法としては、放電現象を利用することもできる。図20に示すように、コイル31を接続した1対の電極32に高電圧を印加することによって、電極32間にスパークを発生させる。電極32は磁性板材1が打抜かれるときには、型機構と干渉しないように、瞬時に移動させるようにしておく。上型5が上方に移動したときに、再度、電極32を上型5と下型6の間に移動させてスパークを発生させる動作を繰返す。このように、型機構で磁性板材1を打抜きながら、スパークを発生させて磁性板材1を局所的に加熱して糸状樹脂2を溶融し、磁性板材1を固着する。このように、磁性板材1を局所的に加熱するために熱可塑性樹脂が型機構(上型、下型)に付着することがなく、型のメインテナンスコストを低減できる。また、レーザ光を用いる場合と比較して、設備費を節約することができ、安価に積層コア100を製造することができる。   As a method of locally heating the magnetic plate 1, a discharge phenomenon can be used. As shown in FIG. 20, a spark is generated between the electrodes 32 by applying a high voltage to a pair of electrodes 32 connected to the coil 31. When the magnetic plate material 1 is punched, the electrode 32 is moved instantaneously so as not to interfere with the mold mechanism. When the upper die 5 moves upward, the operation of moving the electrode 32 between the upper die 5 and the lower die 6 to generate a spark is repeated. In this way, while punching out the magnetic plate material 1 by the mold mechanism, a spark is generated to locally heat the magnetic plate material 1 to melt the filamentous resin 2 and fix the magnetic plate material 1. Thus, since the magnetic plate material 1 is locally heated, the thermoplastic resin does not adhere to the mold mechanism (upper mold and lower mold), and the mold maintenance cost can be reduced. Moreover, compared with the case where a laser beam is used, an installation cost can be saved and the laminated core 100 can be manufactured at low cost.

図20に示した例では、高電圧を印加してスパークを発生させているが、高圧電源の代わりに圧電素子を設置し、圧電素子に負荷を与えることによって、スパークを発生させても良い。   In the example shown in FIG. 20, a spark is generated by applying a high voltage. However, a spark may be generated by installing a piezoelectric element instead of a high-voltage power supply and applying a load to the piezoelectric element.

実施の形態6.
実施の形態5では、磁性板材1や型を加熱して糸状樹脂2を溶融する手法を示したが、実施の形態4と同様に、超音波振動を利用して磁性板材1を固着することもできる。図21に示すように、下型6の下部に、圧子41、振動子42からなる内蔵型振動子43を配置して、打抜かれた磁性板材1を押付けるようにする。磁性板材1と糸状樹脂2を内蔵型振動子43で振動・摩擦させることにより、糸状樹脂2は磁性板材1に固着される。磁性板材1や型を加熱する必要がないため、付着した熱可塑性樹脂を除去するために必要となる型のメインテナンスや段取り時間を短くすることができる。
Embodiment 6 FIG.
In the fifth embodiment, the method of melting the filamentous resin 2 by heating the magnetic plate 1 or the mold is shown. However, as in the fourth embodiment, the magnetic plate 1 may be fixed using ultrasonic vibration. it can. As shown in FIG. 21, a built-in type vibrator 43 including an indenter 41 and a vibrator 42 is disposed below the lower mold 6 so as to press the punched magnetic plate material 1. The filamentous resin 2 is fixed to the magnetic plate 1 by vibrating and rubbing the magnetic plate 1 and the filamentous resin 2 with the built-in vibrator 43. Since it is not necessary to heat the magnetic plate material 1 or the mold, it is possible to shorten the mold maintenance and setup time required to remove the attached thermoplastic resin.

