JP2008050578A - 樹脂組成物およびその成形品 - Google Patents
樹脂組成物およびその成形品 Download PDFInfo
- Publication number
- JP2008050578A JP2008050578A JP2007190024A JP2007190024A JP2008050578A JP 2008050578 A JP2008050578 A JP 2008050578A JP 2007190024 A JP2007190024 A JP 2007190024A JP 2007190024 A JP2007190024 A JP 2007190024A JP 2008050578 A JP2008050578 A JP 2008050578A
- Authority
- JP
- Japan
- Prior art keywords
- component
- acid
- weight
- resin composition
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
【課題】本発明の目的は、溶融成形時のトラブルが少なく、耐熱性、低ガス性、難燃性、耐トラッキング性に優れた樹脂組成物を提供することにある。
【解決手段】本発明は、ブチレンテレフタレート骨格を主たる構成単位とする芳香族ポリエステル(A成分)、融点が190℃以上のポリ乳酸(B成分)、無機充填剤(C成分)、臭素系難燃剤(D成分)およびアンチモン系難燃助剤(E)を含有し、
(i)A成分およびB成分の合計100重量部あたり、A成分の含有量が、5〜95重量部であり、C成分の含有量が、5〜100重量部であり、D成分の含有量が、5〜80重量部であり、E成分の含有量が、0〜30重量部であり、(ii)カルボキシル基濃度が50eq/ton以下、ラクチド含有量が600重量ppm以下の樹脂組成物である。
【選択図】なし
【解決手段】本発明は、ブチレンテレフタレート骨格を主たる構成単位とする芳香族ポリエステル(A成分)、融点が190℃以上のポリ乳酸(B成分)、無機充填剤(C成分)、臭素系難燃剤(D成分)およびアンチモン系難燃助剤(E)を含有し、
(i)A成分およびB成分の合計100重量部あたり、A成分の含有量が、5〜95重量部であり、C成分の含有量が、5〜100重量部であり、D成分の含有量が、5〜80重量部であり、E成分の含有量が、0〜30重量部であり、(ii)カルボキシル基濃度が50eq/ton以下、ラクチド含有量が600重量ppm以下の樹脂組成物である。
【選択図】なし
Description
本発明は優れた、溶融時の安定性に優れ、耐熱性、低ガス性、難燃性とハイサイクル成形性に優れた樹脂組成物に関する。また本発明は、該組成物よりなる成形品に関する。
PBTは、射出成形により良好な物理的、機械的性質を有する成形品となる。即ち、PBTは強度、靭性、耐薬品性、電気絶縁性に優れた樹脂である。しかし、PBTは、剛性、難燃性を高めるため、無機充填剤、難燃剤を併用すると溶融成形時、樹脂および難燃剤が分解し、発生ガスなどにより金型腐食などの成形トラブルを引き起こすことがある。また、PBT成形品は、腐食が起こり易く、とりわけPBT樹脂で密封された電気、電子部品では腐食が起こり易いことが知られている。
これらの問題に加え、PBT成形品は、耐トラッキング性も一段と低下することも知られており、そのために他の有用な特性の利用を嘱望されつつも、電気電子用途への利用が制限される場合も多い。
これらの問題に加え、PBT成形品は、耐トラッキング性も一段と低下することも知られており、そのために他の有用な特性の利用を嘱望されつつも、電気電子用途への利用が制限される場合も多い。
他方PBTも含めたプラスチック材料は、使用した後、廃棄する際、ゴミの量を増し、さらに自然環境下で分解され難いため、埋設処理しても、半永久的に地中に残留する。そして焼却処理された場合には大気中の二酸化炭素を増加させ、温暖化を助長する懸念がある。また投棄されたプラスチック類により、景観が損なわれ地上ならびに海洋生物の生活環境が破壊されるなど、生態系に対して直接的に悪影響を及ぼすような問題が起こっている。
近年の資源保全、環境保護の観点から、非石油資源を原料とし、廃棄時の減容化および細粒化の容易性、生分解性等の環境に配慮したプラスチック材料が要望されるようになってきた。このためバイオベースポリマーが注目を集め、特にポリ乳酸は、原料のL−乳酸が発酵法により大量かつ安価に製造されるようになってきたこと、高い剛性を特徴とすること等により、その利用が期待されている。
近年の資源保全、環境保護の観点から、非石油資源を原料とし、廃棄時の減容化および細粒化の容易性、生分解性等の環境に配慮したプラスチック材料が要望されるようになってきた。このためバイオベースポリマーが注目を集め、特にポリ乳酸は、原料のL−乳酸が発酵法により大量かつ安価に製造されるようになってきたこと、高い剛性を特徴とすること等により、その利用が期待されている。
しかし、最も有望なポリ乳酸では、耐熱性や耐薬品性の問題が指摘されているが、D−乳酸を原料に含むステレオコンプレックスポリ乳酸(非特許文献1参照。)は従来のポリL−乳酸に比べて格段に高い融点と結晶性樹脂を有する樹脂であり、かかる特性を生かした用途が期待される。しかし、現在のところステレオコンプレックス結晶を再現性よく高度に発現させる技術は完成されていない
かかるバイオポリマーとPBTなどの芳香族ポリエステルとを併用し、生分解性と芳香族ポリエステルの汎用ポリマーとしての特性をあわせ有する樹脂組成物の検討がなされている。例えば、ポリエチレンテレフタレートとポリ乳酸の混合体を混入した構造材が提案されている(特許文献1参照)。
この文献には、構造材に含まれる脂肪族ポリエステルを加熱分解または加溶媒分解することにより熱可塑性ポリエステルに含まれるエステル結合部も同時に分解することができること、従って、使用終了後、廃棄処理が容易な成形品が得られると記載されている。しかしながら、このような芳香族ポリエステルに脂肪族ポリエステルを配合した樹脂組成物は、溶融成形時の熱安定性が悪く、成形性も極めて悪いためエンジニアリングプラスチックとしての実用化が困難であると考えられていた。
このため芳香族ポリエステルとして成形性に優れるPBTを選択し、成形性の問題を解決したPBT組成物を得る検討がなされてきた。例えば、ポリ乳酸と高融点のPBTからなる樹脂組成物において、成形性を改善するため、PBTを15重量%以下含ませて、かつそれが溶融しない条件で成形し、成形品の熱変形温度を高め、成形性を向上が提案されている。(特許文献2参照。)。
かかるバイオポリマーとPBTなどの芳香族ポリエステルとを併用し、生分解性と芳香族ポリエステルの汎用ポリマーとしての特性をあわせ有する樹脂組成物の検討がなされている。例えば、ポリエチレンテレフタレートとポリ乳酸の混合体を混入した構造材が提案されている(特許文献1参照)。
この文献には、構造材に含まれる脂肪族ポリエステルを加熱分解または加溶媒分解することにより熱可塑性ポリエステルに含まれるエステル結合部も同時に分解することができること、従って、使用終了後、廃棄処理が容易な成形品が得られると記載されている。しかしながら、このような芳香族ポリエステルに脂肪族ポリエステルを配合した樹脂組成物は、溶融成形時の熱安定性が悪く、成形性も極めて悪いためエンジニアリングプラスチックとしての実用化が困難であると考えられていた。
このため芳香族ポリエステルとして成形性に優れるPBTを選択し、成形性の問題を解決したPBT組成物を得る検討がなされてきた。例えば、ポリ乳酸と高融点のPBTからなる樹脂組成物において、成形性を改善するため、PBTを15重量%以下含ませて、かつそれが溶融しない条件で成形し、成形品の熱変形温度を高め、成形性を向上が提案されている。(特許文献2参照。)。
また、ポリ乳酸とPBTに加えて、ポリアセタールを加えることによって成形性を改善する方法が開示されている(特許文献3参照)。しかしこの方法ではガラス転移温度が低下するために、耐熱性が低下する問題が指摘できる。
これらの提案においては、ポリ乳酸として、安定的に生産されるポリL−乳酸またはポリD−乳酸(以下乳酸ホモポリマーと略称することがある。)選択使用するため、組成物の耐熱性は大きく低下し、さらに耐溶剤性の問題も明らかになった。
これらの物性の向上が期待されるが、必ずしも安定的にステレオコンプレックス相の形成が進みにくいステレオコンプレックスポリ乳酸とPBTとの組成物の提案はいまだなされていない。さらにステレオコンプレックス結晶が十分に発現したポリ乳酸とPBTとの組成物については開示されていない。
Macromolecules 1987, 20, 904-906 特開平8−104797号公報
特開2006−36818号公報
特開2003−342459号公報
これらの提案においては、ポリ乳酸として、安定的に生産されるポリL−乳酸またはポリD−乳酸(以下乳酸ホモポリマーと略称することがある。)選択使用するため、組成物の耐熱性は大きく低下し、さらに耐溶剤性の問題も明らかになった。
これらの物性の向上が期待されるが、必ずしも安定的にステレオコンプレックス相の形成が進みにくいステレオコンプレックスポリ乳酸とPBTとの組成物の提案はいまだなされていない。さらにステレオコンプレックス結晶が十分に発現したポリ乳酸とPBTとの組成物については開示されていない。
Macromolecules 1987, 20, 904-906
本発明の目的はバイオベースポリマーを含有し環境への負荷が小さい樹脂組成物を提供することにある。また本発明の目的は、溶融成形時のトラブルが少なく、耐熱性、低ガス性、難燃性、耐トラッキング性に優れた樹脂組成物を提供することにある。さらに本発明は該樹脂組成物よりなる成形品を提供することにある。
本発明は、ブチレンテレフタレート骨格を主たる構成単位とする芳香族ポリエステル(A成分)、融点が190℃以上のポリ乳酸(B成分)、無機充填剤(C成分)、臭素系難燃剤(D成分)およびアンチモン系難燃助剤(E)を含有し、
(i)A成分およびB成分の合計100重量部あたり、A成分の含有量が、5〜95重量部であり、C成分の含有量が、5〜100重量部であり、D成分の含有量が、5〜80重量部であり、E成分の含有量が、0〜30重量部であり、
(ii)カルボキシル基濃度が50eq/ton以下、ラクチド含有量が600重量ppm以下の樹脂組成物である。また本発明は、該樹脂組成物よりなる有接点電気電子部品を包含する。
(i)A成分およびB成分の合計100重量部あたり、A成分の含有量が、5〜95重量部であり、C成分の含有量が、5〜100重量部であり、D成分の含有量が、5〜80重量部であり、E成分の含有量が、0〜30重量部であり、
(ii)カルボキシル基濃度が50eq/ton以下、ラクチド含有量が600重量ppm以下の樹脂組成物である。また本発明は、該樹脂組成物よりなる有接点電気電子部品を包含する。
本発明の樹脂組成物は、バイオベースポリマーであるポリ乳酸を含有するので、環境への負荷が小さい。本発明の樹脂組成物は、溶融成形時のトラブルが少なく、耐熱性、低ガス性、難燃性、耐トラッキング性に優れる。
以下、本発明について詳細に説明する。
(ポリ乳酸:B成分)
本発明の樹脂組成物は、ポリ乳酸(B成分)を含有する。B成分の含有量は、A成分とB成分の合計100重量部あたり、好ましくは5〜95重量部、より好ましくは10〜90重量部、さらに好ましくは20〜80重量部である。B成分の含有量をこの範囲にすることにより、耐熱性、耐加水分解性に優れた樹脂組成物となる。
ポリ乳酸は、融点が190℃以上のポリ乳酸である。ポリ乳酸は、ステレオコンプレックスを含有する、所謂、ステレオコンプレックスポリ乳酸であることが好ましい。ステレオコンプレックスポリ乳酸は、ポリL−乳酸およびポリD−乳酸から形成される。ポリL−乳酸は、主として下記式で表されるL−乳酸単位を含有する。ポリD−乳酸は、主として下記式で表されるD−乳酸単位を含有する。
本発明の樹脂組成物は、ポリ乳酸(B成分)を含有する。B成分の含有量は、A成分とB成分の合計100重量部あたり、好ましくは5〜95重量部、より好ましくは10〜90重量部、さらに好ましくは20〜80重量部である。B成分の含有量をこの範囲にすることにより、耐熱性、耐加水分解性に優れた樹脂組成物となる。
ポリ乳酸は、融点が190℃以上のポリ乳酸である。ポリ乳酸は、ステレオコンプレックスを含有する、所謂、ステレオコンプレックスポリ乳酸であることが好ましい。ステレオコンプレックスポリ乳酸は、ポリL−乳酸およびポリD−乳酸から形成される。ポリL−乳酸は、主として下記式で表されるL−乳酸単位を含有する。ポリD−乳酸は、主として下記式で表されるD−乳酸単位を含有する。
ポリL−乳酸は、好ましくは90〜100モル%、より好ましくは95〜100モル%、さらに高融点を実現するためには99〜100モル%の、ステレオ化度を優先するならば95〜99モル%のL−乳酸単位から構成されることがさらに好ましい。他の単位としては、D−乳酸単位、乳酸以外の共重合成分単位が挙げられる。他の単位は、好ましくは0〜10モル%、より好ましくは0〜5モル%、さらに好ましくは0〜1モル%である。
ポリD−乳酸は、好ましくは90〜100モル%、より好ましくは95〜100モル%、さらに高融点を実現するためには99〜100モル%の、ステレオ化度を優先するならば95〜99モル%のL−乳酸単位から構成されることがさらに好ましい。他の単位としては、L−乳酸単位、乳酸以外の共重合成分が挙げられる。他の成分は、0〜10モル%、好ましくは0〜5モル%、さらに好ましくは0〜1モル%である。
ポリD−乳酸は、好ましくは90〜100モル%、より好ましくは95〜100モル%、さらに高融点を実現するためには99〜100モル%の、ステレオ化度を優先するならば95〜99モル%のL−乳酸単位から構成されることがさらに好ましい。他の単位としては、L−乳酸単位、乳酸以外の共重合成分が挙げられる。他の成分は、0〜10モル%、好ましくは0〜5モル%、さらに好ましくは0〜1モル%である。
共重合成分として、2個以上のエステル結合形成可能な官能基を持つジカルボン酸、多価アルコール、ヒドロキシカルボン酸、ラクトン等由来の単位およびこれら種々の構成成分からなる各種ポリエステル、各種ポリエーテル、各種ポリカーボネート等由来の単位が例示される。
ジカルボン酸としては、コハク酸、アジピン酸、アゼライン酸、セバシン酸、テレフタル酸、イソフタル酸等が挙げられる。多価アルコールとしてはエチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、オクタンジオール、グリセリン、ソルビタン、ネオペンチルグリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール等の脂肪族多価アルコール等あるいはビスフェノールにエチレンオキシドが付加させたもの等の芳香族多価アルコール等が挙げられる。ヒドロキシカルボン酸として、グリコール酸、ヒドロキシ酪酸等が挙げられる。ラクトンとしては、グリコリド、ε−カプロラクトングリコリド、ε−カプロラクトン、β−プロピオラクトン、δ−ブチロラクトン、β−またはγ−ブチロラクトン、ピバロラクトン、δ−バレロラクトン等が挙げられる。
ステレオコンプレックスポリ乳酸は、ポリL−乳酸、ポリD−乳酸の混合物である。ポリL−乳酸およびポリD−乳酸は、共に重量平均分子量が、好ましくは10万〜50万、より好ましくは15万〜35万である。
ステレオコンプレックスポリ乳酸は、ポリL−乳酸、ポリD−乳酸の混合物である。ポリL−乳酸およびポリD−乳酸は、共に重量平均分子量が、好ましくは10万〜50万、より好ましくは15万〜35万である。
ポリL−乳酸およびポリD−乳酸は、公知の方法で製造することができる。例えば、L−またはD−ラクチドを金属触媒の存在下、加熱し開環重合させ製造することができる。また、金属触媒を含有する低分子量のポリ乳酸を結晶化させた後、減圧下または不活性ガス気流下で加熱し固相重合させ製造することができる。さらに、有機溶媒の存在/非存在下で、乳酸を脱水縮合させる直接重合法で製造することができる。重合反応は、従来公知の反応容器で実施可能であり、例えばヘリカルリボン翼等、高粘度用攪拌翼を備えた縦型反応器あるいは横型反応器を単独、または並列して使用することができる。また、回分式あるいは連続式あるいは半回分式のいずれでも良いし、これらを組み合わせてもよい。
重合開始剤としてアルコールを用いてもよい。かかるアルコールとしては、ポリ乳酸の重合を阻害せず不揮発性であることが好ましく、例えばデカノール、ドデカノール、テトラデカノール、ヘキサデカノール、オクタデカノール等を好適に用いることができる。
重合開始剤としてアルコールを用いてもよい。かかるアルコールとしては、ポリ乳酸の重合を阻害せず不揮発性であることが好ましく、例えばデカノール、ドデカノール、テトラデカノール、ヘキサデカノール、オクタデカノール等を好適に用いることができる。
固相重合法では、前述した開環重合法や乳酸の直接重合法によって得られた、比較的低分子量の乳酸ポリエステルをプレポリマーとして使用する。プレポリマーは、そのガラス転移温度(Tg)以上、融点(Tm)未満の温度範囲にて予め結晶化させることが、融着防止の面から好ましい形態と言える。結晶化させたプレポリマーは固定された縦型或いは横型反応容器、またはタンブラーやキルンの様に容器自身が回転する反応容器(ロータリーキルン等)中に充填され、プレポリマーのガラス転移温度(Tg)以上、融点(Tm)未満の温度範囲に加熱される。重合温度は、重合の進行に伴い段階的に昇温させても何ら問題はない。また、固相重合中に生成する水を効率的に除去する目的で前記反応容器類の内部を減圧することや、加熱された不活性ガス気流を流通する方法も好適に併用される。
ポリ乳酸の重合時に使用された金属触媒は失活剤で不活性化しておくのが好ましい。かかる失活剤として、例えばイミノ基を有し且つ金属触媒に配位し得るキレート配位子の群からなる有機リガンド、酸価数5以下の低酸化数リン酸、メタ燐酸系化合物およびこれらの酸の酸性塩、一価、多価のアルコール類、あるいはポリアルキレングリコール類の部分エステル、完全エスエテル、ホスホノ置換低級脂肪族カルボン酸誘導体等が例示される。
ポリ乳酸の重合時に使用された金属触媒は失活剤で不活性化しておくのが好ましい。かかる失活剤として、例えばイミノ基を有し且つ金属触媒に配位し得るキレート配位子の群からなる有機リガンド、酸価数5以下の低酸化数リン酸、メタ燐酸系化合物およびこれらの酸の酸性塩、一価、多価のアルコール類、あるいはポリアルキレングリコール類の部分エステル、完全エスエテル、ホスホノ置換低級脂肪族カルボン酸誘導体等が例示される。
酸価数5以下の低酸化数リン酸として、ジヒドリドオキソリン(I)酸、ジヒドリドテトラオキソ二リン(II,II)酸、ヒドリドトリオキソリン(III)酸、ジヒドリドペンタオキソ二リン(III)酸、ヒドリドペンタオキソ二(II,IV)酸、ドデカオキソ六リン(III)III、ヒドリドオクタオキソ三リン(III,IV,IV)酸、オクタオキソ三リン(IV,III,IV)酸、ヒドリドヘキサオキソ二リン(III,V)酸、ヘキサオキソ二リン(IV)酸、デカオキソ四リン(IV)酸、ヘンデカオキソ四リン(IV)酸、エネアオキソ三リン(V,IV,IV)酸等が挙げられる。
メタ燐酸系化合物として、式xH2O.yP2O5で表され、x/y=3のオルトリン酸、2>x/y>1であり、縮合度より二リン酸、三リン酸、四リン酸、五リン酸等と称せられるポリリン酸およびこれらの混合物、x/y=1で表されるメタリン酸、なかでもトリメタリン酸、テトラメタリン酸、1>x/y>0で表され、五酸化リン構造の一部をのこした網目構造を有するウルトラリン酸が挙げられる。メタ燐酸系化合物は、3〜200程度の燐酸単位が縮合した環状のメタ燐酸あるいは立体網目状構造を有するウルトラ領域メタ燐酸あるいはそれらの(アルカル金属塩、アルカリ土類金属塩、オニウム塩)を包含する。なかでも環状メタ燐酸ナトリウムやウルトラ領域メタ燐酸ナトリウム、ホスホノ置換低級脂肪族カルボン酸誘導体のジヘキシルホスホノエチルアセテート(以下DHPAと略称することがある)等が好適に使用される。
メタ燐酸系化合物として、式xH2O.yP2O5で表され、x/y=3のオルトリン酸、2>x/y>1であり、縮合度より二リン酸、三リン酸、四リン酸、五リン酸等と称せられるポリリン酸およびこれらの混合物、x/y=1で表されるメタリン酸、なかでもトリメタリン酸、テトラメタリン酸、1>x/y>0で表され、五酸化リン構造の一部をのこした網目構造を有するウルトラリン酸が挙げられる。メタ燐酸系化合物は、3〜200程度の燐酸単位が縮合した環状のメタ燐酸あるいは立体網目状構造を有するウルトラ領域メタ燐酸あるいはそれらの(アルカル金属塩、アルカリ土類金属塩、オニウム塩)を包含する。なかでも環状メタ燐酸ナトリウムやウルトラ領域メタ燐酸ナトリウム、ホスホノ置換低級脂肪族カルボン酸誘導体のジヘキシルホスホノエチルアセテート(以下DHPAと略称することがある)等が好適に使用される。
ステレオコンプレックスポリ乳酸におけるポリL−乳酸とポリD−乳酸との重量比は、90:10〜10:90である。75:25〜25:75であることが好ましく、さらに好ましくは60:40〜40:60であり、できるだけ50:50に近いことが好ましい。
