JP2008070690A - 波長板、及びプロジェクタ - Google Patents

波長板、及びプロジェクタ Download PDF

Info

Publication number
JP2008070690A
JP2008070690A JP2006250394A JP2006250394A JP2008070690A JP 2008070690 A JP2008070690 A JP 2008070690A JP 2006250394 A JP2006250394 A JP 2006250394A JP 2006250394 A JP2006250394 A JP 2006250394A JP 2008070690 A JP2008070690 A JP 2008070690A
Authority
JP
Japan
Prior art keywords
light
polarized light
wave plate
band
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006250394A
Other languages
English (en)
Inventor
Hiroshi Matsumoto
浩 松本
Mitsuru Okamura
満 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2006250394A priority Critical patent/JP2008070690A/ja
Publication of JP2008070690A publication Critical patent/JP2008070690A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Projection Apparatus (AREA)

Abstract

【課題】青色帯、緑色帯、赤色帯の複数の波長帯において1/4波長板として機能する積層波長板と、これを用いたプロジェクタを提供する。
【解決手段】第1及び第2の波長板2、3に水晶を用い、それら切断角度を90°Z、第1及び第2の波長板2、3の高次モードの次数n1及びn2を共に11とし、波長λを530nmとしたとき、第1の波長板2の位相差Γ1を1966°±5°、光学軸方位角θ1を13.4°±1°とし、第2の波長板3の位相差Γ2を530°±5°、光学軸方位角θ2を71°±1°として積層1/4波長板1を構成する。
【選択図】図1

Description

本発明は、波長板とそれを用いたプロジェクタに関し、特に高次モードを用いて所望する複数の波長帯で位相差が90°を満たす1/4波長板と、該1/4波長板を用いたプロジェクタに関する。
1/4波長板は入射した直線偏光を円偏光に変換し、あるいは円偏光を直線偏光に変換する機能があり、光ピックアップ装置、プロジェクタ等に用いられている。プロジェクタにおいては、例えば特許文献1に開示されているように、1/4波長板を往復で2度通過させることにより直線偏光の振動方向を90度回転させ、照明装置の光源の光量を大きくした照明装置が使用されている。
例えば、水晶の複屈折性を用いて1/4波長板を作る場合、水晶の常光線屈折率、異常光線屈折率をそれぞれno、neとし、水晶板の厚さをtとすると、波長λの光が1/4波長板を透過したときの、常光線と異常光線との位相差Γは、Γ=2π/λ・(ne−no)・tで与えられ、位相差Γは波長λに依存することになる。
可視光の波長帯で位相差がほぼ一定となる広帯域波長板が、特許文献2に開示されている。図17(a)に示すように1/4波長板40は、1/2波長板41と、接着剤42と、1/4波長板43とから構成される。図17(b)に示すように、1/2波長板41は延伸軸が−15度、1/4波長板43は延伸軸が−75度の方向に配置されている。この1/2波長板41や1/4波長板43は、ポリカーボネイトを材料とした高分子フィルムを延伸処理したもので、1/4波長板40は可視光の範囲(400nm〜700nm)において、波長に依存しないほぼ完全な1/4波長板として機能すると開示されている。そして、1/4波長板40の作用を、ポアンカレ球を用いて説明している。
また、高次モードを用いた1/4波長板が特許文献3に開示されている。図18(a)は1/4波長板50を入射方向からみた平面図、同図(b)はその概略斜視図である。1/4波長板50は、波長785nm(CDに用いるレーザ光の波長)に対して位相差が1695°(4次モード25.5°)で、光学軸の面内回転方位角θ1が25.5°(通例のように反時計回りが正)の水晶板51と、位相差が850°(2次モード130°)で方位角が79.8°の水晶板52と、を各々の光学軸53、54の交差角θ3が54.3°で交差するように積層し、全体として波長655nm帯(DVDに用いるレーザ光の波長)及び785nm帯において1/4波長板として機能すると開示されている。
波長785nmに対して、各水晶板51、52の位相差及び方位角が、(δ1、θ1、δ2、θ2)=(1695°、25.5°、850°、79.8°)、各々の光学軸が58°の角度で交差するように設定したとき、積層された1/4波長板50の位相差Γは、655nmで位相差270°、785nmで位相差90°になると開示されている。
また、波長655nmに対して位相差が1980°(5次モード180°)で方位角14°の水晶板と、位相差が990°(2次モード270°)で方位角が72°の水晶板と、を各々の光学軸が58°の角度で交差するように積層した1/4波長板が開示されている。シミュレーションの結果は、波長655nmで位相差が270°、785nmで位相差が90°であると、開示されている。
特許文献4にはLEDアレイ光源と、偏光変換素子と、偏光ビームスプリッタと、反射型LCDパネルと、投影レンズからなる画像投影装置が開示されている。LEDアレイ光源は赤の光を発するLEDと、緑の光を発するLEDと、青の光を発するLEDが2次元に交互に配列されている。偏光変換素子により偏光方向が揃えられた出射光は、全て偏光ビームスプリッタで反射され、反射型LCDパネルに入射する。反射型LCDパネル入射した光は、赤、緑、青の各色の画像情報に基づいて偏光状態が変調されて反射される。この反射光のうち、画像として投影される光は偏光ビームスプリッタを透過し、投影レンズによってスクリーン上に投影されると開示されている。
特開2005−257872公報 特開平10−68816号公報 WO03/091768A1 特開2002−228973公報
しかしながら、特許文献2に開示された1/4波長板は、波長板として機能するものの、その材質がポリカーボネイトを材料とした高分子フィルムを用いて構成されているので、レーザ光の強烈な光に長時間曝されると熱の影響による黄変が生じるという問題があった。
また、特許文献3には波長785nm帯(CD)、655nm帯(DVD)用の積層1/4波長板が開示されているが、プロジェクタに用いる赤色帯、緑色帯、青色帯の波長に対して位相差が共に90°を呈する1/4波長板については記述されておらず、特許文献3の内容のみで構成することは難しいという問題があった。
本発明は上記の問題に鑑み、強力な光源を有するプロジェクタにも使用できるように、所望の複数の波長帯を確保した積層1/4波長板と、それを用いたプロジェクタを提供することにある。
本発明は、複数の波長帯で1/4波長板として機能する積層波長板を構成するため、複屈折性を有する材質を用いた第1及び第2の波長板を光学軸が交差するように貼り合わせ、全体として1/4波長板として機能する波長板であって、所定の波長λにおいて、常光線及び異常光線に対する第1及び第2の波長板の位相差をΓ1及びΓ2、高次モードの次数をそれぞれ奇数の自然数n1、n2(0を除く)としたとき、Γ1≒180°×n1、Γ2≒90°×n2を満足するように波長板を構成する。
このように波長板を構成すると複数の波長帯で1/4波長板として機能する波長板が得られる。
前記第1及び第2の波長板に水晶を用い、その切断角度を90°Z、前記高次モードの次数n1及びn2を共に11とし、前記波長λを530nm帯としたとき、前記第1の波長板の位相差Γ1を1966°±5°、光学軸方位角を13.4°±1°とし、前記第2の波長板の位相差Γ2を530°±5°、光学軸方位角を71°±1°として、波長板を構成する。
このように波長板を構成すると青色帯(450nm帯)、緑色帯(530nm帯)、赤色帯(640nm帯)において位相差は90°となり、1/4波長板として機能するという特徴がある。
上記に示した青色帯(450nm帯)、緑色帯(530nm帯)、赤色帯(640nm帯)の複数の波長帯において1/4波長板として機能する波長板を用いて、プロジェクタを構成するため、青色帯、緑色帯、赤色帯のレーザ光をそれぞれ出射する発光ダイオードと、前記赤色帯のレーザ光を透過すると共に、前記緑色帯のレーザ光を反射する第1のダイクロイックミラーと、前記赤色帯及び緑色帯のレーザ光を透過すると共に、前記青色帯のレーザ光を反射する第2のダイクロイックミラーと、前記第2ダイクロイックミラーから出射されるレーザ光をS偏光光とP偏光光に分離する偏光膜を備えた偏光ビームスプリッタと、前記偏光ビームスプリッタの偏光膜により反射されたP偏光光又はS偏光光の出射面側に配置され、前記P偏光光又はS偏光光を光変調する光変調素子と、前記偏光ビームスプリッタと前記光変調素子との間に配置され、前記偏光ビームスプリッタの出射面から出射されたP偏光光又はS偏光光が、前光変調素子により光変調された後、再度通過することによりS偏光光又はP偏光光に変換する請求項1又は2に記載の波長板と、前記光変調素子により光変調が施され、前記波長板により変換されたS偏光光又はP偏光光が入射される投影レンズと、を備える。
このようにプロジェクタを構成すると、光学デバイスの数が少なく、プロジェクタが小型化されると共に信頼性が向上し、コストも低減されるという効果がある。
また本発明のプロジェクタは、上記したプロジェクタに前記赤色帯のレーザ光を反射するミラーを備えている。
このようにプロジェクタを構成すると、光学デバイスの数が少なく、プロジェクタが小型化されると共に信頼性が向上し、コストも低減されるという効果がある。
また本発明のプロジェクタは、青色帯、緑色帯、赤色帯のレーザ光をそれぞれ出射する発光ダイオードと、前記赤色帯のレーザ光を透過すると共に、前記緑色帯のレーザ光を反射する第1のダイクロイックミラーと、前記赤色帯及び緑色帯のレーザ光を透過すると共に、前記青色帯のレーザ光を反射する第2のダイクロイックミラーと、前記第1及び第2ダイクロイックミラーから出射されるレーザ光をS偏光光とP偏光光に分離する偏光膜を備えた合成プリズムと、前記合成プリズムの偏光膜により反射されたP偏光光又はS偏光光の出射面側に配置され、前記P偏光光又はS偏光光を光変調する光変調素子と、前記合成プリズムと前記光変調素子との間に配置され、前記合成プリズムの出射面から出射されたP偏光光又はS偏光光が、前光変調素子により光変調された後、再度通過することによりS偏光光又はP偏光光に変換する本発明の波長板と、前記光変調素子により光変調が施され、前記波長板により変換されたS偏光光又はP偏光光が入射される投影レンズと、を備えることを特徴とする。
このようにプロジェクタを構成すると、光学デバイスの数が少なく、プロジェクタの信頼性が向上し、コストも低減されるという効果がある。
また本発明のプロジェクタは、前記ミラー及び前記第1及び第2のダイクロイックミラーは、第1の光ブロック素子により構成されていることを特徴とする。
このようにプロジェクタを構成すると、一層光学デバイスの数が少なくなり、小型化が図られるという効果がある。
また本発明のプロジェクタは、前記第1及び第2のダイクロイックミラーは、第2光ブロック素子により構成されていることを特徴とする。
このようにプロジェクタを構成すると、一層光学デバイスの数が少なくなり、小型化が図られると共にコスト低減という効果がある。
また、本発明のプロジェクタは、前記第2の光ブロック素子と前記偏光ビームスプリッタと、を光学用接着剤にて固着したことを特徴とする。
このようにプロジェクタを構成すると、一層光の小型化が図られ、プロジェクタの信頼性も向上するという効果がある。
また、本発明のプロジェクタは、前記ミラー、前記第1及び第2のダイクロイックミラー、及び偏光膜が第3の光ブロック素子により構成されていることを特徴とする。
このようにプロジェクタを構成すると、光学デバイスの数が少なくなり、小型化が図られると共にコスト低減という効果がある。
以下、本発明に係る実施の形態を図面に基づいて詳細に説明する。図1(a)は、入射方向から見た高次モード積層1/4波長板(以下、積層1/4波長板と称す)1の構成を示す平面図で、同図(b)は斜視図である。図1(a)、(b)に示すように、水晶を用いた第1の波長板2と、第2の波長板3とを、それぞれの光学軸が交差するように光学用接着剤を用いて貼り合わせ、全体として1/4波長板として機能するように構成する。つまり、図1(b)に示すように、例えば図中左側からS偏光である入射光が、積層1/4波長板1に入射すると、該入射光を円偏光に変換されて出射するように作用する。
図1(a)、(b)に示すように、第1の波長板2の光学軸方位角をθ1、第2の波長板3の光学軸方位角をθ2とする。所定の波長λ、例えば530nmに対して、常光線及び異常光線に対する第1の波長板2の位相差をΓ1、第2の波長板3の位相差をΓ2とし、
Γ1=180°×n1 ・・・(1)
Γ2=90°×n2 ・・・(2)
を満足するように第1及び第2の波長板2、3の厚さを設定する。ここで、n1、n2は高次モードの次数で、奇数の自然数とする。
第1及び第2の波長板に高次モードの波長板を用い、全体として1/4波長板を構成する場合、用いるレーザ光の全波長帯に亘って位相差を90度とすることは不可能である。そこで、使用する青色帯(450nm帯)、緑色帯(530nm帯)、赤色帯(640nm帯)で位相差が90度となるようにするために、積層1/4波長板1の構成パラメータである第1及び第2の波長板の高次モード次数n1、n2、所定の波長におけるそれぞれの位相差Γ1、Γ2、それぞれの光学軸方位角θ1、θ2を、種々変化させて、積層1/4波長板1の出射光のストークスベクトルを算出して、位相差を求めた。この位相差が所望する複数の波長帯で90度を満たし、しかも従来のものより広帯域である1/4波長板を得るべく、繰り返しシミュレーションを行った。
はじめに、計算手法を簡単に説明する。直線偏光が2枚の波長板を透過した後の偏光状態は、ミューラ行列を用いて表すことが出来る。
Figure 2008070690
ここで、Iは入射光の偏光状態、Eは出射光の偏光状態を表すベクトルである。R1は積層1/4波長板1における第1の波長板2のミューラ行列、R2は第2の波長板3のミューラ行列で、それぞれ次式で表される。
Figure 2008070690


Figure 2008070690
第1及び第2の波長板2、3の高次モード次数n1、n2を決め、それぞれの位相差Γ1、Γ2、光学軸方位角度θ1、θ2を設定して、式(4)、(5)よりミューラ行列R1、R2を求める。そして、入射光の偏光状態Iを設定すると、式(3)より出射光の偏光状態Eを算出することが出来る。
出射光の偏光状態Eは次式で表される。
Figure 2008070690
Eの行列要素S01、S11、S21、S31はストークスパラメータと呼ばれ、偏光状態を表している。このストークスパラメータを用いて、波長板の位相差Γは次式のように表される。
Figure 2008070690
このように、式(7)を用いて位相差を算出することができる。
本発明の積層1/4波長板1は、使用する複数の波長帯において、入射光の直線偏光を円偏光へ、あるいは、円偏光を直線偏光へ変換することである。
使用する複数の波長帯において位相差が90°になり且つ、その帯域幅が広くなるように、積層1/4波長板の諸パラメータである第1及び第2の波長板2、3のそれぞれの高次モード次数n1、n2と、所定の波長(例えば波長530nm)でのそれぞれの位相差Γ1、Γ2と、それぞれの光学軸方位角θ1、θ2と、を種々変化させ、シミュレーションを行った。高次モード次数n1、n2が大き過ぎると、波長帯域幅が狭くなり、小さいと波長板の厚さが薄くなり、製作しづらくなるので、高次モード次数n1、n2を適切に選定した。
図1に示す積層1/4波長板1に水晶を用いた第1及び第2の波長板2、3の切断角度がそれぞれ90°Z(水晶板の主面の法線が水晶の光学軸であるZ軸に対して90°となるような角度でカットされた水晶板)、高次モードの次数n1及びn2が共に11、波長λを530nmとしたとき、第1の波長板の位相差Γ1、光学軸方位角θ1がそれぞれ1966°、13.4°、第2の波長板の位相差Γ2、光学軸方位角θ2がそれぞれ983°、71°に設定した場合に、積層1/4波長板1の位相差が複数の波長帯において良好な位相特性となった。シミュレーションの初期段階では第1及び第2の波長板の位相差Γ1、Γ2をそれぞれ1980°(180°×11)、990°(90°×11)としたが、使用する波長帯における波長−位相差特性を最良にするには位相差Γ1、Γ2も若干シフトさせたときが良好な特性となった。その波長−位相差特性を図2に示す。使用する青色帯(450nm帯)、緑色帯(530nm帯)、赤色帯(640nm帯)において位相差は90°となり、1/4波長板としての機能を満たしている。
以上のように、本発明に係る積層1/4波長板は使用する青色帯、緑色帯、赤色帯において良好な特性を有し、温度ドリフトによりLDの波長が長波長側へ変動しても、十分に1/4波長板として機能することが判明した。
図3は、設計波長を530nmとし、第1及び第2の波長板の切断角度がそれぞれ90°Z、高次モード次数n1、n2を共に11、位相差Γ1、Γ2を1966°、983°とし、光学軸方位角θ1、θ2を(10°、65°)、(13.4°、70°)、(15°、70°)、(20°、75°)に設定したときの波長−位相差特性である。光学軸方位角θ1、θ2の組み合わせは13.4°、70°の場合が最良である。光学軸方位角θ1、θ2をこれより変化させると、いずれの組み合わせでも使用する青色帯、緑色帯、赤色帯における特性は要求する特性を満たすのは難しい。
図4は、第1及び第2の波長板の切断角度がそれぞれ90°Z、高次モード次数n1、n2を共に11、第1の波長板の位相差Γ1、光学軸方位角θ1がそれぞれ1966°、13.4°、第2の波長板の位相差Γ2、光学軸方位角θ2がそれぞれ983°、71°に設定し、設計波長を500nm、530nm、550nmと変化させた場合の波長−位相差特性である。図より明らかなように、設計波長が若干でも変化すると、図2と同じパラメータを用いても要求規格を満たさないことが分かる。
図5は設計波長を530nmとし、第1及び第2の波長板の切断角度がそれぞれ90°Z、第1及び第2の波長板の光学軸方位角θ1、θ2を図2に示したように設定し、第1及び第2の波長板の位相差Γ1、Γ2を適切に設定し、第1及び第2の波長板の高次モード次数n1、n2を共に7、9とした場合の波長−位相差特性を、高次モード次数n1、n2が共に11の場合と比較した波長−位相差特性である。なお、高次モード次数n1、n2が共に11の場合は前述のように、第1の波長板の位相差Γ1、光学軸方位角θ1はそれぞれ1966°、13.4°、第2の波長板の位相差Γ2、光学軸方位角θ2はそれぞれ983°、71°である。
図6はさらに高次モード次数n1、n2を共に13、15とした場合の波長−位相差特性を、高次モード次数n1、n2が共に11の場合と比較した波長−位相差特性である。また、図7は高次モード次数n1、n2を共に21、31と大きくした場合の波長−位相差特性を、高次モード次数n1、n2が共に11の場合と比較した波長−位相差特性である。図5、6、7より明らかなように、高次モード次数n1、n2を同一として変化させた場合、波長−位相差特性の形状は相似形となり、用いる青色帯、緑色帯、赤色帯の発光ダイオードの波長により、次数n1、n2を適正に選んで用いるようにするとよい。
積層1/4波長板1の第1及び第2の波長板2、3の切断角度がそれぞれ90°Z、高次モードの次数n1及びn2が共に11、波長λを530nmとしたとき、第1の波長板の位相差Γ1、光学軸方位角θ1がそれぞれ1966°、13.4°、第2の波長板の位相差Γ2、光学軸方位角θ2がそれぞれ983°、71°に設定した場合に良好な1/4波長板が得られたことを説明したが、青色、緑色、赤色の複数の波長帯において1/4波長板としての機能を満たす光学軸方位角θ1、θ2、位相差Γ1、Γ2の許容範囲を、シミュレーションにより求めた。図8は他のパラメータは図2に示したように設定し、光学軸方位角θ1、θ2を(13.4°、71°)から±1°変化させた場合の波長−位相差特性である。αは光学軸方位角θ1、θ2を(13.4°、71°)、βは(12.4°、72°)、γは(14.4°、70°)に設定した場合の波長−位相差特性である。この図から青色、緑色、赤色の複数の波長帯において、1/4波長板として良好な特性が得られる光学軸方位角θ1、θ2の許容範囲は(13.4°、71°)に対して±1°程度であることが分かる。
図9は、他のパラメータを図2に示したように設定し、位相差Γ1、Γ2を(1961°、983°)から±5°変化させた場合の波長−位相差特性である。αは位相差Γ1、Γ2を(1961°、983°)、βは(1971°、978°)、γは(1961°、988°)に設定した場合の波長−位相差特性である。この図から青色、緑色、赤色の複数の波長帯において、1/4波長板として良好な特性が得られる位相差Γ1、Γ2の許容範囲は(1961°、983°)に対して±5°程度であることが分かる。
次に、青色帯、緑色帯、赤色帯において1/4波長板として機能する本発明の積層1/4波長板を用いてプロジェクタを構成した場合を説明する。図10は本発明に係る第2の実施例のプロジェクタの構成を示した概略構成図であって、青色帯、緑色帯、赤色帯のレーザ光をそれぞれ出射する発光ダイオード(LED)10a、10b、10cと、ミラー11と、第1及び第2のダイクロイックミラー11a、11bと、偏光ビームスプリッタ(PBS)12と、本発明の積層1/4波長板13と、光変調素子(例えば、DLP方式(Digital Light Processing)、LCOS方式(Liquid Crystal On Silicon)等)14と、投影レンズ15と、図示しないスクリーンと、を備えている。
ここで、LED10a、10b、10cの出射レーザ光はS偏光として説明するが、LED10a、10b、10cの出射レーザ光はP偏光でも良い。
周知のように、DLP方式に用いられる表示デバイスはDMD(Digital Micromirror Device)で、ミクロンサイズの微小な鏡が数十万から百数十万並んだ半導体であり、一つの鏡が一画素に対応し、ON/OFFの信号でその鏡が傾く仕組みで、微小な鏡が光源からの光を反射して映像を投影する。また、LCOS方式は表示デバイスにLCOS(Liquid Crystal On Silicon)を用いる。LCOSとは反射型の液晶表示パネルで高開口率が特徴であり、配線やスイッチング素子を反射層の下に作るため継ぎ目のないシームレスな映像を表示できる。
LED10aから出射する赤色帯のS偏光光はミラー11により90度進行方向を変え、第1及び第2のダイクロイックミラー11a、11bを透過し、偏光ビームスプリッタ(PBS)12に入射する。入射した赤色帯のS偏光光はPBS12の偏光膜12aによって反射され、90度進行方向を変えて、積層1/4波長板13に入射し、該積層1/4波長板13を透過し、光変調素子14に入射する。入射した赤色帯のS偏光光は光変調素子14によって空間光変調され、反射されて再度積層1/4波長板13に入射し、透過して、PBS12に入射する。積層1/4波長板13を2度透過すると直線偏光の偏波面が90度回転され、S偏光光はP偏光光に変換されるので、PBS12の偏光膜12aを透過して投影レンズ15に入射する。
LED10bから出射する緑色帯のS偏光光は第1のダイクロイックミラー11aにより反射され90度進行方向を変えて、第2のダイクロイックミラー11bに入射し、該第2のダイクロイックミラー11bを透過して、PBS12に入射する。入射した緑色帯のS偏光光はPBS12の偏光膜12aによって反射され、90度進行方向を変えて、積層1/4波長板13に入射し、該積層1/4波長板13を透過し、光変調素子14に入射する。入射した緑色帯のS偏光光は光変調素子14によって空間光変調され、反射されて再度積層1/4波長板13に入射し、透過して、PBS12に入射する。積層1/4波長板13を2度透過すると偏光面が90度回転され、緑色のS偏光光はP偏光光に変換されるため、PBS12の偏光膜12aを透過して投影レンズ15に入射する。
LED10cから出射する青色帯のS偏光光は第2のダイクロイックミラー11bにより反射されて、PBS12に入射する。入射した青色帯のS偏光光はPBS12の偏光膜12aによって反射され、90度進行方向を変えて、積層1/4波長板13に入射し、該積層1/4波長板13を透過し、光変調素子14に入射する。入射した青色帯のS偏光光は光変調素子14によって空間光変調され、反射されて再度積層1/4波長板13に入射し、透過して、PBS12に入射する。積層1/4波長板13を2度透過すると直線偏光の偏波面が90度回転され、青色のS偏光光はP偏光光に変換されるため、PBS12の偏光膜12aを透過して投影レンズ15に入射する。光変調素子14により変調された赤色帯、緑色帯、青色帯の光を投影レンズ15により拡大して図示しないスクリーンに投影して、カラーの映像が得られる。
図11は本発明に係る第3の実施例のプロジェクタの構成を示した概略構成図であって、図10と異なる点は図10のようにミラー11を用いないでLED10aの赤色帯のS偏光光を第1のダイクロイックミラー11aに対し45度方向から入射させた点である。作用は前述した通りである。
また、図12は本発明に係る第4の実施例のプロジェクタの構成を示した概略構成図であって、図10と異なる点は、PBS12の代わりに合成プリズム12’を用いたことと、青色帯のLED10cとダイクロイックミラー11bとを合成プリズム12’に対して反対側に配置した点である。合成プリズム12’は偏光膜12’a、12’bとを有し、偏光膜12’aは赤色帯及び緑色帯の光の反射と透過に関与し、偏光膜12’bは青色帯の光の反射と透過に関与する。作用は前述した通りである。
図13は本発明に係る第5の実施例のプロジェクタの構成を示した概略構成図であって、図10と異なる点は、図10に示したミラー11、第1及び第2のダイクロイックミラー11a、11bを第1の光学素子ブロック素子16内に形成し、ミラー16a、第1及び第2のダイクロイックミラー16b、16cとした点である。作用は前述した通りである。
また、図14は本発明に係る第6の実施例のプロジェクタの構成を示した概略構成図であって、図11と異なる点は、第1及び第2のダイクロイックミラー11a、11bを一体化し、第2の光学素子ブロック素子17とした点である。作用は前述した通りである。
図15は本発明に係る第7の実施例のプロジェクタの構成を示した概略構成図であって、図14と異なる点は、第2の光学素子ブロック素子17とPBS12とを光学用接着剤で固着一体化して第3の光学素子ブロック素子18とした点である。作用は前述した通りである。
図16は本発明に係る第8の実施例のプロジェクタの構成を示した概略構成図であって、図15と異なる点は、第4の光学素子ブロック素子19の内部に第1及び第2のダイクロイックミラー18b、18cと、偏光ビームスプリッタとを一体的に形成した点である。偏光膜12aの傾斜が他の実施例と90度異なるので、合成した赤色帯、緑色帯、青色帯の光は偏光膜12aで図中上方に反射され、光変調素子14に入射する。入射した光は光変調素子14により空間光変調され、反射されて第3の光学素子ブロック18に入射し、偏光膜12aを透過し、投影レンズ15により拡大され、スクリーン上に像を結ぶ。
本発明に係る1/4波長板の構成を示した概略構成図で、(a)は入射方向から見た平面図、(b)は斜視図。 本発明に係る積層1/4波長板の波長−位相差特性図。 第1及び第2波長板の光学軸方位角を組で変化させたときの波長−位相差特性図。 設計波長を変化させたときの波長−位相差特性図。 第1及び第2波長板の高次モード次数n1、n2を共に7、9、11と変化させたときの波長−位相差特性図。 第1及び第2波長板の高次モード次数n1、n2を共に11、13、15と変化させたときの波長−位相差特性図。 第1及び第2波長板の高次モード次数n1、n2を共に11、21、31と変化させたときの波長−位相差特性図。 図2に示したパラメータから光学軸方位角θ1、θ2のみを±1°変化させた場合の波長−位相差特性図。 図2に示したパラメータから位相差Γ1、Γ2のみを±5°変化させた場合の波長−位相差特性図。 本発明の第2の実施例のプロジェクタを示した図。 本発明の第3の実施例のプロジェクタを示した図。 本発明の第4の実施例のプロジェクタを示した図。 本発明の第5の実施例のプロジェクタを示した図。 本発明の第6の実施例のプロジェクタを示した図。 本発明の第7の実施例のプロジェクタを示した図。 本発明の第8の実施例のプロジェクタを示した図。 従来の1/4波長板の構成を示した概略構成図で、(a)は斜視図、(b)はXYZ軸と光学軸方位角を示す図。 従来の積層1/4波長板の構成を示した概略構成図で、(a)は入射方向から見た平面図、(b)は斜視図。
符号の説明
1、13 積層1/4波長板、2、3 波長板、4、5 光学軸、θ1、θ2 光学軸方位角、10a、10b、10c 発光ダイオード、11 ミラー、11a、11b ダイクロイックミラー、12 偏光ビームスプリッタ、12’合成プリズム、12a、12’a、12’b 偏光膜、14 光変調素子、15 投影レンズ、16 光学ブロック素子、16a ミラー部、16b、16b ダイクロイックミラー部、17 光学ブロック素子、17b、17c ダイクロイックミラー部、18 光学ブロック素子、18b、18c ダイクロイックミラー部、19 光学ブロック素子、19b、19c ダイクロイックミラー部

Claims (9)

  1. 複屈折性を有する材質を用いた第1及び第2の波長板を光学軸が交差するように貼り合わせ、全体として1/4波長板として機能する波長板であって、
    所定の波長λにおいて、常光線及び異常光線に対する第1及び第2の波長板の位相差をΓ1及びΓ2、高次モードの次数をそれぞれ奇数の自然数n1、n2(0を除く)としたとき、
    Γ1≒180°×n1
    Γ2≒90°×n2
    を満足するように構成したことを特徴とする波長板。
  2. 前記第1及び第2の波長板に水晶を用い、それら切断角度を90°Z、前記高次モードの次数n1及びn2を共に11とし、
    前記波長λを530nmとしたとき、前記第1の波長板の位相差Γ1を1966°±5°、光学軸方位角を13.4°±1°とし、
    前記第2の波長板の位相差Γ2を983°±5°、光学軸方位角を71°±1°としたことを特徴とする請求項1に記載の波長板。
  3. 青色帯、緑色帯、赤色帯のレーザ光をそれぞれ出射する発光ダイオードと、
    前記赤色帯のレーザ光を透過すると共に、前記緑色帯のレーザ光を反射する第1のダイクロイックミラーと、
    前記赤色帯及び緑色帯のレーザ光を透過すると共に、前記青色帯のレーザ光を反射する第2のダイクロイックミラーと、
    前記第2ダイクロイックミラーから出射されるレーザ光をS偏光光とP偏光光に分離する偏光膜を備えた偏光ビームスプリッタと、
    前記偏光ビームスプリッタの偏光膜により反射されたP偏光光又はS偏光光の出射面側に配置され、前記P偏光光又はS偏光光を光変調する光変調素子と、
    前記偏光ビームスプリッタと前記光変調素子との間に配置され、前記偏光ビームスプリッタの出射面から出射されたP偏光光又はS偏光光が、前光変調素子により光変調された後、再度通過することによりS偏光光又はP偏光光に変換する請求項1又は2に記載の波長板と、
    前記光変調素子により光変調が施され、前記波長板により変換されたS偏光光又はP偏光光が入射される投影レンズと、
    を備えることを特徴とするプロジェクタ。
  4. 前記赤色帯のレーザ光を反射するミラーを備えていることを特徴とする請求項3に記載のプロジェクタ。
  5. 青色帯、緑色帯、赤色帯のレーザ光をそれぞれ出射する発光ダイオードと、
    前記赤色帯のレーザ光を透過すると共に、前記緑色帯のレーザ光を反射する第1のダイクロイックミラーと、
    前記赤色帯及び緑色帯のレーザ光を透過すると共に、前記青色帯のレーザ光を反射する第2のダイクロイックミラーと、
    前記第1及び第2ダイクロイックミラーから出射されるレーザ光をS偏光光とP偏光光に分離する偏光膜を備えた合成プリズムと、
    前記合成プリズムの偏光膜により反射されたP偏光光又はS偏光光の出射面側に配置され、前記P偏光光又はS偏光光を光変調する光変調素子と、
    前記合成プリズムと前記光変調素子との間に配置され、前記合成プリズムの出射面から出射されたP偏光光又はS偏光光が、前光変調素子により光変調された後、再度通過することによりS偏光光又はP偏光光に変換する請求項1又は2に記載の波長板と、
    前記光変調素子により光変調が施され、前記波長板により変換されたS偏光光又はP偏光光が入射される投影レンズと、
    を備えることを特徴とするプロジェクタ。
  6. 前記ミラー及び前記第1及び第2のダイクロイックミラーは、第1の光ブロック素子により構成されていることを特徴とする請求項4に記載のプロジェクタ。
  7. 前記第1及び第2のダイクロイックミラーは、第2の光ブロック素子により構成されていることを特徴とする請求項3に記載のプロジェクタ。
  8. 前記第2の光ブロック素子と前記偏光ビームスプリッタと、を光学用接着剤にて固着したことを特徴とする請求項7に記載のプロジェクタ。
  9. 前記ミラー、前記第1及び第2のダイクロイックミラー、及び偏光膜が第3の光ブロック素子により構成されていることを特徴とする請求項3に記載のプロジェクタ。
JP2006250394A 2006-09-15 2006-09-15 波長板、及びプロジェクタ Withdrawn JP2008070690A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006250394A JP2008070690A (ja) 2006-09-15 2006-09-15 波長板、及びプロジェクタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006250394A JP2008070690A (ja) 2006-09-15 2006-09-15 波長板、及びプロジェクタ

Publications (1)

Publication Number Publication Date
JP2008070690A true JP2008070690A (ja) 2008-03-27

Family

ID=39292306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006250394A Withdrawn JP2008070690A (ja) 2006-09-15 2006-09-15 波長板、及びプロジェクタ

Country Status (1)

Country Link
JP (1) JP2008070690A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271717A (ja) * 2009-05-22 2010-12-02 Jiangsu Lexvu Electronics Co Ltd 集積マイクロ表示投影・結像システム
JP4822301B1 (ja) * 2011-01-18 2011-11-24 パナソニック株式会社 画像表示装置
JP4822300B1 (ja) * 2011-01-18 2011-11-24 パナソニック株式会社 画像表示装置
JP4880789B1 (ja) * 2011-02-22 2012-02-22 パナソニック株式会社 画像表示装置
JP4904431B1 (ja) * 2011-02-22 2012-03-28 パナソニック株式会社 画像表示装置
WO2013077204A1 (ja) 2011-11-25 2013-05-30 シチズンホールディングス株式会社 光学デバイス
US20140132849A1 (en) * 2011-07-25 2014-05-15 Citizen Holdings Co., Ltd. Optical device, projector, manufacturing method, and manufacturing support apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271717A (ja) * 2009-05-22 2010-12-02 Jiangsu Lexvu Electronics Co Ltd 集積マイクロ表示投影・結像システム
JP4822301B1 (ja) * 2011-01-18 2011-11-24 パナソニック株式会社 画像表示装置
JP4822300B1 (ja) * 2011-01-18 2011-11-24 パナソニック株式会社 画像表示装置
JP4880789B1 (ja) * 2011-02-22 2012-02-22 パナソニック株式会社 画像表示装置
JP4904431B1 (ja) * 2011-02-22 2012-03-28 パナソニック株式会社 画像表示装置
US20140132849A1 (en) * 2011-07-25 2014-05-15 Citizen Holdings Co., Ltd. Optical device, projector, manufacturing method, and manufacturing support apparatus
EP2738602A1 (en) * 2011-07-25 2014-06-04 Citizen Holdings Co., Ltd. Optical device, projector, production method, and production support device
EP2738602A4 (en) * 2011-07-25 2015-03-25 Citizen Holdings Co Ltd OPTICAL DEVICE, PROJECTOR, METHOD OF MANUFACTURE, AND DEVICE FOR MANUFACTURING ASSISTANCE
US9285601B2 (en) 2011-07-25 2016-03-15 Citizen Holdings Co., Ltd. Optical device, projector, manufacturing method, and manufacturing support apparatus
WO2013077204A1 (ja) 2011-11-25 2013-05-30 シチズンホールディングス株式会社 光学デバイス
EP2784573A4 (en) * 2011-11-25 2015-08-12 Citizen Holdings Co Ltd OPTICAL DEVICE
US9810398B2 (en) 2011-11-25 2017-11-07 Citizen Watch Co., Ltd. Optical device

Similar Documents

Publication Publication Date Title
JP5910031B2 (ja) 投影装置
JP7482351B2 (ja) 光源装置および投写型映像表示装置
JPWO2012127554A1 (ja) 蛍光体を備えた照明光学系およびプロジェクタ
US20180017856A1 (en) Light source device and projection display apparatus
JP2008070690A (ja) 波長板、及びプロジェクタ
JP2018124538A (ja) 光源装置および投写型表示装置
JP2014048383A (ja) 投影装置
US20210191243A1 (en) Light source apparatus and projection-type image display apparatus
JP7203317B2 (ja) 光源装置及び投写型映像表示装置
WO2004040366A1 (ja) プロジェクタ
US11592735B2 (en) Image display apparatus and image display unit
JP2019028442A (ja) 光源装置および投写型表示装置
JP7106349B2 (ja) 光源装置および画像投射装置
JP2008185768A (ja) 波長板及び光学装置
JP2004271654A (ja) 画像表示装置
JP2009103863A (ja) 位相差板及びプロジェクタ
JP5043520B2 (ja) 光学素子、画像投射光学系および画像投射装置
JP2002350781A (ja) リアプロジェクタ
JP2007233208A (ja) 光学素子、投射型投影装置および光学素子の製造方法
JP2015145977A (ja) 光源装置およびこれを用いた投射型表示装置
JP4967253B2 (ja) 光学装置及び投射装置
JP2006003637A (ja) 投写光学系、及びそれを用いた投写型表示装置
JP2004233931A (ja) 色合成光学系
US20240192579A1 (en) Wavelength selective phase difference element and projection display apparatus
JP2008070691A (ja) 波長板、照明装置及びプロジェクタ

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091201