JP2008050544A - Epoxy resin composition, semiconductor device and manufacturing process of semiconductor device - Google Patents

Epoxy resin composition, semiconductor device and manufacturing process of semiconductor device Download PDF

Info

Publication number
JP2008050544A
JP2008050544A JP2006231331A JP2006231331A JP2008050544A JP 2008050544 A JP2008050544 A JP 2008050544A JP 2006231331 A JP2006231331 A JP 2006231331A JP 2006231331 A JP2006231331 A JP 2006231331A JP 2008050544 A JP2008050544 A JP 2008050544A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
epoxy
semiconductor device
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006231331A
Other languages
Japanese (ja)
Other versions
JP4816333B2 (en
Inventor
Naoki Kanekawa
直樹 金川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2006231331A priority Critical patent/JP4816333B2/en
Publication of JP2008050544A publication Critical patent/JP2008050544A/en
Application granted granted Critical
Publication of JP4816333B2 publication Critical patent/JP4816333B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin composition which imparts a long pot life at room temperature and a short hardening time in a compression mounting step and forms a void-free and insulation-reliable hardened resin layer 5, leading to the improved efficiency in a semiconductor production process involving flip chip mounting. <P>SOLUTION: The epoxy resin composition 1 contains an epoxy resin and a hardener and is liquid at room temperature. The hardener contains at least either of fine spherical particles obtained by covering the surface of the cores composed of a compound with an imidazole structure with a film of a thermoplastic resin or amine adduct particles. The total amount of the fine spherical particles and the amine adduct particles is in the range of 7-55 mass% of the epoxy resin. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体封止材料として好適に使用することができるエポキシ樹脂組成物、半導体装置及び半導体装置の製造方法に関する。   The present invention relates to an epoxy resin composition that can be suitably used as a semiconductor sealing material, a semiconductor device, and a method for manufacturing the semiconductor device.

近年、電子機器の更なる小型化及び高機能化を図るため、プリント配線板等の回路基板上にICチップなどの電子部品を高密度で実装することが要求されている。実装密度を高める有力な手段の一つとして、フリップチップ実装が広く知られている。フリップチップ実装においては、バンプと呼ばれる突起を介してICチップ上の複数の電極と回路基板上の所定の電極とを位置合わせした後、これらの電極間の電気接続が一括して形成される。次いで、電気絶縁性を有する封止樹脂(アンダーフィル材)がICチップと回路基板の間に注入された加熱硬化される。封止用樹脂としては、エポキシ樹脂を配合した液状封止エポキシ樹脂組成物が汎用されている(例えば、特許文献1参照)。
特開2001−329048号公報
In recent years, electronic components such as IC chips have been required to be mounted at high density on circuit boards such as printed wiring boards in order to further reduce the size and functionality of electronic devices. Flip chip mounting is widely known as one of the effective means for increasing the mounting density. In flip-chip mounting, a plurality of electrodes on an IC chip are aligned with predetermined electrodes on a circuit board through protrusions called bumps, and then electrical connections between these electrodes are collectively formed. Next, an electrically insulating sealing resin (underfill material) is injected and cured between the IC chip and the circuit board and cured. As a sealing resin, a liquid sealing epoxy resin composition containing an epoxy resin is widely used (see, for example, Patent Document 1).
JP 2001-329048 A

しかし、上記のフリップチップ実装では、電極接続工程と封止用樹脂の硬化工程を個別に行っていたため、製造効率が低いという問題があった。   However, the flip chip mounting described above has a problem in that the manufacturing efficiency is low because the electrode connecting step and the sealing resin curing step are performed separately.

そこで、金属バンプを介しての電極接続と同時に封止用樹脂の硬化を行うリフロー同時硬化法や、回路基板の表面に液状エポキシ樹脂を塗布した後に、ICチップをエポキシ樹脂の塗布層上に配置してICチップの背面から加熱加圧して電極接続と封止用樹脂の硬化を一段階で行う圧接法が提案されている。   Therefore, the reflow simultaneous curing method that cures the sealing resin at the same time as the electrode connection through the metal bump, or after applying the liquid epoxy resin to the surface of the circuit board, the IC chip is placed on the epoxy resin coating layer A pressure welding method has been proposed in which electrode connection and curing of the sealing resin are performed in one step by heating and pressing from the back surface of the IC chip.

このうち、圧接法においては、圧接に要する時間がフリップチップ実装効率を決定する律速因子になるため、硬化時間が短く、且つ硬化した封止用樹脂内に気泡(ボイド)が発生しない封止用樹脂組成物の開発が要望されている。また、封止用樹脂の塗布量は極微量である場合が多いため、封止用樹脂の保存安定性が高いことも要望されている。更に、バンプ間の幅を微細ピッチとした場合の、マイグレーションの発生による絶縁信頼性の低下を防止することも求められている。   Among these, in the pressure welding method, the time required for pressure welding is a rate-determining factor for determining the flip chip mounting efficiency, so that the curing time is short and bubbles are not generated in the cured sealing resin. Development of a resin composition is desired. Moreover, since the application amount of the sealing resin is often extremely small, it is also demanded that the storage stability of the sealing resin is high. Furthermore, it is also required to prevent a decrease in insulation reliability due to the occurrence of migration when the width between bumps is a fine pitch.

本発明は上記の点に鑑みて為されたものであり、保存安定性が高く、短時間で硬化し、ボイドレスで高い絶縁特性を備えた硬化物を得ることができ、半導体封止用途、特に圧接法により半導体装置の製造とフリップチップ実装とを同時に行う場合に好適に用いることができるエポキシ樹脂組成物、このエポキシ樹脂組成物を用いて製造された半導体装置、並びにこのエポキシ樹脂組成物を用いた半導体装置の製造方法を提供することを目的とするものである。   The present invention has been made in view of the above points, has high storage stability, can be cured in a short time, and can obtain a cured product having high insulation characteristics with a voidless, particularly for semiconductor encapsulation applications. Epoxy resin composition that can be suitably used when semiconductor device manufacture and flip chip mounting are simultaneously performed by pressure welding, a semiconductor device manufactured using this epoxy resin composition, and this epoxy resin composition It is an object of the present invention to provide a method for manufacturing a semiconductor device.

請求項1に係るエポキシ樹脂組成物は、エポキシ樹脂及び硬化剤を含有すると共に室温で液状であるエポキシ樹脂組成物1において、前記硬化剤が、イミダゾール骨格を有する化合物を核とすると共にこの核の周囲を熱硬化性樹脂による被膜で被覆して得られた微細球粒子とアミンアダクト粒子とのうち少なくとも一方、及び下記化学式(1)に示すカルボン酸二無水物を含有し、且つ前記微細球粒子とアミンアダクト粒子との総量がエポキシ樹脂に対して7〜55質量%の範囲であることを特徴とする。   The epoxy resin composition according to claim 1 contains an epoxy resin and a curing agent and is liquid at room temperature, and the curing agent has a compound having an imidazole skeleton as a nucleus and the nucleus. The fine sphere particles containing at least one of fine sphere particles and amine adduct particles obtained by coating the periphery with a coating of a thermosetting resin, and carboxylic dianhydride represented by the following chemical formula (1) And the total amount of the amine adduct particles is in the range of 7 to 55% by mass with respect to the epoxy resin.

Figure 2008050544
Figure 2008050544

請求項2に係る発明は、請求項1において、上記化学式(1)で示されるカルボン酸二無水物が、化学量論上の当量比でエポキシ樹脂100に対して5〜20の範囲となるように含有していることを特徴とする。   According to a second aspect of the present invention, in the first aspect, the carboxylic dianhydride represented by the chemical formula (1) is in a range of 5 to 20 with respect to the epoxy resin 100 in terms of a stoichiometric equivalent ratio. It is characterized by containing.

請求項3に係る発明は、請求項1又は2において、上記硬化剤が、メチルヘキサヒドロ無水フタル酸を含有することを特徴とする。   The invention according to claim 3 is characterized in that, in claim 1 or 2, the curing agent contains methylhexahydrophthalic anhydride.

請求項4に係る発明は、請求項1乃至3のいずれか一項において、エポキシ樹脂として、ビスフェノールF型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ナフタレン環含有エポキシ樹脂、これらの水素添加型のエポキシ樹脂、脂環式エポキシ樹脂から選択される少なくとも一種を含有することを特徴とする。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the epoxy resin may be a bisphenol F type epoxy resin, a bisphenol A type epoxy resin, a naphthalene ring-containing epoxy resin, or a hydrogenated epoxy resin thereof. And at least one selected from alicyclic epoxy resins.

請求項5に係る発明は、請求項1乃至4のいずれか一項において、下記化学式(2)で示されるナフタレン環含有4官能型エポキシ樹脂を含有すると共に、全エポキシ樹脂中におけるエポキシ基に対して、ナフタレン環含有4官能型エポキシ樹脂が有するエポキシ基の占める割合が10〜40%の範囲であることを特徴とする。   The invention according to claim 5 includes, in any one of claims 1 to 4, a naphthalene ring-containing tetrafunctional epoxy resin represented by the following chemical formula (2), and the epoxy groups in all epoxy resins. The proportion of the epoxy group in the naphthalene ring-containing tetrafunctional epoxy resin is in the range of 10 to 40%.

Figure 2008050544
Figure 2008050544

請求項6に係る発明は、請求項1乃至5のいずれか一項において、導電性粒子をエポキシ樹脂組成物1全量に対して1〜20質量%の範囲で含有することを特徴とする。   The invention according to claim 6 is characterized in that, in any one of claims 1 to 5, the conductive particles are contained in a range of 1 to 20% by mass with respect to the total amount of the epoxy resin composition 1.

請求項7に係る発明は、請求項1乃至6のいずれか一項において、150℃におけるゲル化時間が6〜50秒の範囲であることを特徴とする。   The invention according to claim 7 is characterized in that, in any one of claims 1 to 6, the gelation time at 150 ° C. is in the range of 6 to 50 seconds.

請求項8に係る発明は、請求項1乃至7のいずれか一項において、充填材として、最大粒径が0.1〜10μmの範囲である球状非晶質シリカを含有することを特徴とする。   The invention according to an eighth aspect is characterized in that, in any one of the first to seventh aspects, the filler contains spherical amorphous silica having a maximum particle size in the range of 0.1 to 10 μm. .

請求項9に係る半導体装置4は、請求項1乃至8のいずれか一項に記載のエポキシ樹脂組成物1にて半導体素子3を封止して成ることを特徴とする。   A semiconductor device 4 according to a ninth aspect is characterized in that the semiconductor element 3 is sealed with the epoxy resin composition 1 according to any one of the first to eighth aspects.

請求項10に係る半導体装置4の製造方法は、請求項1乃至8のいずれか一項に記載のエポキシ樹脂組成物1を用いて回路基板2と半導体素子3とを熱圧接により接着することを特徴とする。   The manufacturing method of the semiconductor device 4 according to claim 10 is to bond the circuit board 2 and the semiconductor element 3 by hot pressing using the epoxy resin composition 1 according to any one of claims 1 to 8. Features.

請求項1に係る発明によれば、エポキシ樹脂組成物1の硬化速度を向上すると共に保存安定性を高めて可使時間を向上することができ、特に圧接工程を含む半導体装置4の製造工程において製造効率を改善することができると共に、硬化樹脂層5中のボイドの発生を低減することができ、且つ絶縁信頼性の高い硬化樹脂層5を半導体素子3と回路基板2との間に形成することができるものであり、且つ硬化物の絶縁特性を著しく改善することができて特に耐湿信頼性を向上することができ、更に圧接工程において熱圧接後にボンディングツール8を半導体素子3の背面から離す際の半導体素子3の浮きを低減し、初期接続性を向上することができる。   According to the first aspect of the invention, the curing time of the epoxy resin composition 1 can be improved and the storage stability can be improved to improve the pot life, and in particular in the manufacturing process of the semiconductor device 4 including the pressing process. The manufacturing efficiency can be improved, the generation of voids in the cured resin layer 5 can be reduced, and the cured resin layer 5 having high insulation reliability is formed between the semiconductor element 3 and the circuit board 2. In addition, the insulation property of the cured product can be remarkably improved, and particularly the moisture resistance reliability can be improved. Further, the bonding tool 8 is separated from the back surface of the semiconductor element 3 after the heat pressure welding in the pressure welding process. The floating of the semiconductor element 3 at the time can be reduced, and the initial connectivity can be improved.

請求項2に係る発明によれば、硬化物(硬化樹脂層5)のガラス転移温度を上昇することができ、特に圧接工程を含む半導体装置4の製造工程において加圧圧接後にボンディングツール8を半導体素子3の背面から離す際に、半導体素子3の浮きの発生を低減することができるものである。   According to the second aspect of the present invention, the glass transition temperature of the cured product (cured resin layer 5) can be increased. In particular, the bonding tool 8 can be used as a semiconductor after pressure welding in the manufacturing process of the semiconductor device 4 including the pressure welding process. When the element 3 is separated from the back surface, the occurrence of floating of the semiconductor element 3 can be reduced.

請求項3に係る発明によれば、エポキシ樹脂組成物1の粘度を低減してその流動性を向上し、作業性を向上することができるものであり、また上記化学式(1)で示されるカルボン酸二無水物を予めメチルヘキサヒドロ無水フタル酸に溶融混合させた後に組成物中に配合すれば、前記カルボン酸に無水物を組成物中に微分散させることができて、均質な組成物及びその硬化物(硬化樹脂層5)を得ることができるものである。   According to the invention of claim 3, the viscosity of the epoxy resin composition 1 can be reduced to improve its fluidity and workability, and the carboxyl represented by the chemical formula (1) can be improved. If the acid dianhydride is previously melt-mixed with methylhexahydrophthalic anhydride and then blended into the composition, the carboxylic acid anhydride can be finely dispersed in the composition, and the homogeneous composition and The cured product (cured resin layer 5) can be obtained.

請求項4に係る発明によれば、立体障害の異なる各種のエポキシ樹脂を適宜組み合わせることによって、所望の硬化速度を有する組成物を得ることができるものである。   According to the invention of claim 4, a composition having a desired curing rate can be obtained by appropriately combining various epoxy resins having different steric hindrances.

請求項5に係る発明によれば、より短時間の硬化時間でボイドの発生を低減しつつ硬化物(硬化樹脂層5)を形成することができると共に、硬化物のガラス転移温度を上昇することができ、特に圧接工程を含む半導体装置4の製造工程において加圧圧接後にボンディングツール8を半導体素子3の背面から離す際に、半導体素子3の浮きの発生を低減することができるものである。   According to the invention of claim 5, while being able to form a cured product (cured resin layer 5) while reducing the generation of voids in a shorter curing time, the glass transition temperature of the cured product is increased. In particular, when the bonding tool 8 is separated from the back surface of the semiconductor element 3 after the pressure and pressure welding in the manufacturing process of the semiconductor device 4 including the pressure welding process, the occurrence of floating of the semiconductor element 3 can be reduced.

請求項6に係る発明によれば、絶縁性の高いエポキシ樹脂組成物1中に導電性粒子が均一に分散した材料を得ることができ、特に圧接工程を含む半導体装置4の製造工程において半導体素子3と回路基板2との間の相対する電極間の電気接続を確保すると共に、隣接する電極間では絶縁性を確保し、且つ回路基板2に対する半導体素子3の固定を行うことができるものである。   According to the invention of claim 6, it is possible to obtain a material in which conductive particles are uniformly dispersed in the highly insulating epoxy resin composition 1. In particular, in the manufacturing process of the semiconductor device 4 including the press-contacting process, the semiconductor element The electrical connection between the opposing electrodes between the circuit board 2 and the circuit board 2 can be secured, insulation between the adjacent electrodes can be secured, and the semiconductor element 3 can be fixed to the circuit board 2. .

請求項7に係る発明によれば、特に回路基板2と半導体素子3とを熱圧接により接続する場合に、両者が電気的に接続される前に組成物が硬化しないようにすることができると共に、圧接工程に要する時間を短時間とすることができ、製造効率の向上を充分に達成することができるものである。   According to the seventh aspect of the invention, in particular, when the circuit board 2 and the semiconductor element 3 are connected by hot pressing, the composition can be prevented from curing before the two are electrically connected. The time required for the pressure welding process can be shortened, and the production efficiency can be sufficiently improved.

請求項8に係る発明によれば、硬化物の熱膨張率を低減することができ、特に圧接工程を含む半導体装置4の製造工程において、半導体素子3と回路基板2との間の高い接続信頼性を確保することができるものである。   According to the eighth aspect of the present invention, the coefficient of thermal expansion of the cured product can be reduced. In particular, in the manufacturing process of the semiconductor device 4 including the pressure welding process, high connection reliability between the semiconductor element 3 and the circuit board 2 can be achieved. It is possible to ensure the sex.

請求項9に係る発明によれば、ボイドの発生が抑制され、且つ絶縁信頼性の高い硬化樹脂層5にて半導体チップと回路基板2との間が封止された半導体装置4を得ることができるものである。   According to the invention of claim 9, it is possible to obtain the semiconductor device 4 in which the generation of voids is suppressed and the space between the semiconductor chip and the circuit board 2 is sealed with the cured resin layer 5 having high insulation reliability. It can be done.

請求項10に係る発明によれば、圧接工程において液状のエポキシ樹脂組成物1を短時間で硬化させることができ、フリップチップ実装による半導体装置4の製造効率を改善することができるものである。   According to the tenth aspect of the invention, the liquid epoxy resin composition 1 can be cured in a short time in the pressure-contacting process, and the manufacturing efficiency of the semiconductor device 4 by flip chip mounting can be improved.

以下、本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

本発明に係るエポキシ樹脂組成物1は、室温で液状であって、エポキシ樹脂及び硬化剤を含有する。   The epoxy resin composition 1 according to the present invention is liquid at room temperature and contains an epoxy resin and a curing agent.

エポキシ樹脂としては、ビスフェノールF型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、上記化学式(2)で示されるナフタレン環含有4官能型エポキシ樹脂等のナフタレン環含有エポキシ樹脂、これらの水素添加型のエポキシ樹脂、脂環式エポキシ樹脂等から選択される少なくとも一種を用いることが好ましい。   Epoxy resins include bisphenol F-type epoxy resins, bisphenol A-type epoxy resins, biphenyl-type epoxy resins, naphthalene-ring-containing epoxy resins such as naphthalene-ring-containing tetrafunctional epoxy resins represented by the above chemical formula (2), and hydrogenation thereof. It is preferable to use at least one selected from mold-type epoxy resins and alicyclic epoxy resins.

ここで、エポキシ樹脂の硬化速度に最も影響するのは、エポキシ基近傍の立体障害であり、エポキシ基の近傍に嵩高い置換基が存在したり、分子構造の平面性が損なわれていたりすると、硬化剤の求核攻撃が阻害されて硬化速度は遅くなる。逆にエポキシ基の近傍に大きな置換基がなく、分子構造の平面性が保たれている場合には、硬化剤がエポキシ基にアタックしやすいため硬化反応は速くなる。そこで、上記のような立体障害の異なるエポキシ樹脂を適宜組み合わせて用いると、所望の硬化速度を実現することができる。   Here, it is the steric hindrance near the epoxy group that has the most influence on the curing rate of the epoxy resin, and there are bulky substituents near the epoxy group or the planarity of the molecular structure is impaired. Nucleophilic attack of the curing agent is hindered and the curing rate becomes slow. Conversely, when there is no large substituent near the epoxy group and the planarity of the molecular structure is maintained, the curing reaction is accelerated because the curing agent tends to attack the epoxy group. Therefore, when the epoxy resins having different steric hindrances as described above are used in appropriate combination, a desired curing rate can be realized.

また、特に上記化学式(2)で示されるナフタレン環含有4官能型エポキシ樹脂を、全エポキシ樹脂中におけるエポキシ基に対して、このナフタレン環含有4官能型エポキシ樹脂が有するエポキシ基の占める割合が10〜40%の範囲となるように含有させることが好ましい。このナフタレン環含有4官能型エポキシ樹脂は分子の平面性が極めて高く、更に反応点となるエポキシ基を4個有していることから、これを適当量使用することにより、ボイドレスで、より短時間で硬化可能なエポキシ樹脂組成物1を容易に調製することができると共に、硬化物のガラス転移温度(Tg)を高めることもできる。ここで、このナフタレン環含有4官能型エポキシ樹脂は室温で固体状態であり、気化しにくい性質を有することから、前記含有量の割合が40%を超える場合にはエポキシ樹脂組成物1の粘度が上昇することにより流動性が低下して作業性が低下するおそれがあり、また前記割合が10%に満たないと前記の硬化速度やガラス転移温度を高める効果を十分に得ることができなくなるおそれがある。   Further, in particular, the proportion of the epoxy group of the naphthalene ring-containing tetrafunctional epoxy resin in the naphthalene ring-containing tetrafunctional epoxy resin represented by the chemical formula (2) is 10 to the epoxy groups in all epoxy resins. It is preferable to make it contain so that it may become -40% of range. This naphthalene ring-containing tetrafunctional epoxy resin has extremely high molecular flatness and further has four epoxy groups as reactive sites. The epoxy resin composition 1 curable with 1 can be easily prepared and the glass transition temperature (Tg) of the cured product can be increased. Here, since the naphthalene ring-containing tetrafunctional epoxy resin is in a solid state at room temperature and has a property of being difficult to vaporize, when the content ratio exceeds 40%, the viscosity of the epoxy resin composition 1 is If the ratio is less than 10%, the effect of increasing the curing rate and the glass transition temperature may not be sufficiently obtained. is there.

