JP2008058051A - 校正用ファントム及び成分濃度測定装置の校正方法 - Google Patents

校正用ファントム及び成分濃度測定装置の校正方法 Download PDF

Info

Publication number
JP2008058051A
JP2008058051A JP2006233053A JP2006233053A JP2008058051A JP 2008058051 A JP2008058051 A JP 2008058051A JP 2006233053 A JP2006233053 A JP 2006233053A JP 2006233053 A JP2006233053 A JP 2006233053A JP 2008058051 A JP2008058051 A JP 2008058051A
Authority
JP
Japan
Prior art keywords
temperature
calibration
light
calibration phantom
component concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006233053A
Other languages
English (en)
Other versions
JP4418447B2 (ja
Inventor
Yuichi Okabe
勇一 岡部
Takuro Tajima
卓郎 田島
Kazunori Naganuma
和則 長沼
Katsuyoshi Hayashi
勝義 林
Junichi Shimada
純一 嶋田
Tsuneyuki Haga
恒之 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006233053A priority Critical patent/JP4418447B2/ja
Publication of JP2008058051A publication Critical patent/JP2008058051A/ja
Application granted granted Critical
Publication of JP4418447B2 publication Critical patent/JP4418447B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

【課題】本発明は、迅速、かつ、高精度な温度測定、温度変更及び温度制御を可能とする校正用ファントムを提供することを目的とする。
【解決手段】本発明に係る校正用ファントムは、被検体の成分濃度を光音響法で測定する成分濃度測定装置の校正に用いる校正用ファントムであって、溶液を充填するための開口11を有し、外壁13から内壁15まで達し、かつ、アルミナより小さい比熱及びアルミナより大きい熱伝導率を有する低比熱高熱伝導率部17が全部に形成された容器10と、容器10に充填され、主成分が水である基準物質20と、容器10の開口11を覆うように装着され、近赤外線を略透過させる物質で形成された光透過体30と、を備える。
【選択図】図1

Description

本発明は、非侵襲な成分濃度測定装置の校正に用いる校正用ファントム及びそれを用いる成分濃度測定装置の校正方法に関する。
非侵襲な、血液中の糖成分等の成分濃度の測定方法として、現在までに、経皮的な電磁波の照射、または、輻射の観測に基づく様々の方法が試行されてきている。これらは何れも、対象とする血液成分、例えば、血糖値の場合はグルコース分子が有する特定の波長の電磁波との相互作用、すなわち吸収、または散乱を利用している。
しかし、グルコースと電磁波との相互作用は小さく、また生体に安全に照射し得る電磁波の強度には制限があり、さらに生体が電磁波に対して散乱体であるために、生体の血糖値測定においては、十分な効果を挙げるに至っていない。
上記のグルコースと電磁波との相互作用を利用する従来の技術の中で、電磁波を生体へ照射して生体内に発生する音波を観測する、光音響法が注目されている。
生体にある量の電磁波を照射した場合、電磁波は生体に含有される分子に吸収され、電磁波を照射した部分を局所的に加熱して熱膨張を起こし音波を発生させる。光音響法とは、この音波の圧力は電磁波を吸収する分子の量に依存するので、音波の圧力を測定することにより、生体内の分子の量を測定する方法である。また、光音響法の中でも、光を照射した局部的な領域において熱が発生し、その熱が拡散することなく熱膨張を惹起し、それにより発生し伝搬する音波を利用する方法を直接光音響法と呼ぶ。
音波は生体内を伝搬する圧力波であり、電磁波に比べ散乱しにくいという特質があり、上記の光音響法は生体の血液成分測定において注目すべき手法である。
図12および図13は、従来例として、光音響法による従来の成分濃度測定装置の構成例を示す図である。
図12は光パルスを電磁波として用いた第1の従来例である(例えば、非特許文献1を参照。)。本例では血液成分として血糖、すなわちグルコースを測定対象としている。図12において、駆動電源604はパルス状の励起電流をパルス光源616に供給し、パルス光源616はサブマイクロ秒の持続時間を有する光パルスを発生し、前記光パルスは生体被検部610に照射される。前記光パルスは生体被検部610内にパルス状の光音響信号と呼ばれる音波を発生させ、光音響信号は超音波検出器613により検出され、光音響信号は音圧に比例した電気信号に変換される。
前記電気信号の波形は波形観測器620により観測される。この波形観測器620は上記励起電流に同期した信号によりトリガされ、前記音圧に比例した電気信号は波形観測器620の管面上の一定位置に表示され、信号を積算及び平均して測定することができる。
このようにして得られた前記音圧に比例した電気信号の振幅を解析して、生体被検部610内の血糖値、すなわちグルコースの量が測定される。図12に示す例の場合はサブマイクロ秒のパルス幅の光パルスを最大1kHzの繰り返しで発生させ、1024発の光パルスを平均して、前記音圧に比例した電気信号としているが十分な精度が得られていない。
そこで、より精度を高める目的で、連続的に強度変調した光源を用いる第2の従来例が開示されている。図13に第2の従来例の装置の構成を示す(例えば、特許文献1及び2を参照。)。本例も血糖を主な測定対象として、異なる波長の複数の光源を用いて、高精度化を試みている。
説明の煩雑さを避けるために、図13により光源の数が2の場合の動作を説明する。図13において、異なる波長の光源、即ち、第1の光源601および第2の光源605は、それぞれ駆動電源604および駆動電源608により駆動され、連続光を出力する。
第1の光源601および第2の光源605が出力する光は、モータ618により駆動され一定回転数で回転するチョッパ板617により断続される。ここでチョッパ板617は不透明な材質により形成され、モータ618の軸を中心とする円周に第1の光源601および第2の光源605の光が通過する円周上に、互いに素な個数の開口部が形成されている。
上記の構成により、第1の光源601および第2の光源605の各々が出力する光は互いに素な変調周波数f、および変調周波数fで強度変調された後、合波器609により合波され、1の光束として生体被検部610に照射される。
生体被検部610内には第1の光源601の光により周波数fの光音響信号が発生し、第2の光源605の光により周波数fの光音響信号が発生し、これらの光音響信号は、音響センサ619により検出され、音圧に比例した電気信号に変換され、その周波数スペクトルが、周波数解析器621により観測される。
本例においては、複数の光源の波長は全てグルコースの吸収波長に設定されており、各波長に対応する光音響信号の強度は、血液中に含まれるグルコースの量に対応した電気信号として測定される。
ここで、予め光音響信号の測定値の強度と別途採血した血液によりグルコースの含有量を測定した値との関係を記憶しておいて、前記光音響信号の測定値からグルコースの量を測定している。
特開平10−189号公報 WO2005/107592号パンフレット オウル大学(University of Oulu、Finland)学位論文「Pulse photoacoustic techniqus and glucose determination in human blood and tissue」(IBS 951−42−6690−0、http://herkules.oulu.fi/isbn9514266900/、2002年)
光音響法は、物質が光を吸収し緩和するときに生じる熱により発生する弾性波、すなわち、音波又は超音波を検出する測定方法である。このときの超音波の強度sは、励起波長λの光に対する背景(水)の吸収係数α(b)、測定対象とする血液成分のモル吸収係数α(0)、血液成分濃度(血糖値)M、及び、比例定数Cを用いて次式で示される。
Figure 2008058051
ここで、α(b)及びα(0)は、温度変化に応じて変化する。図14に、水の吸収スペクトルと温度依存性との関係を示した。例えば、水の吸収係数は、図14に示すように、1.5μm付近では、1℃の変化で1%前後の変化が生じる。
血液中のグルコース濃度のような微小な濃度を測定すると、温度変化に伴う信号強度の変化は、測定に対して著しく悪影響を与え、血液中のグルコース濃度を測定するのに十分な測定精度を得ることが困難になる。このため、高精度な光音響法による測定を行うには測定対象の温度を精密に測定したり、制御したりすることが重要である。
ある溶液の成分濃度を光音響法によって測定する場合を考える。この測定を行うためには測定前に濃度0mg/dlを示す基準となるもの、校正手段に対して光音響法による測定を行って測定値を校正する必要がある。従来の成分濃度測定装置では、血液成分を測定する場合、この校正手段としてガラス容器に封入された水を用いて測定を行っている。ガラスの比熱は、図15のとおりである。図15に、比熱及び熱伝導率の一覧を示した。
ガラスの比熱は、アルミナ及びアクリル等の有機材料に比べて比熱は小さいものの、金、銀等の金属と比較して倍以上も大きい。一方、ガラスの熱伝導率についてみると、金属と比較して、1/100以下である。以上より、ガラスは、金属と比較して温まりにくく、温度を伝えにくい。
光音響法により血液中のグルコース濃度を測定するためには、測定精度として、SN比1000以上が必要である。この測定精度を満たすためには、温度による測定精度の劣化を少なくとも1%以下に抑えることが望まれる。これは、温度測定及び温度制御の精度として、プラスマイナス0.1℃以下が必要であることを示している。
従来の光音響法による測定においては、校正手段として、ガラス容器に封入された水を用いており、高精度な光音響法による測定を行う場合、温度を精密に測定したり、温度を変更したり、制御したりすることの妨げになっている。しかし、この校正手段に対する高精度な温度測定、温度変更及び温度制御の施策は行われていない。
本発明は、前記課題を解決するため、迅速、かつ、高精度な温度測定、温度変更及び温度制御を可能とする校正用ファントム及び成分濃度測定装置の校正方法を提供することを目的とする。
上記目的を達成するために、本発明に係る校正用ファントムは、外壁から内壁まで達し、かつ、アルミナより小さい比熱及びアルミナより大きい熱伝導率を有する低比熱高熱伝導率部が容器の全部又は一部に形成される。
具体的には、本発明に係る校正用ファントムは、被検体の成分濃度を光音響法で測定する成分濃度測定装置の校正に用いる校正用ファントムであって、溶液を充填するための開口を有し、外壁から内壁まで達し、かつ、アルミナより小さい比熱及びアルミナより大きい熱伝導率を有する低比熱高熱伝導率部が全部又は一部に形成された容器と、前記容器に充填され、主成分が水である基準物質と、前記容器の前記開口を覆うように装着され、近赤外線を略透過させる物質で形成された光透過体と、を備える。
上記校正用ファントムは、前記低比熱高熱伝導率部が、外部へ前記基準物質の温度を伝え易く、かつ、外部から前記基準物質へ温度を伝え易い。従って、迅速、かつ、高精度な温度測定、温度変更及び温度制御を可能とする校正用ファントムを提供することができる。
なお、前記被検体とは、人体に限らず動物又は所望の被測定物であっても良い。
本発明に係る校正用ファントムでは、前記基準物質の温度を測定する温度測定手段をさらに備えることが好ましい。
上記校正用ファントムは、前記温度測定手段を備えることで、前記基準物質の温度を測定することができる。
本発明に係る校正用ファントムでは、前記温度測定手段が、前記低比熱高熱伝導率部の前記外壁の側に配置されることが好ましい。
上記校正用ファントムは、前記温度測定手段が前記低比熱高熱伝導率部に直接接することで、より迅速、かつ、高精度な温度測定を可能とする。
本発明に係る校正用ファントムでは、前記基準物質を加熱又は冷却する温度変更手段をさらに備えることが好ましい。
上記校正用ファントムは、前記温度変更手段を備えることで、前記基準物質の温度を変更することができる。
本発明に係る校正用ファントムでは、前記温度変更手段が、前記低比熱高熱伝導率部の前記外壁の側に配置されることが好ましい。
上記校正用ファントムは、前記温度変更手段が前記低比熱高熱伝導率部に直接接することで、より迅速、かつ、高精度な温度変更を可能とする。
本発明に係る校正用ファントムでは、前記温度測定手段の測定する温度を基に前記温度変更手段に加熱又は冷却させて、前記基準物質が所定の温度になるように制御する温度制御手段をさらに備えることが好ましい。
上記校正用ファントムは、フィードバック制御を可能とする。
本発明に係る校正用ファントムでは、前記容器は、前記内壁の全部又は一部が水素より小さいイオン化傾向を有する物質で被膜され、或いは、前記内壁の全部又は一部が金属で形成され、該金属が不動態であることが好ましい。
上記校正用ファントムは、前記基準物質による前記容器の劣化を抑制することができる。
上記目的を達成するために、本発明に係る成分濃度測定装置の校正方法は、光を校正用ファントムに出射し、校正用ファントムが発生させる音波を検出し、検出した音波を積算及び平均化処理して校正データとして取得する手順を備える。
具体的には、本発明に係る成分濃度測定装置の校正方法は、光発生手段が、光を発生する光発生手順と、光変調手段が、前記光発生手順で発生した光を電気的に一定周期で強度変調する光変調手順と、光出射手段が、前記光変調手順において一定周期で強度変調した光を、校正用ファントムに充填された水を主成分とする基準物質に光透過体を介して出射する光出射手順と、音波検出手段が、前記光出射手順で出射した光によって前記校正用ファントムが発生させる音波を検出する音波検出手順と、校正手段が、前記音波検出手順で検出した音波を積算及び平均化処理して校正データとして取得する校正手順と、を順に備える。
前記校正用ファントムを用いることで、迅速、かつ、高精度な温度測定、温度変更及び温度制御を可能とする成分濃度測定装置の校正方法を提供することができる。
本発明に係る成分濃度測定装置の校正方法では、前記各手順と並行して、温度測定手段が、前記基準物質の温度を測定する温度制御手順を、さらに備えることが好ましい。
上記成分濃度測定装置の校正方法は、前記温度制御手順で前記基準物質の温度を測定できるので、より迅速、かつ、高精度な温度測定を可能とする。
本発明に係る成分濃度測定装置の校正方法では、前記温度制御手順は、さらに、温度変更手段が前記基準物質を加熱又は冷却することが好ましい。
上記成分濃度測定装置の校正方法は、前記温度制御手順で前記基準物質を加熱又は冷却できるので、より迅速、かつ、高精度な温度変更を可能とする。
本発明に係る成分濃度測定装置の校正方法では、前記温度制御手順は、さらに、温度制御手段が、前記温度測定手段の測定する温度を基に前記温度変更手段に加熱又は冷却させて、前記基準物質が所定の温度になるように制御することが好ましい。
上記成分濃度測定装置の校正方法は、フィードバック制御を可能とする。
本発明は、迅速、かつ、高精度な温度測定、温度変更及び温度制御を可能とする校正用ファントム及び成分濃度測定装置の校正方法を提供することができる。
添付の図面を参照して本発明の実施の形態を説明する。以下に説明する実施の形態は本発明の構成の例であり、本発明は、以下の実施の形態に制限されるものではない。また、同一部材及び同一部位には同一符号を付した。
(第1実施形態)
図1に、第1実施形態に係る校正用ファントムの第1形態の概略図を示し、(a)は光透過体を装着する前、(b)は光透過体を装着した後を示す。第1実施形態に係る校正用ファントムは、被検体の成分濃度を光音響法で測定する成分濃度測定装置の校正に用いる校正用ファントムであって、溶液を充填するための開口11を有し、外壁13から内壁15まで達し、かつ、アルミナより小さい比熱及びアルミナより大きい熱伝導率を有する低比熱高熱伝導率部17が全部に形成された容器10と、容器10に充填され、主成分が水である基準物質20と、容器10の開口11を覆うように装着され、近赤外線を略透過させる物質で形成された光透過体30と、を備える。図1では、容器10の側面における低比熱高熱伝導率部17を網掛けして示した。また、図1(a)では、内壁15を破線で示した。
容器10の形状としては、例えば、円筒状、角柱状、球状又は楕円体状がある。図1の校正用ファントム100は、例えば、容器10の形状が円筒状である。また、容器10の大きさは、例えば、外径が20mm、内径が10mmである。
容器10は、図1に示すように低比熱高熱伝導率部17が全体に形成されることが好ましい。低比熱高熱伝導率部17を形成可能な物質としては、例えば、金、銀、銅、パラジウム、白金、鉄、アルミニウム、チタン、錫、亜鉛、ニッケル、タングステン及びイリジウム等の単体金属、並びに、ステンレス、黄銅、青銅、炭素鋼及びジェラルミン等の合金がある。図1の校正用ファントム100は、例えば、低比熱高熱伝導率部17として銅を用いている。
図2に、第1実施形態に係る校正用ファントムの第2形態の概略図を示した。設定温度における安定性及び制御性が保てれば、図2に示すように、容器10の一部のみを低比熱高熱伝導率部17で形成し、他の部分18を、例えば、ガラス、石英ガラス及びアルミナ等のセラミックス、エポキシ、アクリル及びウレタン等の有機高分子材料、並びに、天然ゴム及び木材等の天然材料で形成しても良い。図2の校正用ファントム100は、例えば、上半分の側を他の部分18及び下半分の側を低比熱高熱伝導率部17とし、他の部分18としてアクリル及び低比熱高熱伝導率部17として銅を用いている。
図1の校正用ファントム100は、基準物質20が容器10に満杯となるように充填されることが好ましい。基準物質20を満杯となるように充填しない場合、容器10の内部に空気等の周辺物質が混入する可能性があり、基準物質20と周辺物質との音響インピーダンスの不整合により、音波の測定誤差が生じる可能性がある。
第1実施形態に係る校正用ファントムでは、容器10は、内壁15の全部が水素より小さいイオン化傾向を有する物質で被膜される、或いは、内壁15の全部が金属で形成され、金属が不動態であることが好ましい。水素より小さいイオン化傾向を有する物質としては、例えば、銅、銀、白銀及び金がある。ここで、図1の校正用ファントム100は、例えば、水素より小さいイオン化傾向を有する物質として、金をめっき法で内壁15に被膜している。これによって、水による容器10の劣化を抑制することができる。なお、内壁15の一部のみを水素より小さいイオン化傾向を有する物質で被膜する、或いは、内壁15の一部のみを金属で形成し、金属を不動態としても良い。
なお、不動態とは、金属の表面に酸化膜が形成された状態である。
図1(b)に示す光透過体30は、例えば、円盤状の石英ガラス板である。光透過体30は、例えば、容器10に基準物質20を充填した後に開口11を覆うように装着する。
なお、近赤外線とは、波長が0.7μm以上、かつ、2.5μm以下の光である。また、近赤外線を略透過させるとは、近赤外線の透過率が95%以上、かつ、100%未満のことを言う。
図3に、第1実施形態に係る校正用ファントムの第3形態の概略図を示した。図3に示すように、第1実施形態に係る校正用ファントムでは、基準物質の温度を測定する温度測定手段40をさらに備えることが好ましい。温度測定手段40としては、例えば、熱伝対、測温抵抗体、サーモグラフィ及び放熱温度計がある。よって、校正用ファントム100は、基準物質の温度を測定することができる。
さらに、第1実施形態に係る校正用ファントムでは、温度測定手段40が、低比熱高熱伝導率部17の外壁13の側に配置されることが好ましい。図3の校正用ファントム100は、例えば、温度測定手段40として、測温抵抗体の一種である白金抵抗体が外壁13を取り囲むように配置されている。低比熱高熱伝導率部17は、熱伝導率が大きいため、これに直接接する基準物質の温度を遅延が少なくより正確に反映できる。温度測定手段40を用いると、所定の観測点、例えば、励起光照射点の温度を直接、遅延時間が少なく測定をすることができる。
図4に、第1実施形態に係る校正用ファントムの第4形態の概略図を示した。第1実施形態に係る校正用ファントムでは、基準物質を加熱又は冷却する温度変更手段50をさらに備えることが好ましい。また、図4の校正用ファントム100は、温度変更手段50とともに温度測定手段40を備えることが好ましい。温度変更手段50として、例えば、カーボンヒーター、金属線ヒーター、金属箔ヒーター、コードヒーター、シリコーンラバーヒーター等のヒーター素子を備え、ヒーター素子で加熱し、空冷で冷却する。また、温度変更手段50として、ペルチェ素子を備えることがより好ましい。基準物質の加熱及び冷却をペルチェ素子ひとつで効率的に行うことができる。よって、校正用ファントム100は、基準物質の温度を変更することができる。
さらに、第1実施形態に係る校正用ファントムでは、温度変更手段50が、容器10の低比熱高熱伝導率部17の外壁13の側に配置されることが好ましい。図4の校正用ファントム100は、例えば、温度変更手段50として、ペルチェ素子が外壁13を取り囲むように配置されている。校正用ファントム100は、温度変更手段50が低比熱高熱伝導率部17に直接接することで、より迅速に加熱又は冷却することを可能とする。
図5に、成分濃度測定装置を校正している校正用ファントムの第1形態の概略図を示した。成分濃度測定装置200は、例えば、光発生手段としての光源210及び駆動電源220、光変調手段としての発信器250、音波検出手段としての超音波検出器230、校正手段としての位相検波増幅器240及び光出射手段としてのレンズ260を備える。
光源210としては、例えば、近赤外線を発生させる半導体レーザーがある。駆動電源220は、光源210を駆動する。発信器250は、駆動電源220を介して一定周期の変調信号を光源210に供給し、かつ、超音波検出器230に対しても同一の変調信号を供給する。超音波検出器230としては、例えば、FETトランジスタ(電界効果トランジスタ)を内蔵する周波数平坦方電歪素子(PZT)があり、音響結合器(図5には示していない。)として、超音波ジェルを用いた。
第1実施形態に係る校正用ファントムでは、温度測定手段40の測定する温度を基に温度変更手段50に加熱又は冷却させて、基準物質が所定の温度になるように制御する温度制御手段60をさらに備えることが好ましい。温度測定手段40及び温度変更手段50は、例えば、温度制御手段60に接続され、温度測定手段40から温度の信号を受けて温度変更手段50の出力を逐次制御する。これによって、校正用ファントム100は、フィードバック制御を可能とする。なお、図1から図3の校正用ファントム100を用いて成分濃度測定装置200を校正しても良い。また、温度制御手段60を介さずに、オペレータが、温度測定手段40が測定した基準物質の温度を目視して、温度変更手段50を操作して基準物質を加熱又は冷却しても良い。
図6に、成分濃度測定装置を校正している校正用ファントムの第2形態の概略図を示した。図6の校正用ファントム101は、温度測定手段40としての放射温度計が容器10から離されて配置されている点が図5の校正用ファントム100と異なる。
図5及び図7を用いて、第1実施形態に係る成分濃度測定装置の校正方法について説明する。図7に、第1実施形態に係る成分濃度測定装置の校正方法の第1のフロチャートを示した。図7に示すように、第1実施形態に係る成分濃度測定装置の校正方法は、光発生手段(図5の光源210及び駆動電源220を参照。)が、光を発生する光発生手順S110と、光変調手段(図5の発信器250を参照。)が、光発生手順S110で発生した光を電気的に一定周期で強度変調する光変調手順S120と、光出射手段(図5のレンズ260を参照。)が、光変調手順S120において一定周期で強度変調した光を、校正用ファントム(図5の校正用ファントム100を参照。)に充填された水を主成分とする基準物質に光透過体を介して出射する光出射手順S130と、音波検出手段(図5の超音波検出器230を参照。)が、光出射手順S130で出射した光によって校正用ファントムが発生させる音波を検出する音波検出手順S140と、校正手段(図5の位相検波増幅器240を参照。)が、音波検出手順S140で検出した音波を積算及び平均化処理して校正データとして取得する校正手順S150と、を順に備える。
第1実施形態に係る成分濃度測定装置の校正方法では、各手順S110〜S150と並行して、温度測定手段が、基準物質の温度を測定する温度制御手順S125を、さらに備えることが好ましい。また、図8に、第1実施形態に係る成分濃度測定装置の校正方法の第2のフロチャートを示した。図8に示すように、温度制御手順S125を、光変調手順S120と光出射手順S130との間に備えても良い。或いは、温度制御手順S125を、光発生手順S110の前又は光発生手順S110と光変調手順S120との間に備えても良い(図8には示していない。)。第1実施形態に係る成分濃度測定装置の校正方法は、温度制御手順S125で基準物質の温度を測定できるので、より迅速、かつ、高精度な温度測定を可能とする。
第1実施形態に係る成分濃度測定装置の校正方法では、温度制御手順S125は、さらに、温度変更手段(図5の温度変更手段50を参照。)が基準物質を加熱又は冷却することが好ましい。第1実施形態に係る成分濃度測定装置の校正方法は、温度制御手順S125で基準物質を加熱又は冷却できるので、より迅速、かつ、高精度な温度変更を可能とする。
第1実施形態に係る成分濃度測定装置の校正方法では、温度制御手順S125は、さらに、温度制御手段(図5の温度制御手段60を参照。)が、温度測定手段の測定する温度を基に温度変更手段に加熱又は冷却させて、基準物質が所定の温度になるように制御することが好ましい。第1実施形態に係る成分濃度測定装置の校正方法は、フィードバック制御を可能とする。
図9に、第1実施形態に係る校正用ファントムの時間の経過と信号強度の変化との関係を示した。ここで、65秒が経過するまで(図9の破線を参照。)、温度制御手段を作動させて基準物質の温度を30℃に保持し、それ以降、温度制御手段を停止した。時定数0.1秒に設定した位相検波増幅器の出力端子に、光音響信号に対応する電気信号として、20μVの電圧が得られたことを示す。図9から、第1実施形態に係る校正用ファントムは、温度制御手段を作動させて温度制御を行った場合、温度変化がプラスマイナス0.1℃以下となり、信号強度の変化が小さいことが確認できる。一方、図9から、第1実施形態に係る校正用ファントムは、温度制御手段を停止した場合、温度の低下と共に、信号強度が変化して、校正用ファントムの動作が不安定になる。
以上のように、被検体に対して光音響法による測定を行う前に、第1実施形態に係る校正用ファントムで基準となる0mg/dlの信号強度を得て成分濃度測定装置の校正を行った後、被検体の成分濃度の測定を行うことができる。従って、迅速、かつ、高精度な温度測定、温度変更及び温度制御を可能とする校正用ファントム及び成分濃度測定装置の校正方法を提供することができる。
(第2実施形態)
図10に、第2実施形態に係る校正用ファントムの図を示し、(a)は概略図であり、(b)は断面図を示した。図10を用いて、第1実施形態に係る校正用ファントムと異なる点を中心に説明する。図10の校正用ファントム102は、例えば、容器10の形状が球状である。また、容器10の底部に開口11と略同じ大きさの貫通孔がある。容器10の大きさは、例えば、外径が20mm、内径が10mmである。また、容器10は、例えば、低比熱高熱伝導率部17が略全体に形成され、低比熱高熱伝導率部17として銅を用いている。光透過体30は、例えば、円盤状の石英ガラス板である。また、容器10の貫通孔には、例えば、アクリル板35が装着される。
図10には示していないが、容器10の側面に、温度測定手段としての白金抵抗体及び温度変更手段としてのペルチェ素子を備えても良い。また、白金抵抗体及びペルチェ素子は、温度制御手段に接続され、白金抵抗体から温度の信号を受けてペルチェ素子の出力を逐次制御するフィードバック制御を行っても良い。
第1実施形態に係る校正用ファントムと同様の理由により、迅速、かつ、高精度な温度測定、温度変更及び温度制御を可能とする校正用ファントムを提供することができる。
(第3実施形態)
図11に、第3実施形態に係る校正用ファントムの概略図を示した。図11を用いて、第1実施形態に係る校正用ファントムと異なる点を中心に説明する。図11の校正用ファントム103は、例えば、容器10の形状が角柱状である。容器10の大きさは、例えば、外径が20mm、内径が10mmである。また、容器10は、例えば、低比熱高熱伝導率部17が全体に形成され、低比熱高熱伝導率部17として銅を用いている。光透過体30は、例えば、略正方形の石英ガラス板である。
図11には示していないが、容器10の側面に、温度測定手段としての白金抵抗体及び温度変更手段としてのペルチェ素子を備えても良い。また、白金抵抗体及びペルチェ素子は、温度制御手段に接続され、白金抵抗体から温度の信号を受けてペルチェ素子の出力を逐次制御するフィードバック制御を行っても良い。
第1実施形態に係る校正用ファントムと同様の理由により、迅速、かつ、高精度な温度測定、温度変更及び温度制御を可能とする校正用ファントムを提供することができる。
本発明に係る校正用ファントム及び成分濃度測定装置の校正方法は、日常の健康管理や美容上のチェックに有用な成分濃度測定装置の校正に利用することができる。
第1実施形態に係る校正用ファントムの第1形態の概略図であり、(a)は光透過体を装着する前、(b)は光透過体を装着した後である。 第1実施形態に係る校正用ファントムの第2形態の概略図である。 第1実施形態に係る校正用ファントムの第3形態の概略図である。 第1実施形態に係る校正用ファントムの第4形態の概略図である。 成分濃度測定装置を校正している校正用ファントムの第1形態の概略図である。 成分濃度測定装置を校正している校正用ファントムの第2形態の概略図である。 第1実施形態に係る成分濃度測定装置の校正方法の第1のフロチャートである。 第1実施形態に係る成分濃度測定装置の校正方法の第2のフロチャートである。 第1実施形態に係る校正用ファントムの時間の経過と信号強度の変化との関係を示す図である。 第2実施形態に係る校正用ファントムの概略図である。 第3実施形態に係る校正用ファントムの概略図である。 光パルスを電磁波として用いた第1の従来例の図である。 光源の数が2の場合の従来例の図である。 水の吸収スペクトルと温度依存性との関係を示す従来例の図である。 比熱及び熱伝導率の一覧を示す図である。
符号の説明
10 容器
11 開口
13 外壁
15 内壁
17 低比熱高熱伝導率部
18 他の部分
20 基準物質
30 光透過体
35 アクリル板
40 温度測定手段
50 温度変更手段
60 温度制御手段
100,101,102,103 校正用ファントム
200 成分濃度測定装置
210 光源
220,604,608 駆動電源
230,613 超音波検出器
240 位相検波増幅器
250 発信器
260 レンズ
601 第1の光源
605 第2の光源
609 合波器
610 生体被検部
616 パルス光源
617 チョッパ板
618 モータ
619 音響センサ
620 波形観測器
621 周波数解析器
S110 光発生手順
S120 光変調手順
S125 温度制御手順
S130 光出射手順
S140 音波検出手順
S150 校正手順

Claims (11)

  1. 被検体の成分濃度を光音響法で測定する成分濃度測定装置の校正に用いる校正用ファントムであって、
    溶液を充填するための開口を有し、外壁から内壁まで達し、かつ、アルミナより小さい比熱及びアルミナより大きい熱伝導率を有する低比熱高熱伝導率部が全部又は一部に形成された容器と、
    前記容器に充填され、主成分が水である基準物質と、
    前記容器の前記開口を覆うように装着され、近赤外線を略透過させる物質で形成された光透過体と、
    を備えることを特徴とする校正用ファントム。
  2. 前記基準物質の温度を測定する温度測定手段をさらに備えることを特徴とする請求項1に記載の校正用ファントム。
  3. 前記温度測定手段が、前記低比熱高熱伝導率部の前記外壁の側に配置されることを特徴とする請求項2に記載の校正用ファントム。
  4. 前記基準物質を加熱又は冷却する温度変更手段をさらに備えることを特徴とする請求項1から3のいずれかに記載の校正用ファントム。
  5. 前記温度変更手段が、前記低比熱高熱伝導率部の前記外壁の側に配置されることを特徴とする請求項4に記載の校正用ファントム。
  6. 前記温度測定手段の測定する温度を基に前記温度変更手段に加熱又は冷却させて、前記基準物質が所定の温度になるように制御する温度制御手段をさらに備えることを特徴とする請求項2から5のいずれかに記載の校正用ファントム。
  7. 前記容器は、前記内壁の全部又は一部が水素より小さいイオン化傾向を有する物質で被膜され、或いは、前記内壁の全部又は一部が金属で形成され、該金属が不動態であることを特徴とする請求項1から6のいずれかに記載の校正用ファントム。
  8. 光発生手段が、光を発生する光発生手順と、
    光変調手段が、前記光発生手順で発生した光を電気的に一定周期で強度変調する光変調手順と、
    光出射手段が、前記光変調手順において一定周期で強度変調した光を、校正用ファントムに充填された水を主成分とする基準物質に光透過体を介して出射する光出射手順と、
    音波検出手段が、前記光出射手順で出射した光によって前記校正用ファントムが発生させる音波を検出する音波検出手順と、
    校正手段が、前記音波検出手順で検出した音波を積算及び平均化処理して校正データとして取得する校正手順と、
    を順に備えることを特徴とする成分濃度測定装置の校正方法。
  9. 前記各手順と並行して、
    温度測定手段が、前記基準物質の温度を測定する温度制御手順を、さらに備えることを特徴とする請求項8に記載の成分濃度測定装置の校正方法。
  10. 前記温度制御手順は、さらに、温度変更手段が前記基準物質を加熱又は冷却することを特徴とする請求項9に記載の成分濃度測定装置の校正方法。
  11. 前記温度制御手順は、さらに、温度制御手段が、前記温度測定手段の測定する温度を基に前記温度変更手段に加熱又は冷却させて、前記基準物質が所定の温度になるように制御することを特徴とする請求項9又は10に記載の成分濃度測定装置の校正方法。
JP2006233053A 2006-08-30 2006-08-30 校正用ファントム及び成分濃度測定装置の校正方法 Expired - Fee Related JP4418447B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006233053A JP4418447B2 (ja) 2006-08-30 2006-08-30 校正用ファントム及び成分濃度測定装置の校正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006233053A JP4418447B2 (ja) 2006-08-30 2006-08-30 校正用ファントム及び成分濃度測定装置の校正方法

Publications (2)

Publication Number Publication Date
JP2008058051A true JP2008058051A (ja) 2008-03-13
JP4418447B2 JP4418447B2 (ja) 2010-02-17

Family

ID=39240974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006233053A Expired - Fee Related JP4418447B2 (ja) 2006-08-30 2006-08-30 校正用ファントム及び成分濃度測定装置の校正方法

Country Status (1)

Country Link
JP (1) JP4418447B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191149A (ja) * 2007-02-05 2008-08-21 Palo Alto Research Center Inc 植設用光学キャビティ構造
JP2009195387A (ja) * 2008-02-20 2009-09-03 Hitachi Medical Corp 生体光計測装置の検査用ファントム装置
JP2012024300A (ja) * 2010-07-22 2012-02-09 Nippon Telegr & Teleph Corp <Ntt> 成分濃度測定方法および装置
WO2013077077A1 (ja) * 2011-11-22 2013-05-30 株式会社アドバンテスト 生体光計測用ファントム、ファントム積層体およびファントムの製造方法
JP2015061055A (ja) * 2013-09-20 2015-03-30 太平洋セメント株式会社 圧電トランス
CN106037632A (zh) * 2015-04-02 2016-10-26 佳能株式会社 体模
CN106730423A (zh) * 2017-03-10 2017-05-31 山东中测校准质控技术有限公司 一种用于放疗检测的新型防膨胀水模体及应用
CN112432968A (zh) * 2020-10-21 2021-03-02 中国核动力研究设计院 辐照后反应堆结构材料热导率测试样的制备方法及试样盒

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191149A (ja) * 2007-02-05 2008-08-21 Palo Alto Research Center Inc 植設用光学キャビティ構造
JP2009195387A (ja) * 2008-02-20 2009-09-03 Hitachi Medical Corp 生体光計測装置の検査用ファントム装置
JP2012024300A (ja) * 2010-07-22 2012-02-09 Nippon Telegr & Teleph Corp <Ntt> 成分濃度測定方法および装置
WO2013077077A1 (ja) * 2011-11-22 2013-05-30 株式会社アドバンテスト 生体光計測用ファントム、ファントム積層体およびファントムの製造方法
JPWO2013077077A1 (ja) * 2011-11-22 2015-04-27 株式会社アドバンテスト 生体光計測用ファントム、ファントム積層体およびファントムの製造方法
JP2015061055A (ja) * 2013-09-20 2015-03-30 太平洋セメント株式会社 圧電トランス
CN106037632A (zh) * 2015-04-02 2016-10-26 佳能株式会社 体模
CN106730423A (zh) * 2017-03-10 2017-05-31 山东中测校准质控技术有限公司 一种用于放疗检测的新型防膨胀水模体及应用
CN106730423B (zh) * 2017-03-10 2023-04-14 山东中测校准质控技术有限公司 一种用于放疗检测的防膨胀水模体及应用
CN112432968A (zh) * 2020-10-21 2021-03-02 中国核动力研究设计院 辐照后反应堆结构材料热导率测试样的制备方法及试样盒
CN112432968B (zh) * 2020-10-21 2022-08-30 中国核动力研究设计院 辐照后反应堆结构材料热导率测试样的制备方法及试样盒

Also Published As

Publication number Publication date
JP4418447B2 (ja) 2010-02-17

Similar Documents

Publication Publication Date Title
JP4418447B2 (ja) 校正用ファントム及び成分濃度測定装置の校正方法
JP5646337B2 (ja) 被分析物の濃度を決定するための光学センサ
JP4422626B2 (ja) 生体画像化装置
JP4104456B2 (ja) 光音響を調べること及びイメージングシステム
CN108369183A (zh) 用于分析材料的装置和方法
WO2005107592A1 (ja) 成分濃度測定装置及び成分濃度測定装置制御方法
JP2010088873A (ja) 生体情報イメージング装置
JP2007229320A (ja) 成分濃度測定装置
JP4755016B2 (ja) 成分濃度測定装置
JP2011510312A (ja) 媒質の温度を非侵襲的にかつ光学的に特定するための方法
JP2013244122A (ja) 分光計測装置
JP4901432B2 (ja) 成分濃度測定装置
JP4412666B2 (ja) 成分濃度測定装置及び成分濃度測定装置制御方法
JP4441479B2 (ja) 成分濃度測定方法、成分濃度測定装置及び成分濃度測定装置制御方法
JP4444227B2 (ja) 成分濃度測定装置及び成分濃度測定方法
JP4914388B2 (ja) 成分濃度測定装置
WO2011152747A1 (en) Photoacoustic material analysis
CN116421304A (zh) 选择性光热解的方法和装置
JP4531632B2 (ja) 生体成分濃度測定装置及び生体成分濃度測定装置の制御方法
JP2010281747A (ja) 成分濃度分析装置及び成分濃度分析方法
JP4902508B2 (ja) 成分濃度測定装置及び成分濃度測定装置制御方法
JP4773390B2 (ja) 成分濃度測定装置
Yao et al. Measurement of Grüneisen parameter of tissue by photoacoustic spectrometry
JP2008125543A (ja) 成分濃度測定装置
WO2023023084A2 (en) Systems, devices, and methods for gingival health monitoring

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees