JP2008057403A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2008057403A
JP2008057403A JP2006234348A JP2006234348A JP2008057403A JP 2008057403 A JP2008057403 A JP 2008057403A JP 2006234348 A JP2006234348 A JP 2006234348A JP 2006234348 A JP2006234348 A JP 2006234348A JP 2008057403 A JP2008057403 A JP 2008057403A
Authority
JP
Japan
Prior art keywords
secondary air
internal combustion
air supply
combustion engine
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006234348A
Other languages
English (en)
Inventor
Masakatsu Nagai
正勝 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006234348A priority Critical patent/JP2008057403A/ja
Publication of JP2008057403A publication Critical patent/JP2008057403A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】エンジン回転数の応答性を向上させ正確に目標回転数に制御することができる内燃機関の制御装置を提供する。
【解決手段】燃焼室18から排気ガスを排出する排気通路20と、排気通路20内に二次空気を供給可能な二次空気供給手段70と、内燃機関の回転速度を検出する回転速度検出手段57と、回転速度検出手段57が検出する回転速度と予め設定された内燃機関の目標回転速度とに基づいて、二次空気供給手段70を制御して二次空気の供給量を調節する二次空気制御手段71を備えることを特徴とする。
【選択図】図1

Description

本発明は、内燃機関の制御装置に関し、特に、排気通路に二次空気を供給する内燃機関の制御装置に関するものである。
一般に、内燃機関においては、排気ガス中の未燃焼炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)等の有害物質を酸化、還元させる三元触媒等からなる触媒コンバータが排気通路上に設けられている。この触媒コンバータは、所定の活性化温度以上になることで活性化し、理論空燃比付近で有害物質の十分な浄化効率を得られるものである。
ここで、内燃機関の温度が低い条件において冷間始動する場合、一般に吸入空気温度が低く燃料噴霧の微粒化も十分でないので、燃料噴射弁を通じて燃焼室内に供給する燃料の量を増量し、機関燃焼の安定化、暖機の促進を図るのが一般的である。ところが、燃料の噴射量を増量して混合気をリッチ化すれば、排気ガス中の未燃燃料(HC、CO等)も増えることになる。その上、冷間時には触媒の温度が低く、十分に活性化していない。そのため、冷間始動時など、触媒温度が活性化温度に達していないときに混合気をリッチ化する場合には、二次空気制御を実施して、各燃焼室から排出された直後の排気、例えば、排気マニホールド内の排気に空気を混入させ、排気ガス中に含まれる未燃燃料成分を再燃焼させる酸化反応、いわゆる、後燃えを促す。このようにして、触媒コンバータの上流において未燃燃料成分の浄化が促進されると共に、その反応熱によって触媒の活性化が早められる。
このような内燃機関の制御装置として、例えば、特許文献1に記載のように、排気管内の排気浄化触媒が配設されている位置よりも上流側に2次空気供給通路を介して2次空気を供給するエアポンプと、吸気管から燃焼室内に送られる吸入空気量を調整する調整手段と、機関始動直後のアイドル時であって、前記エアポンプにより2次空気の供給動作を行う場合に、前記調整手段による吸入空気量を増量補正する制御を行う制御手段を備えるものがある。この内燃機関では、機関始動直後のアイドル時においてエアポンプを作動させることにより機関に対する負荷が増加した際に、燃焼室内に送る空気量を増量することで2次空気供給動作に起因するアイドル回転数の低下の抑制を図っている。
特開2004−100503号公報
ところで、上記のように二次空気制御を実施して、排気ガスに空気を混入させ、排気ガス中に含まれる未燃燃料成分を再燃焼させる酸化反応を促し、未燃燃料成分の浄化を促進すると共に反応熱によって触媒の活性化を行う際に、この反応熱の影響により燃焼室内の温度が上昇し、これにより筒内圧が上昇し、その結果、エンジン回転数にばらつきが生じ、アイドル回転数を正確に制御することができなくなってしまうおそれがある。
そこで本発明は、エンジン回転数の応答性を向上させ正確に目標回転数に制御することができる内燃機関の制御装置を提供することを目的とする。
上記目的を達成するために、請求項1に係る発明による内燃機関の制御装置は、燃焼室から排気ガスを排出する排気通路と、前記排気通路内に二次空気を供給可能な二次空気供給手段と、内燃機関の回転速度を検出する回転速度検出手段と、前記回転速度検出手段が検出する回転速度と予め設定された前記内燃機関の目標回転速度とに基づいて、前記二次空気供給手段を制御して前記二次空気の供給量を調節する二次空気制御手段とを備えることを特徴とする。
請求項2に係る発明による内燃機関の制御装置では、前記回転速度検出手段が検出する回転速度と前記内燃機関の目標回転速度との偏差を算出する偏差算出手段と、前記偏差に基づいて図示仕事増減量を算出する図示仕事算出手段とを備え、前記二次空気制御手段は、前記図示仕事増減量に基づいて前記二次空気供給手段を制御して前記二次空気の供給量を調節することを特徴とする。
上記目的を達成するために、請求項3に係る発明による内燃機関の制御装置は、燃焼室から排気ガスを排出する排気通路と、前記排気通路内に二次空気を供給可能な二次空気供給手段と、内燃機関の回転速度を検出する回転速度検出手段と、前記回転速度検出手段が検出する回転速度と予め設定された前記内燃機関の目標回転速度とに基づいて前記二次空気供給手段の故障を判定する故障判定手段とを備えることを特徴とする。
請求項4に係る発明による内燃機関の制御装置では、前記回転速度検出手段が検出する回転速度と前記内燃機関の目標回転速度との偏差を算出する偏差算出手段と、前記二次空気供給手段を制御する二次空気制御手段とを備え、前記故障判定手段は、前記二次空気制御手段が前記偏差に基づいて前記二次空気供給手段を制御して前記二次空気の供給量を変更した後、前記偏差が閾値以上である場合に前記二次空気供給手段を故障と判定することを特徴とする。
上記目的を達成するために、請求項5に係る発明による内燃機関の制御装置は、燃焼室から排気ガスを排出する排気通路と、前記排気通路内に二次空気を供給可能な二次空気供給手段と、前記燃焼室内の圧力を検出する筒内圧検出手段と、前記筒内圧検出手段が検出する圧力に基づいて前記二次空気供給手段の故障を判定する故障判定手段とを備えることを特徴とする。
請求項6に係る発明による内燃機関の制御装置では、前記二次空気供給手段を制御する二次空気制御手段とを備え、前記故障判定手段は、前記二次空気制御手段が前記二次空気供給手段を供給状態と停止状態との間で切り替えたとき、前記圧力が変動しない場合に前記二次空気供給手段を故障と判定することを特徴とする。
請求項7に係る発明による内燃機関の制御装置では、前記燃焼室に連通する排気ポートを開閉する排気弁を備え、前記二次空気供給手段は、前記排気弁に向けて前記二次空気を供給することを特徴とする。
本発明に係る内燃機関の制御装置によれば、回転速度検出手段が検出する回転速度と予め設定された内燃機関の目標回転速度とに基づいて、二次空気供給手段を制御して二次空気の供給量を調節する二次空気制御手段を備えるので、エンジン回転数の応答性を向上させ正確に目標回転数に制御することができる。
また、本発明に係る内燃機関の制御装置によれば、回転速度検出手段が検出する回転速度と予め設定された内燃機関の目標回転速度とに基づいて二次空気供給手段の故障を判定する故障判定手段とを備えるので、二次空気供給手段の故障を確実に検出することができ、結果的に、エンジン回転数を正確に目標回転数に制御することができる。
また、本発明に係る内燃機関の制御装置によれば、筒内圧検出手段が検出する圧力に基づいて二次空気供給手段の故障を判定する故障判定手段とを備えるので、二次空気供給手段の故障を確実に検出することができ、結果的に、アイドル回転数を正確に目標回転数に制御することができる。
以下に、本発明に係る内燃機関の制御装置の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が置換可能かつ容易なもの、或いは実質的に同一のものが含まれる。
図1は、本発明の実施例1に係る内燃機関の制御装置が適用されたエンジンを表す概略構成図、図2は、本発明の実施例1に係る内燃機関の制御装置が適用されたエンジンの燃焼室容積比と筒内圧との関係を表すグラフ、図3は、本発明の実施例1に係る内燃機関の制御装置が適用されたエンジンのECUを表すブロック図、図4は、本発明の実施例1に係る内燃機関の制御装置が適用されたエンジンにおけるエンジン回転数の増減量と図示仕事増減量とを対応させたマップの一例、図5は図示仕事増減量と二次空気の供給増減量とを対応させたマップの一例、図6は、本本発明の実施例1に係る内燃機関の制御装置が適用されたエンジンにおける動作を説明するフローチャートである。
本実施例の内燃機関の制御装置において、図1に示すように、内燃機関としてのエンジン10は多気筒筒内噴射式であって、シリンダブロック11上にシリンダヘッド12が締結されており、このシリンダブロック11に形成された複数のシリンダボア13にピストン14がそれぞれ上下移動自在に嵌合している。そして、シリンダブロック11の下部にクランクケース15が締結され、このクランクケース15内にクランクシャフト16が回転自在に支持されており、各ピストン14はコネクティングロッド17を介してこのクランクシャフト16にそれぞれ連結されている。
燃焼室18は、シリンダブロック11におけるシリンダボア13の壁面とシリンダヘッド12の下面とピストン14の頂面により構成されており、この燃焼室18は、上部(シリンダヘッド12の下面)の中央部が高くなるように傾斜したペントルーフ形状をなしている。そして、この燃焼室18の上部、つまり、シリンダヘッド12の下面に吸気ポート19及び排気ポート20が対向して形成されており、この吸気ポート19及び排気ポート20に対して吸気弁21及び排気弁22の下端部がそれぞれ位置している。この吸気弁21及び排気弁22は、シリンダヘッド12に軸方向に沿って移動自在に支持されると共に、吸気ポート19及び排気ポート20を閉止する方向(図1にて上方)に付勢支持されている。また、シリンダヘッド12には、吸気カムシャフト23及び排気カムシャフト24が回転自在に支持されており、吸気カム25及び排気カム26が吸気弁21及び排気弁22の上端部に接触している。
なお、図示しないが、クランクシャフト16に固結されたクランクシャフトスプロケットと、吸気カムシャフト23及び排気カムシャフト24にそれぞれ固結された各カムシャフトシャフトスプロケットとは、無端のタイミングチェーンが掛け回されており、クランクシャフト16と吸気カムシャフト23と排気カムシャフト24が連動可能となっている。
従って、クランクシャフト16に同期して吸気カムシャフト23及び排気カムシャフト24が回転すると、吸気カム25及び排気カム26が吸気弁21及び排気弁22を所定のタイミングで上下移動することで、吸気ポート19及び排気ポート20を開閉し、吸気ポート19と燃焼室18、燃焼室18と排気ポート20とをそれぞれ連通することができる。この場合、この吸気カムシャフト23及び排気カムシャフト24は、クランクシャフト16が2回転(720度)する間に1回転(360度)するように設定されている。そのため、エンジン10は、クランクシャフト16が2回転する間に、吸気行程、圧縮行程、膨張行程、排気行程の4行程を実行することとなり、このとき、吸気カムシャフト23及び排気カムシャフト24が1回転することとなる。
また、このエンジン10の動弁機構は、運転状態に応じて吸気弁21及び排気弁22を最適な開閉タイミングに制御する吸気・排気可変動弁機構(VVT:Variable Valve Timing-intelligent)27,28となっている。この吸気・排気可変動弁機構27,28は、吸気カムシャフト23及び排気カムシャフト24の軸端部にVVTコントローラ29,30が設けられて構成され、オイルコントロールバルブ31,32からの油圧をこのVVTコントローラ29,30の図示しない進角室及び遅角室に作用させることによりカムスプロケットに対するカムシャフト23,24の位相を変更し、吸気弁21及び排気弁22の開閉時期を進角または遅角することができるものである。この場合、吸気・排気可変動弁機構27,28は、吸気弁21及び排気弁22の作用角(開放期間)を一定としてその開閉時期を進角または遅角する。また、吸気カムシャフト23及び排気カムシャフト24には、その回転位相を検出するカムポジションセンサ33,34が設けられている。
吸気ポート19には、吸気マニホールド35を介してサージタンク36が連結され、このサージタンク36に吸気管37が連結されており、この吸気管37の空気取入口にはエアクリーナ38が取付けられている。そして、このエアクリーナ38の下流側にスロットル弁39を有する電子スロットル装置40が設けられている。また、シリンダヘッド12には、燃焼室18に直接燃料を噴射するインジェクタ(燃料噴射弁)41が装着されており、このインジェクタ41は、吸気ポート19側に位置して上下方向に所定角度傾斜して配置されている。各気筒に装着されるインジェクタ41はデリバリパイプ42に連結され、このデリバリパイプ42には高圧燃料供給管43を介して高圧燃料ポンプ(燃料ポンプ)44が連結されている。更に、シリンダヘッド12には、燃焼室18の上方に位置して混合気に着火する点火プラグ45が装着されている。
一方、排気ポート20には、排気マニホールド46を介して排気管47が連結されており、この排気管47には排気ガス中に含まれるHC、CO、NOxなどの有害物質を浄化処理する三元触媒48,49が装着されている。また、エンジン10には、クランキングを行うスタータモータ50が設けられており、エンジン始動時に図示しないピニオンギヤがリングギヤと噛み合った後、回転力がピニオンギヤからリングギヤへと伝わり、クランクシャフト16を回転することができる。
ところで、車両にはマイクロコンピュータを中心として構成されエンジン10の各部を制御可能な電子制御ユニット(ECU)51が搭載されており、このECU51は、インジェクタ41や点火プラグ45などを制御可能となっている。即ち、吸気管37の上流側にはエアフローセンサ52及び吸気温センサ53が装着され、また、サージタンク36には吸気圧センサ54が設けられており、計測した吸入空気量、吸気温度、吸気圧(吸気管負圧)をECU51に出力している。また、電子スロットル装置40にはスロットルポジションセンサ55が装着されており、現在のスロットル開度をECU51に出力しており、アクセルポジションセンサ56は、現在のアクセル開度をECU51に出力している。更に、回転速度検出手段としてのクランク角センサ57は、検出した各気筒のクランク角度をECU51に出力し、このECU51は検出したクランク角度に基づいて各気筒における吸気行程、圧縮行程、膨張行程、排気行程を判別すると共に、エンジン回転数を算出している。なおここで、エンジン回転数は、言い換えれば、クランクシャフト16の回転速度に対応し、このクランクシャフト16の回転速度が高くなれば、クランクシャフト16の回転数、すなわち、エンジン10のエンジン回転数も高くなる。
また、シリンダブロック11にはエンジン冷却水温を検出する水温センサ58が設けられており、検出したエンジン冷却水温をECU51に出力している。更に、シリンダヘッド12には燃焼室18内の圧力、つまり、筒内圧力を検出する筒内圧検出手段としての筒内圧センサ59が設けられており、検出した筒内圧力をECU51に出力している。また、各インジェクタ41に連通するデリバリパイプ42には燃料圧力を検出する燃圧センサ60が設けられており、検出した燃料圧力をECU51に出力している。一方、排気管47には、三元触媒48の上流側及び下流側に位置して排気ガスの酸素濃度を検出する酸素センサ61,62が設けられており、検出した酸素濃度をECU51に出力している。
従って、ECU51は、検出した燃料圧力に基づいてこの燃料圧力が所定圧力となるように高圧燃料ポンプ44を駆動すると共に、検出した吸入空気量、吸気温度、吸気圧、スロットル開度、アクセル開度、エンジン回転数、エンジン冷却水温などのエンジン運転状態に基づいて燃料噴射量(燃料噴射時間)、噴射時期、点火時期などを決定し、インジェクタ41及び点火プラグ45を駆動して燃料噴射及び点火を実行する。また、ECU51は、検出した排気ガスの酸素濃度をフィードバックして空燃比がストイキ(理論空燃比)となるように燃料噴射量を補正している。
また、ECU51は、エンジン運転状態に基づいて吸気・排気可変動弁機構27,28を制御可能となっている。即ち、低温時、エンジン始動時、アイドル運転時や軽負荷時には、排気弁22の閉止時期と吸気弁21の開放時期のオーバーラップをなくすことで、排気ガスが吸気ポート19または燃焼室18に吹き返す量を少なくし、燃焼安定及び燃費向上を可能とする。また、中負荷時には、このオーバーラップを大きくすることで、内部EGR率を高めて排ガス浄化効率を向上させると共に、ポンピングロスを低減して燃費向上を可能とする。更に、高負荷低中回転時には、吸気弁21の閉止時期を進角することで、吸気が吸気ポート19に吹き返す量を少なくし、体積効率を向上させる。そして、高負荷高回転時には、吸気弁21の閉止時期を回転数にあわせて遅角することで、吸入空気の慣性力に合わせたタイミングとし、体積効率を向上させる。
ここで、本実施例のエンジン10は、例えば、温度が低い条件において冷間始動する場合、一般に吸入空気温度が低く燃料噴霧の微粒化も十分でないので、インジェクタ41を通じて燃焼室18内に供給する燃料の量を増量し、機関燃焼の安定化、暖機の促進を図るのが一般的である。ところが、燃料の噴射量を増量して混合気をリッチ化すれば、排気ガス中の未燃燃料(HC、CO等)も増えることになる。その上、冷間時には三元触媒48,49の温度が低く、十分に活性化していない。そのため、冷間始動時など、触媒温度が活性化温度に達していないときに混合気をリッチ化する場合には、二次空気制御を実施して、各燃焼室18から排出された直後の排気、つまり、燃焼室18から排気ガスを排出する排気通路としての排気ポート20や排気マニホールド46内の排気に空気を混入させ、排気ガス中に含まれる未燃燃料成分を再燃焼させる酸化反応、いわゆる、後燃えを促す。このようにして、三元触媒48の上流において未燃燃料成分の浄化が促進されると共に、その反応熱によって触媒の活性化が早められる。
具体的には、エンジン10は、排気ポート20内に二次空気を供給可能な二次空気供給手段としての二次空気供給装置70を備える。二次空気供給装置70は、二次空気を噴射するノズルが各排気弁22を向くように設けられ、排気ガスの流動方向に対する三元触媒48上流側において排気弁22に向けて二次空気を噴射することが可能である。また、二次空気供給装置70は、ECU51に電気的に接続されている。二次空気供給装置70は、上述のようにこのエンジン10の冷間始動時など、三元触媒48,49が十分に活性化していない状態にて、排気ポート20に二次空気を供給することで、未燃燃料成分を再燃焼させ、排気ガスの浄化及び触媒の暖機を行うことができる。
ところで、上記のように二次空気制御を実施して、排気ガス中に含まれる未燃燃料成分を再燃焼させると、その反応熱の影響等により燃焼室内の温度が上昇し、これにより、図2に示すように、膨張行程における燃焼室18の筒内圧が上昇することが見出された。
図2は、エンジン10の排気弁22閉止時期と吸気弁21開放時期のオーバーラップをなくし、ピストン14が上死点位置に達する前に排気弁22が閉じ終わり、吸気弁21が開き始めるよう制御することで、排気ガスが排気ポート20から燃焼室18、吸気ポート19に流入しないようにした場合における燃焼室容積比と筒内圧センサ59が検出する筒内圧(図示平均有効圧)との相関関係を示している。このエンジン10では、ピストン14がシリンダボア13内を下降することで、吸気ポート19を介して燃焼室18内に空気が吸入され(a→bで示す吸気行程)、この空気とインジェクタ41から燃焼室18内へ噴射される燃料とが混合して混合気を形成する。そして、このピストン14が吸気行程下死点を経てシリンダボア13内を上昇することで混合気が圧縮され(b→cで示す圧縮行程)、ピストン14が圧縮行程上死点付近に近づくと点火プラグ45により混合気に点火され、該混合気が燃焼し、その燃焼圧力によりピストン14を下降させる(c→dで示す膨張行程)。燃焼後の混合気は、ピストン14が膨張行程下死点を経て吸気行程上死点に向かって再び上昇することで排気ポート20を介して排気ガスとして放出される(d→aで示す排気行程)。
このとき、図中実線で示す二次空気を供給する場合と、図中破線で示す二次空気を供給しない場合とを比較すると、c→dで示す膨張行程において、二次空気を供給する場合の方が二次空気を供給しない場合よりも筒内圧が上昇している。これは、二次空気の供給による未燃燃料成分の再燃焼で排気温度が上昇し、これにより、排気弁22及びこの近傍の温度が上昇し、その結果、筒内圧が上昇したものと考えられる。すなわち、二次空気の供給量と排気温度、筒内圧とはそれぞれ相関している。ここで、エンジン10においてアイドル回転数の制御を行う場合、通常、スロットル弁39あるいは不図示のアイドルスピードコントロール弁(ISCV)を制御して吸入空気量を調節することで、アイドル回転数が目標アイドル回転数に収束するように制御しているが、上記のように始動時に二次空気を供給することで筒内圧が上昇すると、これに応じてエンジン回転数も上昇しアイドル回転数にばらつきが生じるおそれがある。
これに対し、本実施例のエンジン10では、この二次空気の供給による筒内圧の上昇、言い換えれば、燃焼改善効果を積極的に利用、制御することで、エンジン回転数の応答性の向上及び制御性の向上を図っている。
すなわち、本実施例のエンジン10では、図3に示すように、ECU51に、クランク角センサ57が検出するエンジン回転数と予め設定されたエンジン10の目標アイドル回転数とに基づいて二次空気供給装置70を制御する二次空気制御手段としての二次空気制御部71と、エンジン回転数と予め設定されたエンジン10の目標アイドル回転数とに基づいて二次空気供給装置70の故障を判定する故障判定手段としての故障判定部72を設けている。さらに、具体的には、エンジン10では、ECU51に、クランク角センサ57が検出するエンジン回転数と予め設定されたエンジン10の目標アイドル回転数との偏差を算出する偏差算出手段としての偏差算出部73と、この偏差に基づいて図示仕事増減量を算出する図示仕事算出手段としての図示仕事算出部74を設けている。そして、二次空気制御部71は、図示仕事算出部74が算出する図示仕事増減量に基づいて二次空気供給装置70を制御して二次空気の供給量を調節し、故障判定部72は、二次空気制御部71が偏差に基づいて二次空気供給装置70を制御して二次空気の供給量を変更した後、偏差が閾値以上である場合に二次空気供給装置70を故障と判定する。なお、二次空気制御部71は、二次空気の噴射開始及び停止を制御することで二次空気供給装置70による二次空気の供給量を調節する。
ここで、ECU51は、処理部75、記憶部76及び入出力部77を有し、これらは互いに接続され、互いに信号の受け渡しが可能になっている。入出力部77にはエンジン10の各部を駆動する不図示の駆動回路、上述した各種センサが接続されており、入出力部77は、これらのセンサ等との間で信号の入出力を行なう。また、記憶部76には、エンジン10を制御するコンピュータプログラムが格納されている。この記憶部76は、ハードディスク装置や光磁気ディスク装置、またはフラッシュメモリ等の不揮発性のメモリ(CD−ROM等のような読み出しのみが可能な記憶媒体)や、RAM(Random Access Memory)のような揮発性のメモリ、あるいはこれらの組み合わせにより構成することができる。
処理部75は、不図示のメモリ及びCPU(Central Processing Unit)により構成されており、上述の二次空気制御部71、故障判定部72、偏差算出部73、図示仕事算出部74を有している。
当該エンジン10に設けられる二次空気供給装置70の制御は、車両の各部に設けられたセンサによる検出結果に基づいて、処理部75が前記コンピュータプログラムを当該処理部75に組み込まれたメモリに読み込んで演算し、演算の結果に応じて制御信号を送ることにより実行される。その際に処理部75は、適宜記憶部76へ演算途中の数値を格納し、また格納した数値を取り出して演算を実行する。なお、このように二次空気供給装置70を有するエンジン10を制御する場合には、前記コンピュータプログラムの代わりに、ECU51とは異なる専用のハードウェアによって制御してもよい。
ここで、上述した予め設定されたエンジン10の目標アイドル回転数は、エンジン10の運転状態に応じて設定される最適なアイドル回転数であり、例えば、水温センサ58が検出するエンジン冷却水温等に応じて予め設定される。これに対して、クランク角センサ57が検出するエンジン回転数は、実際のエンジン回転数(リアルタイムで検出される現時点でのエンジン回転数)である。なお、以下の説明では特に断りのない限り、クランク角センサ57が検出する実際のエンジン回転数を「実エンジン回転数」という。
また、実エンジン回転数と目標アイドル回転数との偏差は、標準となる数値、すなわち目標アイドル回転数に対する実エンジン回転数の偏り・ずれを表す値であり、例えば、目標アイドル回転数と実エンジン回転数との差で表すことができる。また、実エンジン回転数と目標アイドル回転数との偏差は、言い換えれば、実エンジン回転数を目標アイドル回転数に収束させるために必要なエンジン回転数の増減量に応じた値である。
また、図示仕事は、燃焼ガスが燃焼室18内でピストン14の上面にする仕事のことをいい、図2で例示したようなP(筒内圧)−V線図(燃焼室容積比)で囲まれる面積に相当する。ここで、上述したように筒内圧センサ59により検出される筒内圧とエンジン回転数とは相関しており、すなわち、筒内圧が上昇するとエンジン回転数もあがり、筒内圧が下降するとエンジン回転数も下がることから、実エンジン回転数を目標アイドル回転数に収束させるために必要なエンジン回転数の増減量に対して、実エンジン回転数を目標アイドル回転数に収束させるために必要な図示仕事増減量もこのエンジン回転数の増減量に応じた値となる。本実施例のエンジン10では、図4に示すような所定のエンジン回転数の増減量と図示仕事増減量とを対応させてマップ化し、ECU51の記憶部76に記憶している。
さらに、上述したように、二次空気供給装置70による二次空気の供給量と筒内圧センサ59により検出される筒内圧も相関しており、すなわち、二次空気の供給量が増量されると筒内圧も上昇し、二次空気の供給量が減量されると筒内圧も下降することから、実エンジン回転数を目標アイドル回転数に収束させるために必要な図示仕事増減量に対して、実エンジン回転数を目標アイドル回転数に収束させるために必要な二次空気の供給増減量もこの図示仕事増減量に応じた値となる。本実施例のエンジン10では、図5に示すような所定の図示仕事増減量と二次空気の供給増減量を対応させてマップ化し、ECU51の記憶部76に記憶している。
ここで、本実施例の内燃機関の制御装置によるアイドル回転数制御及び二次空気供給装置故障判定制御について、図6のフローチャートに基づいて詳細に説明する。以下の動作は、主としてECU51により実行される。
先ず、運転者がエンジン10を始動させる(S100)。続いて、ECU51の二次空気制御部71は、二次空気供給装置70による二次空気の供給を開始するか否かの判定を行う(S102)。 この判定は、例えば、水温センサ58が検出するエンジン冷却水温が所定温度よりも低いか否かによって判定することができる。また、例えば、三元触媒48の上流側に温度センサを設け、検出された温度が三元触媒48の活性化温度以下であるか否かを判定することにより行うこともできる。
二次空気の供給を要しないと判定した場合、すなわち、三元触媒48が活性化温度に達している又は冷却水温が所定温度に達している場合(S102:No)、この制御を終了し、二次空気の供給を要すると判定した場合、すなわち、三元触媒48が活性化温度以下である又は冷却水温が所定温度以下である場合(S102:Yes)、二次空気制御部71は、二次空気供給装置70を作動させて二次空気を排気ポート20内に供給する(S104)。なお、S102以降の制御は基本的にエンジン10の運転状態がアイドル状態であるときに実行される。ECU51は、エンジン10がアイドル状態でないと判断した場合には、その時点でこの制御を終了するようにすればよい。アイドル中か否かの判断は、例えば、アクセルポジションセンサ56の信号や不図示のシフトレバーセンサ、車速センサの信号等に基づいて行えばよい。
次に、ECU51の偏差算出部73は、クランク角センサ57により検出される実エンジン回転数と目標アイドル回転数との偏差を算出する(S106)。そして、ECU51の図示仕事算出部74は、偏差算出部73により算出された偏差に基づいて、所定のエンジン回転数の増減量と図示仕事増減量とを対応させたマップ(図4参照)に応じた図示仕事増減量を算出する(S108)。さらに、二次空気制御部71は、図示仕事算出部74により算出されたた図示仕事増減量に基づいて、所定の図示仕事増減量と二次空気の供給増減量を対応させたマップ(図5参照)に応じた二次空気供給増減量を算出し(S110)、この二次空気供給増減量に応じて二次空気供給装置70を制御して二次空気の供給量を変更・調節する(S112)。
そして、ECU51は、S112での二次空気の供給量の変更に応じて実エンジン回転数が目標アイドル回転数に収束したか否かを判定する。具体的に、ECU51は、偏差算出部73により実エンジン回転数と目標アイドル回転数との偏差を算出し、ここで算出された偏差が所定値以下となったか否かを判定する(S114)。偏差が所定値以下となった場合(S114:Yes)、実エンジン回転数が目標アイドル回転数とほぼ一致しているのでこの制御を終了する。偏差が所定値以下となっていない場合(S114:No)、二次空気を供給しても実エンジン回転数と目標アイドル回転数とが一致していないことから、次に二次空気供給装置70の故障の可能性を判定する。ここで用いる所定値は、実エンジン回転数が目標アイドル回転数に収束したか否かを判定するために偏差に対して設定される値であることから、基本的には0でよいが若干の誤差等を考慮して設定してもよい。
具体的には、故障判定部72は、S114で算出した偏差が閾値以下であるか否かを判定する(S116)。ここで、故障判定部72が故障の判定に用いる閾値は、S114で用いた所定値よりも大きな値であり、二次空気の供給により実エンジン回転数が変動したか否かを判定するための値であり、例えば、前回算出した偏差を用いてもよい。偏差が閾値よりも小さいと判定された場合(S116:Yes)、S106に戻り以降の制御を繰り返し実行する。偏差が閾値以上であると判定された場合(S116:No)、二次空気を供給する制御を実行したにもかかわらず実エンジン回転数が変動していないことから、故障判定部72は二次空気供給装置70を故障と判定し(S118)、警告を発して(S120)この制御を終了する。
なお、ECU51は、二次空気の供給停止条件が成立した場合、その時点で図6に示した制御を終了するようにしてもよい。二次空気の供給停止条件とは、例えば、三元触媒48が活性化温度に達したり、二次空気を供給し始めてから所定の時間が経過していたりすれば、二次空気の供給を停止させる等の条件である。あるいは、上述したように、例えば、エンジン10がアイドル状態から走行状態に移行した際にもその時点で図6に示した制御を終了するようにすればよい。
以上で説明した本発明の実施例1に係るエンジン10によれば、二次空気の供給量と筒内圧、エンジン回転数とが相関関係にあるという知見から、燃焼室18から排気ガスを排出する排気ポート20と、排気ポート20内に二次空気を供給可能な二次空気供給装置70と、エンジン10のエンジン回転数を検出するクランク角センサ57とを備え、ECU51に、クランク角センサ57が検出する実エンジン回転数と予め設定されたエンジン10の目標アイドル回転数とに基づいて、二次空気供給装置70を制御して二次空気の供給量を調節する二次空気制御部71を設けている。
したがって、二次空気制御部71により実エンジン回転数と目標アイドル回転数とに基づいて二次空気供給装置70を制御して二次空気の供給量を調節することから、排気ガスに二次空気を供給して、排気ガス中に含まれる未燃燃料成分を再燃焼させ、未燃燃料成分の浄化を促進すると共に反応熱によって触媒の活性化を早めるとき、二次空気の供給量を増やすことでこの反応熱の影響により筒内圧が上昇し、燃焼が改善され、実エンジン回転数が上がる一方、二次空気の供給量を減らすことで実エンジン回転数が下がるので、エンジン回転数の応答性を向上させ正確に目標回転数に制御することができる。その結果、燃費も向上する。
さらに、以上で説明した本発明の実施例1に係るエンジン10によれば、ECU51に、クランク角センサ57が検出する実エンジン回転数と予め設定されたエンジン10の目標アイドル回転数との偏差を算出する偏差算出部73と、この偏差に基づいて図示仕事増減量を算出する図示仕事算出部74を設け、二次空気制御部71は、この図示仕事増減量に基づいて二次空気供給装置70を制御して二次空気の供給量を調節するようにしている。したがって、偏差算出部73により実エンジン回転数と目標アイドル回転数との偏差を算出し、図示仕事算出部74によりこの算出された偏差に対応した図示仕事増減量を算出し、その結果、二次空気制御部71は、この図示仕事増減量に応じて二次空気供給装置70による二次空気の供給量を増減するので、より正確に実エンジン回転数を目標アイドル回転数に収束させることができる。
さらに、以上で説明した本発明の実施例1に係るエンジン10によれば、ECU51に、クランク角センサ57が検出する実エンジン回転数と予め設定されたエンジン10の目標アイドル回転数とに基づいて二次空気供給装置70の故障を判定する故障判定部72を設けている。したがって、故障判定部72により実エンジン回転数と目標アイドル回転数とに基づいて二次空気供給装置70の故障を判定することから、二次空気の供給による燃焼改善効果により実エンジン回転数が目標アイドル回転数に収束する方向に変動したか否かで二次空気供給装置70の動作確認をすることができ故障を判定することができるので、確実に二次空気供給装置70の故障を検出することができる。その結果、二次空気供給装置70が故障してアイドル回転数にばらつきがでてもこれを早期に検出し、これに応じてアイドル回転数を正確に目標回転数に制御することができる。また、未燃燃料成分を再燃焼させるための二次空気が供給されていないことを早期に検知することができるので、未燃燃料成分の流出を早期に検出することができる。
さらに、以上で説明した本発明の実施例1に係るエンジン10によれば、故障判定部72は、二次空気制御部71が実エンジン回転数と目標アイドル回転数との偏差に基づいて二次空気供給装置70を制御して二次空気の供給量を変更した後、偏差が閾値以上である場合に二次空気供給装置70を故障と判定する。したがって、二次空気制御部71が二次空気供給装置70を制御して二次空気の供給量を変更した際に、実エンジン回転数と目標アイドル回転数との偏差がほとんど変動せず、閾値以上である場合に、二次空気供給装置70の故障を判定することから、確実に二次空気供給装置70の故障を検出することができる。
さらに、以上で説明した本発明の実施例1に係るエンジン10によれば、燃焼室18に連通する排気ポート20を開閉する排気弁22を備え、二次空気供給装置70は、排気弁22に向けて二次空気を供給する。したがって、排気弁22に向けて二次空気が供給されることから、排気ガス中に含まれる未燃燃料成分の再燃焼を燃焼室18により近いところでおこなうことができるので、その反応熱をより効率的に燃焼改善に用いることができる。その結果、エンジン回転数の応答性をより向上させることができる。
図7は、本発明の実施例2に係る内燃機関の制御装置が適用されたエンジンにおける動作を説明するフローチャートである。実施例2に係るエンジンは、実施例1に係るエンジンと略同様の構成であるが、故障判定手段が筒内圧に基づいて二次空気供給手段の故障を判定する点で実施例1に係るエンジンとは異なる。その他、上述した実施例と共通する構成、作用、効果については、重複した説明はできるだけ省略するとともに、同一の符号を付す。
この実施例2に係るエンジン210の故障判定手段としての故障判定部72は、筒内圧検出手段としての筒内圧センサ59が検出する筒内圧に基づいて二次空気供給装置70の故障を判定するように構成される。さらに具体的には、実施例2の故障判定部72は、二次空気制御部71が二次空気供給装置70を供給状態と停止状態との間で切り替えたとき、筒内圧が変動しない場合に二次空気供給装置70を故障と判定する。
上述したように、二次空気の供給により筒内圧は変動する。すなわち、実施例1の図6に示したS116における実エンジン回転数と目標アイドル回転数との偏差が閾値以下であるか否かの判定に代えて、図7に示すように、まず、二次空気制御部71が二次空気供給装置70を制御して二次空気の供給を停止した後(S215)、故障判定部72は筒内圧センサ59により検出される筒内圧が変動したか否かを判定する(S216)ことで、二次空気供給装置70の故障を判定することができる。筒内圧が変動した場合(S216:Yes)、二次空気供給装置70は作動しているのでS104に戻り以降の制御を繰り返し実行する。筒内圧が変動しなかった場合(S216:No)、二次空気を供給する制御を実行したにもかかわらず実エンジン回転数が変動していないことから、故障判定部72は二次空気供給装置70を故障と判定し(S118)、警告を発して(S120)この制御を終了する。
以上で説明した本発明の実施例2に係るエンジン210によれば、二次空気の供給と筒内圧とが相関関係にあるという知見から、ECU51に、筒内圧センサ59が検出する筒内圧に基づいて二次空気供給装置70の故障を判定する故障判定部72を設けている。したがって、故障判定部72により筒内圧に基づいて二次空気供給装置70の故障を判定することから、二次空気の供給による燃焼改善効果により筒内圧が変動したか否かに応じて二次空気供給装置70の動作確認をすることができ故障を判定することができるので、確実に二次空気供給装置70の故障を検出することができる。その結果、二次空気供給装置70が故障してアイドル回転数にばらつきがでてもこれを早期に検出し、これに応じてアイドル回転数を正確に目標回転数に制御することができる。また、未燃燃料成分を再燃焼させるための二次空気が供給されていないことを早期に検知することができるので、未燃燃料成分の流出を早期に検出することができる。
さらに、以上で説明した本発明の実施例2に係るエンジン210によれば、故障判定部72は、二次空気制御部71が二次空気供給装置70を供給状態と停止状態との間で切り替えたとき、筒内圧が変動しない場合に二次空気供給装置70を故障と判定する。したがって、二次空気制御部71が二次空気供給装置70を制御して二次空気の供給を開始、あるいは停止した際に、筒内圧が変動しない場合に、二次空気供給装置70の故障を判定することから、確実に二次空気供給装置70の故障を検出することができる。また、実施例1の場合と比較してもECU51における演算量を減少させることができるので、より迅速に二次空気供給装置70の故障を検出することができる。
なお、上述した本発明の実施例に係るエンジン10、210は、上述した実施例に限定されず、特許請求の範囲に記載された範囲で種々の変更が可能である。以上の説明では、本発明の内燃機関の制御装置を筒内噴射式の多気筒エンジンに適用して説明したが、この形式のエンジンに限らず、直列型またはV型エンジンに適用することもでき、ポート噴射式の内燃機関に適用しても同様の作用効果を奏することができる。 また、以上の説明では、二次空気は排気ポート20に供給するものとして説明したが、排気マニホールド46の三元触媒48の上流側に供給するようにしてもよい。この場合、排気マニホールド46を含む排気系全体が本発明の排気通路に相当する。
以上のように、本発明に係る内燃機関の制御装置は、エンジン回転数の応答性を向上させ正確に目標回転数に制御するものであり、種々の内燃機関に用いて好適である。
本発明の実施例1に係る内燃機関の制御装置が適用されたエンジンを表す概略構成図である。 本発明の実施例1に係る内燃機関の制御装置が適用されたエンジンの燃焼室容積比と筒内圧との関係を表すグラフである。 本発明の実施例1に係る内燃機関の制御装置が適用されたエンジンのECUを表すブロック図である。 本発明の実施例1に係る内燃機関の制御装置が適用されたエンジンにおけるエンジン回転数の増減量と図示仕事増減量とを対応させたマップの一例である。 本発明の実施例1に係る内燃機関の制御装置が適用されたエンジンにおける図示仕事増減量と二次空気の供給増減量とを対応させたマップの一例である。 本発明の実施例1に係る内燃機関の制御装置が適用されたエンジンにおける動作を説明するフローチャートである。 本発明の実施例2に係る内燃機関の制御装置が適用されたエンジンにおける動作を説明するフローチャートである。
符号の説明
10、210 エンジン(内燃機関)
14 ピストン
16 クランクシャフト
18 燃焼室
19 吸気ポート
20 排気ポート(排気通路)
21 吸気弁
22 排気弁
41 インジェクタ
45 点火プラグ
51 ECU
57 クランク角センサ(回転速度検出手段)
59 筒内圧センサ(筒内圧検出手段)
71 二次空気制御部(二次空気制御手段)
72 故障判定部(故障判定手段)
73 偏差算出部(偏差算出手段)
74 図示仕事算出部(図示仕事算出手段)

Claims (7)

  1. 燃焼室から排気ガスを排出する排気通路と、
    前記排気通路内に二次空気を供給可能な二次空気供給手段と、
    内燃機関の回転速度を検出する回転速度検出手段と、
    前記回転速度検出手段が検出する回転速度と予め設定された前記内燃機関の目標回転速度とに基づいて、前記二次空気供給手段を制御して前記二次空気の供給量を調節する二次空気制御手段とを備えることを特徴とする、
    内燃機関の制御装置。
  2. 前記回転速度検出手段が検出する回転速度と前記内燃機関の目標回転速度との偏差を算出する偏差算出手段と、
    前記偏差に基づいて図示仕事増減量を算出する図示仕事算出手段とを備え、
    前記二次空気制御手段は、前記図示仕事増減量に基づいて前記二次空気供給手段を制御して前記二次空気の供給量を調節することを特徴とする、
    請求項1に記載の内燃機関の制御装置。
  3. 燃焼室から排気ガスを排出する排気通路と、
    前記排気通路内に二次空気を供給可能な二次空気供給手段と、
    内燃機関の回転速度を検出する回転速度検出手段と、
    前記回転速度検出手段が検出する回転速度と予め設定された前記内燃機関の目標回転速度とに基づいて前記二次空気供給手段の故障を判定する故障判定手段とを備えることを特徴とする、
    内燃機関の制御装置。
  4. 前記回転速度検出手段が検出する回転速度と前記内燃機関の目標回転速度との偏差を算出する偏差算出手段と、
    前記二次空気供給手段を制御する二次空気制御手段とを備え、
    前記故障判定手段は、前記二次空気制御手段が前記偏差に基づいて前記二次空気供給手段を制御して前記二次空気の供給量を変更した後、前記偏差が閾値以上である場合に前記二次空気供給手段を故障と判定することを特徴とする、
    請求項3に記載の内燃機関の制御装置。
  5. 燃焼室から排気ガスを排出する排気通路と、
    前記排気通路内に二次空気を供給可能な二次空気供給手段と、
    前記燃焼室内の圧力を検出する筒内圧検出手段と、
    前記筒内圧検出手段が検出する圧力に基づいて前記二次空気供給手段の故障を判定する故障判定手段とを備えることを特徴とする、
    内燃機関の制御装置。
  6. 前記二次空気供給手段を制御する二次空気制御手段とを備え、
    前記故障判定手段は、前記二次空気制御手段が前記二次空気供給手段を供給状態と停止状態との間で切り替えたとき、前記圧力が変動しない場合に前記二次空気供給手段を故障と判定することを特徴とする、
    請求項5に記載の内燃機関の制御装置。
  7. 前記燃焼室に連通する排気ポートを開閉する排気弁を備え、
    前記二次空気供給手段は、前記排気弁に向けて前記二次空気を供給することを特徴とする、
    請求項1乃至請求項6のいずれか1項に記載の内燃機関の制御装置。
JP2006234348A 2006-08-30 2006-08-30 内燃機関の制御装置 Pending JP2008057403A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006234348A JP2008057403A (ja) 2006-08-30 2006-08-30 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006234348A JP2008057403A (ja) 2006-08-30 2006-08-30 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
JP2008057403A true JP2008057403A (ja) 2008-03-13

Family

ID=39240464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006234348A Pending JP2008057403A (ja) 2006-08-30 2006-08-30 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP2008057403A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022003256A (ja) * 2017-07-06 2022-01-11 ダグラス デイヴィッド ブンジェス 燃焼システム及び方法
WO2022202463A1 (ja) * 2021-03-25 2022-09-29 ヤンマーホールディングス株式会社 エンジンシステム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022003256A (ja) * 2017-07-06 2022-01-11 ダグラス デイヴィッド ブンジェス 燃焼システム及び方法
WO2022202463A1 (ja) * 2021-03-25 2022-09-29 ヤンマーホールディングス株式会社 エンジンシステム

Similar Documents

Publication Publication Date Title
JP4394318B2 (ja) 内燃機関のバルブタイミング制御装置
US7664594B2 (en) Starting system and method of internal combustion engine
US8229652B2 (en) Control apparatus for cylinder injection type internal combustion engine
US20090271095A1 (en) Starting System and Method of Internal Combustion Engine
JPH10169488A (ja) 排気昇温装置
US7063068B2 (en) Variable valve timing controller for an engine
JP2007085232A (ja) 筒内直噴内燃機関
JP2009121416A (ja) 内燃機関
JP2006291939A (ja) エンジンの制御装置
US7063056B2 (en) Valve timing control apparatus for engine
JP4992704B2 (ja) 筒内直接燃料噴射式火花点火エンジンの排気制御装置
JP5050941B2 (ja) エンジンの空燃比制御
JP2006291940A (ja) エンジンの制御装置
JP3771101B2 (ja) 内燃機関の制御装置
JP2008057403A (ja) 内燃機関の制御装置
JP2010048178A (ja) 内燃機関
JP5098910B2 (ja) 直噴式エンジンの燃料圧力制御装置
JP2006125276A (ja) エンジン始動装置
JP4816591B2 (ja) 内燃機関の制御装置
JP2009156195A (ja) 内燃機関
JP2007262919A (ja) 内燃機関の制御装置
JP5287321B2 (ja) 内燃機関の排気制御装置
JP7360261B2 (ja) エンジンシステム
JP5029302B2 (ja) 内燃機関の制御装置
JP2004176607A (ja) エンジン