また、図22に示すように、内蔵型振動子43を下型6の側面に配置して、磁性板材1を側面から振動させるようにしても良い。磁性板材1の下側でなくて側面に配置することによって、内蔵型振動子23を積層する磁性板材1の枚数の変化に応じて移動させる必要がなく、小型で安価な設備を得ることができ、製造コストを削減することができる。   Further, as shown in FIG. 22, the built-in vibrator 43 may be disposed on the side surface of the lower mold 6 so that the magnetic plate material 1 is vibrated from the side surface. By arranging on the side instead of the lower side of the magnetic plate 1, there is no need to move the built-in vibrator 23 according to the change in the number of magnetic plates 1, and a small and inexpensive facility can be obtained. Manufacturing cost can be reduced.

実施の形態7.
実施の形態1では、磁性板材1の片面に糸状樹脂2を配置しているが、図23に示すように、糸状の熱可塑性樹脂を巻いたドーナツ状樹脂ロール50の中心空間部に磁性板材1を搬送配置して、樹脂ロール50を回転させながら、磁性板材1に糸状樹脂2を巻付けることによって、磁性板材1の表裏面に糸状樹脂2を配置することも可能である。図23に示すように、2枚の磁性板材1を同時に搬送し、片方の磁性板材1の表裏面に糸状樹脂2を配置することによって、2枚の磁性板材1を同時に打抜いて積層することができる。図23(b)に示すように、2枚のうち1枚の磁性板材1に糸状樹脂2を配置するだけで、打抜き、積層された2枚の磁性板材1を糸状樹脂2で固着することが可能となる。このように、2枚の磁性板材1を同時に打抜くことにより、磁性板材1のの積層や接着時間を短縮でき、さらに、積層コア100を安価に製造できる。また、磁性板材1が薄くなっても、2枚重ねることによって、磁性板材1の剛性が高まり、打抜き時の塑性変形量を抑制して、寸法精度が良好な積層コア100を製造することができる。
Embodiment 7 FIG.
In Embodiment 1, the thread-like resin 2 is arranged on one side of the magnetic plate material 1, but as shown in FIG. 23, the magnetic plate material 1 is placed in the central space portion of the donut-shaped resin roll 50 wound with the thread-like thermoplastic resin. It is also possible to arrange the filamentous resin 2 on the front and back surfaces of the magnetic plate 1 by winding the filament roll 2 around the magnetic plate 1 while rotating the resin roll 50. As shown in FIG. 23, two magnetic plate materials 1 are simultaneously conveyed, and two magnetic plate materials 1 are simultaneously punched and laminated by disposing the thread-like resin 2 on the front and back surfaces of one magnetic plate material 1. Can do. As shown in FIG. 23 (b), by simply placing the thread-like resin 2 on one of the two magnetic plates 1, the two laminated magnetic plates 1 can be fixed with the yarn-like resin 2. It becomes possible. Thus, by simultaneously punching the two magnetic plate materials 1, the lamination and bonding time of the magnetic plate materials 1 can be shortened, and the laminated core 100 can be manufactured at a low cost. Further, even if the magnetic plate 1 is thinned, by stacking two sheets, the rigidity of the magnetic plate 1 is increased, and the amount of plastic deformation at the time of punching can be suppressed, and the laminated core 100 with good dimensional accuracy can be manufactured. .