硬化剤は、イミダゾール骨格を有する化合物を核とすると共にこの核の周囲を熱硬化性樹脂による被膜で被覆して得られた微細球粒子と、アミンアダクト粒子とのうち少なくとも一方を含有する。   The curing agent contains at least one of fine sphere particles obtained by using a compound having an imidazole skeleton as a nucleus and coating the periphery of the nucleus with a film made of a thermosetting resin, and amine adduct particles.

上記微細球粒子は乳化重合等の一般的な方法により作製することができ、被膜としては、フェノール樹脂、メラミン樹脂、エポキシ樹脂を好適に用いることができる。この皮膜を構成する熱硬化性樹脂は、微細球粒子全体に対して1質量%以下であることが望ましい。核となるイミダゾール骨格を有する化合物としては、イミダゾール化合物とエポキシ樹脂の付加反応によりプレリアクトしたエポキシアミンアダクトあげられる。また微細球粒子のサイズ(粒径)は、50μm以下が好ましく、10μm以下が更に好ましく、特に好ましくは5μm以下である。   The fine sphere particles can be prepared by a general method such as emulsion polymerization, and a phenol resin, a melamine resin, or an epoxy resin can be suitably used as the coating. The thermosetting resin constituting this film is desirably 1% by mass or less with respect to the entire fine spherical particles. Examples of the compound having an imidazole skeleton as a nucleus include an epoxyamine adduct prereacted by an addition reaction of an imidazole compound and an epoxy resin. The size (particle diameter) of the fine sphere particles is preferably 50 μm or less, more preferably 10 μm or less, and particularly preferably 5 μm or less.

一方、アミンアダクト粒子とは、アミンやイミダゾール、アミノ酸、アミド等と各種エポキシ樹脂とから合成されるものをいい、このアミンアダクト粒子のサイズ(粒径)も上記の微細球粒子の場合と同様に、50μm以下が好ましく、10μm以下が更に好ましく、特に好ましくは5μm以下である。   On the other hand, amine adduct particles refer to those synthesized from amines, imidazoles, amino acids, amides, etc. and various epoxy resins, and the size (particle size) of the amine adduct particles is the same as in the case of the above fine spherical particles. , 50 μm or less, preferably 10 μm or less, particularly preferably 5 μm or less.

この微細球粒子とアミンアダクト粒子との含有量の総量はエポキシ樹脂に対して7〜55質量%の範囲であるようにする。この含有量が前記範囲より少ない場合には十分な硬化速度が得られなくなり、また前記範囲より多い場合には硬化物の電気絶縁性を悪化させて、半導体装置4の信頼性を低下させるおそれがある。   The total content of the fine sphere particles and the amine adduct particles is in the range of 7 to 55% by mass with respect to the epoxy resin. When this content is less than the above range, a sufficient curing rate cannot be obtained, and when it is more than the above range, the electrical insulation of the cured product may be deteriorated and the reliability of the semiconductor device 4 may be reduced. is there.

このように硬化剤として上記微細球粒子とアミンアダクト粒子の少なくとも一方を用いると、エポキシ樹脂組成物1は室温では粘度変化が少なく、また100℃以上に加熱されることで急激な硬化反応がボイドレスで進行することとなる。この硬化反応は、微細球粒子及びアミンアダクト粒子が熱により溶融してエポキシ基と付加反応を起こし、酸素アニオンを生じることにより進行し、イミダゾール骨格を有する化合物やアミンアダクトが生成物の骨格中に取り込まれる。このため、例えばフリップチップ実装工程においてICチップ等の半導体素子3とプリント配線板等の回路基板2との間の隙間を融資するための半導体封止用材料として好適に用いることができるものであり、上記のエポキシ樹脂組成物1を用いてフリップチップ実装を行えば動作信頼性の高い半導体装置4を効率よく製造することができると共にボイドレスで絶縁信頼性を備えた硬化樹脂層5を半導体素子3と回路基板2との間に形成することができるものである。すなわち、上記の硬化剤を用いることによって、エポキシ樹脂組成物1の硬化速度と保存安定性を飛躍的に高めることができ、圧接工程を含む半導体装置4の製造において製造効率を改善することができるものである。   As described above, when at least one of the fine sphere particles and the amine adduct particles is used as the curing agent, the epoxy resin composition 1 has little viscosity change at room temperature, and when it is heated to 100 ° C. or higher, a rapid curing reaction is voidless. Will proceed. This curing reaction proceeds when the fine sphere particles and the amine adduct particles are melted by heat to cause an addition reaction with an epoxy group and generate an oxygen anion, and a compound having an imidazole skeleton or an amine adduct is contained in the skeleton of the product. It is captured. For this reason, for example, it can be suitably used as a semiconductor sealing material for financing the gap between the semiconductor element 3 such as an IC chip and the circuit board 2 such as a printed wiring board in a flip chip mounting process. When the flip-chip mounting is performed using the epoxy resin composition 1 described above, the semiconductor device 4 having high operation reliability can be efficiently manufactured, and the cured resin layer 5 having insulation reliability with the voidless is formed on the semiconductor element 3. And the circuit board 2 can be formed. That is, by using the above curing agent, the curing rate and storage stability of the epoxy resin composition 1 can be dramatically increased, and the production efficiency can be improved in the production of the semiconductor device 4 including the pressure contact process. Is.

また、硬化剤としては、更に上記化学式(1)に示すカルボン酸二無水物も含有させる。このため、エポキシ樹脂組成物1の硬化反応の進行時に、上記微細球粒子やアミンアダクト粒子が前記カルボン酸二無水物を求核的に攻撃してカルボキシアニオンを生じさせ、このカルボン酸二無水物が硬化構造に化学的に取り込まれることにより、硬化物の電気絶縁性が更に向上する。このため、硬化物の絶縁特性を著しく改善することができ、且つ高い耐湿信頼性を発現することとなる。また、圧接工程において熱圧接後にボンディングツール8を半導体素子3の背面から離す際において半導体素子3の浮きを低減し、初期接続性を向上することができる。   Moreover, as a hardening | curing agent, the carboxylic dianhydride shown to the said Chemical formula (1) is further contained. Therefore, when the curing reaction of the epoxy resin composition 1 proceeds, the fine sphere particles or amine adduct particles nucleophilically attack the carboxylic dianhydride to generate a carboxy anion, and the carboxylic dianhydride. Is chemically incorporated into the cured structure, thereby further improving the electrical insulation of the cured product. For this reason, the insulation characteristic of hardened | cured material can be improved remarkably and high moisture-proof reliability will be expressed. In addition, when the bonding tool 8 is separated from the back surface of the semiconductor element 3 after the heat-welding in the pressure-welding process, the floating of the semiconductor element 3 can be reduced and the initial connectivity can be improved.

組成物中の上記カルボン酸二無水物の含有量は、化学量論上の当量比で組成物中のエポキシ樹脂100に対して5〜20の範囲となるようにすることが好ましく、これにより、硬化物のガラス転移温度を上昇することができ、特に圧接工程を含む半導体装置4の製造工程において加圧圧接後にボンディングツール8を半導体素子3の背面から離す際に、半導体素子3の浮きの発生を低減することができる。ここで前記含有量が前記範囲に満たない場合には前記ガラス転移温度を上昇する効果を十分に得ることができなくなるおそれがあり、逆に前記範囲を超える場合にはエポキシ樹脂組成物1の粘度が上昇することにより流動性が低下して作業性が低下するおそれがある。   The content of the carboxylic acid dianhydride in the composition is preferably in the range of 5 to 20 with respect to the epoxy resin 100 in the composition at a stoichiometric equivalent ratio, The glass transition temperature of the cured product can be increased. In particular, when the bonding tool 8 is separated from the back surface of the semiconductor element 3 after the pressure welding in the manufacturing process of the semiconductor device 4 including the pressure welding process, the floating of the semiconductor element 3 is generated. Can be reduced. Here, when the content is less than the above range, the effect of increasing the glass transition temperature may not be sufficiently obtained. Conversely, when the content exceeds the above range, the viscosity of the epoxy resin composition 1 may be exceeded. As a result, the fluidity is lowered and the workability may be lowered.

また、硬化剤としては、更にメチルヘキサヒドロ無水フタル酸を含有することも好ましい。この場合、エポキシ樹脂組成物1の粘度を低減し、流動性を向上して作業性を向上することができる。また、上記カルボン酸二無水物を予めメチルヘキサヒドロ無水フタル酸に加熱溶解させた後にエポキシ樹脂組成物1中に配合するようにすれば、前記カルボン酸二無水物をエポキシ樹脂組成物1中に微分散することができ、均質なエポキシ樹脂組成物1並びにその硬化物を得ることができる。   Further, it is preferable that the curing agent further contains methylhexahydrophthalic anhydride. In this case, the viscosity of the epoxy resin composition 1 can be reduced, fluidity can be improved, and workability can be improved. Further, if the carboxylic dianhydride is dissolved in methylhexahydrophthalic anhydride in advance and then mixed in the epoxy resin composition 1, the carboxylic dianhydride is added to the epoxy resin composition 1. It can be finely dispersed and a homogeneous epoxy resin composition 1 and its cured product can be obtained.

上記カルボン酸二無水物とメチルヘキサヒドロ無水フタル酸とを併せた含有量は、化学量論上の当量比で組成物中のエポキシ樹脂100に対して10〜90の範囲となるようにすることが好ましい。この含有量が前記範囲に満たない場合には硬化物が優れた電気絶縁性を発現することが困難となり、また含有量が前記範囲を超えると高温で急速に加熱したとき、それ自体が反応に寄与する前に揮発するため、ボイドが硬化物中に残存し、半導体装置4の信頼性を低下させるおそれがある。   The combined content of the carboxylic dianhydride and methylhexahydrophthalic anhydride should be in the range of 10 to 90 with respect to the epoxy resin 100 in the composition at a stoichiometric equivalent ratio. Is preferred. When this content is less than the above range, it becomes difficult for the cured product to exhibit excellent electrical insulation, and when the content exceeds the above range, when the content is rapidly heated at a high temperature, the cured product itself reacts. Since it volatilizes before contributing, voids may remain in the cured product and the reliability of the semiconductor device 4 may be reduced.

また、本発明に係るエポキシ樹脂組成物1中には、上記エポキシ樹脂、硬化剤に加えて、更に導電性粒子を含有させても良い。導電性粒子としては、例えばポリエチレン系の高分子粒子の核の表面にAuめっきを施した粒径5μm程度のものを挙げることができる。このような導電性粒子を好ましくはエポキシ樹脂組成物1全量に対して1〜20質量%の範囲で含有させ、導電性粒子を均一に分散させて半導体装置4の封止用途に用いると、半導体素子3や回路基板2等の電子部品間の相対する電極間に導電性粒子を介在させて電気接続を確保することができ、また、導電性粒子を介して半導体素子3の金属バンプ7と回路基板2の基板電極6の基板電極6間の電気接続を行うことにより、金属バンプ7と基板電極6の高さのばらつきやチップ搭載時の平行度が緩和されることとなり、より高い接続信頼性を実願することができる。また前記配合量の範囲で導電性粒子を含有させれば、隣接電極間では導電性粒子の密度が導通を生じさせるほど過剰にはならず、この隣接電極間の絶縁性を確保することができる。   Moreover, in addition to the said epoxy resin and a hardening | curing agent, you may make the epoxy resin composition 1 which concerns on this invention contain electroconductive particle further. Examples of the conductive particles include those having a particle diameter of about 5 μm obtained by Au plating on the surface of the core of polyethylene polymer particles. When such conductive particles are preferably contained in the range of 1 to 20% by mass with respect to the total amount of the epoxy resin composition 1 and the conductive particles are uniformly dispersed and used for sealing the semiconductor device 4, a semiconductor is obtained. Electrical connection can be ensured by interposing conductive particles between opposing electrodes between the electronic components such as the element 3 and the circuit board 2, and the metal bumps 7 and the circuit of the semiconductor element 3 can be secured via the conductive particles. By making the electrical connection between the substrate electrodes 6 of the substrate electrode 6 of the substrate 2, the variation in height between the metal bumps 7 and the substrate electrode 6 and the parallelism when mounting the chip are alleviated, and higher connection reliability is achieved. You can apply for Further, if the conductive particles are contained within the range of the blending amount, the density of the conductive particles does not become excessive between the adjacent electrodes, and insulation between the adjacent electrodes can be ensured. .

尚、エポキシ樹脂組成物1が、特開2000−11760号公報や特開2000−21236号公報等に示される導電性粒子を含む異方導電性ペースト(ACP)の場合においても、上述の硬化剤を併用すれば、エポキシ樹脂組成物1内にボイドを発生させることなく、エポキシ樹脂組成物1を短時間で硬化させることができる。   In addition, even when the epoxy resin composition 1 is an anisotropic conductive paste (ACP) containing conductive particles shown in Japanese Patent Application Laid-Open Nos. 2000-11760 and 2000-21236, the above-described curing agent In combination, the epoxy resin composition 1 can be cured in a short time without generating voids in the epoxy resin composition 1.

また、本発明に係るエポキシ樹脂組成物1は、150℃におけるゲル化時間が6〜50秒であることが好ましい。これにより回路基板2と半導体チップとを熱圧接により接着する場合において両者が電気的に接続される前に樹脂が硬化するようなことを防止することができると共に、圧接工程に要する時間が短時間となり、製造効率の向上を充分に達成することができる。ここで前記ゲル化時間が6秒に満たないと半導体素子3を搭載する熱圧接の工程において金属バンプ7が回路基板2の基板電極6に接触して電気的に接続される前にエポキシ樹脂組成物1が硬化してしまうおそれがあり、逆にゲル化時間が50秒を超えると圧接工程に長時間を要して製造効率の向上を十分に達成することができないおそれがある。   The epoxy resin composition 1 according to the present invention preferably has a gelation time at 150 ° C. of 6 to 50 seconds. As a result, when the circuit board 2 and the semiconductor chip are bonded together by hot pressing, it is possible to prevent the resin from being cured before the two are electrically connected, and the time required for the pressing process is short. Thus, it is possible to sufficiently improve the manufacturing efficiency. Here, if the gelation time is less than 6 seconds, the epoxy resin composition is formed before the metal bumps 7 are brought into contact with and electrically connected to the substrate electrodes 6 of the circuit board 2 in the step of heat-pressure welding for mounting the semiconductor element 3. There is a possibility that the product 1 will be cured, and conversely, if the gelation time exceeds 50 seconds, it may take a long time for the pressure-contacting process, and the production efficiency may not be sufficiently improved.

上記ゲル化時間はエポキシ樹脂組成物1中における微細球粒子とアミンアダクト粒子との含有量を前記範囲内において増減することにより調整することができる。   The gelation time can be adjusted by increasing or decreasing the contents of the fine sphere particles and the amine adduct particles in the epoxy resin composition 1 within the above range.

また、本発明に係るエポキシ樹脂組成物1は、更に充填材を含有しても良い。前記充填材としては、シリカ、アルミナ、窒化アルミニウム、ボロンナイトライド、窒化ケイ素、炭化ケイ素、炭酸カルシウム等の無機フィラーを挙げることができる。特に充填材として球状非晶質シリカを用いると、単一金属元素からなる他の酸化物、窒化物及び炭化物等と比べて熱膨張係数が小さく、硬化物の熱膨張率を低減することができて、特に圧接工程を含む半導体装置4の製造工程において、半導体素子3と回路基板2との間の高い接続信頼性を確保することができるものであり、しかも破砕されたままの不均一な形状であるよりも充填材の含有量を高めた際のエポキシ樹脂組成物1の粘度増加を抑制することもできるものである。   Moreover, the epoxy resin composition 1 according to the present invention may further contain a filler. Examples of the filler include inorganic fillers such as silica, alumina, aluminum nitride, boron nitride, silicon nitride, silicon carbide, and calcium carbonate. In particular, when spherical amorphous silica is used as a filler, the thermal expansion coefficient is small compared to other oxides, nitrides, carbides, etc. made of a single metal element, and the thermal expansion coefficient of the cured product can be reduced. In particular, in the manufacturing process of the semiconductor device 4 including the pressure welding process, high connection reliability between the semiconductor element 3 and the circuit board 2 can be ensured, and the non-uniform shape remains crushed. It is also possible to suppress an increase in the viscosity of the epoxy resin composition 1 when the filler content is increased.

充填材として上記球状非晶質シリカを用いる場合には、その最大粒径が0.1〜10μmの範囲であることが望ましい。この場合、硬化物の熱膨張率を特に低減することができると共に、半導体装置4における金属バンプ7と基板電極6との間に高い接続信頼性を付与することができる。ここで前記最大粒径が10μmを超えると、圧接時に金属バンプ7と基板電極6との間に前記球状非晶質シリカの粒子が挟み込まれることで接続信頼性を低下させるおそれがある。また、前記最大粒径が0.1μm未満の球状非晶質シリカを入手するのは困難であるため、実質的な下限が0.1μmとなる。   When the spherical amorphous silica is used as the filler, the maximum particle size is desirably in the range of 0.1 to 10 μm. In this case, the thermal expansion coefficient of the cured product can be particularly reduced, and high connection reliability can be imparted between the metal bump 7 and the substrate electrode 6 in the semiconductor device 4. Here, if the maximum particle diameter exceeds 10 μm, the spherical amorphous silica particles are sandwiched between the metal bumps 7 and the substrate electrode 6 at the time of pressure contact, which may reduce connection reliability. Further, since it is difficult to obtain spherical amorphous silica having a maximum particle size of less than 0.1 μm, the practical lower limit is 0.1 μm.

エポキシ樹脂組成物1中における充填材の含有量は、組成物全量に対して60質量%以下であることが好ましい。前記含有量が60質量%を超えるとエポキシ樹脂組成物1の粘度が高くなりすぎて作業性を悪化させたり、圧接時に半導体素子3の金属バンプ7と回路基板2の基板電極6の間に充填材が挟み込まれたりする可能性が高くなり、接続信頼性が低下するおそれがある。   The content of the filler in the epoxy resin composition 1 is preferably 60% by mass or less with respect to the total amount of the composition. When the content exceeds 60% by mass, the viscosity of the epoxy resin composition 1 becomes too high and the workability is deteriorated, or the metal bumps 7 of the semiconductor element 3 and the substrate electrodes 6 of the circuit board 2 are filled during the pressure contact. There is a high possibility that the material will be caught, and the connection reliability may be reduced.

また、エポキシ樹脂組成物1中には、上記成分のほか、本発明の目的を損なわない限り、必要に応じて難燃剤、低弾性化剤、密着性付与剤、着色剤、希釈剤、カップリング剤等の他の適宜の添加剤を含有させても良い。特に添加剤として圧接時のフィレットの形状を良好に形成するために、チクソ付与剤として働くフュームドシリカと呼ばれるナノサイズ粒子の微粉シリカを用いても良く、この場合、微粉シリカの含有量はエポキシ樹脂組成物1全量に対して1〜3質量%の範囲であることが好ましい。   Moreover, in the epoxy resin composition 1, in addition to the above components, a flame retardant, a low elasticity agent, an adhesion-imparting agent, a colorant, a diluent, and a coupling are used as long as the object of the present invention is not impaired. You may contain other appropriate additives, such as an agent. In particular, in order to form the fillet shape at the time of pressure contact as an additive, fine silica of nano-sized particles called fumed silica that works as a thixotropic agent may be used. In this case, the content of fine silica is epoxy. It is preferable that it is the range of 1-3 mass% with respect to the resin composition 1 whole quantity.

エポキシ樹脂組成物1の調製は、例えば上記各成分を攪拌型の分散機で混合したり、ビーズミルで分散混合したり、三本ロールで分散混合したりすることで混合することにより、行うことができる。尚、これら以外の適宜の混合方法を採用しても良い。   The preparation of the epoxy resin composition 1 can be performed by, for example, mixing the above components by mixing them with a stirring type disperser, dispersing and mixing with a bead mill, or dispersing and mixing with three rolls. it can. In addition, you may employ | adopt appropriate mixing methods other than these.

半導体装置4は、上記エポキシ樹脂組成物1で半導体素子3を封止することによって得ることができる。特に、本発明に係るエポキシ樹脂組成物1は、半導体素子3をフリップチップ実装する際に用いることが好ましい。   The semiconductor device 4 can be obtained by sealing the semiconductor element 3 with the epoxy resin composition 1. In particular, the epoxy resin composition 1 according to the present invention is preferably used when the semiconductor element 3 is flip-chip mounted.

具体的には、図1に示すような、半導体素子3と回路基板2とをエポキシ樹脂組成物1を介して熱圧接する圧接工程を含む圧接法にて、半導体装置4を製造することができる。   Specifically, as shown in FIG. 1, the semiconductor device 4 can be manufactured by a pressure welding method including a pressure welding process in which the semiconductor element 3 and the circuit board 2 are thermally pressure-bonded via the epoxy resin composition 1. .

まず上記のようにして得られたエポキシ樹脂組成物1を回路基板2の表面に塗布する。前記回路基板2としては、FR−4タイプやFR−5タイプ等の繊維基材を含む有機基板(ガラス基材エポキシ樹脂基板)にて形成されたもの、ポリイミドやポリエステル等の有機フィルムにて形成されたもの、セラミックス等の無機基板にて形成されたもの等、適宜のものを用いることができる。この回路基板2には、予めセミアディティブ法、サブトラクティブ法等の適宜の手法により導体配線を形成すると共に半導体素子3の金属バンプ7と接続するための基板電極6を設けておき、エポキシ樹脂組成物1は前記基板電極6が設けられた箇所を含む半導体素子3の搭載位置に塗布する。   First, the epoxy resin composition 1 obtained as described above is applied to the surface of the circuit board 2. The circuit board 2 is formed of an organic substrate (glass base epoxy resin substrate) including a fiber base material such as FR-4 type or FR-5 type, or an organic film such as polyimide or polyester. As appropriate, a material formed using an inorganic substrate such as ceramics can be used. The circuit board 2 is preliminarily provided with a conductor wiring by an appropriate method such as a semi-additive method or a subtractive method, and a substrate electrode 6 for connection to the metal bump 7 of the semiconductor element 3 is provided. The object 1 is applied to the mounting position of the semiconductor element 3 including the portion where the substrate electrode 6 is provided.

次に、上記回路基板2の基板電極6が設けられた面と、半導体素子3の金属バンプ7が設けられた面とを対向させると共に前記基板電極6と金属バンプ7とを位置合わせし、この状態で半導体素子3の背面(基板電極6と対向する面とは反対側の面)から熱盤等のボンディングツール8を用いてこの半導体素子3を熱圧接し、回路基板2と半導体素子3とを接着することにより、半導体装置4が得られる。熱圧接する際の圧接条件としては、回路基板2の種類によって制約を受けるため特に限定されるものではないが、例えば有機基板を用いる場合には、樹脂温度が100〜250℃の範囲で数秒から数十秒間圧接すれば良い。また、エポキシ樹脂組成物1を塗布する前に、塗布したエポキシ樹脂組成物1に流動性を持たせたり、回路基板2との濡れ性を良くしたりする目的であらかじめ回路基板2を50〜100℃に加温しても良い。   Next, the surface of the circuit board 2 provided with the substrate electrode 6 and the surface of the semiconductor element 3 provided with the metal bumps 7 are opposed to each other, and the substrate electrode 6 and the metal bumps 7 are aligned. In this state, the semiconductor element 3 is thermally pressed from the back surface of the semiconductor element 3 (the surface opposite to the surface facing the substrate electrode 6) using a bonding tool 8 such as a hot platen. The semiconductor device 4 is obtained by bonding. There are no particular limitations on the pressure welding conditions for the heat pressure welding because there are restrictions depending on the type of the circuit board 2, but for example, when using an organic substrate, the resin temperature ranges from several seconds in the range of 100 to 250 ° C. It is sufficient to press contact for several tens of seconds. Before applying the epoxy resin composition 1, the circuit board 2 is preliminarily placed in the range of 50 to 100 for the purpose of giving the applied epoxy resin composition 1 fluidity and improving wettability with the circuit board 2. You may heat to ℃.

また、エポキシ樹脂組成物1の硬化をより完全にするために、100〜175℃で0.5〜2時間加熱して後硬化を行うことも好ましい。   Moreover, in order to make the hardening of the epoxy resin composition 1 more complete, it is also preferable to perform post-curing by heating at 100 to 175 ° C. for 0.5 to 2 hours.

このような半導体装置4の製造方法であれば、フリップチップ実装による半導体装置4の製造効率を改善することができ、圧接工程においてエポキシ樹脂組成物1を短時間で硬化させることができるものであり、またこのようにして得られた半導体装置4にあっては、ボイドの発生が抑制された優れた絶縁特性を備える硬化樹脂層5を半導体素子3と回路基板2との間に形成することができるものである。   If it is such a manufacturing method of the semiconductor device 4, the manufacturing efficiency of the semiconductor device 4 by flip chip mounting can be improved, and the epoxy resin composition 1 can be cured in a short time in the press-contacting process. In addition, in the semiconductor device 4 obtained in this way, the cured resin layer 5 having excellent insulating characteristics in which the generation of voids is suppressed can be formed between the semiconductor element 3 and the circuit board 2. It can be done.

以下、本発明を実施例によって具体的に説明する。   Hereinafter, the present invention will be specifically described by way of examples.

まず、実施例1〜6及び比較例1〜4のエポキシ樹脂組成物1を調製するために使用した材料について説明する。各材料の配合量は表1に示す。   First, the material used in order to prepare the epoxy resin composition 1 of Examples 1-6 and Comparative Examples 1-4 is demonstrated. The amount of each material is shown in Table 1.

(エポキシ樹脂)
樹脂A;ビスフェノールF型エポキシ樹脂(ジャパンエポキシレジン株式会社製、品番「得歩コート806」、エポキシ当量160)
樹脂B;ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン株式会社製、品番「エピコオート825」、エポキシ当量172)
樹脂C;ナフタレン環含有エポキシ樹脂(大日本インキ化学工業株式会社製、品番「エピクロンHP−4032」、エポキシ当量143)
樹脂D;脂環式エポキシ樹脂(ダイセル化学工業株式会社製、品番「セロキサイド2021」、エポキシ当量134)
樹脂E;上記化学式(2)で示されるナフタレン環含有4官能型エポキシ樹脂(大日本インキ化学工業株式会社製、品番「エピクロンEXA4701」、エポキシ当量165)
(硬化剤)
硬化剤A;イミダゾール類を核とするマイクロカプセル(微細球粒子)と、エポキシ樹脂との混合物(旭化成ケミカルズ株式会社製、品番「ノバキュアHX3722」、エポキシ樹脂:微細球粒子の質量比2:1)
硬化剤B;アミンアダクト粒子(味の素ファインテクノ株式会社製、品番「アミキュアPN23」)
硬化剤C;上記化学式(1)で示される5−(2,5−ジオキソテトラヒドロ−3−フラニル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物(大日本インキ化学工業株式会社製、品番「B−4400」、硬化剤当量132)
硬化剤D;メチルヘキサヒドロ無水フタル酸(新日本理化株式会社製、品番「MH−700」、硬化剤当量168)
硬化剤E;炭素数10のトリエンと無水マレイン酸から合成された脂環式液状三無水物(ジャパンエポキシレジン株式会社製、品番「YH−306」、硬化剤当量234)
硬化剤F;カチオン重合開始剤(旭電化工業株式会社製、品番「CP−66」)
硬化剤G;2−メチルイミダゾール(四国化成株式会社製、品番「2MZ」)
尚、硬化剤当量とは、エポキシ樹脂に対する硬化剤との化学量論上の官能基のモル比で硬化剤の分子量を除した値である。
(Epoxy resin)
Resin A; Bisphenol F type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., product number “Tokuho Coat 806”, epoxy equivalent 160)
Resin B; Bisphenol A type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., product number “Epicoauto 825”, epoxy equivalent 172)
Resin C: Naphthalene ring-containing epoxy resin (manufactured by Dainippon Ink Chemical Co., Ltd., product number “Epicron HP-4032”, epoxy equivalent 143)
Resin D: Alicyclic epoxy resin (manufactured by Daicel Chemical Industries, Ltd., product number “Celoxide 2021”, epoxy equivalent 134)
Resin E; naphthalene ring-containing tetrafunctional epoxy resin represented by the above chemical formula (2) (manufactured by Dainippon Ink & Chemicals, Inc., product number “Epicron EXA4701”, epoxy equivalent 165)
(Curing agent)
Curing agent A: Mixture of microcapsules (fine sphere particles) having imidazole as a core and epoxy resin (manufactured by Asahi Kasei Chemicals Corporation, product number “Novacure HX3722”, epoxy resin: mass ratio of fine sphere particles 2: 1)
Curing agent B: Amine adduct particles (manufactured by Ajinomoto Fine Techno Co., Ltd., product number “Amicure PN23”)
Curing agent C; 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride represented by the above chemical formula (1) (Dainippon Ink Chemical Co., Ltd.) Product number "B-4400", hardener equivalent 132)
Curing agent D: Methylhexahydrophthalic anhydride (manufactured by Shin Nippon Chemical Co., Ltd., product number “MH-700”, curing agent equivalent 168)
Curing agent E; alicyclic liquid dianhydride synthesized from triene having 10 carbon atoms and maleic anhydride (manufactured by Japan Epoxy Resin Co., Ltd., product number “YH-306”, curing agent equivalent 234)
Curing agent F; cationic polymerization initiator (product number “CP-66” manufactured by Asahi Denka Kogyo Co., Ltd.)
Curing agent G; 2-methylimidazole (manufactured by Shikoku Kasei Co., Ltd., product number “2MZ”)
The curing agent equivalent is a value obtained by dividing the molecular weight of the curing agent by the molar ratio of the stoichiometric functional group to the curing agent with respect to the epoxy resin.

(無機充填材)
充填材A;球状非晶質シリカ(三菱レイヨン株式会社製、品番「シリカエースQS−07」、最大粒径3μm、真比重2.2)
充填材B;球状非晶質シリカ(三菱レイヨン株式会社、品番「アドマファインSE−1050」、最大粒径0.6μm、真比重2.2)
(導電性粒子)
ポリスチレン系の高分子粒子の核の表面にAuめっきを施したもの(積水ファインケミカル株式会社製、品番「ミクロパールAU−205」、粒子径5μm)
(添加剤)
チクソ付与剤 無水シリカ(日本エアロジル株式会社製、品番「AEROSIL300」、比表面積300m2/g)
そして、上記材料を用いて、下記の製造方法A〜Cによりエポキシ樹脂組成物1を調製した。
(Inorganic filler)
Filler A: spherical amorphous silica (manufactured by Mitsubishi Rayon Co., Ltd., product number “Silica Ace QS-07”, maximum particle size 3 μm, true specific gravity 2.2)
Filler B: spherical amorphous silica (Mitsubishi Rayon Co., Ltd., product number “Admafine SE-1050”, maximum particle size 0.6 μm, true specific gravity 2.2)
(Conductive particles)
The surface of polystyrene polymer particles with Au plating (Sekisui Fine Chemical Co., Ltd., product number “Micropearl AU-205”, particle size 5 μm)
(Additive)
Thixotropic agent Anhydrous silica (Nippon Aerosil Co., Ltd., product number “AEROSIL300”, specific surface area 300 m 2 / g)
And the epoxy resin composition 1 was prepared with the following manufacturing method AC using the said material.

(製造方法A)
エポキシ樹脂組成物1の構成成分であるエポキシ樹脂、硬化剤、導電性粒子を表1に示す配合量で配合し、これをプライミクス株式会社製のホモディスパーにて300〜500rpmの条件で分散・混合することにより、エポキシ樹脂組成物1を調製した。このとき、上記化学式(1)で示されるカルボン酸二無水物を併用する場合にはこのカルボン酸二無水物を予めメチルヘキサヒドロ無水フタル酸に溶融混合させた後に組成物中に配合した。
(Production method A)
The epoxy resin, the curing agent, and the conductive particles, which are the constituent components of the epoxy resin composition 1, are blended in the blending amounts shown in Table 1, and this is dispersed and mixed with a homodisper manufactured by Primix Co., Ltd. under a condition of 300 to 500 rpm. Thus, an epoxy resin composition 1 was prepared. At this time, when the carboxylic acid dianhydride represented by the chemical formula (1) was used in combination, the carboxylic acid dianhydride was previously melt-mixed with methylhexahydrophthalic anhydride and then blended into the composition.

(製造方法B)
エポキシ樹脂組成物1の構成成分であるエポキシ樹脂、硬化剤、無機充填材及びその他の成分を表1に示す配合量で配合し、これをプラネタリーミキサーにて混合し、更に3本ロールにて分散することによって、エポキシ樹脂組成物1を調製した。このとき、上記化学式(1)で示されるカルボン酸二無水物を併用する場合にはこのカルボン酸二無水物を予めメチルヘキサヒドロ無水フタル酸に溶融混合させた後に組成物中に配合した。
(Production method B)
The epoxy resin, the curing agent, the inorganic filler, and other components, which are the constituent components of the epoxy resin composition 1, are blended in the blending amounts shown in Table 1, mixed with a planetary mixer, and further mixed with three rolls. The epoxy resin composition 1 was prepared by dispersing. At this time, when the carboxylic acid dianhydride represented by the chemical formula (1) was used in combination, the carboxylic acid dianhydride was previously melt-mixed with methylhexahydrophthalic anhydride and then blended into the composition.

(製造方法C)
エポキシ樹脂組成物1の構成成分であるエポキシ樹脂、硬化剤、無機充填材及びその他の成分を表1に示す配合量で配合し、これをビューラー株式会社製のビーズミルにて分散・混合した後、更にプライミクス株式会社製のホモディスパーにて300〜500rpmの条件で分散・混合することによって、エポキシ樹脂組成物1を調製した。このとき、上記化学式(1)で示されるカルボン酸二無水物を併用する場合にはこのカルボン酸二無水物を予めメチルヘキサヒドロ無水フタル酸に溶融混合させた後に組成物中に配合した。
(Manufacturing method C)
The epoxy resin, which is a constituent of the epoxy resin composition 1, a curing agent, an inorganic filler, and other components are blended in the blending amounts shown in Table 1, and dispersed and mixed in a bead mill manufactured by Buehler Co., Ltd. Furthermore, the epoxy resin composition 1 was prepared by disperse | distributing and mixing on the conditions of 300-500 rpm with the homo disperse made from PRIMIX. At this time, when the carboxylic acid dianhydride represented by the chemical formula (1) was used in combination, the carboxylic acid dianhydride was previously melt-mixed with methylhexahydrophthalic anhydride and then blended into the composition.

尚、表1において、フィラー質量%とは、エポキシ樹脂組成物1全量に対する充填材の配合量の割合を質量百分率で示したものである。   In Table 1, the filler mass% represents the ratio of the amount of filler to the total amount of the epoxy resin composition 1 in terms of mass percentage.

そして、上記のようにして得られた実施例1〜6及び比較例1〜4のエポキシ樹脂組成物1の特性を下記の方法により評価した。   And the characteristic of the epoxy resin composition 1 of Examples 1-6 and Comparative Examples 1-4 obtained as mentioned above was evaluated by the following method.

(1)ゲル化時間
ホットプレートの温度を150±2℃に設定し、このホットプレート上に約1gのエポキシ樹脂を載置し、これを1秒間隔で攪拌して攪拌不能になるまでの時間を測定した。
(1) Gelation time The time until the temperature of the hot plate is set to 150 ± 2 ° C., about 1 g of epoxy resin is placed on the hot plate, and stirred at intervals of 1 second until stirring becomes impossible. Was measured.

(2)初期接続性
回路基板2としてチップ搭載部に基板電極6を形成したFR−5グレードの有機基板を用い、半導体素子3として、ペリフェラル配列の電極に金属バンプ7として高さ20μmのAuメッキバンプを設けた、チップサイズ0.3mm厚、4.2mm角のCMOS(Complementary Metal−Oxide Semiconductor)ゲートアレイ素子を用いた。
(2) Initial connectivity An FR-5 grade organic substrate in which a substrate electrode 6 is formed on a chip mounting portion is used as the circuit substrate 2, and an Au plating having a height of 20 μm is formed as a metal bump 7 on a peripheral array electrode as the semiconductor element 3. A CMOS (Complementary Metal-Oxide Semiconductor) gate array element having a chip size of 0.3 mm thickness and 4.2 mm square provided with bumps was used.

そして、回路基板2のチップ搭載部にエポキシ樹脂組成物1をディスペンサーにて約0.01g塗布した後、回路基板2の基板電極6と半導体素子3の金属バンプ7とを位置合わせし、この状態で1バンプあたりにかかる荷重0.49N(50gf)となるように半導体素子3の背面に荷重をかけると共にエポキシ樹脂組成物1を260℃で5秒間加熱した後、室温まで冷却し、半導体装置4を得た。   Then, after applying about 0.01 g of the epoxy resin composition 1 to the chip mounting portion of the circuit board 2 with a dispenser, the substrate electrode 6 of the circuit board 2 and the metal bump 7 of the semiconductor element 3 are aligned, and this state Then, a load is applied to the back surface of the semiconductor element 3 so that the load applied per bump is 0.49 N (50 gf), and the epoxy resin composition 1 is heated at 260 ° C. for 5 seconds and then cooled to room temperature. Got.

各実施例及び比較例ごとに上記のような半導体装置4を20個作製し、各半導体装置4における回路基板2の導体配線に形成された測定用端子にデジタルマルチメーターのプローブをあてて、電気的動作確認を行い、初期接続性を評価した。そして、各実施例及び比較例ごとに、20個の半導体装置4のうち断線が不良が発生したものの個数にて、初期接続性を評価した。   Twenty semiconductor devices 4 as described above were produced for each example and comparative example, and a digital multimeter probe was applied to the measurement terminals formed on the conductor wiring of the circuit board 2 in each semiconductor device 4 to Operation was confirmed and initial connectivity was evaluated. Then, for each of the examples and comparative examples, the initial connectivity was evaluated based on the number of semiconductor devices 4 in which the disconnection occurred.

(3)フィレット性
上記(2)の初期接続性の評価に用いたものと同一条件で作製した半導体装置4について、半導体素子3の端部と回路基板2との間に形成されるフィレットを観察し、このフィレットの形状、フィレットにおける成分分離の有無を確認した。
(3) Fillet property With respect to the semiconductor device 4 manufactured under the same conditions as those used in the evaluation of the initial connectivity in (2) above, the fillet formed between the end of the semiconductor element 3 and the circuit board 2 is observed. The shape of the fillet and the presence or absence of component separation in the fillet were confirmed.

そして、半導体素子3の四辺に形成されたフィレットが成分分離せずに素子側面全体を覆っており、素子上面に這い上がっていない場合を「○」、素子側面の一部しか保護していないか或いは全部を覆っていてもフィレット先端部に成分分離が認められた場合を「△」、フィレットが形成されていないか或いは形成されていても素子上面に這い上がっている場合は「×」として、評価を行った。   And, when the fillet formed on the four sides of the semiconductor element 3 covers the entire side surface of the element without separating the components and does not crawl up to the upper surface of the element, “○” indicates that only a part of the side surface of the element is protected. Alternatively, “△” indicates that the component separation is recognized at the tip of the fillet even though it covers the whole, and “×” indicates that the fillet is not formed or is crawling up on the upper surface of the element. Evaluation was performed.

(4)ボイド発生量
上記(2)の初期接続性の評価に用いたものと同一条件で作製した半導体装置4について、半導体素子3と回路基板2との間に形成された硬化樹脂層5におけるボイドの発生の有無を複合材料用超音波検査装置で測定して確認した。そして、ボイドの大きさが30μm未満で、全ボイドの面積の合計が半導体素子3の面積に対して1%未満であれば「○」、1%以上であれば「×」と評価した。
(4) Void Generation Amount In the cured resin layer 5 formed between the semiconductor element 3 and the circuit board 2 for the semiconductor device 4 manufactured under the same conditions as those used for the evaluation of the initial connectivity in (2) above. The presence or absence of voids was confirmed by measuring with an ultrasonic inspection apparatus for composite materials. When the size of the void was less than 30 μm and the total area of all the voids was less than 1% with respect to the area of the semiconductor element 3, the evaluation was “◯”, and when it was 1% or more, the evaluation was “X”.

(5)温度サイクル(TC)性
上記(2)の初期接続性の評価に用いたものと同一条件で作製した半導体装置4について、半導体装置4の電気的動作が良品であったものを10個取り出し、これを温度サイクル性を評価するためのサンプルとした。
(5) Temperature Cycle (TC) Property Regarding the semiconductor device 4 manufactured under the same conditions as those used for the evaluation of the initial connectivity in the above (2), ten semiconductor devices 4 in which the electrical operation of the semiconductor device 4 was good. The sample was taken out and used as a sample for evaluating temperature cycleability.

これらのサンプルに−25℃で5分間、125℃で5分間を1サイクルとする気相中での温度サイクルを与え、2000サイクルまで100サイクルごとに半導体装置4の動作確認を導通確認により行い、抵抗値が10%以上上昇したものを動作不良と判定した。そして、10個のサンプルのうち動作不良が発生した個数が5個に達したときのサイクル数にて評価を行った。   These samples were given a temperature cycle in the gas phase of 5 minutes at −25 ° C. and 5 minutes at 125 ° C., and the operation of the semiconductor device 4 was confirmed by conduction confirmation every 100 cycles up to 2000 cycles. When the resistance value increased by 10% or more, it was determined as an operation failure. The evaluation was performed based on the number of cycles when the number of malfunctions among the ten samples reached five.

(6)耐THB信頼性(耐湿絶縁信頼性)
上記(2)の初期接続性の評価に用いたものと同一条件で作製した半導体装置4について、半導体装置4の電気的動作が良品であったものを10個取り出し、これを耐THB信頼性を評価するためのサンプルとした。
(6) THB reliability (moisture-resistant insulation reliability)
As for the semiconductor device 4 manufactured under the same conditions as those used in the evaluation of the initial connectivity in (2) above, 10 semiconductor devices 4 whose electrical operation is good are taken out, and THB reliability is improved. It was set as the sample for evaluation.

これらのサンプルについて、互いに絶縁された測定用端子間に40Vの電圧を印加した状態で85℃/85%RHの雰囲気下に1000時間曝露し、この間、測定用端子間の抵抗値変化をモニタリングした。   These samples were exposed to an atmosphere of 85 ° C./85% RH for 1000 hours with a voltage of 40 V applied between the measurement terminals insulated from each other, and during this time, the change in resistance value between the measurement terminals was monitored. .

そして、測定される抵抗値が105Ω以下となったものを不良とし、不良品数が5個に達した時の通算処理時間にて評価を行った。 Then, the measured resistance value of 10 5 Ω or less was regarded as defective, and the evaluation was performed based on the total processing time when the number of defective products reached five.

(7)ポットライフ
各実施例及び比較例のエポキシ樹脂組成物1を室温下に放置し、このエポキシ樹脂組成物1の粘度が2倍に上昇するまでの時間を測定した。ここで、168時間(1週間)放置しても粘度が2倍に達しなかった場合には十分な可使時間があるものとして測定を中止した。
(7) Pot life The epoxy resin composition 1 of each Example and Comparative Example was allowed to stand at room temperature, and the time until the viscosity of the epoxy resin composition 1 increased twice was measured. Here, when the viscosity did not reach twice even after standing for 168 hours (one week), the measurement was stopped because there was sufficient pot life.

(8)ガラス転移温度(Tg)
各実施例及び比較例のエポキシ樹脂組成物1につき、実施例1〜6及び比較例3〜5については150℃で1時間加熱し、比較例1、2では100℃で1時間で加熱した後150℃で3時間加熱することにより、それぞれ試験片を得た。この試験片を5mm×50mm×0.2mmの寸法に切り出し、これを粘弾性スペクトルメーター(DMA)の曲げモードにて30℃〜260℃の範囲で昇温速度5℃/minで昇温させ、ガラス転移温度を測定した。
(8) Glass transition temperature (Tg)
About the epoxy resin composition 1 of each Example and Comparative Example, Examples 1 to 6 and Comparative Examples 3 to 5 were heated at 150 ° C. for 1 hour, and Comparative Examples 1 and 2 were heated at 100 ° C. for 1 hour. Test pieces were obtained by heating at 150 ° C. for 3 hours. This test piece was cut into a size of 5 mm × 50 mm × 0.2 mm, and this was heated at a heating rate of 5 ° C./min in the range of 30 ° C. to 260 ° C. in a bending mode of a viscoelastic spectrum meter (DMA), The glass transition temperature was measured.

(9)粘度
各実施例及び比較例のエポキシ樹脂組成物1につき、室温(25℃)にてB型粘度計を用いて粘度を測定した。
(9) Viscosity For each epoxy resin composition 1 of each example and comparative example, the viscosity was measured using a B-type viscometer at room temperature (25 ° C.).

(10)線膨張係数
各実施例及び比較例につき、ガラス転移温度(Tg)の測定時と同一条件で試験片を作製した。この試験片を3mm×3mm×15mmの寸法に切り出し、分析計TMAにより、30℃〜260℃の範囲で昇温速度5℃/minで昇温させた場合の線膨張係数を測定した。
(10) Linear expansion coefficient For each of the examples and comparative examples, test pieces were produced under the same conditions as when measuring the glass transition temperature (Tg). The test piece was cut into a size of 3 mm × 3 mm × 15 mm, and the linear expansion coefficient was measured with an analyzer TMA when the temperature was raised in the range of 30 ° C. to 260 ° C. at a temperature rising rate of 5 ° C./min.

以上の結果を表1に併せて示す。   The above results are also shown in Table 1.

Figure 2008050544
Figure 2008050544

この結果によると、実施例1〜6ではゲル化時間が6〜50秒の範囲内(10〜15秒の範囲内)であり、半導体素子3を回路基板2に搭載する際の圧接工程の熱圧接を短時間で実施することができ、電気的な初期接続性、温度サイクル性及び耐THB信頼性も良好であることが確認された。また、この熱圧接時にエアーの巻き込みや成分揮発によるボイド発生もなく、実用的な条件下でも問題なく使用できることが確認された。   According to this result, in Examples 1 to 6, the gelation time is in the range of 6 to 50 seconds (in the range of 10 to 15 seconds), and the heat of the pressure welding process when the semiconductor element 3 is mounted on the circuit board 2 It was confirmed that the pressure contact can be carried out in a short time, and the electrical initial connection property, the temperature cycle property and the THB reliability are also good. In addition, it was confirmed that there was no air entrainment or void generation due to component volatilization during this hot pressing, and it could be used without any problem even under practical conditions.

一方、比較例1,2ではゲル化時間が長すぎて熱圧接条件では完全な硬化物が得られず、またボイド発生量が多かった。これが、実施例1〜6に比べてTC性や耐THB信頼性が著しく悪化した原因と考えられる。   On the other hand, in Comparative Examples 1 and 2, the gelation time was too long, and a completely cured product could not be obtained under the heat-welding conditions, and the amount of void generation was large. This is considered to be the cause that TC property and THB reliability were significantly deteriorated as compared with Examples 1-6.

また、比較例3では、エポキシ樹脂組成物1の硬化物中にボイドは観察されなかったが、ゲル化時間が短すぎて基板電極6と金属バンプ7とが電気的に接続される前にエポキシ樹脂組成物1が硬化した。その結果、比較例3においては初期接続性が全数不良であり、TC性及び耐THB信頼性の評価を行うことができなかった。   Further, in Comparative Example 3, no void was observed in the cured product of the epoxy resin composition 1, but the epoxy was not allowed before the substrate electrode 6 and the metal bump 7 were electrically connected because the gelation time was too short. Resin composition 1 was cured. As a result, in Comparative Example 3, the initial connectivity was entirely poor, and it was not possible to evaluate TC properties and THB resistance reliability.

また、比較例4ではエポキシ樹脂組成物1の硬化物中に多量のボイドが観察され、このボイドの影響によりTC性、及び耐THB信頼性試験において電気的絶縁性が悪化したものと思われる。   Further, in Comparative Example 4, a large amount of voids was observed in the cured product of the epoxy resin composition 1, and it is considered that the electrical insulation was deteriorated in the TC property and the THB reliability test due to the influence of the voids.

比較例5では初期接続性は良好であったが熱硬化性樹脂による被膜で被覆されていないイミダゾールを硬化剤として用いているために、ポットライフが著しく短く、微量塗布に際しては使用可能なものとはならない。   In Comparative Example 5, the initial connectivity was good, but imidazole that was not coated with a thermosetting resin film was used as a curing agent, so that the pot life was remarkably short, and it could be used for a small amount of coating. Must not.

また、比較例6では初期接続性、TC性、及びボイド発生量ともに良好であったがカルボン酸二無水物を含有していないため、耐THB信頼性試験において実施例に比べ硬化物の電気絶縁性が劣る。   In Comparative Example 6, the initial connectivity, TC property, and void generation were good, but no carboxylic dianhydride was contained. Therefore, in the THB reliability test, the electrical insulation of the cured product was compared to the Examples. Inferior.

(a)乃至(d)は半導体装置の製造工程の一例を示す断面図である。(A) thru | or (d) are sectional drawings which show an example of the manufacturing process of a semiconductor device.

符号の説明Explanation of symbols

1 エポキシ樹脂組成物
2 回路基板
3 半導体素子
4 半導体装置
DESCRIPTION OF SYMBOLS 1 Epoxy resin composition 2 Circuit board 3 Semiconductor element 4 Semiconductor device

Claims (10)

エポキシ樹脂及び硬化剤を含有すると共に室温で液状であるエポキシ樹脂組成物において、前記硬化剤が、イミダゾール骨格を有する化合物を核とすると共にこの核の周囲を熱硬化性樹脂による被膜で被覆して得られた微細球粒子とアミンアダクト粒子とのうち少なくとも一方、及び下記化学式(1)に示すカルボン酸二無水物を含有し、且つ前記微細球粒子とアミンアダクト粒子との総量がエポキシ樹脂に対して7〜55質量%の範囲であることを特徴とするエポキシ樹脂組成物。
Figure 2008050544
In an epoxy resin composition that contains an epoxy resin and a curing agent and is liquid at room temperature, the curing agent has a compound having an imidazole skeleton as a core, and the periphery of the core is covered with a film of a thermosetting resin. It contains at least one of the obtained fine sphere particles and amine adduct particles, and carboxylic dianhydride represented by the following chemical formula (1), and the total amount of the fine sphere particles and amine adduct particles is based on the epoxy resin. An epoxy resin composition characterized by being in the range of 7 to 55% by mass.
Figure 2008050544
上記化学式(1)で示されるカルボン酸二無水物が、化学量論上の当量比でエポキシ樹脂100に対して5〜20の範囲となるように含有していることを特徴とする請求項1に記載のエポキシ樹脂組成物。   The carboxylic dianhydride represented by the chemical formula (1) is contained in a stoichiometric equivalent ratio in a range of 5 to 20 with respect to the epoxy resin 100. The epoxy resin composition described in 1. 上記硬化剤が、メチルヘキサヒドロ無水フタル酸を含有することを特徴とする請求項1又は2に記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 1, wherein the curing agent contains methylhexahydrophthalic anhydride. エポキシ樹脂として、ビスフェノールF型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ナフタレン環含有エポキシ樹脂、これらの水素添加型のエポキシ樹脂、脂環式エポキシ樹脂から選択される少なくとも一種を含有することを特徴とする請求項1乃至3のいずれか一項に記載のエポキシ樹脂組成物。   The epoxy resin contains at least one selected from bisphenol F-type epoxy resins, bisphenol A-type epoxy resins, naphthalene ring-containing epoxy resins, hydrogenated epoxy resins, and alicyclic epoxy resins. The epoxy resin composition according to any one of claims 1 to 3. 下記化学式(2)で示されるナフタレン環含有4官能型エポキシ樹脂を含有すると共に、全エポキシ樹脂中におけるエポキシ基に対して、ナフタレン環含有4官能型エポキシ樹脂が有するエポキシ基の占める割合が10〜40%の範囲であることを特徴とする請求項1乃至4のいずれか一項に記載のエポキシ樹脂組成物。
Figure 2008050544
While containing the naphthalene ring containing tetrafunctional epoxy resin shown by following Chemical formula (2), the ratio which the epoxy group which a naphthalene ring containing tetrafunctional epoxy resin has with respect to the epoxy group in all the epoxy resins is 10-10. The epoxy resin composition according to any one of claims 1 to 4, which is in a range of 40%.
Figure 2008050544
導電性粒子をエポキシ樹脂組成物全量に対して1〜20質量%の範囲で含有することを特徴とする請求項1乃至5のいずれか一項に記載のエポキシ樹脂組成物。   6. The epoxy resin composition according to claim 1, wherein the conductive particles are contained in a range of 1 to 20 mass% with respect to the total amount of the epoxy resin composition. 150℃におけるゲル化時間が6〜50秒の範囲であることを特徴とする請求項1乃至6のいずれか一項に記載のエポキシ樹脂組成物。   The epoxy resin composition according to any one of claims 1 to 6, wherein the gelation time at 150 ° C is in the range of 6 to 50 seconds. 充填材として、最大粒径が0.1〜10μmの範囲である球状非晶質シリカを含有することを特徴とする請求項1乃至7のいずれか一項に記載のエポキシ樹脂組成物。   The epoxy resin composition according to any one of claims 1 to 7, wherein the filler contains spherical amorphous silica having a maximum particle size of 0.1 to 10 µm. 請求項1乃至8のいずれか一項に記載のエポキシ樹脂組成物にて半導体素子を封止して成ることを特徴とする半導体装置。   A semiconductor device comprising a semiconductor element sealed with the epoxy resin composition according to claim 1. 請求項1乃至8のいずれか一項に記載のエポキシ樹脂組成物を用いて回路基板と半導体素子とを熱圧接により接着することを特徴とする半導体装置の製造方法。   A method for manufacturing a semiconductor device, comprising: bonding a circuit board and a semiconductor element by hot pressing using the epoxy resin composition according to any one of claims 1 to 8.
JP2006231331A 2006-08-28 2006-08-28 Manufacturing method of semiconductor device Expired - Fee Related JP4816333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006231331A JP4816333B2 (en) 2006-08-28 2006-08-28 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006231331A JP4816333B2 (en) 2006-08-28 2006-08-28 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2008050544A true JP2008050544A (en) 2008-03-06
JP4816333B2 JP4816333B2 (en) 2011-11-16

Family

ID=39234882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006231331A Expired - Fee Related JP4816333B2 (en) 2006-08-28 2006-08-28 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4816333B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100730A (en) * 2008-10-23 2010-05-06 Mitsubishi Rayon Co Ltd Epoxy resin composition
JP2010270265A (en) * 2009-05-25 2010-12-02 Panasonic Electric Works Co Ltd Epoxy resin composition, method for manufacturing semiconductor device, and semiconductor device
JP2011001499A (en) * 2009-06-19 2011-01-06 Mitsubishi Rayon Co Ltd Resin composition for fiber-reinforced composite materials, radical polymerizable prepreg, and method for producing the same
JP2011195778A (en) * 2010-03-23 2011-10-06 Hitachi Chem Co Ltd Polymer curing agent and method for producing the same, resin composition, adhesive for semiconductor, and semiconductor device
JP2014510832A (en) * 2011-04-15 2014-05-01 ダウ グローバル テクノロジーズ エルエルシー Thermosetting cross-linked network
JP2014510833A (en) * 2011-04-15 2014-05-01 ダウ グローバル テクノロジーズ エルエルシー Cross-linking reactive polymer fine particles
JP2015108155A (en) * 2015-02-20 2015-06-11 パナソニックIpマネジメント株式会社 Liquid epoxy resin composition for underfill, structure with mounted component using the same and surface mounting method of mounted component
JP2018165359A (en) * 2017-03-28 2018-10-25 積水化学工業株式会社 Resin composition and inductor

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000198831A (en) * 1998-12-28 2000-07-18 Nagase Chiba Kk Epoxy resin composition and sealing of lsi using the composition
JP2003160642A (en) * 2001-11-27 2003-06-03 Matsushita Electric Works Ltd Semiconductor sealing epoxy resin composition and semiconductor device
JP2003160644A (en) * 2001-11-27 2003-06-03 Matsushita Electric Works Ltd Semiconductor sealing epoxy resin composition and semiconductor device
JP2003160639A (en) * 2001-11-27 2003-06-03 Matsushita Electric Works Ltd Epoxy resin composition and semiconductor device
JP2003160643A (en) * 2001-11-27 2003-06-03 Matsushita Electric Works Ltd Semiconductor sealing epoxy resin composition and semiconductor device
JP2003529643A (en) * 2000-03-31 2003-10-07 ヘンケル ロックタイト コーポレイション Reworkable composition of oxirane or thiirane containing resin and hardener
WO2004069894A1 (en) * 2003-02-06 2004-08-19 Matsushita Electric Works, Ltd. Epoxy resin composition, semiconductor devices having cured layers of the composition, and process for production of the devices
JP2004256646A (en) * 2003-02-25 2004-09-16 Matsushita Electric Works Ltd Resin composition for underfilling, and semiconductor device
JP2005048054A (en) * 2003-07-28 2005-02-24 Matsushita Electric Works Ltd Epoxy resin composition and semiconductor device and method for producing the same
JP2005154564A (en) * 2003-11-25 2005-06-16 Matsushita Electric Works Ltd Epoxy resin composition, semiconductor device, and its manufacturing process
WO2005080502A1 (en) * 2004-02-24 2005-09-01 Matsushita Electric Works, Ltd. Liquid epoxy resin composition for underfill and semiconductor device encapsulated with the composition
JP2006008854A (en) * 2004-06-25 2006-01-12 Matsushita Electric Works Ltd Epoxy resin composition, semiconductor device and its manufacturing method
JP2006206827A (en) * 2005-01-31 2006-08-10 Matsushita Electric Works Ltd Liquid sealing epoxy resin composition and semiconductor device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000198831A (en) * 1998-12-28 2000-07-18 Nagase Chiba Kk Epoxy resin composition and sealing of lsi using the composition
JP2003529643A (en) * 2000-03-31 2003-10-07 ヘンケル ロックタイト コーポレイション Reworkable composition of oxirane or thiirane containing resin and hardener
JP2003160642A (en) * 2001-11-27 2003-06-03 Matsushita Electric Works Ltd Semiconductor sealing epoxy resin composition and semiconductor device
JP2003160644A (en) * 2001-11-27 2003-06-03 Matsushita Electric Works Ltd Semiconductor sealing epoxy resin composition and semiconductor device
JP2003160639A (en) * 2001-11-27 2003-06-03 Matsushita Electric Works Ltd Epoxy resin composition and semiconductor device
JP2003160643A (en) * 2001-11-27 2003-06-03 Matsushita Electric Works Ltd Semiconductor sealing epoxy resin composition and semiconductor device
WO2004069894A1 (en) * 2003-02-06 2004-08-19 Matsushita Electric Works, Ltd. Epoxy resin composition, semiconductor devices having cured layers of the composition, and process for production of the devices
JP2004256646A (en) * 2003-02-25 2004-09-16 Matsushita Electric Works Ltd Resin composition for underfilling, and semiconductor device
JP2005048054A (en) * 2003-07-28 2005-02-24 Matsushita Electric Works Ltd Epoxy resin composition and semiconductor device and method for producing the same
JP2005154564A (en) * 2003-11-25 2005-06-16 Matsushita Electric Works Ltd Epoxy resin composition, semiconductor device, and its manufacturing process
WO2005080502A1 (en) * 2004-02-24 2005-09-01 Matsushita Electric Works, Ltd. Liquid epoxy resin composition for underfill and semiconductor device encapsulated with the composition
JP2006008854A (en) * 2004-06-25 2006-01-12 Matsushita Electric Works Ltd Epoxy resin composition, semiconductor device and its manufacturing method
JP2006206827A (en) * 2005-01-31 2006-08-10 Matsushita Electric Works Ltd Liquid sealing epoxy resin composition and semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100730A (en) * 2008-10-23 2010-05-06 Mitsubishi Rayon Co Ltd Epoxy resin composition
JP2010270265A (en) * 2009-05-25 2010-12-02 Panasonic Electric Works Co Ltd Epoxy resin composition, method for manufacturing semiconductor device, and semiconductor device
JP2011001499A (en) * 2009-06-19 2011-01-06 Mitsubishi Rayon Co Ltd Resin composition for fiber-reinforced composite materials, radical polymerizable prepreg, and method for producing the same
JP2011195778A (en) * 2010-03-23 2011-10-06 Hitachi Chem Co Ltd Polymer curing agent and method for producing the same, resin composition, adhesive for semiconductor, and semiconductor device
JP2014510832A (en) * 2011-04-15 2014-05-01 ダウ グローバル テクノロジーズ エルエルシー Thermosetting cross-linked network
JP2014510833A (en) * 2011-04-15 2014-05-01 ダウ グローバル テクノロジーズ エルエルシー Cross-linking reactive polymer fine particles
JP2015108155A (en) * 2015-02-20 2015-06-11 パナソニックIpマネジメント株式会社 Liquid epoxy resin composition for underfill, structure with mounted component using the same and surface mounting method of mounted component
JP2018165359A (en) * 2017-03-28 2018-10-25 積水化学工業株式会社 Resin composition and inductor
JP7086657B2 (en) 2017-03-28 2022-06-20 積水化学工業株式会社 Resin composition and inductor
JP2022122992A (en) * 2017-03-28 2022-08-23 積水化学工業株式会社 Resin composition and inductor

Also Published As

Publication number Publication date
JP4816333B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP4816333B2 (en) Manufacturing method of semiconductor device
TWI595062B (en) Adhesives for semiconductor, flux, manufacturing method of semiconductor device, and semiconductor device
WO2009123285A1 (en) Flux activator, adhesive resin composition, adhesive paste, adhesive film, semiconductor device fabrication method, and semiconductor device
TWI580754B (en) Semiconductor device and manufacturing method thereof
WO1998028788A1 (en) Manufacture of semiconductor device
JP2009007443A (en) Adhesion film
WO2013125685A1 (en) Semiconductor device and production method therefor
JP2009147231A (en) Packaging method, semiconductor chip, and semiconductor wafer
WO2004059721A1 (en) Electronic component unit
JP3868179B2 (en) Liquid encapsulating resin composition, semiconductor device manufacturing method, and semiconductor device
JP4966221B2 (en) Pre-coated underfill sealing method
JP2003160644A (en) Semiconductor sealing epoxy resin composition and semiconductor device
JP4079125B2 (en) Epoxy resin composition, semiconductor device and manufacturing method thereof
JP3928603B2 (en) Epoxy resin composition, semiconductor device and manufacturing method thereof
JP2002097254A (en) Epoxy resin composition and semiconductor device
JP2003160643A (en) Semiconductor sealing epoxy resin composition and semiconductor device
JP5493327B2 (en) Resin composition for sealing filling, semiconductor device and method for manufacturing the same
JP2007063333A (en) Film adhesive for fixing semiconductor element, semiconductor device using the same and method for manufacturing the semiconductor device
JP4940486B2 (en) Epoxy resin composition, semiconductor device and manufacturing method thereof
JP2003160642A (en) Semiconductor sealing epoxy resin composition and semiconductor device
WO2004069894A1 (en) Epoxy resin composition, semiconductor devices having cured layers of the composition, and process for production of the devices
JP2008189760A (en) Underfill agent, semiconductor device obtained by using the same and method for producing the semiconductor device
JP3906837B2 (en) Epoxy resin composition, semiconductor device and manufacturing method thereof
JP2021093412A (en) Sheet-like resin composition for underfill and semiconductor device using the same
Yim et al. Anisotropic conductive adhesives with enhanced thermal conductivity for flip chip applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4816333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees