JP2008066375A - Excellent heat radiating substrate and method for manufacturing the same - Google Patents

Excellent heat radiating substrate and method for manufacturing the same Download PDF

Info

Publication number
JP2008066375A
JP2008066375A JP2006240200A JP2006240200A JP2008066375A JP 2008066375 A JP2008066375 A JP 2008066375A JP 2006240200 A JP2006240200 A JP 2006240200A JP 2006240200 A JP2006240200 A JP 2006240200A JP 2008066375 A JP2008066375 A JP 2008066375A
Authority
JP
Japan
Prior art keywords
hole
prepregs
heat dissipation
cfrp
high heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006240200A
Other languages
Japanese (ja)
Other versions
JP4816343B2 (en
Inventor
Sohei Samejima
壮平 鮫島
Sadao Sato
貞夫 佐藤
Hiroyuki Osuga
弘行 大須賀
Shigeru Uchiumi
茂 内海
Teruhiko Kumada
輝彦 熊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006240200A priority Critical patent/JP4816343B2/en
Priority to US11/832,376 priority patent/US8148647B2/en
Publication of JP2008066375A publication Critical patent/JP2008066375A/en
Application granted granted Critical
Publication of JP4816343B2 publication Critical patent/JP4816343B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an excellent heat radiating substrate reduced in weight, and excellent in heat radiating property and insulation reliability, and also to provide a method for manufacturing the same. <P>SOLUTION: The excellent heat radiating substrate 100 using CFRP plate 1 as a core material includes: a copper film 8 which covers surrounding and internal wall surface of a through-hole 1a provided with the CFRP plate 1; insulated layers 50a, 50b formed of preplegs 4a, 4b sequentially holding preplegs 2a, 2b and glass cloths 3a, 3b which cover both surfaces of the CFRP plate 1 covered with the copper film 8 and the internal wall of the through-hole 1a; wiring layers 51a, 51b formed of preplegs 5a, 5b, 6a, 6b provided on both surfaces of the preplegs 4a, 4b; and a through-hole 9 which connects wiring layers 7a, 7b, 7c, and 7d provided to the circuit layers 51a, 51b. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、軽量で、放熱性に優れた高放熱基板及びその製造方法に関し、特に絶縁信頼性に優れた高放熱基板及びその製造方法に関するものである。   The present invention relates to a high heat dissipation substrate that is lightweight and excellent in heat dissipation and a method for manufacturing the same, and more particularly to a high heat dissipation substrate excellent in insulation reliability and a method for manufacturing the same.

近年、プリント配線板は、電子部品の高密度化に伴い、放熱性の良い基板が望まれるようになっている。放熱性に優れたプリント配線板として、金属コア基板が知られており、既に実用化されている。金属コア基板は、コア材として熱伝導率の高いアルミや銅などの金属を用いることで、発熱部品からの熱を基板全体に分散し、発熱部品の温度上昇を抑えることが可能である。   In recent years, printed circuit boards have come to be desired to have a substrate with good heat dissipation as the density of electronic components increases. A metal core substrate is known as a printed wiring board excellent in heat dissipation and has already been put into practical use. By using a metal such as aluminum or copper having high thermal conductivity as the core material, the metal core substrate can disperse heat from the heat-generating component over the entire substrate and suppress the temperature rise of the heat-generating component.

また、最近では、炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastics:以下CFRPと略す)をコア材として用いられることもある(例えば、特許文献1参照。)。CFRPは、炭素繊維と樹脂からなる複合材料であり、炭素繊維の含有率、構造(クロス材、一方向材)によって、熱膨張率、熱伝導率、強度、比重を調整することが可能である(例えば、特許文献2参照。)。熱伝導率が高い炭素繊維を用いれば、アルミと同程度の放熱性を有しながら、かつアルミよりも軽量なコア材ができ、このコア材を用いてCFRPコア基板を作製できれば、アルミコア基板よりも軽量な高熱伝導基板が得ることができる。   Recently, carbon fiber reinforced plastic (Carbon Fiber Reinforced Plastics: hereinafter abbreviated as CFRP) may be used as a core material (see, for example, Patent Document 1). CFRP is a composite material composed of carbon fiber and resin, and the coefficient of thermal expansion, thermal conductivity, strength, and specific gravity can be adjusted by the carbon fiber content and structure (cross material, unidirectional material). (For example, refer to Patent Document 2). If carbon fiber with high thermal conductivity is used, a core material that has the same heat dissipation as aluminum and is lighter than aluminum can be made. If a CFRP core substrate can be produced using this core material, In addition, a lightweight high thermal conductive substrate can be obtained.

CFRPは、他の金属コア同様、導電性であるため、CFRPコア上下の配線を接続するスルーホールとは、穴埋め樹脂で絶縁する必要がある。従来のCFRPコア基板の製造方法においては、まずCFRPコア材に貫通穴を設け、この貫通穴が設けられたCFRPコア材の上下に、プリプレグ(熱硬化樹脂をガラスクロスに含浸し半硬化状態にしたもの)を重ね、真空下で積層プレスする。このとき、半硬化の樹脂は熱溶融し、貫通穴に充填される。この樹脂が充填された貫通穴に、この貫通穴よりも小径で、銅めっきを施したスルーホールを形成する。   Since CFRP is conductive like other metal cores, it is necessary to insulate the through holes connecting the wirings above and below the CFRP core with a filling resin. In a conventional CFRP core substrate manufacturing method, first, through holes are provided in a CFRP core material, and a prepreg (a thermosetting resin is impregnated into a glass cloth in a semi-cured state above and below the CFRP core material provided with the through holes. And stacking press under vacuum. At this time, the semi-cured resin is melted by heat and filled into the through hole. A through hole having a smaller diameter than that of the through hole and plated with copper is formed in the through hole filled with the resin.

特開平11−40902号公報(0008〜0015段、図9)Japanese Patent Laid-Open No. 11-40902 (stages 0008 to 0015, FIG. 9) 特開2003−273482号公報(0034〜0049段、図16)JP 2003-273482 A (stages 0034 to 0049, FIG. 16)

しかしながら、コア材にCFRPを用いるとアルミの場合と異なり、従来の製造方法では、貫通穴を形成したときに、穴壁面の露出した炭素繊維から炭素粉が発生し、次工程の樹脂埋めする際に、この炭素紛が樹脂中に混入してしまい、CFRPコアとスルーホール間の絶縁性が低下し、場合によっては短絡するという問題があった。   However, when CFRP is used for the core material, unlike the case of aluminum, in the conventional manufacturing method, when the through hole is formed, carbon powder is generated from the carbon fiber exposed on the hole wall surface, and the resin is filled in the next process. In addition, the carbon powder is mixed into the resin, so that the insulation between the CFRP core and the through hole is lowered, and in some cases, there is a short circuit.