ステレオコンプレックスポリ乳酸の重量平均分子量は、10万〜50万である。より好ましくは10万〜30万である。重量平均分子量は溶離液にクロロホルムを用いたゲルパーミエーションクロマトグラフィー(GPC)測定による標準ポリスチレン換算の重量平均分子量値である。
ステレオコンプレックスポリ乳酸は、ポリL−乳酸とポリD−乳酸とを所定の重量比で共存させ混合することにより製造することができる。
ステレオコンプレックスポリ乳酸の重量平均分子量は、10万〜50万である。より好ましくは10万〜30万である。重量平均分子量は溶離液にクロロホルムを用いたゲルパーミエーションクロマトグラフィー(GPC)測定による標準ポリスチレン換算の重量平均分子量値である。
ステレオコンプレックスポリ乳酸は、ポリL−乳酸とポリD−乳酸とを所定の重量比で共存させ混合することにより製造することができる。
混合は、溶媒の存在下で行うことができる。溶媒は、ポリL−乳酸とポリD−乳酸が溶解するものであれば、特に限定されるものではないが、例えば、クロロホルム、塩化メチレン、ジクロロエタン、テトラクロロエタン、フェノール、テトラヒドロフラン、N−メチルピロリドン、N,N−ジメチルホルムアミド、ブチロラクトン、トリオキサン、ヘキサフルオロイソプロパノール等の単独あるいは2種以上混合したものが好ましい。
また混合は、溶媒の非存在下で行うことができる。即ち、ポリL−乳酸とポリD−乳酸とを所定量混合した後に溶融混練する方法、いずれか一方を溶融させた後に残る一方を加えて混練する方法を採用することができる。
また混合は、溶媒の非存在下で行うことができる。即ち、ポリL−乳酸とポリD−乳酸とを所定量混合した後に溶融混練する方法、いずれか一方を溶融させた後に残る一方を加えて混練する方法を採用することができる。
あるいは、ポリL−乳酸セグメントとポリD−乳酸セグメントが結合している、ステレオブロックポリ乳酸も好適に用いることが出来る。ステレオブロックポリ乳酸はポリL−乳酸セグメントとポリD−乳酸セグメントが分子内で結合してなる、ブロック重合体である。このようなブロック重合体は、たとえば、逐次開環重合によって製造する方法や、ポリL−乳酸とポリD−乳酸を重合しておいてあとで鎖交換反応や鎖延長剤で結合する方法、ポリL−乳酸とポリD−乳酸を重合しておいてブレンド後固相重合して鎖延長する方法、立体選択開環重合触媒を用いてラセミラクチドから製造する方法、等上記の基本的構成を持つ、ブロック共重合体であれば製造法によらず、用いることができる。しかしながら、逐次開環重合によって得られる高融点のステレオブロック重合体、固相重合法によって得られる重合体を用いることが製造の容易さからより好ましい。
ポリ乳酸(B成分)のステレオ化度(S)は、DSC測定において、結晶融解ピークより定義される下記式(4)で表される。ポリ乳酸(B成分)は、ステレオ化度(S)は、好ましくは80〜100%、さらに好ましくは90〜100%、より好ましくは95〜100%である。すなわち、ポリ乳酸(B成分)はステレオコンプレックス相が高度に形成されていることが好ましい。ステレオ化度(S)は熱処理過程において最終的に生成するステレオコンプレックスポリ乳酸結晶の割合を示すパラメーターである。
S(%)=[(ΔHms/ΔHms0)/(ΔHmh/ΔHmh0+ΔHms/ΔHms0)] (4)
但し、ΔHms0=203.4J/g、ΔHmh0=142J/g、ΔHms=ステレオコンプレックス融点の融解エンタルピー、ΔHmh=ホモ結晶の融解エンタルピーである。
S(%)=[(ΔHms/ΔHms0)/(ΔHmh/ΔHmh0+ΔHms/ΔHms0)] (4)
但し、ΔHms0=203.4J/g、ΔHmh0=142J/g、ΔHms=ステレオコンプレックス融点の融解エンタルピー、ΔHmh=ホモ結晶の融解エンタルピーである。
ポリ乳酸(B成分)のカルボキシ基濃度は、好ましくは15eq/ton以下、より好ましくは10eq/ton以下、さらに好ましくは2eq/ton以下である。カルボキシ基濃度がこの範囲内にある時には、溶融安定性、湿熱耐久性が良好な樹脂組成物を得ることができる。カルボキシ基濃度は、末端封止剤、アミド化剤により調整することができる。末端封止剤として、モノカルボジイミド類、ジカルボジイミド類、ポリカルボジイミド類、オキサゾリン類、エポキシ化合物等が挙げられる。またアミド化剤として、アルコール、アミン等が挙げられる。
ポリ乳酸(B成分)は、ステレオコンプレックス結晶を有し、XRD測定で、ステレオ結晶化比率(Cr)が、好ましくは50〜100%、より好ましくは60〜100%、さらに好ましくは70〜100%の範囲である。ステレオ結晶化比率(Cr)はXRD測定における回折ピークの強度比によって定義される下記式(3)で表される。
Cr(%)=ΣISCi/(ΣISCi+IHM)×100 (3)
ここで、ΣISCi=ISC1+ISC2+ISC3は、ステレオコンプレックス結晶に由来する各回折ピークの積分強度の総和で、ISCi(i=1〜3)はそれぞれ2θ=12.0°、20.7°、24.0°付近の各回折ピークの積分強度、IHMはホモ結晶に由来する回折ピークの積分強度を表す。
ポリ乳酸(B成分)の融点は、好ましくは195〜250℃、より好ましくは200〜220℃である。融解エンタルピーは、20J/g以上、好ましくは30J/g以上である。
ポリ乳酸(B成分)は、ステレオコンプレックス結晶を有し、XRD測定で、ステレオ結晶化比率(Cr)が、好ましくは50〜100%、より好ましくは60〜100%、さらに好ましくは70〜100%の範囲である。ステレオ結晶化比率(Cr)はXRD測定における回折ピークの強度比によって定義される下記式(3)で表される。
Cr(%)=ΣISCi/(ΣISCi+IHM)×100 (3)
ここで、ΣISCi=ISC1+ISC2+ISC3は、ステレオコンプレックス結晶に由来する各回折ピークの積分強度の総和で、ISCi(i=1〜3)はそれぞれ2θ=12.0°、20.7°、24.0°付近の各回折ピークの積分強度、IHMはホモ結晶に由来する回折ピークの積分強度を表す。
ポリ乳酸(B成分)の融点は、好ましくは195〜250℃、より好ましくは200〜220℃である。融解エンタルピーは、20J/g以上、好ましくは30J/g以上である。
ポリ乳酸(B)が、かかる範囲のステレオ化度(S)、ステレオ結晶化比率(Cr)を有することにより、本発明の樹脂組成物の耐熱性、耐トラッキング性、ハイサイクル成形性を高いものとすることができ、さらにハイサイクル成形性を好適に達成するこができる。ポリL−乳酸またはポリD−乳酸ホモポリマー、ステレオコンプレックス相形成が低いレベルしか進行してないステレオコンプレックスポリ乳酸の使用は、樹脂組成物の耐熱性、例えば成形品の荷重たわみ温度に加え耐溶剤性も問題レベルにまで低下させるため、本発明においては採用しない。
ポリ乳酸(B成分)は、ステレオコンプレックス相の形成を安定的且つ高度に進めるため、下記式で表される燐酸金属塩を含有することが好ましい。
ポリ乳酸(B成分)は、ステレオコンプレックス相の形成を安定的且つ高度に進めるため、下記式で表される燐酸金属塩を含有することが好ましい。
式中、R1は、水素原子または炭素原子数1〜4のアルキル基を表し、R2およびR3は、同一または異なっていてもよく、それぞれ水素原子または炭素原子数1〜12のアルキル基を表し、M1はアルカリ金属原子、アルカリ土類金属原子、亜鉛原子またはアルミニウム原子を表し、nはM1がアルカリ金属原子、アルカリ土類金属原子または亜鉛原子のときは0を表し、M1がアルミニウム原子のときは1または2を表す。
上記式で表される燐酸金属塩のM1は、Na、K、Al、Mg、Caであり、特に、K、Na、Alを好適に用いることができる。上記式で表される化合物の含有量は、ポリ乳酸(B成分)に対して、好ましくは10ppm〜2重量%、より好ましくは50ppm〜0.5重量%、さらに好ましくは100ppm〜0.3重量%である。少なすぎる場合には、ステレオ化度を向上する効果が小さく、多すぎると樹脂自体を劣化させるので好ましくない。
上記式で表される燐酸金属塩のM1は、Na、K、Al、Mg、Caであり、特に、K、Na、Alを好適に用いることができる。上記式で表される化合物の含有量は、ポリ乳酸(B成分)に対して、好ましくは10ppm〜2重量%、より好ましくは50ppm〜0.5重量%、さらに好ましくは100ppm〜0.3重量%である。少なすぎる場合には、ステレオ化度を向上する効果が小さく、多すぎると樹脂自体を劣化させるので好ましくない。
さらに燐酸金属塩の作用を強化するためいわゆる結晶核剤を併用することが好ましい。かかる結晶核剤としては、以下結晶核剤の項目で記載する各種剤が使用されるが、なかでも珪酸カルシウム、タルク、カオリナイト、モンモリロナイトが好ましくは選択される。燐酸金属塩の作用を強化させる結晶核剤の使用量はポリ乳酸100重量部あたり、0.05〜5重量部、さらに好ましくは0.06〜2重量部、より好ましくは0.06〜1重量部の範囲が選択される。
ポリ乳酸(B成分)は、ブロック形成剤として、エポキシ基、オキサゾリン基、オキサジン基、イソシアネート基、ケテン基およびカルボジイミド基(以下、特定官能基と略称することがある)からなる群より選ばれる基を分子中少なくとも1個有する化合物を含有することが好ましい。
ポリ乳酸(B成分)は、ブロック形成剤として、エポキシ基、オキサゾリン基、オキサジン基、イソシアネート基、ケテン基およびカルボジイミド基(以下、特定官能基と略称することがある)からなる群より選ばれる基を分子中少なくとも1個有する化合物を含有することが好ましい。
ブロック形成剤は、以下記載するカルボキシ基封止剤として公知の剤を好適に適用することができる。なかでもポリ乳酸(B)および本発明の樹脂組成物の色調、熱分解性、耐加水分解性などより、特定官能基としてカルボジイミド基を有する剤、カルボジイミド化合物が好適に選択される。
ブロック形成剤は特定官能基がポリ乳酸(B)の分子末端と反応して、部分的にポリL−乳酸ユニットとポリD−乳酸ユニットを連結しブロック化ポリ乳酸を形成、ステレオコンプレックス相形成を促進する剤である。
ブロック形成剤の使用量は、ポリ乳酸100重量部あたり0.001〜5重量部が好ましく、0.01〜3重量部がさらに好ましい。この範囲を超えて多量に適用すると樹脂色相を悪化、あるいは可塑化がおこる懸念が大きくなり好ましくない。また0.001重量部未満の使用量であるとその効果はほとんど認められず工業的な意義は小さい。燐酸金属塩およびブロック形成剤は、組み合わせて使用してもよい。
ブロック形成剤は特定官能基がポリ乳酸(B)の分子末端と反応して、部分的にポリL−乳酸ユニットとポリD−乳酸ユニットを連結しブロック化ポリ乳酸を形成、ステレオコンプレックス相形成を促進する剤である。
ブロック形成剤の使用量は、ポリ乳酸100重量部あたり0.001〜5重量部が好ましく、0.01〜3重量部がさらに好ましい。この範囲を超えて多量に適用すると樹脂色相を悪化、あるいは可塑化がおこる懸念が大きくなり好ましくない。また0.001重量部未満の使用量であるとその効果はほとんど認められず工業的な意義は小さい。燐酸金属塩およびブロック形成剤は、組み合わせて使用してもよい。
本発明においては、ポリ乳酸のカルボキシ基濃度は10eq/ton以下である。好ましくは2eq/ton以下、さらに好ましくは1eq/tonである。カルボキシ基濃度がこの範囲内にある時には、樹脂組成物の溶融安定性、耐加水分解性が良好な樹脂組成物を得ることができ、とりわけ難燃剤、難燃助剤を適用するとき樹脂組成物の溶融安定性、耐加水分解性の悪化防止に加え難燃剤、難燃助剤、樹脂の分解劣化を抑制し成形時の金型腐食抑制などトラブル抑制効果も大きい。カルボキシ基濃度を10eq/ton以下にするには、ポリエステルにおいて公知のカルボキシル末端基濃度の低減方法を好適に適用することができ、具体的には、耐湿熱性改善剤の添加や、または、末端封止剤を添加せず、アルコール、アミンによってエステルまたはアミド化することもできる。
耐湿熱性改善剤としては、前述した特定官能基を有するカルボキシ基封止剤が好適に適用できる。中でも、特定官能基がカルボジイミド基であるカルボジイミド化合物がカルボキシ基を効果的に封止できるとともに、ポリ乳酸および本発明の樹脂組成物の色相、ステレオコンプレックス相の形成促進、耐加水分解性の観点より好ましく選択される。
耐湿熱性改善剤としては、前述した特定官能基を有するカルボキシ基封止剤が好適に適用できる。中でも、特定官能基がカルボジイミド基であるカルボジイミド化合物がカルボキシ基を効果的に封止できるとともに、ポリ乳酸および本発明の樹脂組成物の色相、ステレオコンプレックス相の形成促進、耐加水分解性の観点より好ましく選択される。
本発明においてポリ乳酸(B)はブロック形成剤と耐湿熱性改善剤とをかねて特定官能基を有する化合物を含有させることが好ましく、カルボジイミド化合物(H成分)が好適に選択される。H成分の含有量は、B成分100重量部あたり0.001〜5重量部の範囲である。0.001重量部より少ないとブロック形成剤としてもまたカルボキシ基封止剤としてもその機能を発揮することが不満足である。またこの範囲を超えて多量に適用すると樹脂色相を悪化、あるいは可塑化がおこる懸念が大きくなり好ましくない。
カルボジイミド化合物(H成分)としては例えば以下の化合物が例示される。例えば、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジイソブイチルカルボジイミド、ジオクチルカルボジイミド、オクチルデシルカルボジイミド、ジ−t−ブチルカルボジイミド、ジベンジルカルボジイミド、ジフェニルカルボジイミド、N−オクタデシル−N’−フェニルカルボジイミド、N−ベンジル−N’−フェニルカルボジイミド、N−ベンジル−N’−トリルカルボジイミド、ジ−o−トルイルカルボジイミド、ジ−p−トルイルカルボジイミド、ビス(p−アミノフェニル)カルボジイミド、ビス(p−クロロフェニル)カルボジイミド、ビス(o−クロロフェニル)カルボジイミド、ビス(o−エチルフェニル)カルボジイミド、ビス(p−エチルフェニル)カルボジイミドビス(o−イソプロピルフェニル)カルボジイミド、ビス(p−イソプロピルフェニル)カルボジイミド、ビス(o−イソブチルフェニル)カルボジイミド、ビス(p−イソブチルフェニル)カルボジイミド、ビス(2,5−ジクロロフェニル)カルボジイミド、ビス(2,6−ジメチルフェニル)カルボジイミド、ビス(2,6−ジエチルフェニル)カルボジイミド、ビス(2−エチル−6−イソプロピルフェニル)カルボジイミド、ビス(2−ブチル−6−イソプロピルフェニル)カルボジイミド、ビス(2,6−ジイソプロピルフェニル)カルボジイミド、ビス(2,6−ジ−t−ブチルフェニル)カルボジイミド、ビス(2,4,6−トリメチルフェニル)カルボジイミド、ビス(2,4,6−トリイソプロピルフェニル)カルボジイミド、ビス(2,4,6−トリブチルフェニル)カルボジイミド、ジβナフチルカルボシイミド、N−トリル−N’−シクロヘキシルカルボシイミド、N−トリル−N’−フェニルカルボシイミド、p−フェニレンビス(o−トルイルカルボジイミド)、p−フェニレンビス(シクロヘキシルカルボジイミド、p−フェニレンンビス(p−クロロフェニルカルボジイミド)、2,6,2’,6’−テトライソプロピルジフェニルカルボジイミド、ヘキサメチレンビス(シクロヘキシルカルボジイミド)、エチレンビス(フェニルカルボジイミド)、エチレンビス(シクロヘキシルカルボジイミド)、などのモノまたはポリカルボジイミド化合物が例示される。
なかでも反応性、安定性の観点からビス(2,6−ジイソプロピルフェニル)カルボジイミド、2,6,2’,6’−テトライソプロピルジフェニルカルボジイミドが好ましい。
またこれらのうち工業的に入手可能なジシクロヘキシルカルボジイミド、ビス(2,6−ジイソプロピルフェニル)カルボジイミド等が好適に使用できる。さらに上記ポリカルボジイミド化合物として市販のポリカルボジイミド化合物は、合成する必要もなく好適に使用することができる。かかる市販のポリカルボジイミド化合物としては例えば日清紡(株)より市販されているカーボジライトの商品名で販売されているカーボジライトLA−1、あるいはHMV−8CAなどを例示することができる。
本発明で用いることのできるエポキシ化合物としては、グリシジルエーテル化合物、グリシジルエステル化合物、グリジジルアミン化合物、グリシジルイミド化合物、グリシジルアミド化合物、脂環式エポキシ化合物を好ましく使用することができる。かかる剤を配合することで、機械的特性、成形性、耐熱性、耐久性に優れたポリ乳酸樹脂組成物および成形品を得ることができる。
またこれらのうち工業的に入手可能なジシクロヘキシルカルボジイミド、ビス(2,6−ジイソプロピルフェニル)カルボジイミド等が好適に使用できる。さらに上記ポリカルボジイミド化合物として市販のポリカルボジイミド化合物は、合成する必要もなく好適に使用することができる。かかる市販のポリカルボジイミド化合物としては例えば日清紡(株)より市販されているカーボジライトの商品名で販売されているカーボジライトLA−1、あるいはHMV−8CAなどを例示することができる。
本発明で用いることのできるエポキシ化合物としては、グリシジルエーテル化合物、グリシジルエステル化合物、グリジジルアミン化合物、グリシジルイミド化合物、グリシジルアミド化合物、脂環式エポキシ化合物を好ましく使用することができる。かかる剤を配合することで、機械的特性、成形性、耐熱性、耐久性に優れたポリ乳酸樹脂組成物および成形品を得ることができる。
グリシジルエーテル化合物の例としては例えば、ステアリルグリシジルエーテル、フェニルグリシジルエーテル、エチレンオキシドラウリルアルコールグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングルコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチレングリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、グリセロールトリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、その他ビス(4−ヒドロキシフェニル)メタンなどのビスフェノール類とエピクロルヒドリンとの縮合反応で得られるビスフェノールAジグリシジルエーテル型エポキシ樹脂などを挙げることができる。なかでもビスフェノールAジグリシジルエーテル型エポキシ樹脂が好ましい。
グリシジルエステル化合物の例としては例えば安息香酸グリシジルエステル、ステアリン酸グリシジルエステル、バーサティック酸グリシジルエステル、テレフタル酸ジグリシジルエステル、フタル酸ジグリシジルエステル、シクロヘキサンジカルボン酸ジグリシジルエステル、アジピン酸ジグリシジルエステル、コハク酸ジグリシジルエステル、ドデカンジオン酸ジグリシジルエステル、ピロメリット酸テトラグリシジルエステルなどが挙げられる。なかでも安息香酸グリシジルエステル、バーサティック酸グリシジルエステルが好ましい。
グリシジルアミン化合物として、テトラグリシジルアミンジフェニルメタン、トリグリシジル−p−アミノフェノール、ジグリシジルアニリン、ジグリシジルトルイジン、テトラグリシジルメタキシレンジアミン、トリグリシジルイソシアヌレート、などが挙げられる。
グリシジルイミド、グリシジルアミド化合物としては、N−グリシジルフタルイミド、N−グリシジル−4,5−ジメチルフタルイミド、N−グリシジル−3,6−ジメチルフタルイミド、N−グリシジルサクシンイミド、N−グリシジル−1,2,3,4−テトラヒドロフタルイミド、N−グリシジルマレインイミド、N−グリシジルベンズアミド、N−グリシジルステアリルアミドなどが挙げられる。なかでもN−グリシジルフタルイミドが好ましい。
脂環式エポキシ化合物としては、3,4−エポキシシクロヘキシル−3,4−シクロヘキシルカルボキシレ−ト、ビス(3,4−エポキシシクロヘキシルメチル)アジペ−ト、ビニルシクロヘキセンジエポキシド、N−メチル−4,5−エポキシシクロヘキサン−1,2−ジカルボン酸イミド、N−フェニル−4,5−エポキシシクロヘキサン−1,2−ジカルボン酸イミド、などが挙げられる。
その他のエポキシ化合物としてエポキシ化大豆油、エポキシ化アマニ油、エポキシ化鯨油などのエポキシ変性脂肪酸グリセリド、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、などを用いることができる。
その他のエポキシ化合物としてエポキシ化大豆油、エポキシ化アマニ油、エポキシ化鯨油などのエポキシ変性脂肪酸グリセリド、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、などを用いることができる。
本発明で用いるカルボキシ基封止剤として用いることができるオキサゾリン化合物の例として、2−メトキシ−2−オキサゾリン、2−ブトキシ−2−オキサゾリン、2−ステアリルオキシ−2−オキサゾリン、2−シクロヘキシルオキシ−2−オキサゾリン、2−アリルオキシ−2−オキサゾリン、2−ベンジルオキシ−2−オキサゾリン、2−p−フェニルフェノキシ−2−オキサゾリン、2−メチル−2−オキサゾリン、2−シクロヘキシル−2−オキサゾリン、2−メタアリル−2−オキサゾリン、2−クロチル−2−オキサゾリン、2−フェニル−2−オキサゾリン、2−o−エチルフェニル−2−オキサゾリン、2−o−プロピルフェニル−2−オキサゾリン、2−p−フェニルフェニル−2−オキサゾリン、2,2’−ビス(2−オキサゾリン)、2,2’−ビス(4−メチル−2−オキサゾリン)、2,2’−ビス(4−ブチル−2−オキサゾリン)、2,2’−m−フェニレンビス(2−オキサゾリン)、2,2’−p−フェニレンビス(4−メチル−2−オキサゾリン)、2,2’−p−フェニレンビス(4,4’−メチル−2−オキサゾリン)、2,2’−エチレンビス(2−オキサゾリン)、2,2’−テトラメチレンビス(2−オキサゾリン)、2,2’−ヘキサメチレンビス(2−オキサゾリン)、2,2’−エチレンビス(4−メチル−2−オキサゾリン)、2,2’−テトラメチレンビス(4,4’−ジメチル−2−オキサゾリン)、2,2’−シクロヘキシレンビス(2−オキサゾリン)、2,2’−ジフェニレンビス(4−メチル−2−オキサゾリン)などが挙げられる。さらに上記化合物をモノマー単位として含むポリオキサゾリン化合物なども挙げられる。
本発明で用いることができるオキサジン化合物として、2−メトキシ−5,6−ジヒドロ−4H−1,3−オキサジン、2−ヘキシルオキシ−5,6−ジヒドロ−4H−1,3−オキサジン、2−デシルオキシ−5,6−ジヒドロ−4H−1,3−オキサジン、2−シクロヘキシルオキシ−5,6−ジヒドロ−4H−1,3−オキサジン、2−アリルオキシ−5,6−ジヒドロ−4H−1,3−オキサジン、2−クロチルオキシ−5,6−ジヒドロ−4H−1,3−オキサジンなどが挙げられる。さらに2,2’−ビス(5,6−ジヒドロ−4H−1,3−オキサジン)、2,2’−メチレンビス(5,6−ジヒドロ−4H−1,3−オキサジン)、2,2’−エチレンビス(5,6−ジヒドロ−4H−1,3−オキサジン)、2,2’−ヘキサメチレンビス(5,6−ジヒドロ−4H−1,3−オキサジン)、2,2’−p−フェニレンビス(5,6−ジヒドロ−4H−1,3−オキサジン)、2,2’−P,P’−ジフェニレンビス(5,6−ジヒドロ−4H−1,3−オキサジン)などが挙げられる。さらに、上記した化合物をモノマー単位として含むポリオキサジン化合物などが挙げられる。
上記オキサゾリン化合物やオキサジン化合物のなかでは2,2’−m−フェニレンビス(2−オキサゾリン)や2,2’−p−フェニレンビス(2−オキサゾリン)が好ましいものとして選択される。
上記オキサゾリン化合物やオキサジン化合物のなかでは2,2’−m−フェニレンビス(2−オキサゾリン)や2,2’−p−フェニレンビス(2−オキサゾリン)が好ましいものとして選択される。
本発明で用いることができるイソシアネート化合物の例としては例えば芳香族、脂肪族、脂環族イソシアネート化合物およびこれらの混合物を使用することができる。
モノイソシアネート化合物としては例えばフェニルイソシアネート、トリルイソシアネート、ジメチルフェニルイソシアネート、シクロヘキシルイソシアネート、ブチルイソシアネート、ナフチルイソシアネートなどが挙げられる。
ジイソシアネートとしては、4,4’−ジフェニルメタンジイソシアネート、4,4’−ジフェニルジメチルメタンジイソシアネート、1,3−フェニレンジイソシアネート、1,4−フェニレンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、(2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート)混合物、シクロヘキサン−4,4’−ジイソシアネート、キシリレンジイソシアネート、イソフォロンジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、メチルシクロヘキサンジイソシアネート、テトラメチルキシリレンジイソシアネート、2,6−ジイソプロピルフェニル−1,4−ジイソシアネートなどが挙げられる。これらのイソシアネート化合物のなかでは4,4’−ジフェニルメタンジイソシアネート、フェニルイソシアネートなどの芳香族イソシアネートが好ましい。
ジイソシアネートとしては、4,4’−ジフェニルメタンジイソシアネート、4,4’−ジフェニルジメチルメタンジイソシアネート、1,3−フェニレンジイソシアネート、1,4−フェニレンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、(2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート)混合物、シクロヘキサン−4,4’−ジイソシアネート、キシリレンジイソシアネート、イソフォロンジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、メチルシクロヘキサンジイソシアネート、テトラメチルキシリレンジイソシアネート、2,6−ジイソプロピルフェニル−1,4−ジイソシアネートなどが挙げられる。これらのイソシアネート化合物のなかでは4,4’−ジフェニルメタンジイソシアネート、フェニルイソシアネートなどの芳香族イソシアネートが好ましい。
本発明で用いることができるケテン化合物として、芳香族、脂肪族、脂環族ケテン化合物およびこれらの混合物を使用することができる。
具体的には、ジフェニルケテン、ビス(2,6−ジ−t−ブチルフェニル)ケテン、ビス(2,6−ジ−イソプロピルフェニル)ケテン、ジシクロヘキシルケテンなどを例示することができる。これらのケテン化合物のなかではジフェニルケテン、ビス(2,6−ジ−t−ブチルフェニル)ケテン、ビス(2,6−ジ−イソプロピルフェニル)ケテンなどの芳香族ケテンが好ましい。
上記ブロック形成剤、耐湿熱性改善剤は1種または2種以上の化合物を適宜選択して使用することができる。カルボジイミド化合物を耐湿熱性改善剤として選択しブロック構造の形成を促進するとともにカルボキシ基末端や、酸性低分子化合物の一部の封止を行うことも、好適な実施態様の一種として示すことができる。
具体的には、ジフェニルケテン、ビス(2,6−ジ−t−ブチルフェニル)ケテン、ビス(2,6−ジ−イソプロピルフェニル)ケテン、ジシクロヘキシルケテンなどを例示することができる。これらのケテン化合物のなかではジフェニルケテン、ビス(2,6−ジ−t−ブチルフェニル)ケテン、ビス(2,6−ジ−イソプロピルフェニル)ケテンなどの芳香族ケテンが好ましい。
上記ブロック形成剤、耐湿熱性改善剤は1種または2種以上の化合物を適宜選択して使用することができる。カルボジイミド化合物を耐湿熱性改善剤として選択しブロック構造の形成を促進するとともにカルボキシ基末端や、酸性低分子化合物の一部の封止を行うことも、好適な実施態様の一種として示すことができる。
耐湿熱性改善剤の使用量は、ポリ乳酸(B成分)100重量部あたり0.001〜5重量部が好ましく、0.005〜3重量部がさらに好ましい。この範囲を超えて多量に適用するとカルボキシ基濃度を低下させる耐加水分解性を向上させる効果は大きいが樹脂組成物および該組成物成形品の可塑化、色相悪化を引き起こす懸念が大きくなり好ましくない。
また0.001重量部未満の使用量であるとその効果はほとんど認められず工業的な意義は小さい。
また0.001重量部未満の使用量であるとその効果はほとんど認められず工業的な意義は小さい。
ポリ乳酸(B成分)のラクチド含有量は、0〜700重量ppmの範囲が選択される。
さらに好ましくは0〜500重量ppm、より好ましくは0〜200重量ppm、特段に好ましくは0〜100重量ppmの範囲が選択される。かかる範囲のラクチド含有量を、ポリ乳酸(B)が有することにより、樹脂組成物の溶融時の安定性を向上せしめ、ハイサイクルの成形性で効率よく成形でき成形品の耐加水分解性を高めることが出来るからである。ラクチド含有量をかかる範囲に低減させるには、ポリL−乳酸およびポリD−乳酸の重合時点からポリ乳酸(B)製造の終了までの任意の段階において、従来公知のラクチド軽減処理あるいはこれらを組み合わせて実施することによって達成することが可能である。
さらに本発明では、ポリL−乳酸またはポリD−乳酸ホモポリマー、ステレオコンプレックス相形成が低いレベルのステレオコンプレックスポリ乳酸は、樹脂組成物の耐熱性、例えば成形品の荷重たわみ温度(以下熱変形温度と呼ぶことがある。)に加え耐溶剤性も問題レベルにまで低下させるため、本発明においては採用しない。
さらに好ましくは0〜500重量ppm、より好ましくは0〜200重量ppm、特段に好ましくは0〜100重量ppmの範囲が選択される。かかる範囲のラクチド含有量を、ポリ乳酸(B)が有することにより、樹脂組成物の溶融時の安定性を向上せしめ、ハイサイクルの成形性で効率よく成形でき成形品の耐加水分解性を高めることが出来るからである。ラクチド含有量をかかる範囲に低減させるには、ポリL−乳酸およびポリD−乳酸の重合時点からポリ乳酸(B)製造の終了までの任意の段階において、従来公知のラクチド軽減処理あるいはこれらを組み合わせて実施することによって達成することが可能である。
さらに本発明では、ポリL−乳酸またはポリD−乳酸ホモポリマー、ステレオコンプレックス相形成が低いレベルのステレオコンプレックスポリ乳酸は、樹脂組成物の耐熱性、例えば成形品の荷重たわみ温度(以下熱変形温度と呼ぶことがある。)に加え耐溶剤性も問題レベルにまで低下させるため、本発明においては採用しない。
(芳香族ポリエステル:A成分)
本発明の樹脂組成物は、芳香族ポリエステル(A成分)を含有する。A成分の含有量は、A成分とB成分の合計100重量部に対して、好ましくは5〜95重量部、より好ましくは10〜80重量部、さらに好ましくは20〜70重量部、特に好ましくは20〜50重量部である。
芳香族ポリエステル(A成分)は、ブチレンテレフタレート骨格を主たる構成単位とする。ブチレンテレフタレート骨格は以下の式で表される。
本発明の樹脂組成物は、芳香族ポリエステル(A成分)を含有する。A成分の含有量は、A成分とB成分の合計100重量部に対して、好ましくは5〜95重量部、より好ましくは10〜80重量部、さらに好ましくは20〜70重量部、特に好ましくは20〜50重量部である。
芳香族ポリエステル(A成分)は、ブチレンテレフタレート骨格を主たる構成単位とする。ブチレンテレフタレート骨格は以下の式で表される。
ここで主たるとは、芳香族ポリエステル中で、ブチレンテレフタレート骨格がモル分率50モル%以上を占めることを意味する。ブチレンテレフタレート骨格がモル分率において70%以上含まれていることが好ましく、より好ましくは85%以上、さらには95%以上であることが成形性向上の観点から好ましい。
芳香族ポリエステルは、ブチレンテレフタレート骨格以外に、共重合成分を含んでいても良い。共重合成分としては、ヒドロキシカルボン酸、ジカルボン酸、ジオール等を挙げることができる。
例えば、ヒドロキシカルボン酸としては、グリコール酸、D−乳酸、L−乳酸、3−ヒドロキシプロピオン酸、4−ヒドロキシブタン酸、3−ヒドロキシブタン酸、6−ヒドロキシカプロン酸、ヒドロキシ安息香酸、ヒドロキシナフタレンカルボン酸等が挙げられる。
芳香族ポリエステルは、ブチレンテレフタレート骨格以外に、共重合成分を含んでいても良い。共重合成分としては、ヒドロキシカルボン酸、ジカルボン酸、ジオール等を挙げることができる。
例えば、ヒドロキシカルボン酸としては、グリコール酸、D−乳酸、L−乳酸、3−ヒドロキシプロピオン酸、4−ヒドロキシブタン酸、3−ヒドロキシブタン酸、6−ヒドロキシカプロン酸、ヒドロキシ安息香酸、ヒドロキシナフタレンカルボン酸等が挙げられる。
ジカルボン酸としては、例えば、イソフタル酸、ナフタレンジカルボン酸、ジフェノキシエタンカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルスルフォンジカルボン酸等のような芳香族ジカルボン酸や、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸等のような脂肪族環式ジカルボン酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸等のような脂肪族ジカルボン酸、p−β−ヒドロキシエトキシ安息香酸、ε−オキシ安息香酸等のようなオキシ酸等の二官能性カルボン酸等が挙げられる。
ジオールとしては、トリメチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、デカメチレングリコール、ネオペンチルグリコール、ジエチレングリコール、1,1−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、2,2−ビス(4’−β−ヒドロキシフェニル)プロパン、ビス(4’−β−ヒドロキシエトキシフェニル)スルホン酸等が挙げられる。
ジオールとしては、トリメチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、デカメチレングリコール、ネオペンチルグリコール、ジエチレングリコール、1,1−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、2,2−ビス(4’−β−ヒドロキシフェニル)プロパン、ビス(4’−β−ヒドロキシエトキシフェニル)スルホン酸等が挙げられる。
芳香族ポリエステル(A成分)の固有粘度は、好ましくは0.5〜2.0、より好ましくは0.7〜1.8、さらに好ましくは0.8〜1.5である。芳香族ポリエステル(A成分)は、カルボキシ基濃度が60eq/ton以下であることが好ましい。カルボキシ基濃度は、耐湿熱性改善剤の適用、固相重合等により調節することができる。
芳香族ポリエステルのカルボキシル基濃度は、好ましくは60eq/ton以下、より好ましくは40eq/ton以下、さらに好ましくは20eq/ton以下である。
芳香族ポリエステルのカルボキシル基濃度がかかる範囲を満たすことにより本発明の樹脂組成物が低ガス性となるとともに、溶融成形時の安定性、とりわけ臭素系難燃剤を適用した場合の溶融成形時の安定性、低ガス性を有効に向上にすることができるには、前述の耐湿熱性改善剤の適用、固相重合等に好適に実現することができる。
芳香族ポリエステルのカルボキシル基濃度は、好ましくは60eq/ton以下、より好ましくは40eq/ton以下、さらに好ましくは20eq/ton以下である。
芳香族ポリエステルのカルボキシル基濃度がかかる範囲を満たすことにより本発明の樹脂組成物が低ガス性となるとともに、溶融成形時の安定性、とりわけ臭素系難燃剤を適用した場合の溶融成形時の安定性、低ガス性を有効に向上にすることができるには、前述の耐湿熱性改善剤の適用、固相重合等に好適に実現することができる。
(無機充填剤:C成分)
本発明で使用される無機充填剤(C成分)は、A成分とB成分の合計100重量部あたり5〜100重量部、好ましくは10〜90重量部、さらに好ましくは20〜80重量部含有する。無機充填剤を配合することにより、樹脂組成物の耐熱性、剛性とともに外観性、低ソリ性、寸法安定性を好適に発現することができる。
無機充填剤としては、繊維状、粉体状、板状および球状の充填剤が挙げられる。異方性が小さく、等方性の高い充填剤は、成形品のソリ量を低下させる効果に優れる。
本発明で使用される無機充填剤(C成分)は、A成分とB成分の合計100重量部あたり5〜100重量部、好ましくは10〜90重量部、さらに好ましくは20〜80重量部含有する。無機充填剤を配合することにより、樹脂組成物の耐熱性、剛性とともに外観性、低ソリ性、寸法安定性を好適に発現することができる。
無機充填剤としては、繊維状、粉体状、板状および球状の充填剤が挙げられる。異方性が小さく、等方性の高い充填剤は、成形品のソリ量を低下させる効果に優れる。
粉体状、板状の充填剤として、ガラスフレーク、金属フレーク、マイカ、タルク、カオリン等を挙げることができる。これらのうちガラスフレーク、金属フレーク、マイカ、タルクが好ましい物として、更にガラスフレーク、マイカ、タルクが挙げられる。
球状充填剤として、ガラスビーズ、金属ビーズ、シリカビーズ、アルミナビーズ、ジルコニアビーズシリカアルミナビーズ、真球状シリカ、真球状アルミナ、真球状ジルコニア、真球状シリカアルミナなどが挙げられる。球状充填剤は平均粒径が10〜1000μmのものが好ましい。
球状充填剤として、ガラスビーズ、金属ビーズ、シリカビーズ、アルミナビーズ、ジルコニアビーズシリカアルミナビーズ、真球状シリカ、真球状アルミナ、真球状ジルコニア、真球状シリカアルミナなどが挙げられる。球状充填剤は平均粒径が10〜1000μmのものが好ましい。
繊維状充填剤として、ガラス繊維、ガラスミルドファイバー、ワラストナイト、カーボン繊維、金属系導電性繊維、チタン酸カリウィスカー、ホウ酸アルミウィスカーの如くのウィスカー等を挙げることができる。中でもガラス繊維、ワラストナイト、カーボン繊維、金属系導電性繊維が好ましく、更にガラス繊維、ワラストナイト、カーボン繊維が最も好ましい。
ガラス繊維を含有する樹脂組成物は、外観性に優れる。本発明で使用するガラス繊維は、Aガラス、Cガラス、Eガラス等のガラス組成を特に限定するものでなく、場合によりTiO2、Zr2O、BeO、CeO2、SO3、P2O5等の成分を含有するものであってもよい。但し、より好ましくは、Eガラス(無アルカリガラス)が樹脂に悪影響を及ぼさない点で好ましい。かかるガラス組成については、以下に示すガラスミルドファイバーにおいても同様である。ガラス繊維は、溶融ガラスを種々の方法にて延伸しながら急冷し、所定の繊維状にしたものである。かかる場合の急冷および延伸条件についても特に限定されるものでない。また断面の形状は一般的な真円状の他に、真円状の繊維を平行に重ね合わせたものに代表される各種の異形断面形状のものを使用してもよい。さらに真円状と異形断面形状の混合したガラス繊維であってもよい。かかるガラス繊維は、平均繊維径が1〜25μm、好ましくは5〜17μmである。平均繊維径が1μm未満のガラス繊維を使用したのでは、成形加工性がそこなわれ、平均繊維径が25μmより大きいガラス繊維を使用したのでは、外観が損なわれ、補強効果も十分ではない。これらの繊維は、現在公知のエポキシ系、ウレタン系、アクリル系などの各種化合物により集束処理することができ、また後述するシランカップリング剤等で表面処理されたものが好ましい。またこれら繊維の成形品中の平均繊維長は0.01〜50mm程度である。
ガラス繊維を含有する樹脂組成物は、外観性に優れる。本発明で使用するガラス繊維は、Aガラス、Cガラス、Eガラス等のガラス組成を特に限定するものでなく、場合によりTiO2、Zr2O、BeO、CeO2、SO3、P2O5等の成分を含有するものであってもよい。但し、より好ましくは、Eガラス(無アルカリガラス)が樹脂に悪影響を及ぼさない点で好ましい。かかるガラス組成については、以下に示すガラスミルドファイバーにおいても同様である。ガラス繊維は、溶融ガラスを種々の方法にて延伸しながら急冷し、所定の繊維状にしたものである。かかる場合の急冷および延伸条件についても特に限定されるものでない。また断面の形状は一般的な真円状の他に、真円状の繊維を平行に重ね合わせたものに代表される各種の異形断面形状のものを使用してもよい。さらに真円状と異形断面形状の混合したガラス繊維であってもよい。かかるガラス繊維は、平均繊維径が1〜25μm、好ましくは5〜17μmである。平均繊維径が1μm未満のガラス繊維を使用したのでは、成形加工性がそこなわれ、平均繊維径が25μmより大きいガラス繊維を使用したのでは、外観が損なわれ、補強効果も十分ではない。これらの繊維は、現在公知のエポキシ系、ウレタン系、アクリル系などの各種化合物により集束処理することができ、また後述するシランカップリング剤等で表面処理されたものが好ましい。またこれら繊維の成形品中の平均繊維長は0.01〜50mm程度である。
本発明で使用するガラスミルドファイバーは、L/D≦10のものであり、ガラス繊維のロービングまたはチョップドストランドを切断またはボールミル等により所定の長さになるまで粉砕して得られたものであり、本発明の組成物から得られる成形品外観を向上させようとする場合に好ましく使用できる。Lは、ミルドファイバーの繊維軸方向の長さ、Dは断面方向の繊維径を表す。ガラス繊維としては上記に示したガラス繊維と同じものが使用できる。これらの粉末は、ガラス繊維同様シランカップリング剤等で表面処理されたものが好ましい。該ガラスミルドファイバーとしては、平均繊維径が6〜23μmで且つ平均繊維長が0.02〜0.1mmのものが好ましい
ガラス繊維に導電性等を付与するために、繊維表面に金属コートを施し得る。この金属コートガラス繊維の直径は6〜20μmが特に好ましい。金属コートガラス繊維は、ガラス繊維に公知のメッキ法および蒸着法等でニッケル、銅、コバルト、銀、アルミニウム、鉄等およびこれらの合金等の金属をコーティングしたものである。
かかる金属は、導電性、耐食性、生産性、更に経済性の観点からニッケル、銅およびコバルトから選ばれる1種または2種以上の金属が好ましい。これらの繊維は、現在公知のエポキシ系、ウレタン系、アクリル系などの各種化合物により集束処理することができ、また後述するシランカップリング剤等で表面処理されたものが好ましい。またこれら繊維の成形品中の平均繊維長は0.02〜400μm程度である。
ガラス繊維に導電性等を付与するために、繊維表面に金属コートを施し得る。この金属コートガラス繊維の直径は6〜20μmが特に好ましい。金属コートガラス繊維は、ガラス繊維に公知のメッキ法および蒸着法等でニッケル、銅、コバルト、銀、アルミニウム、鉄等およびこれらの合金等の金属をコーティングしたものである。
かかる金属は、導電性、耐食性、生産性、更に経済性の観点からニッケル、銅およびコバルトから選ばれる1種または2種以上の金属が好ましい。これらの繊維は、現在公知のエポキシ系、ウレタン系、アクリル系などの各種化合物により集束処理することができ、また後述するシランカップリング剤等で表面処理されたものが好ましい。またこれら繊維の成形品中の平均繊維長は0.02〜400μm程度である。
本発明で使用するカーボン繊維は、特に制限がなく公知の各種炭素繊維、例えばポリアクリロニトリル、ピッチ、レーヨン、リグニン、炭化水素ガス等を用いて製造される炭素質繊維や黒鉛質繊維であり、特に繊維強度に優れるポリアクリロニトリル系の炭素繊維が好ましい。また炭素繊維は繊維表面をオゾン、プラズマ、硝酸、電解等に代表される現在公知の方法により酸化処理することも可能であり、樹脂成分との密着性を増加するため好ましく行われる。炭素繊維は通常チョップドストランド、ロービングストランド、ミルドファイバーなどの形状である。
かかる炭素繊維に導電性等を付与するために、繊維表面に金属コートを施しうる。金属コート炭素繊維の直径は6〜20μmが特に好ましい。金属コート炭素繊維は、炭素繊維に公知のメッキ法および蒸着法等でニッケル、銅、コバルト、銀、アルミニウム、鉄等およびこれらの合金等の金属をコーティングしたものである。かかる金属は導電性、耐食性、生産性、更に経済性の観点からニッケル、銅およびコバルトから選ばれる1種または2種以上の金属が好ましく、特に好ましくはニッケルコート炭素繊維である。
またこれらの炭素繊維は、エポキシ樹脂、ウレタン樹脂、アクリル樹脂等の各種のサイジング剤で集束されたものが好適に使用でき、好ましくはエポキシ樹脂および/またはウレタン樹脂が挙げられる。
かかる炭素繊維に導電性等を付与するために、繊維表面に金属コートを施しうる。金属コート炭素繊維の直径は6〜20μmが特に好ましい。金属コート炭素繊維は、炭素繊維に公知のメッキ法および蒸着法等でニッケル、銅、コバルト、銀、アルミニウム、鉄等およびこれらの合金等の金属をコーティングしたものである。かかる金属は導電性、耐食性、生産性、更に経済性の観点からニッケル、銅およびコバルトから選ばれる1種または2種以上の金属が好ましく、特に好ましくはニッケルコート炭素繊維である。
またこれらの炭素繊維は、エポキシ樹脂、ウレタン樹脂、アクリル樹脂等の各種のサイジング剤で集束されたものが好適に使用でき、好ましくはエポキシ樹脂および/またはウレタン樹脂が挙げられる。
本発明で使用する金属系導電性繊維は、特に制限する必要はなく、金属繊維や金属コート繊維をいい、例えばステンレス繊維、アルミニウム繊維、銅繊維、黄銅繊維等の金属繊維等があげられる。これらは二種以上併用することもできる。金属繊維の直径は4〜80μmが好ましく、6〜60μmが特に好ましい。かかる導電性繊維はシランカップリング剤、チタネートカップリング剤、アルミネートカップリング剤等で表面処理されていてもよい。またオレフィン系樹脂、スチレン系樹脂、ポリエステル系樹脂、エポキシ系樹脂、ウレタン系樹脂等で集束処理されていてもよい。これらの繊維状充填材は単独でまたは2種以上を併用してもよい。
かかる繊維状充填材はシランカップリング剤等で表面処理されているものが好ましい。この表面処理により、芳香族ポリカーボネート樹脂の分解が抑制されるとともに、密着性をより向上させることにより、本発明の目的である湿熱疲労性や面衝撃性をより良好なものとすることができる。
本発明で言うシランカップリング剤とは下記式で表わされるシラン化合物をいう。
かかる繊維状充填材はシランカップリング剤等で表面処理されているものが好ましい。この表面処理により、芳香族ポリカーボネート樹脂の分解が抑制されるとともに、密着性をより向上させることにより、本発明の目的である湿熱疲労性や面衝撃性をより良好なものとすることができる。
本発明で言うシランカップリング剤とは下記式で表わされるシラン化合物をいう。
ここでYは、アミノ基、エポキシ基、カルボン酸基、ビニル基、メルカプト基、ハロゲン原子等の樹脂マトリックスと反応性または親和性を有する基、Z1、Z2、Z3、Z4はそれぞれ単結合または炭素数1〜7のアルキレン基を表わし、そのアルキレン分子鎖中に、アミド結合、エステル結合、エーテル結合あるいはイミノ結合が介在してもよく、X1、X2、X3はそれぞれアルコキシ基、好ましくは炭素数1〜4のアルコキシ基またはハロゲン原子である。
シランカップリング剤として、具体的には、ビニルトリクロルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシランおよびγ−クロロプロピルトリメトキシシランなどが挙げられる。
本発明で使用するガラスフレークおよび金属フレークとしては、平均粒径が10〜1000μmのものが好ましく、かつその平均粒径を(a)、厚さを(c)とした時、(a)/(c)比が5〜500のものが好ましく、6〜450のものがより好ましく、7〜400のものがさらに好ましい。
平均粒径が10μm未満もしくは(a)/(c)比が5未満であると剛性が十分でなく、平均粒径が1000μmを越えるかもしくは(a)/(c)比が500を越えると成形品の外観、およびウエルド強度が悪くなり好ましくない。ここでいうガラスフレークおよび金属フレークの平均粒径とは、標準ふるい法により求められる粒度の重量分布のメジアン径として算出されるものである。かかるガラスフレークおよび金属フレークの中でもガラスフレークが特に好ましい。
これらガラスフレークおよび金属フレークは、現在公知のエポキシ系、ウレタン系、アクリル系などの各種化合物により集束処理することができ、また後述するシランカップリング剤等で表面処理されたものが好ましい。
平均粒径が10μm未満もしくは(a)/(c)比が5未満であると剛性が十分でなく、平均粒径が1000μmを越えるかもしくは(a)/(c)比が500を越えると成形品の外観、およびウエルド強度が悪くなり好ましくない。ここでいうガラスフレークおよび金属フレークの平均粒径とは、標準ふるい法により求められる粒度の重量分布のメジアン径として算出されるものである。かかるガラスフレークおよび金属フレークの中でもガラスフレークが特に好ましい。
これらガラスフレークおよび金属フレークは、現在公知のエポキシ系、ウレタン系、アクリル系などの各種化合物により集束処理することができ、また後述するシランカップリング剤等で表面処理されたものが好ましい。
また、本発明で使用するガラスフレークとして、金属コートガラスフレークを使用することもできる。ガラスフレークにコーティングする金属は、ガラスにコーティング可能な金属であればよく、例えば金、銀、ニッケル、アルミニウム等があげられる。また、コーティングする方法には特に制限がなく、任意の方法が採用される。例えば無電解メッキによる方法が好ましく、コーティングの膜厚は通常0.00001〜10μmであり、ガラスフレークの平滑面、好ましくは更に端面にも均一にコーティングする。かかる金属をコーティングしたガラスフレークは、そのまま使用できるが、更にその表面に、酸化防止剤等のために、処理剤をコーティングしてもよい本発明におけるマイカとしては、剛性確保の面から、平均粒径が1〜80μmの粉末状のものが好ましい。
マイカとは、アルミニウム、カリウム、マグネシウム、ナトリウム、鉄等を含んだケイ酸塩鉱物の粉砕物である。マイカには白雲母、金雲母、黒雲母、人造雲母等があり、本発明のマイカとしてはいずれのマイカも使用できるが、金雲母、黒雲母は白雲母に比べてそれ自体が柔軟であり、また、金雲母、黒雲母は白雲母に比べて主成分中にFeが多く含まれているためそれ自体の色相が黒っぽくなるため、更に人造雲母は天然金雲母のOH基がFに置換されたものであるがそれ自体が高価であり実用的ではない。好ましくは白雲母である。また、マイカの製造に際しての粉砕法としては、マイカ原石を乾式粉砕機にて粉砕する乾式粉砕法とマイカ原石を乾式粉砕機にて粗粉砕した後、水を加えてスラリー状態にて湿式粉砕機で本粉砕し、その後脱水、乾燥を行う湿式粉砕法があり、乾式粉砕法の方が低コストで一般的であるがマイカを薄く細かく粉砕することが困難であるため本発明においては湿式粉砕法により製造されたマイカを使用するのが好ましい。
マイカの平均粒径としては、マイクロトラックレーザー回折法により測定した平均粒径が10〜100μmのものを使用できる。好ましくは平均粒径が20〜50μmのものである。マイカの平均粒径が10μm未満では剛性に対する改良効果が十分ではなく、100μmを越えても剛性の向上が十分でなく、ウエルド強度も十分ではない。
マイカの厚みとしては、電子顕微鏡の観察により実測した厚みが0.01〜1μmのものを使用できる。好ましくは厚みが0.03〜0.3μmである。マイカの厚みが0.01μm未満のものは溶融加工の段階でマイカが割れ易くなるためそれ以上の剛性の向上が認められず、1μmを越えると剛性に対する改良効果が十分ではない。更にかかるマイカは、シランカップリング剤等で表面処理されていてもよく、更に結合剤で造粒し顆粒状とされていても良い。マイカの具体例としては、株式会社山口雲母工業所 雲母粉(マイカ粉) A−41、等があり、これらは市場で容易に入手できる。
マイカの厚みとしては、電子顕微鏡の観察により実測した厚みが0.01〜1μmのものを使用できる。好ましくは厚みが0.03〜0.3μmである。マイカの厚みが0.01μm未満のものは溶融加工の段階でマイカが割れ易くなるためそれ以上の剛性の向上が認められず、1μmを越えると剛性に対する改良効果が十分ではない。更にかかるマイカは、シランカップリング剤等で表面処理されていてもよく、更に結合剤で造粒し顆粒状とされていても良い。マイカの具体例としては、株式会社山口雲母工業所 雲母粉(マイカ粉) A−41、等があり、これらは市場で容易に入手できる。
また、本発明で使用するマイカとして、金属コートマイカを使用することもできる。マイカにコーティングする金属は、マイカにコーティング可能な金属であればよく、例えば金、銀、ニッケル、アルミニウム等があげられる。また、コーティングする方法には特に制限がなく、任意の方法が採用される。例えば無電解メッキによる方法が好ましく、コーティングの膜厚は通常0.00001〜10μmであり、マイカの平滑面、好ましくは更に端面にも均一にコーティングする。かかる金属をコーティングしたマイカは、そのまま使用できるが、更にその表面に、酸化防止剤等のために、処理剤をコーティングしてもよい。
本発明におけるタルクとしては、層状構造を持つ含水ケイ酸マグネシウムであり、化学式4SiO2・3MgO・2H2Oで表され、通常SiO2約63重量%、MgO約32%、H2O約5重量%、その他Fe2O3、Al2O3などを含有しており、比重は約2.7である。本発明においては、剛性確保の面から、平均粒径が0.01〜20μmの粉末状のものが好ましい。ここでいうタルクの平均粒径とはレーザー回折法により測定された値をいう。タルクの場合には、平均粒径がこの範囲より小さくなると剛性が不十分となり、この範囲を越えると成形品の外観が悪くなり好ましくない。
本発明におけるカオリンとしては、層状構造を持つ含水ケイ酸アルミニウムであり、化学式Al2Si2O5(OH)4で表される。通常、天然に算出されるカオリンは、カオリナイト、ディッカイト、ナクライトの3つのタイプがありいずれも使用できる。本発明においては、剛性確保の面から、平均粒径が0.01〜20μmの粉末状のものが好ましい。ここでいうカオリンの平均粒径とはレーザー回折法により測定された値をいう。カオリンの場合には、平均粒径がこの範囲より小さくなると剛性が不十分となり、この範囲を越えると成形品の外観が悪くなり好ましくない。
かかる板状充填材はシランカップリング剤等で表面処理されているものが好ましい。この表面処理により、芳香族ポリカーボネート樹脂の分解が抑制されるとともに、密着性をより向上させることにより、本発明の目的である湿熱疲労性やウエルド強度をより良好なものとすることができる。
かかる板状充填材はシランカップリング剤等で表面処理されているものが好ましい。この表面処理により、芳香族ポリカーボネート樹脂の分解が抑制されるとともに、密着性をより向上させることにより、本発明の目的である湿熱疲労性やウエルド強度をより良好なものとすることができる。
本発明でいうワラストナイトとは、珪酸カルシウムを主成分とする繊維状無機充填材は針状結晶をもつ天然白色鉱物であり、実質的に化学式CaSiO3で表わされ、通常SiO2が約50重量%、CaOが約47重量%、その他Fe2O3、Al2O3等を含有しており、比重は約2.9である。本発明において用いるワラストナイトとしては、粒子径分布において3μm以上が75%以上、10μm以上が5%以下で且つアスペクト比L/Dが3以上、特にL/Dが8以上であるものが好ましい。粒子径分布において3μm以上が75%以上の場合、補強効果が十分であり、剛性がより高くなり易い。また10μm以上が5%以下の場合は、良好な衝撃強度を有する一方、得られる成形品の表面外観もより良好となり易い。特にアスペクト比が8以上の場合は、補強効果が十分であり、より高い剛性が得られる。但し作業環境面を考慮し、アスペクト比が50以下であるものがより好ましい。また、かかるワラストナイトには、通常の表面処理剤、例えば後述するシラン系カップリング剤や、チタネート系カップリング剤等のカップリング剤で表面処理を施しても差し支えない。
また、本発明で使用するガラスフレーク、マイカとして、金属コートガラスフレーク、金属コートマイカを使用することもできる。ガラスフレーク、マイカにコーティングする金属は、ガラスにコーティング可能な金属であればよく、例えば金、銀、ニッケル、アルミニウム等が挙げられる。また、コーティングする方法には特に制限がなく、任意の方法が採用される。例えば無電解メッキによる方法が好ましく、コーティングの膜厚は通常0.00001〜10μmであり、ガラスフレークの平滑面、好ましくは更に端面にも均一にコーティングする。かかる金属をコーティングしたガラスフレークは、そのまま使用できるが、更にその表面に、酸化防止剤等のために、処理剤をコーティングしてもよい本発明におけるマイカとしては、剛性確保の面から、平均粒径が1〜80μmの粉末状のものが好ましい。
また、本発明で使用するマイカとして、金属コートマイカを使用することもできる。マイカにコーティングする金属は、マイカにコーティング可能な金属であればよく、例えば金、銀、ニッケル、アルミニウム等があげられる。また、コーティングする方法には特に制限がなく、任意の方法が採用される。例えば無電解メッキによる方法が好ましく、コーティングの膜厚は通常0.00001〜10μmであり、マイカの平滑面、好ましくは更に端面にも均一にコーティングする。かかる金属をコーティングしたマイカは、そのまま使用できるが、更にその表面に、酸化防止剤等のために、処理剤をコーティングしてもよい。
(臭素系難燃剤:D成分)
本発明の樹脂組成物には、A成分およびB成分の合計100重量部あたり、臭素系難燃剤(D成分)を5〜80重量部、アンチモン系難燃助剤(E成分)を0〜30重量部含有することが好ましい。D成分の含有量は、好ましくは10〜50重量部、より好ましくは10〜30重量部である。E成分の含有量は、好ましくは1〜30重量部、より好ましくは2〜20重量部である。
電機、電子用成形品の難燃性はアンダーライターズ・ラボラトリーズのサブジェクト94(UL−94)の方法に準じ5本の試験片(厚み;1/32インチ)を用いて難燃性試験にてV0を達成することが好ましい。
本発明の樹脂組成物には、A成分およびB成分の合計100重量部あたり、臭素系難燃剤(D成分)を5〜80重量部、アンチモン系難燃助剤(E成分)を0〜30重量部含有することが好ましい。D成分の含有量は、好ましくは10〜50重量部、より好ましくは10〜30重量部である。E成分の含有量は、好ましくは1〜30重量部、より好ましくは2〜20重量部である。
電機、電子用成形品の難燃性はアンダーライターズ・ラボラトリーズのサブジェクト94(UL−94)の方法に準じ5本の試験片(厚み;1/32インチ)を用いて難燃性試験にてV0を達成することが好ましい。
本発明において用いる臭素系難燃剤(D成分)は、例えば臭素含有率20重量%以上の臭素化ビスフェノールA型ポリカーボネート難燃剤、臭素化ビスフェノールA型エポキシ樹脂および/またはその末端グリシジル基の一部または全部を封鎖した変性物、臭素化ジフェニルエーテル難燃剤、臭素化イミド難燃剤、臭素化ポリスチレン難燃剤等である。
具体例としては、デカブロモジフェニルオキサイド、オクタブロモジフェニルオキサイド、テトラブロモジフェニルオキサイド、テトラブロモ無水フタル酸、ヘキサブロモシクロドデカン、ビス(2,4,6−トリブロモフェノキシ)エタン、エチレンビステトラブロモフタルイミド、ヘキサブロモベンゼン、1,1−スルホニル[3,5−ジブロモ−4−(2,3−ジブロモプロポキシ)]ベンゼン、ポリジブロモフェニレンオキサイド、テトラブロムビスフェノールS、トリス(2,3−ジブロモプロピル−1)イソシアヌレート、トリブロモフェノール、トリブロモフェニルアリルエーテル、トリブロモネオペンチルアルコール、ブロム化ポリスチレン、ブロム化ポリエチレン、テトラブロムビスフェノールA、テトラブロムビスフェノールA誘導体、テトラブロムビスフェノールA−エポキシオリゴマーまたはポリマー、テトラブロムビスフェノールA−カーボネートオリゴマーまたはポリマー、ブロム化フェノールノボラックエポキシなどのブロム化エポキシ樹脂、テトラブロムビスフェノールA−ビス(2−ヒドロキシジエチルエーテル)、テトラブロムビスフェノールA−ビス(2,3−ジブロモプロピルエーテル)、テトラブロムビスフェノールA−ビス(アリルエーテル)、テトラブロモシクロオクタン、エチレンビスペンタブロモジフェニル、トリス(トリブロモネオペンチル)ホスフェート、ポリ(ペンタブロモベンジルポリアクリレート)、オクタブロモトリメチルフェニルインダン、ジブロモネオペンチルグリコール、ペンタブロモベンジルポリアクリレート、ジブロモクレジルグリシジルエーテル、N,N′−エチレン−ビス−テトラブロモフタルイミドなどが挙げられる。なかでも、テトラブロムビスフェノールA−エポキシオリゴマー、テトラブロムビスフェノールA−カーボネートオリゴマー、ブロム化エポキシ樹脂が好ましい。これらの難燃剤は全組成物中0〜4重量%、望ましくは2〜4重量%の範囲で添加される。
臭素系難燃剤(D成分)は、下記式(1)または(2)で表されるものが好ましい。
具体例としては、デカブロモジフェニルオキサイド、オクタブロモジフェニルオキサイド、テトラブロモジフェニルオキサイド、テトラブロモ無水フタル酸、ヘキサブロモシクロドデカン、ビス(2,4,6−トリブロモフェノキシ)エタン、エチレンビステトラブロモフタルイミド、ヘキサブロモベンゼン、1,1−スルホニル[3,5−ジブロモ−4−(2,3−ジブロモプロポキシ)]ベンゼン、ポリジブロモフェニレンオキサイド、テトラブロムビスフェノールS、トリス(2,3−ジブロモプロピル−1)イソシアヌレート、トリブロモフェノール、トリブロモフェニルアリルエーテル、トリブロモネオペンチルアルコール、ブロム化ポリスチレン、ブロム化ポリエチレン、テトラブロムビスフェノールA、テトラブロムビスフェノールA誘導体、テトラブロムビスフェノールA−エポキシオリゴマーまたはポリマー、テトラブロムビスフェノールA−カーボネートオリゴマーまたはポリマー、ブロム化フェノールノボラックエポキシなどのブロム化エポキシ樹脂、テトラブロムビスフェノールA−ビス(2−ヒドロキシジエチルエーテル)、テトラブロムビスフェノールA−ビス(2,3−ジブロモプロピルエーテル)、テトラブロムビスフェノールA−ビス(アリルエーテル)、テトラブロモシクロオクタン、エチレンビスペンタブロモジフェニル、トリス(トリブロモネオペンチル)ホスフェート、ポリ(ペンタブロモベンジルポリアクリレート)、オクタブロモトリメチルフェニルインダン、ジブロモネオペンチルグリコール、ペンタブロモベンジルポリアクリレート、ジブロモクレジルグリシジルエーテル、N,N′−エチレン−ビス−テトラブロモフタルイミドなどが挙げられる。なかでも、テトラブロムビスフェノールA−エポキシオリゴマー、テトラブロムビスフェノールA−カーボネートオリゴマー、ブロム化エポキシ樹脂が好ましい。これらの難燃剤は全組成物中0〜4重量%、望ましくは2〜4重量%の範囲で添加される。
臭素系難燃剤(D成分)は、下記式(1)または(2)で表されるものが好ましい。
(式(1)中、nは11〜50の整数である)
(式(2)中、Rは水素原子またはメチル基であり、pは1〜5の整数、mは、0〜20の整数である)
(アンチモン系難燃助剤:E成分)
本発明において用いるアンチモン系難燃助剤(E成分)としては、三酸化アンチモン、四酸化アンチモン、および(NaO)p・(Sb2O5)・qH2O(p=0〜1、q=0〜4)で表される五酸化アンチモンまたは一部がNa塩化されたアンチモン酸ナトリウムを使用することができる。これらアンチモン系難燃助剤(E成分)としては、(NaO)p・(Sb2O5)・qH2O(p=0〜1、q=0〜4)で表される五酸化アンチモンまたは一部がNa塩化されたアンチモン酸ナトリウムを用いると、金属腐食性がより好ましくなる。就中、アンチモン酸ナトリウムのエタノール溶液としたときにpH6〜pH9となるものを用いると、樹脂組成物の分解が少なく更に好ましい。アンチモン系難燃助剤(F)は、好ましくは粒径0.02〜5μmとする。また必要に応じてエポキシ化合物、シラン化合物、イソシアネート化合物、チタネート化合物等で表面処理されていてもよい。難燃助剤の添加量は、全組成に対して0〜25重量%であり、好ましくは1〜15重量%である。
本発明において用いるアンチモン系難燃助剤(E成分)としては、三酸化アンチモン、四酸化アンチモン、および(NaO)p・(Sb2O5)・qH2O(p=0〜1、q=0〜4)で表される五酸化アンチモンまたは一部がNa塩化されたアンチモン酸ナトリウムを使用することができる。これらアンチモン系難燃助剤(E成分)としては、(NaO)p・(Sb2O5)・qH2O(p=0〜1、q=0〜4)で表される五酸化アンチモンまたは一部がNa塩化されたアンチモン酸ナトリウムを用いると、金属腐食性がより好ましくなる。就中、アンチモン酸ナトリウムのエタノール溶液としたときにpH6〜pH9となるものを用いると、樹脂組成物の分解が少なく更に好ましい。アンチモン系難燃助剤(F)は、好ましくは粒径0.02〜5μmとする。また必要に応じてエポキシ化合物、シラン化合物、イソシアネート化合物、チタネート化合物等で表面処理されていてもよい。難燃助剤の添加量は、全組成に対して0〜25重量%であり、好ましくは1〜15重量%である。
本発明の樹脂組成物において樹脂組成物のカルボキシ基濃度が50eq/ton以下であることにより樹脂、難燃剤、難燃助剤の分解が抑制され、従って成形加工時の分解発生物により、金型が腐食、汚染し、成形品寸法精度や加工効率が悪化したり、成形品使用時に、接触または近在する金属が腐食または汚染され部品の機能が害される難点を抑制することができる。
(エステル交換抑制剤:F成分)
本発明の樹脂組成物は、A成分およびB成分の合計100重量部あたり、エステル交換抑制剤(F成分)を0.01〜5重量部含有することが好ましい。F成分の含有量は、さらに好ましくは0.01〜1重量部、より好ましくは0.02〜0.5重量部である。F成分を含有させることにより、樹脂組成物の溶融粘度安定性をたかめ、樹脂の成形時の分解、分子量低下を抑制し、樹脂成形性をたかめて、溶融成形を好適に行うことができる。
エステル交換抑制剤(F成分)としては、リン酸2水素ナトリウム、酢酸カリウム、トリメチルホスフェート、フェニルホスホン酸などが挙げられる。またF成分として、ポリ乳酸製造触媒の触媒失活剤を好適に適用することができる。
本発明の樹脂組成物は、A成分およびB成分の合計100重量部あたり、エステル交換抑制剤(F成分)を0.01〜5重量部含有することが好ましい。F成分の含有量は、さらに好ましくは0.01〜1重量部、より好ましくは0.02〜0.5重量部である。F成分を含有させることにより、樹脂組成物の溶融粘度安定性をたかめ、樹脂の成形時の分解、分子量低下を抑制し、樹脂成形性をたかめて、溶融成形を好適に行うことができる。
エステル交換抑制剤(F成分)としては、リン酸2水素ナトリウム、酢酸カリウム、トリメチルホスフェート、フェニルホスホン酸などが挙げられる。またF成分として、ポリ乳酸製造触媒の触媒失活剤を好適に適用することができる。
触媒失活能から、式xH2O.yP2O5で表され、x/y=3のオルトリン酸、2>x/y>1であり、縮合度より二リン酸、三リン酸、四リン酸、五リン酸等と称せられるポリリン酸およびこれらの混合物、x/y=1で表されるメタリン酸、なかでもトリメタリン酸、テトラメタリン酸、1>x/y>0で表され、五酸化リン構造の一部をのこした網目構造を有するウルトラリン酸(これらを総称してメタ燐酸系化合物と呼ぶことがある。)、およびこれらの酸の酸性塩、一価、多価のアルコール類、あるいはポリアルキレングリコール類の部分エステルリンオキソ酸あるいはこれらの酸性エステル類および上記のメタ燐酸系化合物、ホスホノ置換脂肪族カルボン酸誘導体が好適に使用される。なかでも環状メタ燐酸ナトリウムやウルトラ領域メタ燐酸ナトリウム、DHPAなどが好適に使用される。
これらの剤を適用しハイサイクル成形性、外観性、寸法安定性、耐加水分解性に優れ難燃性が付与され、溶融樹脂の溶融安定性が良好な本発明組成物はその特性を生かし、例えば電気、電子部品用成形品、家電製品用成形品を好適に成形することができる。
これらの剤を適用しハイサイクル成形性、外観性、寸法安定性、耐加水分解性に優れ難燃性が付与され、溶融樹脂の溶融安定性が良好な本発明組成物はその特性を生かし、例えば電気、電子部品用成形品、家電製品用成形品を好適に成形することができる。
(ハイドロタルサイト:G成分)
さらに本発明の樹脂組成物は、A成分およびB成分の合計100重量部あたり、ハイドロタルサイト(G成分)を0.01〜5重量部含有することが好ましい。
G成分の含有量は、より好ましくは0.01〜2重量部、さらに好ましくは、0.02〜0.5重量部である。G成分を含有することにより、樹脂組成物、難燃剤よりの酸性分解生成物、例えば臭化水素などを補足し、樹脂組成物の溶融時の安定性を向上させ、溶融成形時の着色、劣化および成形品の酸化劣化を抑制するとともに電気・電子部品の金属接点汚染を抑制することができる。
さらに本発明の樹脂組成物は、A成分およびB成分の合計100重量部あたり、ハイドロタルサイト(G成分)を0.01〜5重量部含有することが好ましい。
G成分の含有量は、より好ましくは0.01〜2重量部、さらに好ましくは、0.02〜0.5重量部である。G成分を含有することにより、樹脂組成物、難燃剤よりの酸性分解生成物、例えば臭化水素などを補足し、樹脂組成物の溶融時の安定性を向上させ、溶融成形時の着色、劣化および成形品の酸化劣化を抑制するとともに電気・電子部品の金属接点汚染を抑制することができる。
本発明で使用するハイドロタルサイトは、(Mgx・Aly)・(OH)p(CO3)qで表されるマグネシウムとアルミニウムとの塩基性炭酸塩化合物である。但し、p,q,x,y,はそれぞれ0より大きい正数であり、これらは同じであっても異なってもよく、2x+3y=p+2qを満足する。
またハイドロタルサイトは、マグネシウムとアルミニウムの一部が他種元素で置換された(Nn a・Mgb・Alc)・(OH)p(CO3)qで表される塩基性炭酸塩化合物である。但し、Nnはn価の金属、p,q,a,b,cはそれぞれ0より大きい正数であり、これらは同じであっても異なってもよく、na+2b+3c=p+2qを満足する。Nnとして亜鉛が挙げられる。
またハイドロタルサイトは、マグネシウムとアルミニウムの一部が他種元素で置換された(Nn a・Mgb・Alc)・(OH)p(CO3)qで表される塩基性炭酸塩化合物である。但し、Nnはn価の金属、p,q,a,b,cはそれぞれ0より大きい正数であり、これらは同じであっても異なってもよく、na+2b+3c=p+2qを満足する。Nnとして亜鉛が挙げられる。
マグネシウムとアルミニウムのみからなるハイドロタルサイトは電気・電子部品の金属接点汚染を抑制する効果は大きいが、溶融時PBTを分解する作用も有する。これに対しマグネシウムとアルミニウムの一部を他種金属例えば亜鉛に置換したハイドロタルサイトは電気・電子部品の金属接点汚染を抑制する効果は大きいが、溶融時PBTを分解する作用は大きく低下しているとの特長を有する。
(酸化防止剤)
本発明の樹脂組成物は、A成分およびB成分の合計100重量部あたり、酸化防止剤を好ましくは0.01〜5重量部、より好ましくは0.01〜2重量部、さらに好ましくは、0.02〜0.5重量部含有することが好ましい。酸化防止剤を含有することにより、樹脂組成物の酸化安定性を向上させ、また溶融成形時の着色、劣化および成形品の酸化劣化を抑制することができる。
酸化防止剤として、ヒンダードフェノール系化合物、ヒンダードアミン系化合物、ホスファイト系化合物、チオエーテル系化合物などを挙げることができる。
本発明の樹脂組成物は、A成分およびB成分の合計100重量部あたり、酸化防止剤を好ましくは0.01〜5重量部、より好ましくは0.01〜2重量部、さらに好ましくは、0.02〜0.5重量部含有することが好ましい。酸化防止剤を含有することにより、樹脂組成物の酸化安定性を向上させ、また溶融成形時の着色、劣化および成形品の酸化劣化を抑制することができる。
酸化防止剤として、ヒンダードフェノール系化合物、ヒンダードアミン系化合物、ホスファイト系化合物、チオエーテル系化合物などを挙げることができる。
ヒンダードフェノール系化合物としては、n−オクタデシル3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)−プロピオネート、n−オクタデシル3−(3’−メチル−5’−t−ブチル−4’−ヒドロキシフェニル)−プロピオネート、n−テトラデシル3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)−プロピオネ−ト、1,6―キサンジオールビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)−プロピオネート]、1,4−ブタンジオールビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)−プロピオネート]、2,2’−メチレン−ビス(4−メチル−t−ブチルフェノール)、トリエチレングリコールビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)−プロピオネート]、テトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、3,9−ビス[2−{3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}−1,1−ジメチルエチル]2,4,8,10−テトラオキサスピロ(5,5)ウンデカン、N,N’−ビス−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオニルヘキサメチレンジアミン、N,N’−テトラメチレン−ビス[3−(3’−メチル−5’−t−ブチル−4’−ヒドロキシフェニル)プロピオニル]ジアミン、N,N’−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)−プロピオニル]ヒドラジン、N−サリチロイル−N’−サリチリデンヒドラジン、3−(N−サリチロイル)アミノ−1,2,4−トリアゾール、N,N’−ビス[2−{3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ}エチル]オキシアミドなどが挙げられる。
好ましくは、トリエチレングリコールビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)−プロピオネート]、テトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン等が例示される。
好ましくは、トリエチレングリコールビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)−プロピオネート]、テトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン等が例示される。
ホスファイト系化合物として、少なくとも1つのP−O結合が芳香族基に結合しているものが好ましい。具体的には、トリス(2,6−ジ−t−ブチルフェニル)ホスファイト、テトラキス(2,6−ジ−t−ブチルフェニル)4,4’−ビフェニレンホスファイト、ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトールージ−ホスファイト、2,2−メチレンビス(4,6−ジ−t−ブチルフェニル)オクチルホスファイト、4,4’−ブチリデン−ビス(3−メチル−6−t−ブチルフェニル−ジ−トリデシル)ホスファイト、1,1,3−トリス(2−メチル−4−ジトリデシルホスファイト−5−t−ブチルフェニル)ブタン、トリス(ミックスドモノおよびジ−ノニルフェニル)ホスファイト、4,4’−イソプロピリデンビス(フェニル−ジアルキルホスファイト)などが挙げられる。トリス(2,6−ジ−t−ブチルフェニル)ホスファイト、2,2−メチレンビス(4,6−ジ−t−ブチルフェニル)オクチルホスファイト、ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトール−ジ−ホスファイト、テトラフェニル−4,4’−ビフェニレンホスファイトなどが好ましい。
チオエ−テル系化合物として、ジラウリルチオジプロピオネート、ジトリデシルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジステアリルチオジプロピオネート、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、ペンタエリスリトールテトラキス(3−ドデシルチオプロピオネート)、ペンタエリスリトールテトラキス(3−オクタデシルチオプロピオネート)、ペンタエリスリトールテトラキス(3−ミリスチルチオプロピオネート)、ペンタエリスリトールテトラキス(3−ステアリルチオプロピオネート)などが挙げられる。これらは単独で用いても良いし、2種以上混合して使用しても良い。
(他の添加剤)
本発明の樹脂組成物は、そのままでも用いることができるが、本発明の趣旨に反しない範囲において、所望により公知の各種添加剤、例えば結晶核剤、離型剤、表面平滑剤、難燃剤、フィラー、UV吸収剤、可塑剤、帯電防止剤、エラストマー、ゴム強化スチレン系樹脂、ポリエチレンテレフタレートおよびポリカーボネートからなる群から選ばれた添加物を含有させることができる。
結晶核剤としては従来公知の剤を用いることができ、無機系結晶核剤および有機系結晶核剤のいずれをも使用することができる。
無機系結晶核剤の具体例としては、珪酸カルシウム、タルク、カオリナイト、モンモリロナイト、合成マイカ、硫化カルシウム、窒化ホウ素、硫酸バリウム、酸化アルミニウム、酸化ネオジウムおよびフェニルホスホネートの金属塩などを挙げることができる。これらの無機系結晶核剤は、組成物中での分散性を高めるために、有機物で修飾されていることが好ましい。
本発明の樹脂組成物は、そのままでも用いることができるが、本発明の趣旨に反しない範囲において、所望により公知の各種添加剤、例えば結晶核剤、離型剤、表面平滑剤、難燃剤、フィラー、UV吸収剤、可塑剤、帯電防止剤、エラストマー、ゴム強化スチレン系樹脂、ポリエチレンテレフタレートおよびポリカーボネートからなる群から選ばれた添加物を含有させることができる。
結晶核剤としては従来公知の剤を用いることができ、無機系結晶核剤および有機系結晶核剤のいずれをも使用することができる。
無機系結晶核剤の具体例としては、珪酸カルシウム、タルク、カオリナイト、モンモリロナイト、合成マイカ、硫化カルシウム、窒化ホウ素、硫酸バリウム、酸化アルミニウム、酸化ネオジウムおよびフェニルホスホネートの金属塩などを挙げることができる。これらの無機系結晶核剤は、組成物中での分散性を高めるために、有機物で修飾されていることが好ましい。
有機系結晶核剤の具体例としては、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム、安息香酸カルシウム、安息香酸マグネシウム、安息香酸バリウム、テレフタル酸リチウム、テレフタル酸ナトリウム、テレフタル酸カリウム、シュウ酸カルシウム、ラウリン酸ナトリウム、ラウリン酸カリウム、ミリスチン酸ナトリウム、ミリスチン酸カリウム、ミリスチン酸カルシウム、オクタコサン酸ナトリウム、オクタコサン酸カルシウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸バリウム、モンタン酸ナトリウム、モンタン酸カルシウム、トルイル酸ナトリウム、サリチル酸ナトリウム、サリチル酸カリウム、サリチル酸亜鉛、アルミニウムジベンゾエート、カリウムジベンゾエート、リチウムジベンゾエート、ナトリウムβーナフナトリウムシクロヘキサンカルボキシレートなどの有機カルボン酸金属塩、p−トルエンスルホン酸ナトリウム、スルホイソフタル酸ナトリウムなどの有機スルホン酸塩、ステアリン酸アミド、エチレンビスラウリン酸アミド、パルチミン酸アミド、ヒドロキシステアリン酸アミド、エルカ酸アミド、トリメシン酸トリス(t−ブチルアミド)などのカルボン酸アミド、ベンジリデンソルビトールおよびその誘導体、ナトリウム−2,2’−メチレンビス(4,6−ジ−t−ブチルフェニル)ホスフェートなどのリン化合物金属塩、および2,2−メチルビス(4,6−ジ−t−ブチルフェニル)ナトリウムなどを挙げることができる。
これらの剤の配合した樹脂の溶融時の安定性の観点より、有機系核剤よりも無機系核剤タレート、の核剤の適用が好ましく、粒子径は低いほうが好ましい。例えば、平均一次粒子径は0.2〜0.05μmの範囲にあると樹脂組成物に適度に分散するので、樹脂組成物の耐熱性は良好なものとなる。
また、無機系の核剤のなかでは、ケイ酸カルシウムを添加することが好ましい。ケイ酸カルシウムとしては、例えば、六方晶を含むものを用いることができ、添加量は樹脂組成物を基準として、0.01〜1重量%の範囲であることが好ましく、さらに好ましいのは0.05〜0.5重量%の範囲である。多すぎる場合には、外観が悪くなりやすく、少なければ特段の効果を示さないので好ましくない。
また、無機系の核剤のなかでは、ケイ酸カルシウムを添加することが好ましい。ケイ酸カルシウムとしては、例えば、六方晶を含むものを用いることができ、添加量は樹脂組成物を基準として、0.01〜1重量%の範囲であることが好ましく、さらに好ましいのは0.05〜0.5重量%の範囲である。多すぎる場合には、外観が悪くなりやすく、少なければ特段の効果を示さないので好ましくない。
本発明においては離型剤を配合することが好ましい。本発明において使用する離型剤は通常の熱可塑性樹脂に用いられるものを使用することができる。例えば脂肪酸、脂肪酸金属塩、オキシ脂肪酸、パラフィン低分子量ポリオレフィン、脂肪酸アミド、アルキレンビス脂肪酸アミド、脂肪族ケトン、脂肪酸部分鹸化エステル、脂肪酸低級アルコールエステル、脂肪酸多価アルコールエステル、脂肪酸高級アルコールエステル、脂肪酸多価アルコール部分エステル、脂肪酸ポリグリコールエステル、変性シリコーンなどを挙げることができる。これらを配合することで機械特性、成形性、耐熱性に優れたポリ乳酸樹脂組成物および成形品を得ることができる。
脂肪酸としては炭素数6〜40のものが好ましく、具体的には、オレイン酸、ステアリン酸、ラウリン酸、ヒドロキシステアリン酸、ベヘン酸、アラキドン酸、リノール酸、リノレン酸、リシノール酸、パルミチン酸、モンタン酸およびこれらの混合物などが挙げられる。脂肪酸金属塩としては、炭素数6〜40の脂肪酸のアリカリ(土類)金属塩が好ましく、具体的にはステアリン酸カルシウム、モンタン酸ナトリウム、モンタン酸カルシウム、などが挙げられる。オキシ脂肪酸としては1,2−オキシステリン酸、などが挙げられる。脂肪酸エステルとしてはステアリン酸エステル、オレイン酸エステル、リノール酸エステル、リノレン酸エステル、アジピン酸エステル、ベヘン酸エステル、アラキドン酸エステル、モンタン酸エステル、イソステアリン酸エステルなどが挙げられる。脂肪酸部分鹸化エステルとしてはモンタン酸部分鹸化エステルなどが挙げられる。
パラフィンとしては炭素数18以上のものが好ましく、流動パラフィン、天然パラフィン、マイクロクリスタリンワックス、ペトロラクタムなどをあげることができ、低分子量のポリオレフィンとしては例えば分子量5000以下のものが好ましく、具体的にはポリエチレンワックス、マレイン酸変性ポリエチレンワックス、酸化タイプポリエチレンワックス、塩素化ポリエチレンワックス、ポリプロピレンワックスなどが挙げられる。
脂肪酸アミドとしては炭素数6以上のものが好ましく、具体的にはアレイン酸アミド、エルカ酸アミド、ベヘン酸アミド、などが挙げられる。アルキレンビス脂肪酸アミドとしては炭素数6以上のものが好ましく、具体的にはメチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、N,N−ビス(2−ヒドロキシエチル)ステアリン酸アミドなどが挙げられる。脂肪族ケトンとしては炭素数6以上のものが好ましく、高級脂肪族ケトンなどが挙げられる。脂肪酸エステルとしては炭素数6以上のものが好ましく、エチルステアレート、ブチルステアレート、エチルベヘネート、ステアリルステアレート、ステアリルオレート、ライスワックスなどが挙げられる。
脂肪酸多価アルコールエステルとしてはグリセロールトリステアレート、グリセロールジステアレート、グリセロールモノステアレート、ペンタエリスルトールテトラステアレート、ペンタエリスルトールトリステアレート、ペンタエリスルトールジミリステート、ペンタエリスルトールモノステアレート、ペンタエリスルトールアジペートステアレート、ソルビタンモノベヘネート、などが挙げられる。脂肪酸ポリグリコールエステルとしてはポリエチレングリコール脂肪酸エステルやポリプロピレングリコール脂肪酸エステルなどが挙げられる。変性シリコーンとしてはポリエーテル変性シリコーン、高級脂肪酸アルコキシ変性シリコーン、高級脂肪酸含有シリコーン、高級脂肪酸エステル変性シリコーン、メタクリル変性シリコーン、フッ素変性シリコーンなどが挙げられる。
そのほか、カルナウバワックス、ライスワックス等の植物系ワックス、蜜ろう、ラノリン等の動物系ワックス、モンタンワックス、モンタン酸部分ケン化エステルワックス等の鉱物系ワックス、パラフィンワックス、ポリエチレンワックス等の石油系ワックス、ひまし油およびその誘導体、脂肪酸およびその誘導体等の油脂系ワックスが挙げられる。
そのうち脂肪酸、脂肪酸金属塩、オキシ脂肪酸、脂肪酸エステル、脂肪酸部分鹸化エステル、パラフィン、低分子量ポリオレフィン、脂肪酸アミド、アルキレンビス脂肪酸アミド、が好ましく、脂肪酸部分鹸化エステル、アルキレンビス脂肪酸アミドがより好ましい。なかでもモンタン酸エステル、モンタン酸部分鹸化エステルワックス、ポリエチレンワックッス、酸価ポリエチレンワックス、ソルビタン脂肪酸エステル、エルカ酸アミド、エチレンビスステアリン酸アミドが特に好適に用いられ、ハイサイクル性を向上させる効果に優れる。
そのうち脂肪酸、脂肪酸金属塩、オキシ脂肪酸、脂肪酸エステル、脂肪酸部分鹸化エステル、パラフィン、低分子量ポリオレフィン、脂肪酸アミド、アルキレンビス脂肪酸アミド、が好ましく、脂肪酸部分鹸化エステル、アルキレンビス脂肪酸アミドがより好ましい。なかでもモンタン酸エステル、モンタン酸部分鹸化エステルワックス、ポリエチレンワックッス、酸価ポリエチレンワックス、ソルビタン脂肪酸エステル、エルカ酸アミド、エチレンビスステアリン酸アミドが特に好適に用いられ、ハイサイクル性を向上させる効果に優れる。
特にモンタン酸部分鹸化エステルワックス、エチレンビスステアリン酸アミドが好ましい。本発明において離型剤は1種でも2種以上を組み合わせて用いても良い。離型剤の配合量はポリ乳酸(B成分)100重量部に対し0.01〜3重量部が好ましく、0.03〜2重量部がさらに好ましい。
表面平滑剤としては、公知のものをいずれも用いることができるが、シリコーン系化合物、フッ素系界面活性剤、有機界面活性剤を挙げることができる。
難燃剤としては、前述した臭素系難燃剤以外の公知の下記の剤を所望により用いることができ、具体的には、塩素系難燃剤、リン系難燃剤、窒素化合物系難燃剤、シリコーン系難燃剤、その他の無機系難燃剤等を挙げることができる。
塩素系難燃剤の具体例としては、塩素化パラフィン、塩素化ポリエチレン、パークロロシクロペンタデカン、テトラクロロ無水フタル酸などが挙げられる。
リン系難燃剤としては、リン酸エステル、縮合リン酸エステル、ポリリン酸塩などの有機リン系化合物や、赤リン等を挙げることができる。
難燃剤としては、前述した臭素系難燃剤以外の公知の下記の剤を所望により用いることができ、具体的には、塩素系難燃剤、リン系難燃剤、窒素化合物系難燃剤、シリコーン系難燃剤、その他の無機系難燃剤等を挙げることができる。
塩素系難燃剤の具体例としては、塩素化パラフィン、塩素化ポリエチレン、パークロロシクロペンタデカン、テトラクロロ無水フタル酸などが挙げられる。
リン系難燃剤としては、リン酸エステル、縮合リン酸エステル、ポリリン酸塩などの有機リン系化合物や、赤リン等を挙げることができる。
安定剤としては、公知のものをいずれも用いることができるが、ステアリン酸リチウム、ステアリン酸マグネシウム、ラウリン酸カルシウム、リシノール酸カルシウム、ステアリン酸カルシウム、ラウリン酸バリウム、リシノール酸バリウム、ステアリン酸バリウム、ラウリン酸亜鉛、リシノール酸亜鉛、ステアリン酸亜鉛等の各種金属せっけん系安定剤、
ラウレート系、マレート系やメルカプト系各種有機錫系安定剤、ステアリン酸鉛、三塩基性硫酸鉛等の各種鉛系安定剤、エポキシ化植物油等のエポキシ化合物、アルキルアリルホスファイト、トリアルキルホスファイト等の前述のエステル交換抑制剤(G)で例示した化合物を含むホスファイト化合物、ジベンゾイルメタン、デヒドロ酢酸等のβ−ジケトン化合物、ソルビトール、マンニトール、ペンタエリスリトール等のポリオール、ハイドロタルサイト類やゼオライト類、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、サリシレート系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、シュウ酸アニリド系紫外線吸収剤、ヒンダードアミン系光安定剤等が挙げられる。
ラウレート系、マレート系やメルカプト系各種有機錫系安定剤、ステアリン酸鉛、三塩基性硫酸鉛等の各種鉛系安定剤、エポキシ化植物油等のエポキシ化合物、アルキルアリルホスファイト、トリアルキルホスファイト等の前述のエステル交換抑制剤(G)で例示した化合物を含むホスファイト化合物、ジベンゾイルメタン、デヒドロ酢酸等のβ−ジケトン化合物、ソルビトール、マンニトール、ペンタエリスリトール等のポリオール、ハイドロタルサイト類やゼオライト類、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、サリシレート系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、シュウ酸アニリド系紫外線吸収剤、ヒンダードアミン系光安定剤等が挙げられる。
可塑剤としては、公知のものをいずれも用いることができるが、ポリエステル系可塑剤、グリセリン系可塑剤、多価カルボン酸エステル系可塑剤、リン酸エステル系可塑剤、ポリアルキレングリコール系可塑剤およびエポキシ系可塑剤などを挙げることができる。
ポリエステル系可塑剤としては、アジピン酸、セバチン酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸などのジカルボン酸成分と、プロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、エチレングリコール、ジエチレングリコールなどのジオール成分からなるポリエステルや、ポリカプロラクトンなどのヒドロキシカルボン酸からなるポリエステルなどを挙げることができる。
グリセリン系可塑剤の具体例としては、グリセリンモノアセトモノラウレート、グリセリンジアセトモノラウレート、グリセリンジアセトモノオレートおよびグリセリンモノアセトモノモンタネートなどを挙げることができる。
ポリエステル系可塑剤としては、アジピン酸、セバチン酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸などのジカルボン酸成分と、プロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、エチレングリコール、ジエチレングリコールなどのジオール成分からなるポリエステルや、ポリカプロラクトンなどのヒドロキシカルボン酸からなるポリエステルなどを挙げることができる。
グリセリン系可塑剤の具体例としては、グリセリンモノアセトモノラウレート、グリセリンジアセトモノラウレート、グリセリンジアセトモノオレートおよびグリセリンモノアセトモノモンタネートなどを挙げることができる。
多価カルボン酸エステル系可塑剤の具体例としては、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジオクチル、フタル酸ジヘプチルなどのフタル酸エステル、トリメリット酸トリブチル、トリメリット酸トリオクチル、トリメリット酸トリヘキシルなどのトリメリット酸エステル、アジピン酸ジイソデシルなどのアジピン酸エステル、アセチルクエン酸トリブチルなどのクエン酸エステル、アゼライン酸ジ−2−エチルヘキシルなどのアゼライン酸エステル、およびセバシン酸ジ−2−エチルヘキシルなどのセバシン酸エステルなどの他、ビス(メチルジグリコール)サクシネート、メチルジグリコールブチルジグリコールサクシネート、プロピルジグリコールブチルジグリコールサクシネート、メチルジグリコールブチルジグリコールサクシネート、ベンジルメチルジグリコールサクシネート、ベンジルブチルジグリコールサクシネート、メチルジグリコールブチルジグリコールアジペート、ベンジルメチルジグリコールアジペート、ベンジルブチルジグリコールアジペート、メトキシカルボニルメチルジブチルサイトレート、エトキシカルボニルメチルジブチルサイトレート、ブトキシカルボニルメチルジブチルサイトレート、ジメトキシカルボニルメチルモノブチルサイトレート、ジエトキシカルボニルメチルモノブチルサイトレート、ジブトキシカルボニルメチルモノブチルサイトレートを挙げることができる。
リン酸エステル系可塑剤としては、リン酸トリブチル、リン酸トリ−2−エチルヘキシル、リン酸トリオクチル、リン酸トリフェニル、リン酸ジフェニル−2−エチルヘキシルおよびリン酸トリクレシル等を挙げることができる。
ポリアルキレングリコール系可塑剤としては、ポリエチレングリコール、ポリプロピレングリコール、ポリ(エチレンオキサイド・プロピレンオキサイド)ブロックおよび/またはランダム共重合体、ポリテトラメチレングリコール、ビスフェノール類のエチレンオキシド付加重合体、ビスフェノール類のプロピレンオキシド付加重合体、ビスフェノール類のテトラヒドロフラン付加重合体などのポリアルキレングリコールあるいはその末端エポキシ変性化合物、末端エステル変性化合物、および末端エーテル変性化合物などの末端封鎖化合物などを挙げることができる。
ポリアルキレングリコール系可塑剤としては、ポリエチレングリコール、ポリプロピレングリコール、ポリ(エチレンオキサイド・プロピレンオキサイド)ブロックおよび/またはランダム共重合体、ポリテトラメチレングリコール、ビスフェノール類のエチレンオキシド付加重合体、ビスフェノール類のプロピレンオキシド付加重合体、ビスフェノール類のテトラヒドロフラン付加重合体などのポリアルキレングリコールあるいはその末端エポキシ変性化合物、末端エステル変性化合物、および末端エーテル変性化合物などの末端封鎖化合物などを挙げることができる。
エポキシ系可塑剤としては、エポキシステアリン酸アルキルと大豆油とからなるエポキシトリグリセリドなどがあるが、その他にも、主にビスフェノールAとエピクロロヒドリンを原料とするようなエポキシ樹脂も使用することができる。
その他、ネオペンチルグリコールジベンゾエート、ジエチレングリコールジベンゾエート、トリエチレングリコールジ−2−エチルブチレートなどの脂肪族ポリオールの安息香酸エステル、ステアリン酸アミドなどの脂肪酸アミド、オレイン酸ブチルなどの脂肪族カルボン酸エステル、アセチルリシノール酸メチル、アセチルリシノール酸ブチルなどのオキシ酸エステル、ペンタエリスリトール、各種ソルビトール、ポリアクリル酸エステル、シリコーンオイル、およびパラフィン類などを挙げることができる。
その他、ネオペンチルグリコールジベンゾエート、ジエチレングリコールジベンゾエート、トリエチレングリコールジ−2−エチルブチレートなどの脂肪族ポリオールの安息香酸エステル、ステアリン酸アミドなどの脂肪酸アミド、オレイン酸ブチルなどの脂肪族カルボン酸エステル、アセチルリシノール酸メチル、アセチルリシノール酸ブチルなどのオキシ酸エステル、ペンタエリスリトール、各種ソルビトール、ポリアクリル酸エステル、シリコーンオイル、およびパラフィン類などを挙げることができる。
帯電防止剤としては、公知のものをいずれも用いることができるが、アニオン系帯電防止剤、カチオン系帯電防止剤、非イオン系帯電防止剤、両性系帯電防止剤等の低分子型帯電防止剤および高分子型帯電防止剤等が挙げられる。
好適なアニオン系帯電防止剤としては、アルキルスルホン酸ナトリウム、アルキルベンゼンスルホン酸ナトリウムおよびアルキルホスフェートを挙げることができる。アルキル基としては、炭素数が4〜20の直鎖状のアルキル基が好ましく用いられる。
好適なカチオン系帯電防止剤としては、アルキルスルホン酸ホスホニウム、アルキルベンゼンスルホン酸ホスホニウムおよび4級アンモニウム塩化合物を挙げることができる。アルキル基としては、炭素数が4〜20の直鎖状のアルキル基が好ましく用いられる。
好適な非イオン系帯電防止剤としては、ポリオキシエチレン誘導体、多価アルコール誘導体およびアルキルエタノールアミンを挙げることができる。ポリオキシエチレン誘導体として、例えばポリエチレングリコールは、数平均分子量が500〜100000のものが好ましく用いられる。
好適な両性系帯電防止剤としては、アルキルベタインおよびスルホベタイン誘導体を挙げることができる。
好適な高分子型帯電防止剤としては、ポリエチレングリコールメタクリレート共重合体、ポリエーテルアミド、ポリエーテルエステルアミド、ポリエーテルアミドイミド、ポリアルキレンオキシド共重合体、ポリエチレンオキシドーエピクロルヒドリン共重合体およびポリエーテルエステルを挙げることができる。これらの帯電防止剤は併用してもよい。
好適なアニオン系帯電防止剤としては、アルキルスルホン酸ナトリウム、アルキルベンゼンスルホン酸ナトリウムおよびアルキルホスフェートを挙げることができる。アルキル基としては、炭素数が4〜20の直鎖状のアルキル基が好ましく用いられる。
好適なカチオン系帯電防止剤としては、アルキルスルホン酸ホスホニウム、アルキルベンゼンスルホン酸ホスホニウムおよび4級アンモニウム塩化合物を挙げることができる。アルキル基としては、炭素数が4〜20の直鎖状のアルキル基が好ましく用いられる。
好適な非イオン系帯電防止剤としては、ポリオキシエチレン誘導体、多価アルコール誘導体およびアルキルエタノールアミンを挙げることができる。ポリオキシエチレン誘導体として、例えばポリエチレングリコールは、数平均分子量が500〜100000のものが好ましく用いられる。
好適な両性系帯電防止剤としては、アルキルベタインおよびスルホベタイン誘導体を挙げることができる。
好適な高分子型帯電防止剤としては、ポリエチレングリコールメタクリレート共重合体、ポリエーテルアミド、ポリエーテルエステルアミド、ポリエーテルアミドイミド、ポリアルキレンオキシド共重合体、ポリエチレンオキシドーエピクロルヒドリン共重合体およびポリエーテルエステルを挙げることができる。これらの帯電防止剤は併用してもよい。
エラストマーとしては、公知のものをいずれも用いることができるが、ポリエステルエラストマー、エチレン−プロピレン共重合体、エチレン−プロピレン−非共役ジエン共重合体、エチレン−ブテン−1共重合体、各種アクリルゴム、エチレン−アクリル酸共重合体およびそのアルカリ金属塩(いわゆるアイオノマー)、エチレン−グリシジル(メタ)アクリレート共重合体、エチレン−アクリル酸アルキルエステル共重合体(例えば、エチレン−アクリル酸エチル共重合体、エチレン−アクリル酸ブチル共重合体)、酸変性エチレン−プロピレン共重合体、ジエンゴム(例えばポリブタジエン、ポリイソプレン、ポリクロロプレン)、ジエンとビニル単量体との共重合体(例えばスチレン−ブタジエンランダム共重合体、スチレン−ブタジエンブロック共重合体、スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレンランダム共重合体、スチレン−イソプレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、ポリブタジエンにスチレンをグラフト共重合せしめたもの、ブタジエン−アクリロニトリル共重合体)、ポリイソブチレン、イソブチレンとブタジエンまたはイソプレンとの共重合体、天然ゴム、チオコールゴム、多硫化ゴム、ポリウレタンゴム、ポリエーテルゴム、エピクロロヒドリンゴムなどが挙げられる。
ゴム強化スチレン系樹脂としては、公知のものをいずれも用いることができるが、例えば、耐衝撃性ポリスチレン、ABS樹脂、AAS樹脂(アクリロニトリル−アクリルゴム−スチレン共重合体)およびAES樹脂(アクリロニトリル−エチレンプロピレンゴム−スチレン共重合体)などを挙げることができる。
これらの添加物は、付与しようとする特性に応じて単独であるいは複数種を組み合わせて用いることができ、例えば、安定剤、離型剤およびフィラーを組み合わせて添加することができる。
これらの添加物は、付与しようとする特性に応じて単独であるいは複数種を組み合わせて用いることができ、例えば、安定剤、離型剤およびフィラーを組み合わせて添加することができる。
(樹脂組成物の物性)
本発明の樹脂組成物のステレオ結晶化比率(Cr)は、好ましくは50%以上、より好ましくは60〜100%、さらに好ましくは65〜100%である。ステレオ結晶化比率(Cr)はXRD測定における回折ピークの強度比によって定義される下記式(3)で表される。
Cr(%)=ΣISCi/(ΣISCi+IHM)×100 (3)
ここで、ΣISCi=ISC1+ISC2+ISC3は、ステレオコンプレックス結晶に由来する各回折ピークの積分強度の総和で、ISCi(i=1〜3)はそれぞれ2θ=12.0°、20.7°、24.0°付近の各回折ピークの積分強度、IHMはホモ結晶に由来する回折ピークの積分強度を表す。
本発明の樹脂組成物のステレオ結晶化比率(Cr)は、好ましくは50%以上、より好ましくは60〜100%、さらに好ましくは65〜100%である。ステレオ結晶化比率(Cr)はXRD測定における回折ピークの強度比によって定義される下記式(3)で表される。
Cr(%)=ΣISCi/(ΣISCi+IHM)×100 (3)
ここで、ΣISCi=ISC1+ISC2+ISC3は、ステレオコンプレックス結晶に由来する各回折ピークの積分強度の総和で、ISCi(i=1〜3)はそれぞれ2θ=12.0°、20.7°、24.0°付近の各回折ピークの積分強度、IHMはホモ結晶に由来する回折ピークの積分強度を表す。
本発明の樹脂組成物のステレオ化度(S)は、好ましくは80%以上、より好ましくは90〜100%である。ステレオ化度(S)は、DSC測定において、結晶融解ピークより定義され下記式(4)で表される。ステレオ化度(S)は熱処理過程において最終的に生成するステレオコンプレックスポリ乳酸結晶の割合を示すパラメーターである。
S(%)=[(ΔHms/ΔHms0)/(ΔHmh/ΔHmh0+ΔHms/ΔHms0)] (4)
但し、ΔHms0=203.4J/g、ΔHmh0=142J/g、ΔHms=ステレオコンプレックス融点の融解エンタルピー、ΔHmh=ホモ結晶の融解エンタルピーである。
従って、本発明の樹脂組成物は、ステレオ結晶化比率(Cr)が50%以上、ステレオ化度(S)が95%以上であることが好ましい。
S(%)=[(ΔHms/ΔHms0)/(ΔHmh/ΔHmh0+ΔHms/ΔHms0)] (4)
但し、ΔHms0=203.4J/g、ΔHmh0=142J/g、ΔHms=ステレオコンプレックス融点の融解エンタルピー、ΔHmh=ホモ結晶の融解エンタルピーである。
従って、本発明の樹脂組成物は、ステレオ結晶化比率(Cr)が50%以上、ステレオ化度(S)が95%以上であることが好ましい。
本発明の樹脂組成物のカルボキシ基濃度は、50eq/ton以下、好ましくは30eq/ton以下、より好ましくは20eq/ton以下、さらに好ましくは10eq/ton以下である。カルボキシ基濃度がこの範囲内にある時には、溶融安定性、湿熱耐久性が良好な樹脂組成物を得ることができる。カルボキシ基濃度は、末端封止剤、アミド化剤により調整することができる。末端封止剤として、モノカルボジイミド類、ジカルボジイミド類、ポリカルボジイミド類、オキサゾリン類、エポキシ化合物等が挙げられる。またアミド化剤として、アルコール、アミン等が挙げられる。
本発明の樹脂組成物は、ラクチド含有量が600重量ppm以下、好ましくは400重量ppm以下、より好ましくは200重量ppm以下、さらに好ましくは100重量ppm以下である。
本発明の樹脂組成物は、ラクチド含有量が600重量ppm以下、好ましくは400重量ppm以下、より好ましくは200重量ppm以下、さらに好ましくは100重量ppm以下である。
本発明の樹脂組成物のカルボキシ基濃度は、50eq/ton以下、ラクチド含有量が600重量ppm以下である。樹脂組成物のカルボキシル基濃度、ラクチド含有量がかかる範囲にあることにより、樹脂組成物の溶融時の熱分解を抑制し、成形トラブルの問題を解決することができるからである。さらに樹脂、および難燃剤の分解を抑制し、低ガス性、耐トラッキング性を良好とすることができるためである。樹脂組成物のカルボキシル基濃度、ラクチド含有量をかかる範囲するためにはPBTのポリ乳酸のカルボキシル基濃度、ポリ乳酸のカルボキシル基濃度、ラクチド含有量を低減することにより達成できる。
式(1)、(2)で表される臭素系難燃剤を含有する本発明の樹脂組成物は、150℃で1時間熱処理することにより発生するガス量が100ppm以下である。本発明においては、この試験での発生ガス量が少ないことを低ガス性と呼び、組成物に低ガス性を付与する能力に優れる剤を低ガス性の剤と称することがある。本発明の樹脂組成物に低ガス性を付与するPBT、ポリ乳酸、難燃剤を、低ガス性PBT、低ガス性難燃剤、低ガス性ポリ乳酸と呼ぶ。本発明の樹脂組成物がかかる低ガス性を満たすことにより、溶融成形時のトラブルの抑制、成形品を有接点電気.電子部品成形品として問題なく使用することができる。
式(1)、(2)で表される臭素系難燃剤を含有する本発明の樹脂組成物は、150℃で1時間熱処理することにより発生するガス量が100ppm以下である。本発明においては、この試験での発生ガス量が少ないことを低ガス性と呼び、組成物に低ガス性を付与する能力に優れる剤を低ガス性の剤と称することがある。本発明の樹脂組成物に低ガス性を付与するPBT、ポリ乳酸、難燃剤を、低ガス性PBT、低ガス性難燃剤、低ガス性ポリ乳酸と呼ぶ。本発明の樹脂組成物がかかる低ガス性を満たすことにより、溶融成形時のトラブルの抑制、成形品を有接点電気.電子部品成形品として問題なく使用することができる。
(樹脂組成物の製造)
本発明の樹脂組成物は、芳香族ポリエステル(A成分)、ポリ乳酸(B成分)、無機充填剤(C成分)および非晶性樹脂(D成分)を混合して製造することができる。混合は、溶融ブレンド、溶液ブレンドなど、均一に混合することができればあらゆる方法によってブレンドすることが可能である。特に、ニーダー、一軸式混練機、二軸式混練機、溶融反応装置などの中で溶融状態にて混練することが好ましい。
混練温度は両樹脂が溶融する温度であれば良いが、樹脂の安定性などを加味すると、230〜280℃の範囲が好ましく、230〜260℃の範囲で混練することがより好ましい。混練する際に、相溶化剤を用いることは、樹脂の均一性を向上し、混練温度が下げられるのでより好ましい。
相溶化剤としては、例えば、無機充填剤、グリシジル化合物または酸無水物をグラフトまたは共重合した高分子化合物、芳香族ポリカーボネート鎖を有するグラフトポリマー、および有機金属化合物が挙げられ、一種または2種以上で用いてもよい。
また、相溶化剤の配合量は、樹脂組成物を基準として、15重量%〜1重量%が好ましく、より好ましくは10重量%〜1重量%であり、1重量%未満では相溶化剤としての効果が小さく、15重量%を超えると機械特性が低下するため好ましくない
本発明の樹脂組成物は、芳香族ポリエステル(A成分)、ポリ乳酸(B成分)、無機充填剤(C成分)および非晶性樹脂(D成分)を混合して製造することができる。混合は、溶融ブレンド、溶液ブレンドなど、均一に混合することができればあらゆる方法によってブレンドすることが可能である。特に、ニーダー、一軸式混練機、二軸式混練機、溶融反応装置などの中で溶融状態にて混練することが好ましい。
混練温度は両樹脂が溶融する温度であれば良いが、樹脂の安定性などを加味すると、230〜280℃の範囲が好ましく、230〜260℃の範囲で混練することがより好ましい。混練する際に、相溶化剤を用いることは、樹脂の均一性を向上し、混練温度が下げられるのでより好ましい。
相溶化剤としては、例えば、無機充填剤、グリシジル化合物または酸無水物をグラフトまたは共重合した高分子化合物、芳香族ポリカーボネート鎖を有するグラフトポリマー、および有機金属化合物が挙げられ、一種または2種以上で用いてもよい。
また、相溶化剤の配合量は、樹脂組成物を基準として、15重量%〜1重量%が好ましく、より好ましくは10重量%〜1重量%であり、1重量%未満では相溶化剤としての効果が小さく、15重量%を超えると機械特性が低下するため好ましくない
(成形品)
本発明の樹脂組成物は、有接点電気電子部品の成形に好適である。従って、本発明は該樹脂組成物よりなる有接点電気電子部品を包含する。
本発明の樹脂組成物は、有接点電気電子部品の成形に好適である。従って、本発明は該樹脂組成物よりなる有接点電気電子部品を包含する。
以下、実施例によって本発明をさらに具体的に説明するが、本発明はこれにより何等限定を受けるものでは無い。
1.樹脂
芳香族ポリエステル(A成分)として、ウインテックポリマー株式会社製「ジュラネックス2002」を使用した。
2.ポリ乳酸の物性は以下の方法により測定した。
(1)融点(Tm)、ガラス転移温度(Tg)
本発明において、融点(Tm)ならびにガラス転移温度(Tg)はDSC(TAインストルメント社製 TA−2920)を用いて、20℃/分にて昇温した場合の融解ピーク、熱容量の変曲点を測定した。
(2)重量平均分子量(Mw)
重量平均分子量(Mw)はWaters社製GPC装置 AllienceにShodexカラム GPC−804Lを装着して使用し、試料50mgを5mlのクロロホルムおよびHFIPの混合溶媒に溶解させ、40℃のクロロホルムにて展開して測定した。重量平均分子量(Mw)、はポリスチレン換算値として算出した。
(3)ラクチド含有量
ラクチド含有量はWaters社製GPC装置 AllienceにShodexカラム GPC−804Lを装着して使用し、試料50mgを5mlのクロロホルムおよびHFIPの混合溶媒に溶解させ、40℃のクロロホルムにて展開して測定し、得られたクロマトグラムのポリマー成分の面積とラクチド成分の面積の和に対するラクチド成分の面積の比として百分率を求めた。
(4)カルボキシ基濃度
試料を精製o−クレゾールに溶解、窒素気流下溶解、ブロモクレゾールブルーを指示薬とし、0.05規定水酸化カリウムのエタノール溶液で滴定した。
(5)ステレオ化度(S)
ステレオ化度(S)は、DSC(TAインストルメント社製 TA−2920)を用いて融解エンタルピーを測定し、そのエンタルピーから下記式(4)に従って求めた。
S(%)=[(ΔHms/ΔHms0)/(ΔHmh/ΔHmh0+ΔHms/ΔHms0)] (4)
(但し、ΔHms0=203.4J/g、ΔHmh0=142J/g、ΔHms=ステレオコンプレックス融点の融解エンタルピー、ΔHmh=ホモ結晶の融解エンタルピー)
(6)ステレオ結晶化比率(Cr)
ステレオコンプレックス結晶化比率(Cr)は、理化学電気社製ROTA FLEX RU200B型X線回折装置にて、赤道方向の回折強度プロファイルを求め、2θ=12.0°、20.7°、24.0°付近に現れるステレオコンプレックス結晶に由来する各回折ピークの積分強度の総和ΣISCiと2θ=16.5°付近に現れるホモ結晶に由来する回折ピークの積分強度IHMから下記式(3)に従い求めた。
測定条件
X線源 Cu−Kα線(コンフォーカル ミラー)
出力 45kV×70mA
スリット 1mmΦ−0.8mmΦ
カメラ長 120mm
積算時間 10分
Cr(%)=ΣISCi/(ΣISCi+IHM)×100 (3)
(ここで、ΣISCi=ISC1+ISC2+ISC3、ISCi(i=1〜3)はそれぞれ2θ=12.0°、20.7°、24.0°付近の各回折ピークの積分強度である。)
芳香族ポリエステル(A成分)として、ウインテックポリマー株式会社製「ジュラネックス2002」を使用した。
2.ポリ乳酸の物性は以下の方法により測定した。
(1)融点(Tm)、ガラス転移温度(Tg)
本発明において、融点(Tm)ならびにガラス転移温度(Tg)はDSC(TAインストルメント社製 TA−2920)を用いて、20℃/分にて昇温した場合の融解ピーク、熱容量の変曲点を測定した。
(2)重量平均分子量(Mw)
重量平均分子量(Mw)はWaters社製GPC装置 AllienceにShodexカラム GPC−804Lを装着して使用し、試料50mgを5mlのクロロホルムおよびHFIPの混合溶媒に溶解させ、40℃のクロロホルムにて展開して測定した。重量平均分子量(Mw)、はポリスチレン換算値として算出した。
(3)ラクチド含有量
ラクチド含有量はWaters社製GPC装置 AllienceにShodexカラム GPC−804Lを装着して使用し、試料50mgを5mlのクロロホルムおよびHFIPの混合溶媒に溶解させ、40℃のクロロホルムにて展開して測定し、得られたクロマトグラムのポリマー成分の面積とラクチド成分の面積の和に対するラクチド成分の面積の比として百分率を求めた。
(4)カルボキシ基濃度
試料を精製o−クレゾールに溶解、窒素気流下溶解、ブロモクレゾールブルーを指示薬とし、0.05規定水酸化カリウムのエタノール溶液で滴定した。
(5)ステレオ化度(S)
ステレオ化度(S)は、DSC(TAインストルメント社製 TA−2920)を用いて融解エンタルピーを測定し、そのエンタルピーから下記式(4)に従って求めた。
S(%)=[(ΔHms/ΔHms0)/(ΔHmh/ΔHmh0+ΔHms/ΔHms0)] (4)
(但し、ΔHms0=203.4J/g、ΔHmh0=142J/g、ΔHms=ステレオコンプレックス融点の融解エンタルピー、ΔHmh=ホモ結晶の融解エンタルピー)
(6)ステレオ結晶化比率(Cr)
ステレオコンプレックス結晶化比率(Cr)は、理化学電気社製ROTA FLEX RU200B型X線回折装置にて、赤道方向の回折強度プロファイルを求め、2θ=12.0°、20.7°、24.0°付近に現れるステレオコンプレックス結晶に由来する各回折ピークの積分強度の総和ΣISCiと2θ=16.5°付近に現れるホモ結晶に由来する回折ピークの積分強度IHMから下記式(3)に従い求めた。
測定条件
X線源 Cu−Kα線(コンフォーカル ミラー)
出力 45kV×70mA
スリット 1mmΦ−0.8mmΦ
カメラ長 120mm
積算時間 10分
Cr(%)=ΣISCi/(ΣISCi+IHM)×100 (3)
(ここで、ΣISCi=ISC1+ISC2+ISC3、ISCi(i=1〜3)はそれぞれ2θ=12.0°、20.7°、24.0°付近の各回折ピークの積分強度である。)
3.樹脂組成物の物性は以下の方法により測定した。
(1)カルボキシル基濃度
試料を精製o−クレゾールに溶解、窒素気流下溶解、ブロモクレゾールブルーを指示薬とし、0.05規定水酸化カリウムのエタノール溶液で滴定した。
(2)ラクチド含有量
ラクチド含有量はWaters社製GPC装置 AllienceにShodexカラム GPC−804Lを装着して使用し、組成物50mgを5mlのクロロホルムおよびHFIPの混合溶媒に溶解させ、40℃のクロロホルムにて展開して測定し、得られたクロマトグラムのポリマー成分の面積とラクチド成分の面積の和に対するラクチド成分の面積の比として百分率を求めた。
(3)ステレオ化度(S)
ステレオ化度(S)は、DSC(TAインストルメント社製 TA−2920)を用いて融解エンタルピーを測定し、そのエンタルピーから下記式(4)に従って求めた。
S=[(ΔHms/ΔHms0)/(ΔHmh/ΔHmh0+ΔHms/ΔHms0)] (4)
(ただし、ΔHms0=203.4J/g、ΔHmh0=142J/g、ΔHms=ステレオコンプレックス融点の融解エンタルピー、ΔHmh=ホモ結晶の融解エンタルピー)
(4)ステレオ結晶化比率(Cr)
理化学電気社製ROTA FLEX RU200B型X線回折装置にて、赤道方向の回折強度プロファイルを求め、2θ=12.0°, 20.7°, 24.0°付近に現れるステレオコンプレックス結晶に由来する各回折ピークの積分強度の総和ΣISCiと2θ= 16.5°付近に現れるホモ結晶に由来する回折ピークの積分強度IHMから下記式(3)に従いステレオコンプレックス結晶化比率(Cr率)を求めた。
測定条件
X線源 Cu−Kα線(コンフォーカル ミラー)
出力 45kV×70mA
スリット 1mmΦ−0.8mmΦ
カメラ長 120mm
積算時間 10分
Cr(%)=〔ΣISCi/(ΣISCi+IHM)〕×100 (3)
ここで、ΣISCi=ISC1+ISC2+ISC3、ISCi(i=1〜3)はそれぞれ2θ=12.0°、20.7°、24.0°付近の各回折ピークの積分強度
(5)溶融粘度安定性
溶融粘度安定性は、260℃、10分処理後の溶融粘保持率であり80%以上を合格(○)と判定した。85%以上保持のとき優秀合格(◎)、80%未満のとき不合格(×)と判定した。溶融粘度は、東洋精機製作所(株)製キャピログラフ10にてJIS K7199に準拠して260℃にて測定した。
(1)カルボキシル基濃度
試料を精製o−クレゾールに溶解、窒素気流下溶解、ブロモクレゾールブルーを指示薬とし、0.05規定水酸化カリウムのエタノール溶液で滴定した。
(2)ラクチド含有量
ラクチド含有量はWaters社製GPC装置 AllienceにShodexカラム GPC−804Lを装着して使用し、組成物50mgを5mlのクロロホルムおよびHFIPの混合溶媒に溶解させ、40℃のクロロホルムにて展開して測定し、得られたクロマトグラムのポリマー成分の面積とラクチド成分の面積の和に対するラクチド成分の面積の比として百分率を求めた。
(3)ステレオ化度(S)
ステレオ化度(S)は、DSC(TAインストルメント社製 TA−2920)を用いて融解エンタルピーを測定し、そのエンタルピーから下記式(4)に従って求めた。
S=[(ΔHms/ΔHms0)/(ΔHmh/ΔHmh0+ΔHms/ΔHms0)] (4)
(ただし、ΔHms0=203.4J/g、ΔHmh0=142J/g、ΔHms=ステレオコンプレックス融点の融解エンタルピー、ΔHmh=ホモ結晶の融解エンタルピー)
(4)ステレオ結晶化比率(Cr)
理化学電気社製ROTA FLEX RU200B型X線回折装置にて、赤道方向の回折強度プロファイルを求め、2θ=12.0°, 20.7°, 24.0°付近に現れるステレオコンプレックス結晶に由来する各回折ピークの積分強度の総和ΣISCiと2θ= 16.5°付近に現れるホモ結晶に由来する回折ピークの積分強度IHMから下記式(3)に従いステレオコンプレックス結晶化比率(Cr率)を求めた。
測定条件
X線源 Cu−Kα線(コンフォーカル ミラー)
出力 45kV×70mA
スリット 1mmΦ−0.8mmΦ
カメラ長 120mm
積算時間 10分
Cr(%)=〔ΣISCi/(ΣISCi+IHM)〕×100 (3)
ここで、ΣISCi=ISC1+ISC2+ISC3、ISCi(i=1〜3)はそれぞれ2θ=12.0°、20.7°、24.0°付近の各回折ピークの積分強度
(5)溶融粘度安定性
溶融粘度安定性は、260℃、10分処理後の溶融粘保持率であり80%以上を合格(○)と判定した。85%以上保持のとき優秀合格(◎)、80%未満のとき不合格(×)と判定した。溶融粘度は、東洋精機製作所(株)製キャピログラフ10にてJIS K7199に準拠して260℃にて測定した。
3.成形品の物性は以下の方法により測定した。
(1)難燃性
米国アンダーライターラボラトリー社の定める方法(UL94)により評価した(試験片厚さ0.8mm)。
(2)低ガス性評価
射出成形にて一定の条件でASTM引張り試験片を作成し、これ200μmの粒度に凍結粉砕したものを試料とした。試料は0.6gとり、22mlのヘッドスペース中に、150℃で1時間放置した後、発生したガスをガスクロマトグラフィーによって測定した。試料の重量に対して、発生したガスの重量をppmで示した。ガス量が100ppm以下の場合低ガス性と判定した。
測定条件:
装置;パーキンエルマーHS−40XL,HP6890
カラム;TC1701,60mm,IP=0.25mm,If=0.25μm
昇温条件;50℃(2分間)→10℃/min.→280℃(10分間)
ディテクター;FID
(3)金属汚染性
試料(ペレット)を十分に乾燥した後、ペレット50gを銀板(15mm×20mm×0.2mm)と共にガラス製の容器に密閉し、200℃で200時間加熱した後の銀板の変色状況を観察した。
(4)荷重たわみ温度
荷重たわみ温度はASTM−648に準拠し測定した。
(5)曲げ弾性率
曲げ弾性率はASTM−790に準拠し測定した。
(6)成形品の耐薬品性
成形した樹脂を、以下の薬品に浸漬、25℃で1日保持した後、その外観、重量変化を調べた。
使用薬品;トルエン、ジクロロメタン、THF、アセトン、エタノール、20%硫酸、10%NaOH
実施例のいずれの組成においても目立った形状変化は認められず、重量変化も多いもので2〜3%で問題にならない数値であった。
(1)難燃性
米国アンダーライターラボラトリー社の定める方法(UL94)により評価した(試験片厚さ0.8mm)。
(2)低ガス性評価
射出成形にて一定の条件でASTM引張り試験片を作成し、これ200μmの粒度に凍結粉砕したものを試料とした。試料は0.6gとり、22mlのヘッドスペース中に、150℃で1時間放置した後、発生したガスをガスクロマトグラフィーによって測定した。試料の重量に対して、発生したガスの重量をppmで示した。ガス量が100ppm以下の場合低ガス性と判定した。
測定条件:
装置;パーキンエルマーHS−40XL,HP6890
カラム;TC1701,60mm,IP=0.25mm,If=0.25μm
昇温条件;50℃(2分間)→10℃/min.→280℃(10分間)
ディテクター;FID
(3)金属汚染性
試料(ペレット)を十分に乾燥した後、ペレット50gを銀板(15mm×20mm×0.2mm)と共にガラス製の容器に密閉し、200℃で200時間加熱した後の銀板の変色状況を観察した。
(4)荷重たわみ温度
荷重たわみ温度はASTM−648に準拠し測定した。
(5)曲げ弾性率
曲げ弾性率はASTM−790に準拠し測定した。
(6)成形品の耐薬品性
成形した樹脂を、以下の薬品に浸漬、25℃で1日保持した後、その外観、重量変化を調べた。
使用薬品;トルエン、ジクロロメタン、THF、アセトン、エタノール、20%硫酸、10%NaOH
実施例のいずれの組成においても目立った形状変化は認められず、重量変化も多いもので2〜3%で問題にならない数値であった。
[製造例1、2](ポリL−乳酸の製造)
Lラクチド(株式会社武蔵野化学研究所製、光学純度100%)100重量部に対し、オクチル酸スズを0.005重量部加え、窒素雰囲気下、攪拌翼のついた反応機にて、180℃で2時間反応した。その後、13.3kPaで残存するラクチドを除去し、チップ化し、ポリL−乳酸を得た。得られたポリL−乳酸(PLLA1、2)の物性を表1に示す。
Lラクチド(株式会社武蔵野化学研究所製、光学純度100%)100重量部に対し、オクチル酸スズを0.005重量部加え、窒素雰囲気下、攪拌翼のついた反応機にて、180℃で2時間反応した。その後、13.3kPaで残存するラクチドを除去し、チップ化し、ポリL−乳酸を得た。得られたポリL−乳酸(PLLA1、2)の物性を表1に示す。
[製造例3、4](ポリD−乳酸の製造)
Dラクチド(株式会社武蔵野化学研究所製、光学純度100%)100重量部に対し、オクチル酸スズを0.005重量部加え、窒素雰囲気下、攪拌翼のついた反応機にて、180℃で2時間反応した。その後、13.3kPaで残存するラクチドを除去し、チップ化しポリD−乳酸を得た。得られたポリD−乳酸(PDLA1、2)の物性を表1に示す。
Dラクチド(株式会社武蔵野化学研究所製、光学純度100%)100重量部に対し、オクチル酸スズを0.005重量部加え、窒素雰囲気下、攪拌翼のついた反応機にて、180℃で2時間反応した。その後、13.3kPaで残存するラクチドを除去し、チップ化しポリD−乳酸を得た。得られたポリD−乳酸(PDLA1、2)の物性を表1に示す。
[製造例5−1〜5−4]
製造例1および2で得られたポリL−乳酸、製造例3および4で得られたポリD−乳酸、リン酸金属塩、カルボジイミド、結晶核剤を、2軸混練機でシリンダー温度230℃で溶融押出して水槽中にストランドを取り、チップカッターにてチップ化してステレオコンプレックス樹脂を得た。得られたステレオコンプレックス樹脂(scPLA)の物性を表2に示す。
製造例1および2で得られたポリL−乳酸、製造例3および4で得られたポリD−乳酸、リン酸金属塩、カルボジイミド、結晶核剤を、2軸混練機でシリンダー温度230℃で溶融押出して水槽中にストランドを取り、チップカッターにてチップ化してステレオコンプレックス樹脂を得た。得られたステレオコンプレックス樹脂(scPLA)の物性を表2に示す。
表2中の略号は以下の通りである。
NA−11:リン酸金属塩(株式会社ADEKA(旧:旭電化工業株式会社)製アデカスタブ
NA−71:リン酸金属塩(株式会社ADEKA(旧:旭電化工業株式会社)製アデカスタブ
LA−1:日清紡(株)製カルボジライトLA−1
K1:珪酸カルシウム(結晶核剤)
K2:タルク(結晶核剤)
NA−11:リン酸金属塩(株式会社ADEKA(旧:旭電化工業株式会社)製アデカスタブ
NA−71:リン酸金属塩(株式会社ADEKA(旧:旭電化工業株式会社)製アデカスタブ
LA−1:日清紡(株)製カルボジライトLA−1
K1:珪酸カルシウム(結晶核剤)
K2:タルク(結晶核剤)
[実施例1〜3]
製造例5のステレオコンプレックスポリ乳酸(B)とPBT樹脂(ウインテックポリマー株式会社製「ジュラネックス2002」)(A)を表3に記載の量比にて混合し120℃、5時間乾乾燥した。その後、無機充填剤、難燃剤、難燃性助剤、エステル交換抑制剤および酸化防止剤を表3に記載の量比にて配合した。さらにドロッピング防止剤として繊維状PTFE(FA100:ダイキン工業(株)製)をA成分およびB成分の合計100重量部あたり0.5重量部、離形剤としてモンタン酸ワックスを同じ基準で0.5重量部配合した。その後、二軸混練機を使い、シリンダー温度、250℃、送り速度2Kg/hrにて混練し樹脂組成物を得た。得られた樹脂組成物の物性を表3に示す。
得られた樹脂組成物を、金型温度110℃、型締め時間1分にて射出成形し成形品を得た。得られた成形品は白色で良好な形状を有していた。成形品の品質を表3に示す。
製造例5のステレオコンプレックスポリ乳酸(B)とPBT樹脂(ウインテックポリマー株式会社製「ジュラネックス2002」)(A)を表3に記載の量比にて混合し120℃、5時間乾乾燥した。その後、無機充填剤、難燃剤、難燃性助剤、エステル交換抑制剤および酸化防止剤を表3に記載の量比にて配合した。さらにドロッピング防止剤として繊維状PTFE(FA100:ダイキン工業(株)製)をA成分およびB成分の合計100重量部あたり0.5重量部、離形剤としてモンタン酸ワックスを同じ基準で0.5重量部配合した。その後、二軸混練機を使い、シリンダー温度、250℃、送り速度2Kg/hrにて混練し樹脂組成物を得た。得られた樹脂組成物の物性を表3に示す。
得られた樹脂組成物を、金型温度110℃、型締め時間1分にて射出成形し成形品を得た。得られた成形品は白色で良好な形状を有していた。成形品の品質を表3に示す。
[比較例1〜2]
ポリ乳酸を表3に記載の種類、量に変更した以外は、実施例1と同様にして樹脂組成物、成形品を製造した。樹脂組成物、成形品の物性を表3に示す。
本発明の樹脂組成物は、耐溶剤性が良好で、難燃性も良好(V−0)である。本発明の樹脂組成物は、高耐熱性(熱変形温度)、溶融粘度安定性に優れる。また金属汚染性も少なく、低ガス性である。
ポリ乳酸を表3に記載の種類、量に変更した以外は、実施例1と同様にして樹脂組成物、成形品を製造した。樹脂組成物、成形品の物性を表3に示す。
本発明の樹脂組成物は、耐溶剤性が良好で、難燃性も良好(V−0)である。本発明の樹脂組成物は、高耐熱性(熱変形温度)、溶融粘度安定性に優れる。また金属汚染性も少なく、低ガス性である。
表3中の略号は以下の通りである。
C1(無機充填剤):ガラス繊維(13μm径、5mmチョップドストランド:日本電気硝子(株)製)
D1(臭素化ポリカーボネート系難燃剤):帝人化成(株)製 ファイヤーガード7500 重合度n=約5、
E1(アンチモンン系難燃助剤):三酸化アンチモン(PATOX−M:日本精鉱(株)製)
F1(エステル交換抑制剤):トリス(2,6−ジ−t−ブチルフェニル)ホスファイト
C1(無機充填剤):ガラス繊維(13μm径、5mmチョップドストランド:日本電気硝子(株)製)
D1(臭素化ポリカーボネート系難燃剤):帝人化成(株)製 ファイヤーガード7500 重合度n=約5、
E1(アンチモンン系難燃助剤):三酸化アンチモン(PATOX−M:日本精鉱(株)製)
F1(エステル交換抑制剤):トリス(2,6−ジ−t−ブチルフェニル)ホスファイト
[実施例4〜10]
ポリ乳酸、添加剤の種類を表4に記載の種類、量に変更した以外は実施例1と同様にして樹脂組成物、成形品を製造した。樹脂組成物、成形品の物性を表4に示す。本発明の樹脂組成物は、溶融粘度安定性、低ガス性に優れていることが分かる。
ポリ乳酸、添加剤の種類を表4に記載の種類、量に変更した以外は実施例1と同様にして樹脂組成物、成形品を製造した。樹脂組成物、成形品の物性を表4に示す。本発明の樹脂組成物は、溶融粘度安定性、低ガス性に優れていることが分かる。
表4中の略号は以下の通りである。
C1(無機充填剤):ガラス繊維(13μm径、5mmチョップドストランド:日本電気硝子(株)製)
C2(無機充填剤):珪酸カルシウム(ナカライテスク株式会社製)
C3(無機充填剤):タルク(日本タルク株式会社製P−2)
D1(臭素化ポリカーボネート系難燃剤):帝人化成(株)製ファイヤーガード7500、重合度n=約5
D2(臭素化エポキシ系難燃剤):大日本インキ化学工業(株)製プラサームEP100重合度n=約16
D3(臭素化ポリアクリレート):イスラエル国デッド・シー・ブロミン社製、ポリペンタブロムベンジルアクリレート:FR1025:分子量約34000、重合度=約60
D4(臭素化ポリスチレン):米国フェロ社製パイロチェック68PB
E1(アンチモンン系難燃助剤):三酸化アンチモン(PATOX−M:日本精鉱(株)製)
F1(エステル交換抑制剤):トリス(2,6−ジ−t−ブチルフェニル)ホスファイト
F2(エステル交換抑制剤):テトラフェニル‐4,4’−ビフェニレンホスファイト
G1(ハイドロタルサイト):Mg,Alの塩基性炭酸塩化合物:DHT−4A・2:協和化学工業(株)製)
G2(ハイドロタルサイト):Zn,Mg、Alの塩基性炭酸塩化合物(ZHT−4A:協和化学工業(株)製)、
C1(無機充填剤):ガラス繊維(13μm径、5mmチョップドストランド:日本電気硝子(株)製)
C2(無機充填剤):珪酸カルシウム(ナカライテスク株式会社製)
C3(無機充填剤):タルク(日本タルク株式会社製P−2)
D1(臭素化ポリカーボネート系難燃剤):帝人化成(株)製ファイヤーガード7500、重合度n=約5
D2(臭素化エポキシ系難燃剤):大日本インキ化学工業(株)製プラサームEP100重合度n=約16
D3(臭素化ポリアクリレート):イスラエル国デッド・シー・ブロミン社製、ポリペンタブロムベンジルアクリレート:FR1025:分子量約34000、重合度=約60
D4(臭素化ポリスチレン):米国フェロ社製パイロチェック68PB
E1(アンチモンン系難燃助剤):三酸化アンチモン(PATOX−M:日本精鉱(株)製)
F1(エステル交換抑制剤):トリス(2,6−ジ−t−ブチルフェニル)ホスファイト
F2(エステル交換抑制剤):テトラフェニル‐4,4’−ビフェニレンホスファイト
G1(ハイドロタルサイト):Mg,Alの塩基性炭酸塩化合物:DHT−4A・2:協和化学工業(株)製)
G2(ハイドロタルサイト):Zn,Mg、Alの塩基性炭酸塩化合物(ZHT−4A:協和化学工業(株)製)、
本発明の樹脂組成物は、溶融成形時のトラブルが少なく、耐熱性、低ガス性、難燃性、耐トラッキング性に優れるので、有接点電気電子部品の成形に利用することができる。
Claims (8)
- ブチレンテレフタレート骨格を主たる構成単位とする芳香族ポリエステル(A成分)、融点が190℃以上のポリ乳酸(B成分)、無機充填剤(C成分)、臭素系難燃剤(D成分)およびアンチモン系難燃助剤(E)を含有し、
(i)A成分およびB成分の合計100重量部あたり、A成分の含有量が、5〜95重量部であり、C成分の含有量が、5〜100重量部であり、D成分の含有量が、5〜80重量部であり、E成分の含有量が、0〜30重量部であり、
(ii)カルボキシル基濃度が50eq/ton以下、ラクチド含有量が600重量ppm以下の樹脂組成物。 - A成分およびB成分の合計100重量部あたり、エステル交換抑制剤(F成分)を0.01〜5重量部含む請求項1または2に記載の樹脂組成物。
- A成分およびB成分の合計100重量部あたり、ハイドロタルサイト(G成分)を0.01〜5重量部含む請求項1記載の樹脂組成物。
- ポリ乳酸(B成分)100重量部あたり、カルボジイミド化合物(H成分)を0.001〜5重量部含む請求項1記載の樹脂組成物。
- 150℃で1時間熱処理することにより発生するガス量が100ppm以下である請求項1記載の樹脂組成物。
- 請求項1〜6のいずれか一項に記載の有接点電気電子部品成形用の樹脂組成物。
- 請求項7に記載の樹脂組成物よりなる有接点電気電子部品。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007190024A JP2008050578A (ja) | 2006-07-28 | 2007-07-20 | 樹脂組成物およびその成形品 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006206184 | 2006-07-28 | ||
JP2007190024A JP2008050578A (ja) | 2006-07-28 | 2007-07-20 | 樹脂組成物およびその成形品 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008050578A true JP2008050578A (ja) | 2008-03-06 |
Family
ID=39234910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007190024A Pending JP2008050578A (ja) | 2006-07-28 | 2007-07-20 | 樹脂組成物およびその成形品 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008050578A (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010132871A (ja) * | 2008-11-05 | 2010-06-17 | Teijin Chem Ltd | ポリ乳酸組成物およびその成形品 |
JP2010195914A (ja) * | 2009-02-25 | 2010-09-09 | Wintech Polymer Ltd | ガラス系無機充填材強化ポリエステル樹脂組成物 |
JP2010254899A (ja) * | 2009-04-28 | 2010-11-11 | Teijin Chem Ltd | 熱可塑性樹脂組成物 |
JP2013529688A (ja) * | 2010-06-11 | 2013-07-22 | ビーエーエスエフ ソシエタス・ヨーロピア | 有機添加剤を有する、レーザーに対して透過性のポリブチレンテレフタレート |
US20160244544A1 (en) * | 2011-03-30 | 2016-08-25 | Japan Polyethylene Corporation | Ethylene-based polymer, polyethylene-based resin composition and use thereof, catalyst component for olefin polymerization, olefin polymerization catalyst containing the component, and method for producing ethylene-based polymer by using the catalyst |
KR101859237B1 (ko) * | 2010-01-27 | 2018-05-18 | 데이진 가부시키가이샤 | 필름 |
WO2021100536A1 (ja) * | 2019-11-19 | 2021-05-27 | ポリプラスチックス株式会社 | ポリブチレンテレフタレート樹脂組成物の耐トラッキング性向上方法 |
CN114502651A (zh) * | 2019-10-08 | 2022-05-13 | 帝人株式会社 | 树脂组合物 |
DE112015003887B4 (de) | 2014-08-26 | 2023-08-03 | Mitsubishi Heavy Industries, Ltd. | Steuervorrichtung, System und Steuerverfahren |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003089721A (ja) * | 2001-07-09 | 2003-03-28 | Sony Corp | 筐体用ポリエステル成形物 |
JP2003192884A (ja) * | 2001-12-28 | 2003-07-09 | Asahi Denka Kogyo Kk | ポリ乳酸系ポリマー組成物、成形品及びその製造方法 |
JP2004190026A (ja) * | 2002-11-29 | 2004-07-08 | Toray Ind Inc | 樹脂組成物ならびにそれからなる成形品 |
JP2005089537A (ja) * | 2003-09-12 | 2005-04-07 | Daicel Chem Ind Ltd | 生分解性樹脂組成物、農業用マルチフィルム、成形体、並びに土中分解性抑制方法 |
JP2005330318A (ja) * | 2004-05-18 | 2005-12-02 | Dainippon Ink & Chem Inc | 高耐衝撃性ポリ乳酸組成物 |
JP2006063199A (ja) * | 2004-08-27 | 2006-03-09 | Mitsubishi Engineering Plastics Corp | ポリブチレンテレフタレート樹脂組成物および成形体 |
JP2007023393A (ja) * | 2005-07-12 | 2007-02-01 | Teijin Ltd | ステレオコンプレックスポリ乳酸からなる繊維およびその製造方法 |
JP2007191630A (ja) * | 2006-01-20 | 2007-08-02 | Teijin Ltd | ポリ乳酸組成物 |
-
2007
- 2007-07-20 JP JP2007190024A patent/JP2008050578A/ja active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003089721A (ja) * | 2001-07-09 | 2003-03-28 | Sony Corp | 筐体用ポリエステル成形物 |
JP2003192884A (ja) * | 2001-12-28 | 2003-07-09 | Asahi Denka Kogyo Kk | ポリ乳酸系ポリマー組成物、成形品及びその製造方法 |
JP2004190026A (ja) * | 2002-11-29 | 2004-07-08 | Toray Ind Inc | 樹脂組成物ならびにそれからなる成形品 |
JP2005089537A (ja) * | 2003-09-12 | 2005-04-07 | Daicel Chem Ind Ltd | 生分解性樹脂組成物、農業用マルチフィルム、成形体、並びに土中分解性抑制方法 |
JP2005330318A (ja) * | 2004-05-18 | 2005-12-02 | Dainippon Ink & Chem Inc | 高耐衝撃性ポリ乳酸組成物 |
JP2006063199A (ja) * | 2004-08-27 | 2006-03-09 | Mitsubishi Engineering Plastics Corp | ポリブチレンテレフタレート樹脂組成物および成形体 |
JP2007023393A (ja) * | 2005-07-12 | 2007-02-01 | Teijin Ltd | ステレオコンプレックスポリ乳酸からなる繊維およびその製造方法 |
JP2007191630A (ja) * | 2006-01-20 | 2007-08-02 | Teijin Ltd | ポリ乳酸組成物 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010132871A (ja) * | 2008-11-05 | 2010-06-17 | Teijin Chem Ltd | ポリ乳酸組成物およびその成形品 |
JP2010195914A (ja) * | 2009-02-25 | 2010-09-09 | Wintech Polymer Ltd | ガラス系無機充填材強化ポリエステル樹脂組成物 |
JP2010254899A (ja) * | 2009-04-28 | 2010-11-11 | Teijin Chem Ltd | 熱可塑性樹脂組成物 |
KR101859237B1 (ko) * | 2010-01-27 | 2018-05-18 | 데이진 가부시키가이샤 | 필름 |
JP2013529688A (ja) * | 2010-06-11 | 2013-07-22 | ビーエーエスエフ ソシエタス・ヨーロピア | 有機添加剤を有する、レーザーに対して透過性のポリブチレンテレフタレート |
US20160244544A1 (en) * | 2011-03-30 | 2016-08-25 | Japan Polyethylene Corporation | Ethylene-based polymer, polyethylene-based resin composition and use thereof, catalyst component for olefin polymerization, olefin polymerization catalyst containing the component, and method for producing ethylene-based polymer by using the catalyst |
US9975972B2 (en) * | 2011-03-30 | 2018-05-22 | Japan Polyethylene Corporation | Ethylene-based polymer, polyethylene-based resin composition and use thereof, catalyst component for olefin polymerization, olefin polymerization catalyst containing the component, and method for producing ethylene-based polymer by using the catalyst |
US10633471B2 (en) | 2011-03-30 | 2020-04-28 | Japan Polyethylene Corporation | Ethylene-based polymer, polyethylene-based resin composition and use thereof, catalyst component for olefin polymerization, olefin polymerization catalyst containing the component, and method for producing ethylene-based polymer by using the catalyst |
US11643485B2 (en) | 2011-03-30 | 2023-05-09 | Japan Polyethylene Corporation | Ethylene-based polymer, polyethylene-based resin composition and use thereof, catalyst component for olefin polymerization, olefin polymerization catalyst containing the component, and method for producing ethylene-based polymer by using the catalyst |
DE112015003887B4 (de) | 2014-08-26 | 2023-08-03 | Mitsubishi Heavy Industries, Ltd. | Steuervorrichtung, System und Steuerverfahren |
CN114502651A (zh) * | 2019-10-08 | 2022-05-13 | 帝人株式会社 | 树脂组合物 |
WO2021100536A1 (ja) * | 2019-11-19 | 2021-05-27 | ポリプラスチックス株式会社 | ポリブチレンテレフタレート樹脂組成物の耐トラッキング性向上方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008050579A (ja) | 樹脂組成物およびそれよりなる成形品 | |
US20110160364A1 (en) | Resin composition, manufacturing method thereof, and molded article | |
JP2008050578A (ja) | 樹脂組成物およびその成形品 | |
JP4962662B2 (ja) | 熱可塑性樹脂組成物およびそれからなる成形品 | |
JP2008050584A (ja) | 樹脂組成物および成形品 | |
US20100324220A1 (en) | Resin composition and molded article | |
JP5288059B2 (ja) | 熱可塑性樹脂組成物ならびにそれらからなる成形品 | |
JP2008050583A (ja) | 樹脂組成物 | |
EP2272913B1 (en) | Manufacturing method for polylactic acid resin compositions | |
JP2009096881A (ja) | 樹脂組成物およびそれからなる成形品 | |
JPWO2011007687A1 (ja) | 難燃性熱可塑性樹脂組成物および成形品 | |
JP2010024312A (ja) | 難燃性熱可塑性ポリエステル樹脂組成物 | |
JP5612329B2 (ja) | ポリ乳酸樹脂組成物 | |
JP2008031296A (ja) | ポリ乳酸樹脂組成物およびそれよりなる成型体 | |
JP2008050582A (ja) | 樹脂組成物および成形品 | |
JP5243337B2 (ja) | 熱可塑性樹脂組成物 | |
JP2004263180A (ja) | 射出成形体 | |
JP2008050580A (ja) | 樹脂組成物およびその成形品 | |
JP2009179783A (ja) | ポリ乳酸樹脂組成物およびそれよりなる成型体 | |
JP2023033950A (ja) | 熱可塑性ポリエステル樹脂組成物、成形品および熱可塑性ポリエステル樹脂組成物の製造方法 | |
JP3443199B2 (ja) | 樹脂組成物およびそれからなるリレー部品 | |
HK1130825A (en) | Resin composition, method for producing the same and molded article | |
JP5194357B2 (ja) | 難燃性ポリエチレンテレフタレート樹脂組成物 | |
JPH02263859A (ja) | 難燃性樹脂組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100511 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121024 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130313 |