JP2008066352A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2008066352A
JP2008066352A JP2006239680A JP2006239680A JP2008066352A JP 2008066352 A JP2008066352 A JP 2008066352A JP 2006239680 A JP2006239680 A JP 2006239680A JP 2006239680 A JP2006239680 A JP 2006239680A JP 2008066352 A JP2008066352 A JP 2008066352A
Authority
JP
Japan
Prior art keywords
semiconductor device
light
wavelength band
target wavelength
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006239680A
Other languages
English (en)
Inventor
Yoshihito Higashitsutsumi
良仁 東堤
Yuzo Ozuru
雄三 大鶴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
System Solutions Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Semiconductor Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006239680A priority Critical patent/JP2008066352A/ja
Publication of JP2008066352A publication Critical patent/JP2008066352A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】赤外光を光ルミネッセンスにより可視光に変換することにより可視光の画像と赤外光の画像とを撮像可能な固体撮像素子において、それぞれの画質を向上する。
【解決手段】光が入射されるp型シリコン基板52の表面にCCDシフトレジスタを構築し、またカラーフィルタ62を積層する。基板の裏面には発光体64を積層する。光学系から入射する可視光80は、発光体64の影響を受けることなく、シリコン基板52に形成されるフォトダイオードに入射し光電変換され、信号電荷82を生じる。一方、赤外光84は、カラーフィルタ62やシリコン基板52を透過して発光体64に到達し、可視光86に変換される。可視光86はシリコン基板52の裏面からフォトダイオードに入射し、信号電荷88を生じる。各信号電荷82,88はそれぞれ基板表面に設けたCCDシフトレジスタを用いて転送され画像信号として読み出される。
【選択図】図4

Description

本発明は、半導体集積回路技術を用いた半導体装置に関し、特に可視光や赤外光等を検出する半導体装置に関する。
近年、セキュリティー、自動車、家電などの分野において、赤外線イメージセンサへのニーズが高まっている。可視光画像を撮影するイメージセンサとしては、シリコン基板に形成したフォトダイオード等での光電変換を利用するCCDイメージセンサ等の固体撮像素子が一般的である。これに対し、赤外光は、バンドギャップが1.1eVであるシリコン基板内では光電変換を起こしにくい。そのため、従来の赤外線イメージセンサは、受光部をPtSi-Si接合を用いて形成したり、InSbやHgCdTeなどの化合物のアレイとCCDシフトレジスタとをハイブリッド化した構造などを有するものが主流である。しかし、それらは、極めて低い温度に冷却しなければならず取り扱いが面倒であったり、素子構造や製造プロセスに複雑な部分を有する。
これに対して、赤外光誘導蛍光発光物質を可視光用CCDイメージセンサの前面に配置する赤外線イメージセンサが存在する(非特許文献1)。図5は、この従来のイメージセンサの光軸に沿った模式的な断面図である。この赤外線イメージセンサ2は、例えば、1500〜1600nmの近赤外光を検出するために、赤外光を光ルミネッセンスによって可視光に変換する物質、すなわち赤外光誘導蛍光発光物質からなる膜4をCCDイメージセンサ6の前面に備える。レンズ8を用いて赤外光像を赤外光誘導蛍光発光物質膜4に結像させると、その赤外光像に応じて可視光の蛍光発光が発生する。蛍光発光はCCDイメージセンサ6に入射して光電変換を起こし信号電荷を生じる。この構造の赤外線イメージセンサは、常温での動作が可能であるため冷却手段を必要とせず、また、構造や製造プロセスも比較的簡易である。また、赤外光誘導蛍光発光物質膜4を透過する可視光成分を検知して、可視光の撮影も可能である。
株式会社ニューオプト製 ブロードバンド1550nm帯光ルミネセンス方式赤外カメラ「model NIR−1500」取扱説明書
しかし、赤外光誘導蛍光発光物質膜4を備えたCCDイメージセンサ6で可視光画像を撮影する場合、赤外光誘導蛍光発光物質膜4を有さないものに比べて、CCDイメージセンサ6に入射する可視光は弱くなり、また画質が低下し得るという問題があった。
また、CCDイメージセンサ6がモザイク状のカラーフィルタを備え、可視光についてカラー撮影を可能とする場合、このカラーフィルタは、赤外光誘導蛍光発光物質膜4にて発生した蛍光発光に対しても作用する。すなわち、赤外像の撮影においては本来不要なフィルタリングが介在し、所望の画像が得られず、後段の信号処理で補償する必要が生じ煩雑であるといった問題が生じる。
さらに、可視光と赤外光とに対するレンズの軸上色収差により、可視光及び赤外光双方について好適に結像させることが難しいという問題があった。
本発明は上記問題点を解決するためになされたものであり、製造及び取り扱いが容易で、かつ可視光及び赤外光等について好適な検出・撮影を可能とする半導体装置を提供することを目的とする。
本発明に係る半導体装置は、半導体基板に設けられ、当該半導体基板の表面(おもて面)へ向けて入射される入射電磁波のうち第1目的波長帯の成分に対して光電変換を行って信号電荷を生成する光電変換部と、前記半導体基板の前記表面に形成され、前記信号電荷の読み出しを行う信号電荷制御構造と、前記半導体基板の背面に配置され、前記入射電磁波のうち前記半導体基板を透過する第2目的波長帯の成分に基づいて前記第1目的波長帯の変換光を発生する発光体と、を有し、前記光電変換部は、前記背面から入射する前記変換光が到達可能に構成され、前記第1目的波長帯及び前記第2目的波長帯の電磁波を検出可能であるものである。ちなみに、入射電磁波は、可視光、赤外光、紫外光といった光のほか、γ線やX線といった通常、光とは区別される帯域の波動を含む。本発明は光センサを有する各種の半導体素子に適用することができ、光電変換部の数や信号電荷の読み出し箇所の数は任意である。
本発明に係る半導体装置は、例えば、前記第1目的波長帯及び前記第2目的波長帯に対応した撮像が可能な撮像素子であり、前記信号電荷制御構造が、画素毎に前記信号電荷の蓄積及び読み出し動作を制御する。この撮像素子は、前記半導体基板が、シリコンを主材として構成され、前記第1目的波長帯が、可視光の帯域を含む構成とすることができる。この撮像装置は、さらに、前記信号電荷制御構造の上に積層され、互いに異なる可視光成分を透過する複数種類のフィルタが前記画素に対応してモザイク状に配列されたカラーフィルタを備えた構成とすることができる。また、この撮像素子は、前記第2目的波長帯が、赤外光の帯域を含む構成とすることができる。
前記信号電荷制御構造は、電荷結合素子を含んで構成することができる。なお、信号電荷制御構造は、この他、例えば、MOS型イメージセンサにおいて信号電荷の蓄積及び読み出し動作を制御するために用いられる構造、具体的には各種のMOSトランジスタスイッチや信号線及び前記MOSトランジスタスイッチのオン/オフを制御する回路などからなる構造とすることもできる。
前記発光体は、前記半導体基板の前記裏面に積層される。この場合、例えば、本発明の半導体装置である撮像素子においては、発光体を半導体基板に積層することで、変換光の撮像面内での発生位置と当該変換光に対応した信号電荷を蓄積する画素の位置とのずれの抑制が図られる。
また、発光体を半導体基板に積層する構成の本発明の半導体装置は、さらに前記半導体基板の前面に配置され、前記第1目的波長帯及び前記第2目的波長帯それぞれの光学像を形成する光学系を有し、前記半導体基板が、前記光学系の前記第1目的波長帯に対する前記第2目的波長帯の軸上色収差を補償する厚さを有するように構成することができる。
本発明によれば、例えば可視光である第1目的波長帯の検出・撮像と、例えば赤外光である第2目的波長帯の検出・撮像とを1つの半導体装置で実現することができる。発光体を例えばシリコンを主材とする半導体基板の裏面側に配置することで、可視光に対しては半導体基板の表面側にて、発光体の影響を受けない入射光を検出対象とすることができ、検出精度を確保することができ、また撮像素子においては発光体の影響を受けない入射光に基づいて撮像を行うことができ、画像の鮮明化が図られる。一方、赤外光はシリコン基板ではほとんど吸収されず、裏面側に配置した発光体に到達して、発光体にて変換光を生じる。赤外光については、この変換光を光電変換部で検知することで、検出・撮像を行うことができる。さらに、半導体基板の表面側に可視光に対しカラーフィルタを設ける構成としても、赤外光はこのカラーフィルタの作用を受けずに透過し、また、基板裏面側にて発生する変換光はカラーフィルタの影響を受けずに光電変換部に到達することができる。すなわち、本半導体装置は、カラーフィルタの影響を受けない赤外光画像を撮影することができる。また、屈折率の相違により、レンズの焦点距離が可視光より赤外光にて長くなる軸上色収差が生じうる。このような場合に、発光体を半導体基板の裏面側に配置することは、この軸上色収差を補償する上で有利である。特に半導体基板に裏面に発光体を積層する場合には、半導体基板の厚さを調節することにより、軸上色収差を好適に補償することができる。
以下、本発明の実施の形態(以下実施形態という)であるカメラについて、図面に基づいて説明する。
図1は、本カメラの概略の構成を示すブロック図である。このカメラ20は光学系22、CCDイメージセンサ24、駆動回路26、信号処理回路28、赤外光照明30及び制御部32を含んで構成される。
光学系22は、例えば複数のレンズ等から構成される。光学系22は、被写体から可視光及び近赤外光を入射され、CCDイメージセンサ24の位置に光学像を形成する。
CCDイメージセンサ24は、本発明に係る半導体装置であり、可視光及び近赤外光の画像を撮影可能な構造を有する。その構造については後述する。
駆動回路26は、CCDイメージセンサ24を駆動するための各種の駆動信号を生成し、CCDイメージセンサ24の動作を制御する。
信号処理回路28は、CCDイメージセンサ24から出力される画像信号に対して、相関二重サンプリング(Correlated Double Sampling:CDS)、自動ゲイン制御(Automatic Gain Control:AGC)等のアナログ信号処理を行った後、A/D変換を行い、得られた画像データに対して各種のデジタル信号処理を施す。例えば、信号処理回路28は、画像データを積分し、1画面の平均信号レベルを算出し、その平均信号レベルに基づいて露光時間Eを伸縮制御する。
赤外光照明30は、赤外光を被写体へ向けて放射する照明であり、その出力光の波長は、CCDイメージセンサ24が感度を有する波長帯に設定される。赤外光照明30は例えば、夜間などのように可視光の照度が低い撮影条件下にて点灯され、CCDイメージセンサ24による赤外光撮影を可能とする。
制御部32はカメラ20の各部を制御する。例えば、制御部32は、駆動回路26におけるクロック発生のタイミングを制御すると共に、CCDイメージセンサ24の動作に同期させて信号処理回路28を動作させる。例えば、制御部32は、信号処理回路28から露光時間Eの情報を得て、それに基づいて駆動回路26を制御すると共に、必要に応じて赤外線照明を点灯させる。
図2は、CCDイメージセンサ24の模式的な平面図である。例えば、CCDイメージセンサ24はフレーム転送型である。CCDイメージセンサ24は、半導体基板面に形成された撮像部24i、蓄積部24s、水平転送部24h及び出力部24dを備える。
撮像部24iには入射光量に応じた信号電荷を発生する受光画素が複数、行列配置される。撮像部24iに行列配置された受光画素の各列に対応して、垂直CCDシフトレジスタ40が設けられ、垂直CCDシフトレジスタ40の各ビットが受光画素に対応する。
蓄積部24sは遮光膜で覆われ、光の入射による電荷発生を防止される。蓄積部24sは、行方向に複数配列された垂直CCDシフトレジスタ42を備える。垂直CCDシフトレジスタ42は、撮像部24iの垂直CCDシフトレジスタ40それぞれに対応して設けられる。撮像部24iと蓄積部24sとの互いに対応する垂直CCDシフトレジスタ40,42はチャネルが連続し、両シフトレジスタを同期させて駆動することにより、撮像部24iで蓄積された信号電荷を蓄積部24sへ転送することができる。
水平転送部24hはCCDシフトレジスタ(水平CCDシフトレジスタ)であり、各ビットが蓄積部24sの各垂直CCDシフトレジスタの出力に接続され、蓄積部24sのライン転送動作により各列から並列して出力される信号電荷を受け取る。水平転送部24hは、蓄積部24sからライン転送された情報電荷を順次、出力部24dに転送する。
出力部24dは、電気的に独立した容量及びその電位変化を取り出すアンプからなり、水平転送部24hから出力される信号電荷を1ビット単位で容量に受けて電圧値に変換し、時系列の画像信号として出力する。出力部24dの容量はリセットパルス信号φrでリセットトランジスタをオン状態とすることでリセットされる。
上述した、垂直CCDシフトレジスタ40,42、水平CCDシフトレジスタや出力部24dのリセットトランジスタ等の構造は、半導体基板の一方主面に、集積回路技術を用いて形成される。ここでは、この一方主面を半導体基板の表面とし、もう一方の主面を裏面とする。
図3は、光学系22及びCCDイメージセンサ24の模式的な断面図である。この断面図は光学系22の光軸を通り、かつ撮像部24iの列方向に平行な断面を示している。光学系22は被写体からの入射光50を結像し、その像面の位置に合わせてCCDイメージセンサ24が配置される。CCDイメージセンサ24は表面を光学系22に向けて配置される。すなわち、被写体からの光50は、光学系22を介してCCDイメージセンサ24(撮像部24i)の表面に入射する。上述のように、CCDイメージセンサ24は、画素毎に信号電荷の蓄積及び読み出し動作を制御するCCDシフトレジスタやその他、通常のCCDイメージセンサが有する主要な構造を表面に形成される。
具体的には、半導体基板としてシリコン基板52が用いられる。シリコン基板52はp型不純物を含んだ基板(P-sub)を用い、その表面にイオン注入等により不純物を導入してn型不純物領域(Nウェル54)を形成する。このNウェル54は、垂直CCDシフトレジスタ40のチャネル領域に対応して形成され、埋込チャネルの垂直CCDシフトレジスタが構成される。シリコン基板52の表面の上にはゲート酸化膜56を介してゲート電極58が積層される。ゲート電極58は列方向に複数配列される。ちなみに各ゲート電極58は行方向に延在され、行方向に並ぶ複数の垂直CCDシフトレジスタ40を共通に駆動する。例えば、垂直CCDシフトレジスタ40の各ビットには3本のゲート電極58が配置され、駆動回路26からこれらに印加する3相駆動のクロック信号φiによりゲート電極58下の電位井戸の形成を制御して、信号電荷の画素毎の蓄積及び垂直転送が制御される。
ゲート電極58の上には配線層や平坦化膜からなる層60が積層され、さらに撮像部24iにはその層60の上にカラーフィルタ62が積層される。例えば、カラーフィルタ62はRGB3原色のベイヤー配列とすることができ、二次元配列される画素の各列及び各行にはR及びG、又はB及びGが画素毎に交互に配列される。例えば、図3に断面を表した画素列には、B及びGが交互に配列される。
以上のようにシリコン基板52の表面にCCDシフトレジスタやカラーフィルタ62が形成される。これに対して、シリコン基板52の裏面には、発光体層64が積層される。この発光体層64は、近赤外光を吸収して可視光に変換する物質からなる。このような物質として例えば、Phosphor Technology Ltd.が提供する蛍光材が存在し、そのうちPTIR545(製品形式名)は1500nm近傍の近赤外光を可視光に変換することができる。
図4は、CCDイメージセンサ24の垂直断面の一部を拡大して示す模式的な断面図である。この断面図は撮像部24iの行方向に平行な垂直断面を示している。p型シリコン基板52本来の領域であるP-sub層70の表面に、Nウェル54が画素の各列毎に設けられると共に、Nウェル54相互間を分離するチャネル分離領域としてp型不純物を高濃度に拡散したp領域72及び、オーバーフロードレイン領域(OFD)としてn型不純物を高濃度に拡散したn領域74が形成される。OFD74はNウェル54の横に沿って設けられ、横型オーバーフロードレイン(LOD)構造を形成する。このOFD74は電位井戸の余剰電荷等を排出し、ブルーミング抑制や電子シャッタ動作を可能とする。
次に、CCDイメージセンサ24による可視光画像及び近赤外画像の撮影の原理について、さらに説明する。
入射光50として入射する可視光80はシリコン基板52内にて光電変換され信号電荷82を生じる。可視光がシリコン基板52へ進入する深さは波長に依存し、波長の短い紫や青の光は例えばP-sub層70の比較的表面寄りの領域で専ら吸収されて信号電荷を生じ、一方、波長が長い赤の光はP-sub層70の比較的深い位置まで進入し、それに応じて赤色の光が吸収され信号電荷を発生し得る領域もP-sub層70の深い位置まで広がる。
光電変換においては、電子と正孔とが対で発生し、それらのうち電子が信号電荷82として取り出される。発生した電子を電位井戸に速やかに移動させることにより応答速度を確保し、また再結合による消滅を抑制して量子効率を確保する点から、可視光が吸収されるP-sub層70は空乏化され、Nウェル54により基板表面近くに埋込チャネルとして形成される電位井戸に向けて電位勾配が形成される。この電子を電位井戸にドリフトさせる電位勾配が形成されるP-sub層70の空乏層領域が、実質的に撮像部24iの光電変換部に相当する。
入射光50として入射する1500nm近傍の近赤外光84は、バンドギャップが1.1eVであるシリコン基板52では吸収されず、これを透過して裏面に達する。裏面に設けられた発光体層64は、シリコン基板52を透過した近赤外光84を吸収し、可視光帯の蛍光を発する。発光体層64にて蛍光発光により生じた可視光86は、シリコン基板52の裏面からP-sub層70に入射し、光電変換により信号電荷88を生じ得る。この信号電荷88は、シリコン基板52の表面近くの電位井戸に集められ、可視光について生じる信号電荷82と同様にしてCCDシフトレジスタにより出力部24dへ転送され、画像信号として読み出される。すなわち、本CCDイメージセンサ24は、可視光80だけではなく、近赤外光84についても撮像が可能である。
なお、近赤外光84は、撮像部24iの表面の前面に配置されるカラーフィルタも好適に透過し、カラーフィルタの画素毎の色の相違の影響を受けない。そのため、近赤外光84については、撮像部24iの各画素毎に輝度情報が得られ、これを読み出すことで、カラーフィルタに対応した画素毎の可視光より解像度が高い白黒画像が得られる。この白黒画像を得る際に、カラーフィルタでの吸収を補正する必要がないため、信号処理回路28での処理が容易である。
ちなみに、発光体層64で生じた可視光86は、シリコン基板52の裏面近くで光電変換し信号電荷88を発生し得る。撮像部24iは、このシリコン基板52の裏面近くで生じる信号電荷88を表面近くのNウェル54近傍に形成される電位井戸へ好適に収集可能とするために、シリコン基板52裏面から電位井戸に向けて単調にポテンシャルが深くなるように構成している。具体的には、まず、裏面と電位井戸との間に電位障壁が形成される縦型オーバーフロードレイン(VOD)構造を採用せず、上述のようにLOD構造を採用している。また、シリコン基板52の裏面近くまで空乏層が広がり、空乏層電界が好適に形成されるように、Nウェル54と基板裏面との間の逆バイアス電圧を設定したり、P-sub層70を可視光の感度(特に長波長側の感度)に影響を与えない範囲で薄く加工したりすることが行われる。
一般に、光学系は、光に波長に応じて焦点距離が相違する軸上色収差を有し、レンズの赤外光の焦点距離は可視光の焦点距離より長くなる。光学系は、一般にこの軸上色収差を小さくするように設計されるが、完全になくすことはなかなか難しい。本CCDイメージセンサ24は、光学系22が有する軸上色収差に対応してシリコン基板52の厚みを設計し、可視光80と近赤外光84とのそれぞれについて良好なフォーカスの画像が得られるようにすることができる。具体的には、図3に示すように、可視光80の結像位置Sを光電変換部となるP-sub層70に合わせた場合に、近赤外光84の結像位置S'が発光体64の位置、つまりシリコン基板52の裏面の位置となるようにシリコン基板52の厚みを設定する。
また、発光体層64を構成する材料を変えることにより、CCDイメージセンサ24が可視光の画像とは別に感度を有する光又は電磁波の波長帯を変えることができる。例えば、γ線やX線を吸収して発光する発光体層64をシリコン基板52の裏面に設けることで、可視光とγ線又はX線とを撮影可能なCCDイメージセンサ24を構成することができる。また、信号電荷を読み出す構成はCCDシフトレジスタである必要はなく、MOS型イメージセンサの構成、具体的には各種のMOSトランジスタスイッチや信号線及び前記MOSトランジスタスイッチのオン/オフを制御する回路などからなる構造をシリコン基板52の表面に形成する構成とすることもできる。
また、発光体層64はCCDイメージセンサ24に予め一体に構成する必要はなく、例えば、発光体層64は、可視光を検知可能なCCDイメージセンサチップを取り付けるパッケージの当該チップの取り付け位置に塗布し、ここにCCDイメージセンサの裏面を載せる構成とすることができる。
上記実施形態では、本発明に係る半導体装置として、多数の画素を有する撮像素子を示した。しかし、本発明に係る半導体装置は、単一又は少数の受光部を有する素子であり得る。例えば、DVD再生装置等で用いられる光ピックアップ用の受光素子では、ビーム受光領域を2分割形状や4分割形状とする構成が知られているが、そのような素子に本発明を適用することもできる。
また、撮像素子では、光電変換により発生した信号電荷を露光期間に亘って蓄積した後、読み出すが、本発明は発生した信号電荷を蓄積せずに随時読み出すような受光素子にも適用することができる。上記光ピックアップ用の受光素子は、そのようなものの一例である。
本発明の実施形態に係るカメラの概略の構成を示すブロック図である。 CCDイメージセンサの模式的な平面図である。 本発明の実施形態のカメラにおける光学系及びCCDイメージセンサの模式的な断面図である。 本発明の実施形態に係るCCDイメージセンサの垂直断面の一部を拡大して示す模式的な断面図である。 従来のイメージセンサの模式的な断面図である。
符号の説明
20 カメラ、22 光学系、24 CCDイメージセンサ、24i 撮像部、24s 蓄積部、24h 水平転送部、24d 出力部、26 駆動回路、28 信号処理回路、30 赤外光照明、32 制御部、40,42 垂直CCDシフトレジスタ、52 シリコン基板、54 Nウェル、56 ゲート酸化膜、58 ゲート電極、62 カラーフィルタ、64 発光体層、70 P-sub層、72 p領域、74 n領域。

Claims (8)

  1. 半導体基板に設けられ、当該半導体基板の表面へ向けて入射される入射電磁波のうち第1目的波長帯の成分に対して光電変換を行って信号電荷を生成する光電変換部と、
    前記半導体基板の前記表面に形成され、前記信号電荷の読み出しを行う信号電荷制御構造と、
    前記半導体基板の背面に配置され、前記入射電磁波のうち前記半導体基板を透過する第2目的波長帯の成分に基づいて前記第1目的波長帯の変換光を発生する発光体と、
    を有し、
    前記光電変換部は、前記背面から入射する前記変換光が到達可能に構成され、
    前記第1目的波長帯及び前記第2目的波長帯の電磁波を検出可能であることを特徴とする半導体装置。
  2. 請求項1に記載の半導体装置において、
    当該半導体装置は、前記第1目的波長帯及び前記第2目的波長帯に対応した撮像が可能な撮像素子であり、
    前記信号電荷制御構造は、画素毎に前記信号電荷の蓄積及び読み出し動作を制御すること、
    を特徴とする半導体装置。
  3. 請求項2に記載の半導体装置において、
    前記半導体基板は、シリコンを主材として構成され、
    前記第1目的波長帯は、可視光の帯域を含むこと、
    を特徴とする半導体装置。
  4. 請求項3に記載の半導体装置において、
    前記信号電荷制御構造の上に積層され、互いに異なる可視光成分を透過する複数種類のフィルタが前記画素に対応してモザイク状に配列されたカラーフィルタを有すること、を特徴とする半導体装置。
  5. 請求項2から請求項4のいずれか1つに記載の半導体装置において、
    前記第2目的波長帯は、赤外光の帯域を含むこと、を特徴とする半導体装置。
  6. 請求項1から請求項5のいずれか1つに記載の半導体装置において、
    前記信号電荷制御構造は、電荷結合素子を含んで構成されること、を特徴とする半導体装置。
  7. 請求項1から請求項6のいずれか1つに記載の半導体装置において、
    前記発光体は、前記半導体基板の前記裏面に積層されること、を特徴とする半導体装置。
  8. 請求項7に記載の半導体装置において、
    前記半導体基板の前面に配置され、前記第1目的波長帯及び前記第2目的波長帯それぞれの光学像を形成する光学系を有し、
    前記半導体基板は、前記光学系の前記第1目的波長帯に対する前記第2目的波長帯の軸上色収差を補償する厚さを有すること、
    を特徴とする半導体装置。
JP2006239680A 2006-09-05 2006-09-05 半導体装置 Pending JP2008066352A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006239680A JP2008066352A (ja) 2006-09-05 2006-09-05 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006239680A JP2008066352A (ja) 2006-09-05 2006-09-05 半導体装置

Publications (1)

Publication Number Publication Date
JP2008066352A true JP2008066352A (ja) 2008-03-21

Family

ID=39288818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006239680A Pending JP2008066352A (ja) 2006-09-05 2006-09-05 半導体装置

Country Status (1)

Country Link
JP (1) JP2008066352A (ja)

Similar Documents

Publication Publication Date Title
US11575847B2 (en) Solid-state imaging device, method of driving the same, and electronic apparatus
KR102430114B1 (ko) 고체 촬상 소자 및 그 제조 방법 및 전자 기기
US11211411B2 (en) Solid-state image sensing device having a photoelectric conversion unit outside a semiconductor substrate and electronic device having the same
KR101683306B1 (ko) 고체 촬상 장치 및 전자 기기
KR101867609B1 (ko) 고체 촬상 장치 및 전자 기기
KR101162555B1 (ko) 고체 촬상 소자 및 그 제어 방법
US9312299B2 (en) Image sensor with dielectric charge trapping device
US8902347B2 (en) Solid-state image sensing device and electronic apparatus
JP2009099867A (ja) 光電変換素子及び撮像素子
TWI709235B (zh) 固體攝像元件、其製造方法及電子機器
JP2009049525A (ja) 撮像装置及び信号処理方法
JP2002237614A (ja) 光電変換装置及びその駆動方法並びに情報処理装置
JP2005175392A (ja) 固体撮像装置およびそれを利用した撮像システム
JP5223225B2 (ja) 固体撮像装置
WO2010134147A1 (ja) 固体撮像素子
JP2004335803A (ja) Mos型固体撮像装置とその駆動方法
JP2009049524A (ja) 撮像装置及び信号処理方法
JP2008066352A (ja) 半導体装置
JP4057996B2 (ja) 固体撮像装置およびそれを利用した撮像システム
JP2019097058A (ja) 固体撮像装置、固体撮像装置の製造方法、および電子機器
WO2022224501A1 (ja) 光検出装置及び電子機器
TW202315389A (zh) 攝像裝置
JP2003142677A (ja) 固体撮像装置