また、金属コア基板に放熱孔としてザグリ部を設ける際には、発生する炭素紛が、配線間に飛散して短絡の原因となったり、基板製造装置に混入し他の基板にも飛散して短絡を引き起こすという問題もあった。   In addition, when the counterbore part is provided as a heat dissipation hole in the metal core substrate, the generated carbon powder may be scattered between the wirings, causing a short circuit, or entering the substrate manufacturing apparatus and scattering to other substrates. There was also the problem of causing a short circuit.

本発明は、上記のような問題を解決するためになされたものであり、高放熱基板において、絶縁信頼性に優れた高放熱基板及びその製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a high heat dissipation substrate having excellent insulation reliability in a high heat dissipation substrate and a method for manufacturing the same.

本発明に係る高放熱基板は、貫通穴が設けられたCFRPコア層の両表面と貫通穴の内壁を覆う保護膜と、この保護膜で被覆されたCFRPコア層の両表面と貫通穴の内壁を覆うプリプレグ層と、このプリプレグ層の両表面に設けられた配線と、貫通穴を覆うプリプレグ層の内壁面を通して、両配線を導通するスルーホールを備えたものである。   The high heat dissipation substrate according to the present invention includes a protective film covering both surfaces of the CFRP core layer provided with through holes and the inner wall of the through hole, both surfaces of the CFRP core layer covered with this protective film, and an inner wall of the through hole. A prepreg layer that covers the wiring, wiring provided on both surfaces of the prepreg layer, and a through hole that conducts both wirings through the inner wall surface of the prepreg layer that covers the through hole.

本発明に係る高放熱基板の製造方法は、貫通穴が設けられたCFRPコア層の両表面と貫通穴の内壁に保護膜を形成する工程を有するものである。   The manufacturing method of the high heat dissipation substrate according to the present invention includes a step of forming a protective film on both surfaces of the CFRP core layer provided with the through hole and on the inner wall of the through hole.

本発明によれば、CFRPコア層に設けられた貫通穴の穴壁面を、保護膜によって被覆することにより、炭素粉の発生を防止でき、CFRPコアとスルーホール間の絶縁信頼性の向上を図ることができる。また、炭素紛の基板製造装置への混入、他基板への飛散や短絡を予防することができる。   According to the present invention, by covering the wall surface of the through hole provided in the CFRP core layer with the protective film, the generation of carbon powder can be prevented, and the insulation reliability between the CFRP core and the through hole is improved. be able to. Moreover, mixing of carbon powder into the substrate manufacturing apparatus, scattering to other substrates, and short circuit can be prevented.

以下、本発明の実施の形態について、詳細に説明する。
実施の形態1.
図1は、本実施の形態1における高放熱基板100の構成を示す断面図である。図1に示すように、高放熱基板100は、CFRPコア層としてのCFRP板1の表裏両面に、それぞれ絶縁層50a、50bが形成され、絶縁層50a、50bの表面には、それぞれ回路層51a、51bが形成されている。
Hereinafter, embodiments of the present invention will be described in detail.
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing the configuration of the high heat dissipation substrate 100 according to the first embodiment. As shown in FIG. 1, in the high heat dissipation substrate 100, insulating layers 50a and 50b are respectively formed on both front and back surfaces of a CFRP plate 1 as a CFRP core layer, and circuit layers 51a are respectively formed on the surfaces of the insulating layers 50a and 50b. , 51b are formed.

絶縁層50a、50bは、それぞれプリプレグ2a、2b、ガラスクロス3a、3b、及びプリプレグ4a、4bを順次積層した構成となっている。また、回路層51a、51bは、プリプレグ5a、5b、プリプレグ6a、6bを順次積層した構成となっており、プリプレグ6a、6bの両面には、それぞれ所定のパターンで外側に配線層7a、7b、内側に配線層7c、7dが形成されている。   The insulating layers 50a and 50b are configured by sequentially stacking prepregs 2a and 2b, glass cloths 3a and 3b, and prepregs 4a and 4b, respectively. The circuit layers 51a and 51b have a structure in which prepregs 5a and 5b and prepregs 6a and 6b are sequentially stacked. The prepregs 6a and 6b have wiring patterns 7a, 7b, Wiring layers 7c and 7d are formed inside.

CFRP板1には、貫通穴1aが設けられており、この貫通穴1aの穴壁面及び周囲は保護膜としての金属膜で被覆されている。ここでは、金属膜として銅膜8を用いた。また、この貫通穴1aの中心を通るように高放熱基板100を貫通するスルーホール9が設けられている。   The CFRP plate 1 is provided with a through hole 1a, and the hole wall surface and the periphery of the through hole 1a are covered with a metal film as a protective film. Here, the copper film 8 was used as the metal film. Further, a through hole 9 penetrating the high heat dissipation substrate 100 is provided so as to pass through the center of the through hole 1a.

スルーホール9は、配線層7eにより、回路層51a、51bに形成されている各配線層7a、7b、7c、及び7dを接続し、導通する。スルーホール9の径は、貫通穴1aより小さく、CFRP板1の表面及び銅膜8で覆われた面との間はプリプレグ2a、2bで埋められた穴埋め樹脂部2cで電気的に絶縁されている。   The through hole 9 connects the respective wiring layers 7a, 7b, 7c, and 7d formed in the circuit layers 51a and 51b by the wiring layer 7e, and is electrically connected. The diameter of the through hole 9 is smaller than that of the through hole 1a, and the surface of the CFRP plate 1 and the surface covered with the copper film 8 are electrically insulated by the hole filling resin portion 2c filled with the prepregs 2a and 2b. Yes.

CFRP板1は、炭素繊維と樹脂からなる複合材料であれば、炭素繊維の含有率、構造(一方向材、クロス材)などは特に限定されるものではないが、熱伝導率が500W/m・Kの炭素繊維(クロス材)からなるプリプレグを積層したものを用いれば、アルミと同程度の放熱性を有しながら、アルミよりも軽量なコア材が得られる。   As long as the CFRP plate 1 is a composite material composed of carbon fiber and resin, the carbon fiber content, structure (unidirectional material, cloth material) and the like are not particularly limited, but the thermal conductivity is 500 W / m. -If a prepreg made of K carbon fiber (cross material) is used, a core material that is lighter than aluminum while having the same heat dissipation as aluminum can be obtained.

プリプレグ2a、2b、穴埋め部2c、及びプリプレグ4a、4bは、無機フィラーとエラストマーを含有する熱硬化性樹脂を用いる。プリプレグ5a、5b、及びプリプレグ6a、6bは、ガラスクロスに熱硬化性樹脂を含浸したプリプレグを用いる。   The prepregs 2a and 2b, the hole filling portion 2c, and the prepregs 4a and 4b use a thermosetting resin containing an inorganic filler and an elastomer. As the prepregs 5a and 5b and the prepregs 6a and 6b, prepregs in which a glass cloth is impregnated with a thermosetting resin are used.

無機フィラーとしては、アルミナ、シリカ、マグネシア、窒化アルミニウム、窒化ホウ素、窒化ケイ素等が挙げられ、少なくとも一つが用いられる。エラストマーとしては、相溶性の観点から、CTBN(Carboxy−terminated butadiene−acrylonitrile)、ATBN(Amine−terminated butadiene−acrylonitrile)等が挙げられる。熱硬化性樹脂としては、エポキシ、ビスマレイミド、シアネートエステル、ポリイミド等が挙げられる。   Examples of the inorganic filler include alumina, silica, magnesia, aluminum nitride, boron nitride, and silicon nitride, and at least one is used. Examples of the elastomer include CTBN (Carboxy-terminated butadiene-acrylonitrile), ATBN (Amine-terminated buta-ylene) and the like from the viewpoint of compatibility. Examples of the thermosetting resin include epoxy, bismaleimide, cyanate ester, and polyimide.

次に、製造方法について説明する。図2乃至図4は、本実施の形態1における高放熱基板100の製造工程を示す断面図である。図2(a)乃至(d)は銅膜8の被覆工程、図3(a)乃至(d)は絶縁層50a、50bの形成工程、そして図4(a)乃至(d)は回路層51a、51bの形成工程を示す。   Next, a manufacturing method will be described. 2 to 4 are cross-sectional views showing manufacturing steps of the high heat dissipation substrate 100 in the first embodiment. FIGS. 2A to 2D are steps for coating the copper film 8, FIGS. 3A to 3D are steps for forming the insulating layers 50a and 50b, and FIGS. 4A to 4D are circuit layers 51a. , 51b are shown.

まず、銅膜8の被覆工程では、図2(a)に示すように、両面銅張したCFRP板1を準備し、ソフトエッチングを行い、銅膜8の厚みを薄くする。次に、図2(b)に示すように、貫通穴1aを形成する。続いて、図2(c)に示すように、CFRP板1前面に銅めっきを行い、貫通穴1aの穴壁面にも銅膜の内壁部8aを形成する。さらに、図2(d)に示すように、銅膜8のパターニングを行い、ランド8bを形成する。   First, in the coating process of the copper film 8, as shown in FIG. 2A, a CFRP plate 1 that is copper-clad on both sides is prepared, and soft etching is performed to reduce the thickness of the copper film 8. Next, as shown in FIG. 2B, a through hole 1a is formed. Subsequently, as shown in FIG. 2C, copper plating is performed on the front surface of the CFRP plate 1 to form an inner wall portion 8a of the copper film on the hole wall surface of the through hole 1a. Further, as shown in FIG. 2D, the copper film 8 is patterned to form lands 8b.

次に、絶縁層50a、50bの形成工程では、まず、図3(a)に示すように、プリプレグ2a、2bの片面にそれぞれ離型フィルム10a、10bが貼付された樹脂シート52a、52bを準備し、内壁部8aとランド8bを形成したCFRP板1の表裏両面に、プリプレグ2a、2bの露出面が重なるように配置する。プリプレグ2a、2bは、半硬化状態(Bステージ)のものが使用される。離型フィルムには、例えば、PET(ポリエチレンテレフタレート)フィルムが用いられる。   Next, in the formation process of the insulating layers 50a and 50b, first, as shown in FIG. 3A, resin sheets 52a and 52b in which release films 10a and 10b are respectively attached to one side of the prepregs 2a and 2b are prepared. The prepregs 2a and 2b are arranged so that the exposed surfaces of the CFRP plate 1 on which the inner wall 8a and the land 8b are formed overlap each other. The prepregs 2a and 2b are used in a semi-cured state (B stage). For the release film, for example, a PET (polyethylene terephthalate) film is used.

続いて、このように配置した樹脂シート52a、52bを、真空状態で加熱加圧する。図3(b)に示すように、プリプレグ2a、2bは溶融し、貫通穴1aをボイドや凹みなく埋めて、CFRP板1をラミネートする。ラミネート後、離型フィルム10a、10bを剥がす。   Subsequently, the resin sheets 52a and 52b arranged in this way are heated and pressurized in a vacuum state. As shown in FIG. 3B, the prepregs 2a and 2b are melted, the through holes 1a are filled without voids or dents, and the CFRP plate 1 is laminated. After lamination, the release films 10a and 10b are peeled off.

次に、図2(c)に示すように、プリプレグ4a、4bの片面に離型フィルム11a、11bが貼付された樹脂シート53a、53bを準備し、プリプレグ2a、2bでラミネートされたCFRP板1の表裏両面に、それぞれガラスクロス3a、3bを挟んで、ガラスクロス3a、3bに、それぞれプリプレグ4a、4bの露出面が重なるように配置する。プリプレグ4a、4bは、半硬化状態(Bステージ)のものが使用される。   Next, as shown in FIG. 2 (c), resin sheets 53a and 53b having release films 11a and 11b attached to one side of the prepregs 4a and 4b are prepared, and the CFRP plate 1 laminated with the prepregs 2a and 2b. The glass cloths 3a and 3b are respectively sandwiched between the front and back surfaces of the glass cloth 3a and 3b so that the exposed surfaces of the prepregs 4a and 4b overlap the glass cloths 3a and 3b, respectively. The prepregs 4a and 4b are used in a semi-cured state (B stage).

続いて、このように配置した樹脂シート53a、53bを、真空状態で加熱加圧する。図2(e)に示すように、プリプレグ4a、4b、及びプリプレグ2a、2bは溶融し、プリプレグ2aとプリプレグ4a、及びプリプレグ2bと4bを、それぞれガラスクロス3a、3bを挟んでラミネートする。さらに加熱加圧を続け、プリプレグ2a、2b、4a、及び4bを完全硬化することにより、CFRP板1に絶縁層50a、50bが形成される。   Subsequently, the resin sheets 53a and 53b arranged in this way are heated and pressurized in a vacuum state. As shown in FIG. 2E, the prepregs 4a and 4b and the prepregs 2a and 2b are melted, and the prepreg 2a and the prepreg 4a, and the prepregs 2b and 4b are laminated with the glass cloths 3a and 3b interposed therebetween, respectively. Further, heating and pressurization is continued to completely cure the prepregs 2a, 2b, 4a, and 4b, whereby the insulating layers 50a and 50b are formed on the CFRP plate 1.

次いで、回路層51a、51bの形成工程では、まず、図4(a)に示すように、絶縁層50a、50bを形成したCFRP板1から、離型フィルム11a、11bを剥がす。次に、図4(b)に示すように、配線層7aと7c、及び配線層7bと7dを形成したプリプレグ6a、6bを準備し、絶縁層50a、50bの両表面に、プリプレグ5a、5bを挟んで、プリプレグ5a、5bに、それぞれプリプレグ6a、6bの配線層7c、7dを形成した面が重なるように配置する。   Next, in the step of forming the circuit layers 51a and 51b, first, as shown in FIG. 4A, the release films 11a and 11b are peeled off from the CFRP plate 1 on which the insulating layers 50a and 50b are formed. Next, as shown in FIG. 4B, prepregs 6a and 6b on which wiring layers 7a and 7c and wiring layers 7b and 7d are formed are prepared, and prepregs 5a and 5b are formed on both surfaces of the insulating layers 50a and 50b. The prepregs 5a and 5b are arranged so that the surfaces of the prepregs 6a and 6b on which the wiring layers 7c and 7d are formed overlap each other.

プリプレグ5a、5bは、それぞれ半硬化状態(Bステージ)のものを使用する。プリプレグ6a、6bは、両面に銅箔を積層して完全硬化後、片面のみ配線層7c、7dを所定のパターンで形成したものを用いる。ここでは、プリプレグ5a、5b、6a、及び6bは、ガラスクロスに熱硬化性樹脂を含浸した通常のプリプレグを用いた。   The prepregs 5a and 5b are each in a semi-cured state (B stage). The prepregs 6a and 6b are formed by laminating copper foils on both sides and completely curing, and then forming wiring layers 7c and 7d in a predetermined pattern only on one side. Here, as the prepregs 5a, 5b, 6a, and 6b, ordinary prepregs in which a glass cloth was impregnated with a thermosetting resin were used.

続いて、このように配置したプリプレグ6a、6bを、真空状態で加熱加圧する。図4(c)に示すように、プリプレグ5a、5bは溶融し、絶縁層50a、50bの両表面上にプリプレグ6a、6bを、それぞれの配線層7c、7dとの段差を埋めて接着する。さらに加熱加圧を続け、プリプレグ5a、5b、6a、及び6bを完全硬化することにより、絶縁層50a、50bの両表面上に回路層51a、51bが形成される。   Subsequently, the prepregs 6a and 6b arranged in this way are heated and pressurized in a vacuum state. As shown in FIG. 4C, the prepregs 5a and 5b are melted, and the prepregs 6a and 6b are bonded to both surfaces of the insulating layers 50a and 50b while filling the steps with the respective wiring layers 7c and 7d. Further, heating and pressurization are continued to completely cure the prepregs 5a, 5b, 6a, and 6b, whereby circuit layers 51a and 51b are formed on both surfaces of the insulating layers 50a and 50b.

次に、図4(d)に示すように、プリプレグ2a、2bで埋められた貫通穴1aと同軸上に、貫通穴1aより径の小さいスルーホール9用の貫通穴9aを設ける。この貫通穴9aの内壁面に銅めっきを施してスルーホール9を形成後、配線層7a、7bに所定のパターニングを施し、さらに後工程として、外形加工、ソルダーレジスト塗工、ガスレベラー処理によるはんだコートを行うことで図1に示すような高放熱基板が得られる。   Next, as shown in FIG. 4D, a through hole 9a for the through hole 9 having a smaller diameter than the through hole 1a is provided coaxially with the through hole 1a filled with the prepregs 2a and 2b. After the through-hole 9 is formed by performing copper plating on the inner wall surface of the through-hole 9a, predetermined patterning is performed on the wiring layers 7a and 7b, and soldering by external processing, solder resist coating, and gas leveler processing is performed as subsequent processes. By performing the coating, a high heat dissipation substrate as shown in FIG. 1 is obtained.

以上のように、本実施の形態1では、CFRP板1に設けられた貫通穴1aの穴壁面を、銅膜8によって被覆することにより、炭素粉の発生を防止でき、CFRP板とスルーホール間の絶縁性が低下することがなく、絶縁信頼性の向上を図ることができる。また、炭素紛の基板製造装置への混入、他基板への飛散や短絡を予防することができる。   As described above, in the first embodiment, by covering the hole wall surface of the through hole 1a provided in the CFRP plate 1 with the copper film 8, it is possible to prevent the generation of carbon powder, and between the CFRP plate and the through hole. Therefore, the insulation reliability can be improved. Moreover, mixing of carbon powder into the substrate manufacturing apparatus, scattering to other substrates, and short circuit can be prevented.

また、貫通穴1aにランド8bを設けることにより、CFRP板に設けられた穴が基準穴としてX線で容易に認識でき、スルーホールとCFRP板が接触して短絡することを防ぐことができる。   Further, by providing the land 8b in the through hole 1a, the hole provided in the CFRP plate can be easily recognized as the reference hole by X-ray, and the through hole and the CFRP plate can be prevented from being short-circuited.

なお、本実施の形態1では、CFRP板1に設けられた貫通穴の穴壁面を、銅膜によって被覆したが、図5に示すようにCFRP板1の放熱孔としてザグリ部12を設ける位置に銅膜8cを設けてもよい。   In the first embodiment, the hole wall surface of the through hole provided in the CFRP plate 1 is covered with the copper film, but at the position where the counterbore portion 12 is provided as the heat dissipation hole of the CFRP plate 1 as shown in FIG. A copper film 8c may be provided.

この場合、ザグリを形成する際に、レーザー加工を用いると、この銅膜6cでザグリを止めることができ、フライス加工等の機械加工と異なり、CFRP板1を傷つけることなく炭素紛の発生を防ぐことができる。   In this case, when forming the counterbore, if laser processing is used, the counterbore can be stopped by the copper film 6c, and unlike mechanical processing such as milling, the generation of carbon powder is prevented without damaging the CFRP plate 1. be able to.

実施の形態2.
実施の形態1の高放熱基板においては、保護膜に銅膜8を用いたが、実施の形態2では、樹脂膜を用いた場合について示す。
Embodiment 2. FIG.
In the high heat dissipation substrate of the first embodiment, the copper film 8 is used as the protective film, but in the second embodiment, a case where a resin film is used will be described.

図6は、本実施の形態2における高放熱基板102の構成を示す断面図である。図6に示すように、高放熱基板102では、CFRP板1の貫通穴1aにおいて、穴壁面及び周囲が保護膜としての樹脂膜13で被覆されている。その他の構成に関しては、実施の形態1と同様であり、相当部分には図1と同一符号を付して説明を省略する。   FIG. 6 is a cross-sectional view showing the configuration of the high heat dissipation substrate 102 in the second embodiment. As shown in FIG. 6, in the high heat dissipation substrate 102, the hole wall surface and the periphery of the through hole 1 a of the CFRP plate 1 are covered with a resin film 13 as a protective film. Other configurations are the same as those in the first embodiment, and the same reference numerals as those in FIG.

図7は、本実施の形態2における高放熱基板102の製造工程を示す断面図である。図7(a)乃至(d)は樹脂膜13の被覆工程を示す。図7(a)に示すように、CFRP板1を準備し、次に、図7(b)に示すように、貫通穴1aを形成する。   FIG. 7 is a cross-sectional view showing a manufacturing process of the high heat dissipation substrate 102 in the second embodiment. 7A to 7D show the coating process of the resin film 13. As shown in FIG. 7A, a CFRP plate 1 is prepared, and then a through hole 1a is formed as shown in FIG. 7B.

続いて、図7(c)に示すように、貫通穴1aを形成したCFRP板1に、溶剤で希釈した未硬化の熱硬化性樹脂を塗装し、その後硬化することにより、CFRP板1の表裏両面及び貫通穴1aの穴壁面に樹脂膜13を形成する。その他の製造工程に関しては、実施の形態1と同様であり、説明を省略する。   Subsequently, as shown in FIG. 7 (c), an uncured thermosetting resin diluted with a solvent is applied to the CFRP plate 1 in which the through holes 1a are formed, and then cured, whereby the front and back sides of the CFRP plate 1 are obtained. The resin film 13 is formed on both sides and the hole wall surface of the through hole 1a. Other manufacturing steps are the same as those in the first embodiment, and the description thereof is omitted.

以上のように、本実施の形態2では、CFRP板1に設けられた貫通穴1aの穴壁面を、樹脂膜13によって被覆することにより、炭素粉の発生を防止できるだけでなく、保護膜を形成しても重量の増加を最小限に留めることができる。   As described above, in the second embodiment, the hole wall surface of the through hole 1a provided in the CFRP plate 1 is covered with the resin film 13, thereby not only preventing the generation of carbon powder but also forming a protective film. Even so, the increase in weight can be kept to a minimum.

なお、本実施の形態においては、絶縁層50a、50bに、無機フィラーとエラストマーを含有したプリプレグを用いて、ガラスクロスを挟んで積層形成したが、回路層51a、51bの形成時に用いた、通常のプリプレグであるプリプレグ5a、5bを兼用してもよい。   In the present embodiment, the insulating layers 50a and 50b are formed by laminating a glass cloth with a prepreg containing an inorganic filler and an elastomer, but the normal layers used when forming the circuit layers 51a and 51b are used. Alternatively, the prepregs 5a and 5b which are prepregs may be used.

図8に示すように、プリプレグ5a、5bは、貫通穴1aを穴埋め樹脂部2cで埋めてCFRP板1を覆い、スルーホール9とCFRP板1を絶縁すると共に、プリプレグ6a、6bを接着する。この場合、絶縁層50a、50bの形成工程を省略することができ、製造工程の簡略化を図ることができる。   As shown in FIG. 8, the prepregs 5a and 5b cover the CFRP plate 1 by filling the through holes 1a with the hole filling resin portion 2c, insulate the through holes 9 and the CFRP plate 1, and adhere the prepregs 6a and 6b. In this case, the formation process of the insulating layers 50a and 50b can be omitted, and the manufacturing process can be simplified.

次に、本発明の実施例を示し、更に詳細に説明する。なお、実施例において用いられた評価及び物性の測定は以下に示す方法で行った。   Next, examples of the present invention will be shown and described in more detail. In addition, the evaluation used in the Example and the measurement of the physical property were performed by the method shown below.

(1)絶縁抵抗
ザグリ部12を備えた高放熱基板を作成し、ザグリ部12からCFRP板1とスルーホール9の間の絶縁抵抗を、絶縁抵抗測定装置(Moving Probe Tester EMMA880、マイクロクラフト製)で測定した。判定基準は、印加電圧250Vで絶縁抵抗が65MΩ以上あれば合格とした。
(1) Insulation resistance A high heat dissipation substrate having a counterbore part 12 is prepared, and an insulation resistance measurement device (Moving Probe Tester EMMA880, manufactured by Microcraft) is used to measure the insulation resistance between the CFRP plate 1 and the through hole 9 from the counterbore part 12. Measured with The criteria for determination was acceptable if the applied voltage was 250 V and the insulation resistance was 65 MΩ or more.

(2)断面観察
作製した高放熱基板のヒートサイクル試験を実施した後、断面を顕微鏡で観察して、スルーホール信頼性、接着性、穴埋め性等を目視評価した。ヒートサイクル試験は、−65℃で15分間放置後、125℃で15分間放置し、これを1サイクルとして500サイクル繰り返した。
(2) Cross-sectional observation After implementing the heat cycle test of the produced high heat dissipation board | substrate, the cross section was observed with the microscope and through-hole reliability, adhesiveness, hole filling property, etc. were evaluated visually. The heat cycle test was allowed to stand at −65 ° C. for 15 minutes, then left at 125 ° C. for 15 minutes, and this was repeated for 500 cycles.

実施例1
まず、熱伝導率が500W/m・Kのカーボン繊維(クロス材)を積層し、両面銅張したCFRP板1(厚み0.5mm、サイズ405mm×340mm)を準備し、CFRP板1表面のソフトエッチングを行い、銅膜8の厚みを6μm程度まで薄くした(図2(a)参照)。
Example 1
First, a CFRP plate 1 (thickness 0.5 mm, size 405 mm × 340 mm) in which carbon fibers (cross material) with a thermal conductivity of 500 W / m · K are laminated and copper-coated on both sides is prepared, and the surface of the CFRP plate 1 is softened. Etching was performed to reduce the thickness of the copper film 8 to about 6 μm (see FIG. 2A).

次に、このCFRP板1に、ドリルにより直径1.5mmの貫通穴1aを設けた(図2(b)参照)。続いて、銅めっきを行い、貫通穴1aの壁面に約10μm、CFRP板1の両表面には約15μmの銅膜を形成した(図2(c)参照)。次いで、パターニングを行い、外径1.8mmのランド8bを形成した(図2(d)参照)。   Next, a through hole 1a having a diameter of 1.5 mm was provided in the CFRP plate 1 by a drill (see FIG. 2B). Subsequently, copper plating was performed to form a copper film of about 10 μm on the wall surface of the through hole 1 a and about 15 μm on both surfaces of the CFRP plate 1 (see FIG. 2C). Next, patterning was performed to form a land 8b having an outer diameter of 1.8 mm (see FIG. 2D).

次に、プリプレグ2a、2bと離型フィルム10a、10bからなる樹脂シート52a、52b、及びプリプレグ4a、4bと離型フィルム11a、11bからなる樹脂シート52a、52bを準備した。樹脂シート52a、52bは、アルミナフィラーとCTBN(Carboxy−terminated butadiene−acrylonitrile)を混合した半硬化状態(Bステージ)のエポキシ樹脂からなり、熱伝導率が3W/m・Kのものを用いた。アルミナフィラーには粒径が0.1〜50μmのものを用い、プリプレグ2a、2b、及びプリプレグ4a、4bは、それぞれ厚みが240μm、120μmの半硬化状態(Bステージ)のエポキシ樹脂を用いた。   Next, resin sheets 52a and 52b made of prepregs 2a and 2b and release films 10a and 10b, and resin sheets 52a and 52b made of prepregs 4a and 4b and release films 11a and 11b were prepared. The resin sheets 52a and 52b are made of an epoxy resin in a semi-cured state (B stage) in which an alumina filler and CTBN (Carboxy-terminated butadiene-acrylonitrile) are mixed, and those having a thermal conductivity of 3 W / m · K are used. Alumina filler having a particle size of 0.1 to 50 μm was used, and prepregs 2a and 2b and prepregs 4a and 4b were made of semi-cured epoxy resin (B stage) having thicknesses of 240 μm and 120 μm, respectively.

次に、ランド8b及び内壁部8aを形成したCFRP板1を樹脂シート52a、52bを配置し(図3(a)参照)、プリプレグ2a、2bを真空ラミネートした(図3(b)参照)。この真空ラミネートでは、150℃で1分間真空引きした後、更に10kg/cmで2分間加熱加圧した。 Next, resin sheets 52a and 52b were placed on the CFRP plate 1 on which the lands 8b and the inner wall portion 8a were formed (see FIG. 3A), and the prepregs 2a and 2b were vacuum-laminated (see FIG. 3B). In this vacuum lamination, vacuuming was performed at 150 ° C. for 1 minute, and then heating and pressing were further performed at 10 kg / cm 2 for 2 minutes.

次に、離型フィルム10a、10bを剥がし、厚み55μmのガラスクロス3a、3bを挟んで、樹脂シート52a、52bを配置し(図3(c)参照)、プリプレグ4a、4bを真空ラミネートした(図3(d)参照)。この真空ラミネートでは、150℃で20秒間真空引きした後、更に10kg/cmで20秒間加熱加圧した。続いて、昇温速度3℃/minで昇温し、190℃、30kg/cmで1時間加熱加圧することにより、完全硬化した絶縁層50a、50bを得た。 Next, the release films 10a and 10b are peeled off, the resin sheets 52a and 52b are arranged with the glass cloths 3a and 3b having a thickness of 55 μm interposed therebetween (see FIG. 3C), and the prepregs 4a and 4b are vacuum-laminated ( (Refer FIG.3 (d)). In this vacuum lamination, vacuuming was performed at 150 ° C. for 20 seconds, followed by further heating and pressing at 10 kg / cm 2 for 20 seconds. Subsequently, the temperature was raised at a rate of temperature rise of 3 ° C./min, and heat-pressed at 190 ° C. and 30 kg / cm 2 for 1 hour to obtain completely cured insulating layers 50a and 50b.

次に、絶縁層50a、50bを形成したCFRP板1に(図4(a)参照)、厚みが60μmの半硬化状態(Bステージ)のプリプレグ5a、5bを挟んで、厚みが70μm配線層7a、7c、及び配線層7b、7dを設けた厚みが200μmのプリプレグ6a、6bを配置し(図4(b)参照)、昇温速度3℃/minで昇温し、180℃、30kg/cmで1時間加熱加圧して積層することにより、完全硬化した回路層51a、51bを得た(図4(c)参照)。プリプレグ5a、5b、6a、及び6bは、ガラスクロスにエポキシ樹脂を含浸した通常のプリプレグを用いた。 Next, the CFRP plate 1 on which the insulating layers 50a and 50b are formed (see FIG. 4A) is sandwiched between the prepregs 5a and 5b in a semi-cured state (B stage) having a thickness of 60 μm, and the thickness is 70 μm. , 7c and prepregs 6a and 6b having a thickness of 200 μm provided with wiring layers 7b and 7d (see FIG. 4B), the temperature is raised at a rate of temperature rise of 3 ° C./min, 180 ° C., 30 kg / cm By heating and pressing at 2 for 1 hour to laminate, fully cured circuit layers 51a and 51b were obtained (see FIG. 4C). As the prepregs 5a, 5b, 6a, and 6b, ordinary prepregs in which a glass cloth was impregnated with an epoxy resin were used.

次に、回路層51a、51bまで形成したCFRP板1に、貫通穴1aと同軸上に直径0.9mmのスルーホール9用の貫通穴9aを設けた(図4(d)参照)。続いて、貫通穴9aの内壁面に銅めっきを施してスルーホール9を形成後、配線層7a、7bに所定のパターニングを施し、さらに後工程として、外形加工、ソルダーレジスト塗工、ガスレベラー処理によるはんだコートを行うことで高放熱基板を得た(図1参照)。   Next, a through hole 9a for a through hole 9 having a diameter of 0.9 mm was provided coaxially with the through hole 1a in the CFRP plate 1 formed up to the circuit layers 51a and 51b (see FIG. 4D). Subsequently, the inner wall surface of the through-hole 9a is plated with copper to form the through-hole 9, and then the wiring layers 7a and 7b are subjected to predetermined patterning, and as subsequent processes, external processing, solder resist coating, gas leveler processing A high heat dissipation substrate was obtained by performing solder coating according to (see FIG. 1).

得られた高放熱基板について、CFRP板1とスルーホール9間の絶縁検査を行ったところ、250Vで65MΩ以上の絶縁抵抗が得られた。また、得られた高放熱基板について、断面観察を行ったところ剥離・クラック等異常は見られなかった。また、高放熱基板のヒートサイクル試験を実施した後、断面観察を行ったが、特に異常は見られなかった。   When the insulation test between the CFRP plate 1 and the through hole 9 was performed on the obtained high heat dissipation substrate, an insulation resistance of 65 MΩ or more was obtained at 250V. Further, when the cross section of the obtained high heat dissipation substrate was observed, no abnormality such as peeling or cracking was observed. Moreover, although the cross-sectional observation was performed after implementing the heat cycle test of a high thermal radiation board | substrate, abnormality was not seen especially.

実施例2
まず、熱伝導率が500W/m・Kのカーボン繊維(クロス材)を積層したCFRP板1(厚み0.5mm、サイズ405mm×340mm)を準備し(図7(a)参照)、ドリルにより直径1.5mmの貫通穴1aを設けた(図7(b)参照)。
Example 2
First, a CFRP plate 1 (thickness 0.5 mm, size 405 mm × 340 mm) laminated with carbon fibers (cross material) having a thermal conductivity of 500 W / m · K is prepared (see FIG. 7A), and the diameter is measured by a drill. A 1.5 mm through hole 1a was provided (see FIG. 7B).

次に、CFRP板1の表裏両面及び貫通穴1aの壁面に、メチルエチルケトンで希釈した未硬化のエポキシ樹脂を約10μm塗装し、50℃で乾燥後、180℃で1時間加熱して硬化した(図7(c)参照)。   Next, about 10 μm of uncured epoxy resin diluted with methyl ethyl ketone was applied to both the front and back surfaces of the CFRP plate 1 and the wall surface of the through hole 1a, dried at 50 ° C., and then cured by heating at 180 ° C. for 1 hour (see FIG. 7 (c)).

絶縁層50a、50b、回路層51a、51b、及び後工程については、実施例1と同様の方法を用いて形成し、高放熱基板を得た(図6参照)。   The insulating layers 50a and 50b, the circuit layers 51a and 51b, and the post-process were formed using the same method as in Example 1 to obtain a high heat dissipation substrate (see FIG. 6).

得られた高放熱基板について、CFRP板1とスルーホール9間の絶縁検査を行ったところ、250Vで65MΩ以上の絶縁抵抗が得られた。また、得られた高放熱基板について、断面観察を行ったところ剥離・クラック等異常は見られなかった。また、高放熱基板のヒートサイクル試験を実施した後、断面観察を行ったが、特に異常は見られなかった。   When the insulation test between the CFRP plate 1 and the through hole 9 was performed on the obtained high heat dissipation substrate, an insulation resistance of 65 MΩ or more was obtained at 250V. Further, when the cross section of the obtained high heat dissipation substrate was observed, no abnormality such as peeling or cracking was observed. Moreover, although the cross-sectional observation was performed after implementing the heat cycle test of a high thermal radiation board | substrate, abnormality was not seen especially.

本発明に係る高放熱基板の実施の形態1の構成を示す断面図である。It is sectional drawing which shows the structure of Embodiment 1 of the high thermal radiation board | substrate which concerns on this invention. 本発明に係る高放熱基板の実施の形態1の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of Embodiment 1 of the high thermal radiation board | substrate which concerns on this invention. 本発明に係る高放熱基板の実施の形態1の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of Embodiment 1 of the high thermal radiation board | substrate which concerns on this invention. 本発明に係る高放熱基板の実施の形態1の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of Embodiment 1 of the high thermal radiation board | substrate which concerns on this invention. 本発明に係る高放熱基板の実施の形態1の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of Embodiment 1 of the high thermal radiation board | substrate which concerns on this invention. 本発明に係る高放熱基板の実施の形態2の構成を示す断面図である。It is sectional drawing which shows the structure of Embodiment 2 of the high thermal radiation board | substrate which concerns on this invention. 本発明に係る高放熱基板の実施の形態2の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of Embodiment 2 of the high thermal radiation board | substrate which concerns on this invention. 本発明に係る高放熱基板の他の実施の形態の構成を示す断面図である。It is sectional drawing which shows the structure of other embodiment of the high thermal radiation board | substrate which concerns on this invention.

符号の説明Explanation of symbols

1 CFRP板
1a 貫通穴
2a、2b、2c、4a、4b、 プリプレグ
3a、3b ガラスクロス
5a、5b、6a、6b ガラスクロスを含むプリプレグ
7a、7b、7c、7d、7e 配線層
8、8c 銅膜
8a 内壁部
8b ランド
9 スルーホール
12 ザグリ部
13 樹脂膜
100、101、102、103 高放熱基板
DESCRIPTION OF SYMBOLS 1 CFRP board 1a Through-hole 2a, 2b, 2c, 4a, 4b, Prepreg 3a, 3b Glass cloth 5a, 5b, 6a, 6b Prepreg including glass cloth 7a, 7b, 7c, 7d, 7e Wiring layer 8, 8c Copper film 8a Inner wall portion 8b Land 9 Through hole 12 Counterbore portion 13 Resin films 100, 101, 102, 103 High heat dissipation substrate

Claims (7)

貫通穴が設けられたCFRPコア層と、このCFRPコア層の両表面と前記貫通穴の内壁を覆う保護膜と、この保護膜で被覆されたCFRPコア層の両表面と前記貫通穴の内壁を覆うプリプレグ層と、このプリプレグ層の両表面に設けられた配線と、前記貫通穴を覆うプリプレグ層の内壁面を通して、前記両配線を導通するスルーホールを備えた高放熱基板。   A CFRP core layer provided with a through hole, a protective film covering both surfaces of the CFRP core layer and the inner wall of the through hole, and both surfaces of the CFRP core layer covered with the protective film and an inner wall of the through hole A high heat dissipation substrate comprising a covering prepreg layer, wiring provided on both surfaces of the prepreg layer, and a through hole that conducts the wiring through an inner wall surface of the prepreg layer covering the through hole. 保護膜が、銅からなることを特徴とする請求項1に記載の高放熱基板。   The high heat dissipation substrate according to claim 1, wherein the protective film is made of copper. 保護膜が、樹脂からなることを特徴とする請求項1に記載の高放熱基板。   The high heat dissipation substrate according to claim 1, wherein the protective film is made of a resin. 保護膜が、所定のパターンで設けられたことを特徴とする請求項2に記載の高放熱基板。   The high heat dissipation substrate according to claim 2, wherein the protective film is provided in a predetermined pattern. 更にザグリ部を備え、このザグリ部のCFRPコア層の表面に保護層が設けられたことを特徴とする請求項4に記載の高放熱基板。   The high heat dissipation substrate according to claim 4, further comprising a counterbore part, and a protective layer provided on a surface of the CFRP core layer of the counterbore part. 貫通穴が設けられたCFRPコア層の両表面と前記貫通穴の内壁に保護膜を形成する工程を有する高放熱基板の製造方法。   A method for manufacturing a high heat dissipation substrate, comprising: forming a protective film on both surfaces of a CFRP core layer provided with a through hole and on an inner wall of the through hole. 更に、保護膜を所定のパターンに形成する工程を有する請求項6に記載の高放熱基板の製造方法。   Furthermore, the manufacturing method of the high thermal radiation board | substrate of Claim 6 which has the process of forming a protective film in a predetermined pattern.
JP2006240200A 2006-08-23 2006-09-05 High heat dissipation substrate and manufacturing method thereof Active JP4816343B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006240200A JP4816343B2 (en) 2006-09-05 2006-09-05 High heat dissipation substrate and manufacturing method thereof
US11/832,376 US8148647B2 (en) 2006-08-23 2007-08-01 Printed circuit board and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006240200A JP4816343B2 (en) 2006-09-05 2006-09-05 High heat dissipation substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008066375A true JP2008066375A (en) 2008-03-21
JP4816343B2 JP4816343B2 (en) 2011-11-16

Family

ID=39288835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006240200A Active JP4816343B2 (en) 2006-08-23 2006-09-05 High heat dissipation substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4816343B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010074121A1 (en) * 2008-12-25 2010-07-01 三菱電機株式会社 Method for manufacturing printed wiring board
WO2011086895A1 (en) * 2010-01-13 2011-07-21 三菱電機株式会社 Processes for production of core material and circuit board
JP2017085074A (en) * 2015-10-23 2017-05-18 サムソン エレクトロ−メカニックス カンパニーリミテッド. Printed circuit board and manufacturing method of the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140902A (en) * 1997-07-18 1999-02-12 Cmk Corp Printed wiring board and manufacture thereof
JP2003046022A (en) * 2001-05-22 2003-02-14 Hitachi Ltd Electronic apparatus
JP2003273482A (en) * 2002-03-15 2003-09-26 Fujitsu Ltd Circuit board and manufacturing method thereof, and electronic equipment
JP2004349653A (en) * 2003-05-26 2004-12-09 Fujitsu Ltd Method for manufacturing printed circuit board
JP2006114606A (en) * 2004-10-13 2006-04-27 Mitsubishi Electric Corp Printed wiring board, substrate therefor and method of manufacturing substrate for printed wiring board
JP2006222216A (en) * 2005-02-09 2006-08-24 Fujitsu Ltd Wiring board and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140902A (en) * 1997-07-18 1999-02-12 Cmk Corp Printed wiring board and manufacture thereof
JP2003046022A (en) * 2001-05-22 2003-02-14 Hitachi Ltd Electronic apparatus
JP2003273482A (en) * 2002-03-15 2003-09-26 Fujitsu Ltd Circuit board and manufacturing method thereof, and electronic equipment
JP2004349653A (en) * 2003-05-26 2004-12-09 Fujitsu Ltd Method for manufacturing printed circuit board
JP2006114606A (en) * 2004-10-13 2006-04-27 Mitsubishi Electric Corp Printed wiring board, substrate therefor and method of manufacturing substrate for printed wiring board
JP2006222216A (en) * 2005-02-09 2006-08-24 Fujitsu Ltd Wiring board and its manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010074121A1 (en) * 2008-12-25 2010-07-01 三菱電機株式会社 Method for manufacturing printed wiring board
JP5581218B2 (en) * 2008-12-25 2014-08-27 三菱電機株式会社 Method for manufacturing printed wiring board
US9313903B2 (en) 2008-12-25 2016-04-12 Mitsubishi Electric Corporation Method of manufacturing printed wiring board
WO2011086895A1 (en) * 2010-01-13 2011-07-21 三菱電機株式会社 Processes for production of core material and circuit board
CN102712173A (en) * 2010-01-13 2012-10-03 三菱电机株式会社 Processes for production of core material and circuit board
JP5486020B2 (en) * 2010-01-13 2014-05-07 三菱電機株式会社 Circuit board and manufacturing method thereof
US8935851B2 (en) 2010-01-13 2015-01-20 Mitsubishi Electric Corporation Method for manufacturing a circuit board
CN102712173B (en) * 2010-01-13 2015-10-14 三菱电机株式会社 Circuit substrate and manufacture method thereof
JP2017085074A (en) * 2015-10-23 2017-05-18 サムソン エレクトロ−メカニックス カンパニーリミテッド. Printed circuit board and manufacturing method of the same

Also Published As

Publication number Publication date
JP4816343B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP6200178B2 (en) Electronic component built-in substrate and manufacturing method thereof
US9313903B2 (en) Method of manufacturing printed wiring board
WO2001045478A1 (en) Multilayered printed wiring board and production method therefor
JP4992342B2 (en) Method for manufacturing printed wiring board
US8134085B2 (en) Printed interconnection board having a core including carbon fiber reinforced plastic
KR20090037801A (en) Core substrate and method of producing the same
JP5076196B2 (en) Printed wiring board and manufacturing method thereof
US10674608B2 (en) Printed circuit board and manufacturing method thereof
JP4907216B2 (en) Printed wiring board and printed wiring board manufacturing method
JP4816343B2 (en) High heat dissipation substrate and manufacturing method thereof
JP3969477B2 (en) Multilayer wiring board and manufacturing method thereof
JP4899409B2 (en) Multilayer printed wiring board and manufacturing method thereof
JPH11251703A (en) Circuit board, both-sided circuit board, multilayered circuit board, and manufacture of circuit board
JP5623364B2 (en) Wiring board, mounting structure, and electronic device
JP5389148B2 (en) Printed wiring board and manufacturing method thereof
JP4591181B2 (en) Printed wiring board
JP5264651B2 (en) Method for manufacturing printed wiring board
JP2004327744A (en) Multilayer wiring board and manufacturing method therefor
JP4803919B2 (en) Manufacturing method of multilayer wiring board
JP4803918B2 (en) Manufacturing method of multilayer wiring board
JP2005079475A (en) Multilayer wiring board and manufacturing method thereof
KR101156924B1 (en) Method of manufacturing printed curcuit board
JP2005026548A (en) Method for manufacturing multi-wire wiring board
JPH0332100A (en) Multilayer printed wiring board
JP2006269488A (en) Circuit board and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4816343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250