この発明の実施の形態1による積層コアの製造装置及び製造方法を示す要部断面図である。It is principal part sectional drawing which shows the manufacturing apparatus and manufacturing method of the laminated core by Embodiment 1 of this invention. この発明の実施の形態1による磁性板材の打抜き及び積層の様子を示す斜視図である。It is a perspective view which shows the mode of the punching and lamination | stacking of the magnetic board | plate material by Embodiment 1 of this invention. この発明の実施の形態1による磁性板材の位置決めの様子を示す図である。It is a figure which shows the mode of the positioning of the magnetic board | plate material by Embodiment 1 of this invention. この発明の実施の形態1による積層された磁性板材の固着の様子を示す図である。It is a figure which shows the mode of the adhering of the laminated magnetic board material by Embodiment 1 of this invention. この発明の実施の形態1による他の例の積層コアの製造方法を示す図である。It is a figure which shows the manufacturing method of the laminated core of the other example by Embodiment 1 of this invention. この発明の実施の形態1による磁性板材の積層の状態を示す断面図である。It is sectional drawing which shows the state of lamination | stacking of the magnetic board | plate material by Embodiment 1 of this invention. この発明の実施の形態1による糸状樹脂の配置の様子を示す平面図である。It is a top view which shows the mode of arrangement | positioning of the filamentous resin by Embodiment 1 of this invention. この発明の実施の形態2による積層コアの製造装置及び製造方法を示す図である。It is a figure which shows the manufacturing apparatus and manufacturing method of the laminated core by Embodiment 2 of this invention. この発明の実施の形態3による積層コアの製造装置及び製造方法を示す図である。It is a figure which shows the manufacturing apparatus and manufacturing method of a laminated core by Embodiment 3 of this invention. この発明の実施の形態3による積層コアの製造装置及び製造方法を示す図である。It is a figure which shows the manufacturing apparatus and manufacturing method of a laminated core by Embodiment 3 of this invention. この発明の実施の形態3による積層コアの製造装置及び製造方法を示す図である。It is a figure which shows the manufacturing apparatus and manufacturing method of a laminated core by Embodiment 3 of this invention. この発明の実施の形態3による積層コアの製造装置及び製造方法を示す図である。It is a figure which shows the manufacturing apparatus and manufacturing method of a laminated core by Embodiment 3 of this invention. この発明の実施の形態3による積層コアの製造装置及び製造方法を示す図である。It is a figure which shows the manufacturing apparatus and manufacturing method of a laminated core by Embodiment 3 of this invention. この発明の実施の形態4による積層コアの製造装置及び製造方法を示す図である。It is a figure which shows the manufacturing apparatus and manufacturing method of a laminated core by Embodiment 4 of this invention. この発明の実施の形態4による積層コアの製造装置を示す図である。It is a figure which shows the manufacturing apparatus of the laminated core by Embodiment 4 of this invention. この発明の実施の形態5による積層コアの製造装置を示す図である。It is a figure which shows the manufacturing apparatus of the laminated core by Embodiment 5 of this invention. この発明の実施の形態5による積層コアの製造装置を示す図である。It is a figure which shows the manufacturing apparatus of the laminated core by Embodiment 5 of this invention. この発明の実施の形態5による積層コアの製造装置を示す図である。It is a figure which shows the manufacturing apparatus of the laminated core by Embodiment 5 of this invention. この発明の実施の形態5による積層コアの製造装置を示す図である。It is a figure which shows the manufacturing apparatus of the laminated core by Embodiment 5 of this invention. この発明の実施の形態5による積層コアの製造装置を示す図である。It is a figure which shows the manufacturing apparatus of the laminated core by Embodiment 5 of this invention. この発明の実施の形態6による積層コアの製造装置を示す図である。It is a figure which shows the manufacturing apparatus of the laminated core by Embodiment 6 of this invention. この発明の実施の形態6による積層コアの製造装置を示す図である。It is a figure which shows the manufacturing apparatus of the laminated core by Embodiment 6 of this invention. この発明の実施の形態7による積層コアの製造装置を示す図である。It is a figure which shows the manufacturing apparatus of the laminated core by Embodiment 7 of this invention.

符号の説明Explanation of symbols

1 磁性板材、2 糸状樹脂、3 上ローラ、4 下ローラ、5、上型、6 下型、
7 被覆材、8 位置決め治具、9 押圧治具、11a ヒータ、
11b 超音波振動子、12 シャトル、13 ガイド、14 レーザ光発射器、
15 滴下治具、16 ヒータ、17 加熱用コイル、18 振動型ローラ、
19 圧子、20 振動子、26 加熱ヒータ、27 加熱用コイル、
100 積層コア。
1 Magnetic plate material, 2 Filament resin, 3 Upper roller, 4 Lower roller, 5, Upper mold, 6 Lower mold,
7 coating material, 8 positioning jig, 9 pressing jig, 11a heater,
11b ultrasonic transducer, 12 shuttle, 13 guide, 14 laser light emitter,
15 dropping jig, 16 heater, 17 heating coil, 18 vibration type roller,
19 indenters, 20 vibrators, 26 heaters, 27 heating coils,
100 laminated core.

Claims (2)

熱可塑性樹脂である固体の糸状樹脂を往復部材に設置して上記往復部材を磁性板材上で往復動させることにより上記糸状樹脂を上記磁性板材のコア部材の全面でなく部分的に配置して加熱により固着する第1の固着工程と、上記熱可塑性樹脂を固着した上記磁性板材を複数個のコア部材に打ち抜き積層する工程と、上記積層したコア部材のうち積層方向両端に配置されるコア部材が平行状態を保つように加圧しながら加熱して、上記積層したコア部材同士を上記熱可塑性樹脂により固着する第2の固着工程とからなる積層コアの製造方法。 A solid filamentous resin, which is a thermoplastic resin, is placed on the reciprocating member, and the reciprocating member is reciprocated on the magnetic plate material, so that the filamentous resin is disposed not on the entire surface of the core member of the magnetic plate material but heated. A first fixing step that is fixed by the step, a step of punching and laminating the magnetic plate material to which the thermoplastic resin is fixed to a plurality of core members, and core members disposed at both ends in the stacking direction among the stacked core members. A method for producing a laminated core comprising: a second adhering step in which the laminated core members are adhered to each other by the thermoplastic resin by heating while pressing so as to maintain a parallel state. 上記第1の固着工程において、上記熱可塑性樹脂は上記コア部材上に1本以上配置され、上記各熱可塑性樹脂の面積をそれぞれS1、S2、・・・、Sn(nは自然数)、
上記各面積S1、S2、・・・、Snの図心G1、G2、・・・、Gnと、上記コア部材の図心Oとの距離をそれぞれr1、r2・・・、rn、
上記熱可塑性樹脂の密度をρ、
上記コア部材の図心Oを通る主軸と上記各熱可塑性樹脂の面積の図心G1、G2、・・・、Gnとの成す角をそれぞれθ1、θ2、・・・、θnとすると、
上記熱可塑性樹脂は下記式(1)を満たすように配置されることを特徴とする請求項1に記載の積層コアの製造方法。

Figure 0004870504
In the first fixing step, one or more thermoplastic resins are disposed on the core member, and the areas of the thermoplastic resins are S1, S2,..., Sn (n is a natural number),
The centroids G1, G2,..., Gn of the respective areas S1, S2,..., Sn and the centroids O of the core members are distances r1, r2,.
The density of the thermoplastic resin is ρ,
When the angles formed by the principal axis passing through the centroid O of the core member and the centroids G1, G2,..., Gn of the areas of the respective thermoplastic resins are respectively θ1, θ2,.
The said thermoplastic resin is arrange | positioned so that following formula (1) may be satisfy | filled, The manufacturing method of the laminated core of Claim 1 characterized by the above-mentioned.

Figure 0004870504
JP2006255234A 2006-09-21 2006-09-21 Manufacturing method of laminated core Active JP4870504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006255234A JP4870504B2 (en) 2006-09-21 2006-09-21 Manufacturing method of laminated core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006255234A JP4870504B2 (en) 2006-09-21 2006-09-21 Manufacturing method of laminated core

Publications (2)

Publication Number Publication Date
JP2008078345A JP2008078345A (en) 2008-04-03
JP4870504B2 true JP4870504B2 (en) 2012-02-08

Family

ID=39350112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006255234A Active JP4870504B2 (en) 2006-09-21 2006-09-21 Manufacturing method of laminated core

Country Status (1)

Country Link
JP (1) JP4870504B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5172367B2 (en) 2008-01-23 2013-03-27 三菱電機株式会社 Laminated core, laminated core manufacturing method, laminated core manufacturing apparatus, and stator
JP6116175B2 (en) 2012-09-28 2017-04-19 株式会社放電精密加工研究所 Laminating apparatus and laminated body manufacturing system
CN104576011A (en) * 2014-12-17 2015-04-29 芜湖金牛电气股份有限公司 Manufacturing device and method of power transformer
JP7302488B2 (en) * 2020-01-16 2023-07-04 トヨタ自動車株式会社 laminated core
IT202000013117A1 (en) * 2020-06-03 2021-12-03 Corrada Spa BRAKE DEVICE FOR THE CONSTRUCTION OF LAMELLAR PACKS FOR ELECTRICAL USE

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197310A (en) * 1988-07-08 1989-04-14 Fujikura Ltd Fire resisting electric wire
JPH03231412A (en) * 1990-02-07 1991-10-15 Murata Mfg Co Ltd Manufacture of thin-film laminated core
JPH03248730A (en) * 1990-02-24 1991-11-06 Sumitomo Heavy Ind Ltd Manufacture of steel belt and apparatus therefor
JP3192770B2 (en) * 1992-09-04 2001-07-30 綜研化学株式会社 Forming sheet
JP2000152570A (en) * 1998-11-06 2000-05-30 Toshiba Corp Manufacture of magnet core
JP2001016834A (en) * 1999-06-30 2001-01-19 Matsushita Electric Ind Co Ltd Manufacturing method for laminate
JP3822020B2 (en) * 2000-05-16 2006-09-13 株式会社コアテック Laminated core manufacturing equipment
JP4054646B2 (en) * 2001-10-29 2008-02-27 有限会社よつあみ Low elongation wear resistant yarn with adjustable specific gravity
JP2004248423A (en) * 2003-02-14 2004-09-02 Toyota Motor Corp Device and method for manufacturing stack
JP2006111256A (en) * 2004-09-17 2006-04-27 Eidai Kako Kk Sound absorbing mat and manufacturing method thereof

Also Published As

Publication number Publication date
JP2008078345A (en) 2008-04-03

Similar Documents

Publication Publication Date Title
JP5172367B2 (en) Laminated core, laminated core manufacturing method, laminated core manufacturing apparatus, and stator
JP4870504B2 (en) Manufacturing method of laminated core
JP4938389B2 (en) Laminated core and stator
JP5323400B2 (en) Laminate core manufacturing equipment
JPWO2018043429A1 (en) Laminated iron core, laminated iron core manufacturing method, and armature using laminated iron core
JP6349502B2 (en) Joining device
JP2016140134A (en) Motor core and method of manufacturing motor core
JP6146702B2 (en) Magnet, laminated magnet, laminated magnet manufacturing method, laminated magnet manufacturing system
JP2005348456A (en) Process for manufacturing core of rotary machine
JP4870505B2 (en) Manufacturing method of laminated core
KR20210092259A (en) Method for manufacturing a multi-material split stator for a rotating electric machine and a stator manufactured by the method
JP2019187056A (en) Core of rotary electric machine, and method of manufacturing core of rotary electric mashine
JP7418216B2 (en) A stator core for a rotating electrical machine, a stator for a rotating electrical machine, a rotating electrical machine, a method for manufacturing a stator core for a rotating electrical machine, and a method for producing a rotating electrical machine
JP6673634B2 (en) Ultrasonic bonding method
US20190238993A1 (en) Sound generating device and method of manufacturing sound generating device
JP2020092531A (en) Stator, rotating electric machine using stator, and method for manufacturing stator
JP6606142B2 (en) Method for manufacturing fluid control device
US7503991B2 (en) Film lamination method and lamination-apparatus
JP2014088978A (en) Method of manufacturing heat transfer member, method of manufacturing heat transfer component, heat transfer member, and heat transfer component
JP7278112B2 (en) LAMINATED PRODUCTION METHOD AND MANUFACTURING APPARATUS
WO1980002480A1 (en) Method of connecting armature coil for rotary machine
KR102043514B1 (en) Laminate apparatus for core
KR101310973B1 (en) Method for manufacturing stator of electric machine using wire cutting and electric machine manufactured by the same
WO2020213078A1 (en) Processing device
RU2819289C1 (en) Method for ultrasonic consolidation of composite products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111017

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4870504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250