JP2008071804A - Process for fabricating high temperature superconducting bonding element utilizing phase separation of liquid phase diffusion method - Google Patents

Process for fabricating high temperature superconducting bonding element utilizing phase separation of liquid phase diffusion method Download PDF

Info

Publication number
JP2008071804A
JP2008071804A JP2006246818A JP2006246818A JP2008071804A JP 2008071804 A JP2008071804 A JP 2008071804A JP 2006246818 A JP2006246818 A JP 2006246818A JP 2006246818 A JP2006246818 A JP 2006246818A JP 2008071804 A JP2008071804 A JP 2008071804A
Authority
JP
Japan
Prior art keywords
thin film
superconducting
film
normal conducting
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006246818A
Other languages
Japanese (ja)
Inventor
Kanji Harada
原田寛治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2006246818A priority Critical patent/JP2008071804A/en
Publication of JP2008071804A publication Critical patent/JP2008071804A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make a joint in the process for producing a superconducting joint by forming a high temperature supercondicting thin film of three layer structure including a rare earth normal conducting phase, separating the phase by partially melting the thin film of three layer structure and forming a normal conducting layer on the supercondicting thin film. <P>SOLUTION: A three layer structure thin film of normal conducting layer/supercondicting layer/normal conducting layer is deposited. Patterning is performed by etching, or the like, to have an inclination. The superconducting thin film is melted partially and a normal conducting layer is formed. Thickness of the normal conducting layer is controlled by etching. A supercondicting thin film is deposited as an upper electrode. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高温超伝導体において、液相拡散法の相分離を利用した超伝導接合素子及びその製造方法に関するものである。 The present invention relates to a superconducting junction element using phase separation of a liquid phase diffusion method in a high-temperature superconductor and a method for manufacturing the same.

近年、高感度の磁束計や高速・低消費電力の集積回路を目指し、様々な超伝導接合が作製されている。
しかし超伝導接合の製作には高度の加工技術が要求され、これが普及遅延の原因になっている。
特開2001−274471号公報
In recent years, various superconducting junctions have been produced aiming at high-sensitivity magnetometers and high-speed / low-power integrated circuits.
However, the manufacture of superconducting junctions requires a high level of processing technology, which causes a delay in popularization.
JP 2001-274471 A

本発明は上記目的を解決するため、超伝導接合の製造方法において、高温超伝導薄膜を、希土類常伝導相を含む三層構造薄膜にする。そして、三層構造薄膜を部分溶融することより相分離させ、超伝導薄膜に常伝導層を形成し接合を作製する。 In order to solve the above-mentioned object, the present invention changes a high-temperature superconducting thin film to a three-layered thin film containing a rare earth normal conducting phase in a method for producing a superconducting junction. Then, the three-layer structure thin film is partially melted to cause phase separation, and a normal conduction layer is formed on the superconducting thin film to produce a bond.

常伝導/超伝導/常伝導の三層構造薄膜を堆積する。エッチング等により傾斜を持つようにパターニングする。超伝導薄膜を部分溶融し、常伝導層を形成する。エッチングにより常伝導層の厚さを制御する。超伝導薄膜を堆積し上部電極とする。 Deposit normal / superconducting / normal conducting three-layered thin films. Patterning so as to have an inclination by etching or the like. A superconducting thin film is partially melted to form a normal conducting layer. The thickness of the normal layer is controlled by etching. A superconducting thin film is deposited to form the upper electrode.

脳から発生している微小磁束などを、本センサーで検出することや、高速・低消費電力の集積回路用素子となる。 The sensor detects small magnetic flux generated from the brain, and it becomes a high-speed, low-power-consumption device for integrated circuits.

次いで、本実施形態による超伝導接合素子の製造方法について図1から図4を用いて説明する。 Next, the method for manufacturing the superconducting junction element according to the present embodiment will be explained with reference to FIGS.

まず、図1のように、MgO基板上(1)に、例えばスパッタ法により、膜厚約100nmのGd211(2)膜、膜厚約200nmのY123膜(3)、膜厚約100nmのGd211(2)膜を連続堆積する。 First, as shown in FIG. 1, on a MgO substrate (1), a Gd211 (2) film having a film thickness of about 100 nm, a Y123 film (3) having a film thickness of about 200 nm, and a Gd211 (film having a film thickness of about 100 nm are formed by sputtering. 2) Deposit films continuously.

次いで、Gd211(2)膜上に、通常のリソグラフィー技術によりレジストパターンを形成する。 Next, a resist pattern is formed on the Gd211 (2) film by a normal lithography technique.

次いで、レジストパターンをマスクとして、例えば燐酸水溶液かArイオンミリングにより、Gd211(2)膜、Y123膜(3)及びGd211(2)膜を傾斜45°でエッチングする。 Next, using the resist pattern as a mask, the Gd211 (2) film, the Y123 film (3), and the Gd211 (2) film are etched at an inclination of 45 ° by, for example, phosphoric acid aqueous solution or Ar ion milling.

次いで、レジストパターンを除去した後、部分溶融温度まで基板加熱し、Y123膜(3)表面にY211(4)と液相を相分離させる。 Next, after removing the resist pattern, the substrate is heated to the partial melting temperature, and Y211 (4) and the liquid phase are phase-separated on the surface of the Y123 film (3).

このとき、Y123より相分離した液相は包昌反応により、図2のように、Gd211(2)とY211(4)に接している面にGd123(5)が形成される。 At this time, the liquid phase phase-separated from Y123 forms Gd123 (5) on the surface in contact with Gd211 (2) and Y211 (4) as shown in FIG.

次いで、図3のように上部Y123(3)膜を堆積する前処理として、例えばECRプラズマによるクリーニングを行い、Y123膜表面のY211膜厚(4)を制御する。 Next, as a pretreatment for depositing the upper Y123 (3) film as shown in FIG. 3, for example, cleaning with ECR plasma is performed to control the Y211 film thickness (4) on the surface of the Y123 film.

このクリーニング処理により、YBCO膜のエッジには、Y211膜厚(4)が制御できる。 By this cleaning process, the Y211 film thickness (4) can be controlled at the edge of the YBCO film.

なお、本実施形態による超伝導接合素子の製造方法では、Y123膜のエッジに形成されるバリア層の膜厚は、Y211膜の膜厚に依存する。したがって、Y211膜の膜厚を予め部分溶融時間で制御しておくことで、所望の厚さのバリア層を形成することができる(図3)。 In the superconducting junction element manufacturing method according to the present embodiment, the thickness of the barrier layer formed at the edge of the Y123 film depends on the thickness of the Y211 film. Therefore, a barrier layer having a desired thickness can be formed by previously controlling the film thickness of the Y211 film with the partial melting time (FIG. 3).

次いで、例えばレーザーアブレーション法により、図3のように膜厚200nmのY123(3)膜を堆積してパターニングし、Y123(3)よりなる超伝導層を形成する(図4)。 Next, a Y123 (3) film having a thickness of 200 nm is deposited and patterned by laser ablation, for example, as shown in FIG. 3 to form a superconducting layer made of Y123 (3) (FIG. 4).

このようにして、超伝導層Y123より延在するバリア層Y211を介して超伝導層Y123(3)が接合された平面型ジョセフソン接合を有する超伝導接合素子を形成する。 In this manner, a superconducting junction element having a planar Josephson junction in which the superconducting layer Y123 (3) is joined via the barrier layer Y211 extending from the superconducting layer Y123 is formed.

このように、本実施形態によれば、超伝導層と超伝導層との間に形成されるバリア層の膜厚を、Y211膜の膜厚により制御するので、バリア層の厚さが均一な接合を形成することができる。これにより、素子のばらつきを抑えることができる。 As described above, according to this embodiment, the thickness of the barrier layer formed between the superconducting layer is controlled by the thickness of the Y211 film, so that the thickness of the barrier layer is uniform. A bond can be formed. Thereby, the dispersion | variation in an element can be suppressed.

なお、上記実施形態では、接合部の傾斜角度を45°とした平面型ジョセフソン接合を有する超伝導接合素子を示したが、接合部の傾斜角度を例えば60°としたランプエッジ型ジョセフソン接合を有する超伝導接合素子においても同様に適用することができる。 In the above-described embodiment, a superconducting junction element having a planar Josephson junction in which the inclination angle of the junction is 45 ° is shown. However, a ramp edge type Josephson junction in which the inclination angle of the junction is 60 °, for example. The present invention can be similarly applied to a superconducting junction element having the following.

さらに、従来のNb系超伝導接合作製技術を用いて、超伝導層Y123上部に相分離したY211をバリア層とする超伝導接合素子も作製可能である。 Furthermore, a superconducting junction element using Y211 phase-separated on the superconducting layer Y123 as a barrier layer can also be fabricated using a conventional Nb-based superconducting junction fabrication technique.

本発明の高温超伝導接合素子の製造方法の一例を示す概略断面図Schematic sectional view showing an example of a method for producing a high-temperature superconducting junction element of the present invention 本発明の高温超伝導接合素子の製造方法の一例を示す概略断面図Schematic sectional view showing an example of a method for producing a high-temperature superconducting junction element of the present invention 本発明の高温超伝導接合素子の製造方法の一例を示す概略断面図Schematic sectional view showing an example of a method for producing a high-temperature superconducting junction element of the present invention 本発明の高温超伝導接合素子の製造方法の一例を示す概略断面図Schematic sectional view showing an example of a method for producing a high-temperature superconducting junction element of the present invention

符号の説明Explanation of symbols

1 MgO基板
2 Gd2BaCuO膜
3 YBa2Cu3O膜
4 Y2BaCuO膜
5 GdBa2Cu3O膜
1 MgO substrate 2 Gd2BaCuO film 3 YBa2Cu3O film 4 Y2BaCuO film
5 GdBa2Cu3O film

Claims (2)

希土類酸化物高温超伝導薄膜(RE123)において、希土類常伝導薄膜(RE211)を層状にRE123内に相分離させて製造したことを特徴とする超伝導接合素子の製造方法。 A method for producing a superconducting junction element, wherein a rare earth oxide high temperature superconducting thin film (RE123) is produced by phase-separating a rare earth normal conducting thin film (RE211) into RE123. イットリウム酸化物高温超伝導薄膜(Y123)において、イットリウム常伝導薄膜(Y211)を層状にY123内に相分離させて製造したことを特徴とする超伝導接合素子の製造方法。 A method of manufacturing a superconducting junction element, wherein an yttrium oxide high-temperature superconducting thin film (Y123) is manufactured by phase-separating yttrium normal conducting thin film (Y211) into Y123 in layers.
JP2006246818A 2006-09-12 2006-09-12 Process for fabricating high temperature superconducting bonding element utilizing phase separation of liquid phase diffusion method Pending JP2008071804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006246818A JP2008071804A (en) 2006-09-12 2006-09-12 Process for fabricating high temperature superconducting bonding element utilizing phase separation of liquid phase diffusion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006246818A JP2008071804A (en) 2006-09-12 2006-09-12 Process for fabricating high temperature superconducting bonding element utilizing phase separation of liquid phase diffusion method

Publications (1)

Publication Number Publication Date
JP2008071804A true JP2008071804A (en) 2008-03-27

Family

ID=39293172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006246818A Pending JP2008071804A (en) 2006-09-12 2006-09-12 Process for fabricating high temperature superconducting bonding element utilizing phase separation of liquid phase diffusion method

Country Status (1)

Country Link
JP (1) JP2008071804A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945970A (en) * 1995-08-03 1997-02-14 Matsushita Electric Ind Co Ltd Superconducting element
JPH0945976A (en) * 1995-08-03 1997-02-14 Matsushita Electric Ind Co Ltd Nonlinear element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945970A (en) * 1995-08-03 1997-02-14 Matsushita Electric Ind Co Ltd Superconducting element
JPH0945976A (en) * 1995-08-03 1997-02-14 Matsushita Electric Ind Co Ltd Nonlinear element

Similar Documents

Publication Publication Date Title
JP7212002B2 (en) System and method for fabrication of superconducting integrated circuits
US9985237B2 (en) Method of manufacturing an organic light emitting diode by lift-off
JP2008071804A (en) Process for fabricating high temperature superconducting bonding element utilizing phase separation of liquid phase diffusion method
US8178472B2 (en) Superconducting device and method of manufacturing the same
JP2989956B2 (en) Method for manufacturing semiconductor device
JPS5979585A (en) Manufacture of josephson junction element
JPS60147179A (en) Superconducting multi-terminal element
JP2003198007A (en) Method of forming tunnel junction and tunnel junction device
JP2004247540A (en) Superconductive element, method for manufacturing the same and superconductive apparatus
JPH0195536A (en) Manufacture of multiple film wiring body
JPS6257262A (en) Manufacture of josephson junction element
JPS59161834A (en) Manufacture of semiconductor device
JP2001237466A (en) High-temperature superconductive device
JP2000277820A (en) Superconducting junction element and its manufacture
JP2000114419A (en) Semiconductor device and producing method therefor
JPH04343228A (en) Manufacture of semiconductor device
JPH04207054A (en) Manufacture of semiconductor device
JPH07118553B2 (en) Alignment mark for electron beam direct writing and its manufacturing method
JPS59189657A (en) Manufacture of semiconductor device
JP2000299507A (en) Josephson element and manufacture thereof
JPH04307757A (en) Semiconductor device and manufacture thereof
JPH023926A (en) Forming method of wiring
JPS63194376A (en) Josephson junction element
JPS61229377A (en) Manufacture of josephson integrated circuit
KR20000066735A (en) Fabricating method of semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110726