WO2009123285A1 - Flux activator, adhesive resin composition, adhesive paste, adhesive film, semiconductor device fabrication method, and semiconductor device - Google Patents

Flux activator, adhesive resin composition, adhesive paste, adhesive film, semiconductor device fabrication method, and semiconductor device Download PDF

Info

Publication number
WO2009123285A1
WO2009123285A1 PCT/JP2009/056889 JP2009056889W WO2009123285A1 WO 2009123285 A1 WO2009123285 A1 WO 2009123285A1 JP 2009056889 W JP2009056889 W JP 2009056889W WO 2009123285 A1 WO2009123285 A1 WO 2009123285A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
resin composition
adhesive resin
circuit board
semiconductor device
Prior art date
Application number
PCT/JP2009/056889
Other languages
French (fr)
Japanese (ja)
Inventor
榎本 哲也
一尊 本田
永井 朗
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to CN2009801045384A priority Critical patent/CN101939379A/en
Publication of WO2009123285A1 publication Critical patent/WO2009123285A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G14/00Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00
    • C08G14/02Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00 of aldehydes
    • C08G14/04Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00 of aldehydes with phenols
    • C08G14/06Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00 of aldehydes with phenols and monomers containing hydrogen attached to nitrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/28Non-macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83856Pre-cured adhesive, i.e. B-stage adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/90Methods for connecting semiconductor or solid state bodies using means for bonding not being attached to, or not being formed on, the body surface to be connected, e.g. pressure contacts using springs or clips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/90Methods for connecting semiconductor or solid state bodies using means for bonding not being attached to, or not being formed on, the body surface to be connected, e.g. pressure contacts using springs or clips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Definitions

  • the present invention relates to a flux activator, an adhesive resin composition, an adhesive paste, an adhesive film, a semiconductor device manufacturing method, and a semiconductor device.
  • Known flip-chip connection methods include metal bonding using solder, tin, etc., metal bonding by applying ultrasonic vibration, and method of maintaining mechanical contact using the shrinkage force of the resin. ing.
  • a method of metal bonding using solder, tin, or the like is widely used.
  • a method using solder exhibits high connection reliability, and thus, such as MPU. Applied to the implementation.
  • a resin sealing and filling method a method in which a semiconductor chip and a substrate are connected using solder or the like and then a liquid sealing resin is injected into the gap using a capillary phenomenon.
  • a flux activator made of rosin, organic acid, or the like is used in order to reduce and remove an oxide film existing on the surface of solder or the like to facilitate metal bonding.
  • the flux activator residue may cause bubbles called voids when the liquid sealing resin is injected, or corrosion of the wiring may occur due to the acid component, resulting in reduced connection reliability. Therefore, a step of cleaning the flux activator residue is essential.
  • the connection pitch is narrowed, the gap between the semiconductor chip and the substrate is narrowed, and thus it may be difficult to clean the flux activator residue.
  • a sealing resin having a property (flux activity) for reducing and removing an oxide film present on the surface of a metal such as solder has been proposed. After supplying these sealing resins onto the substrate, the semiconductor chip and the substrate are connected simultaneously, and at the same time, the gap between the semiconductor chip and the substrate is sealed and filled with the resin, and cleaning of the flux activator residue is omitted. It is demanded.
  • a semiconductor sealing resin containing an epoxy resin and a curing agent containing an oxazine compound is known (see Patent Document 4).
  • the semiconductor sealing resin is for molding a semiconductor chip, a wire or the like on the circuit board, and does not electrically connect the semiconductor chip and the circuit board. That is, the flux activity is not required at all for the semiconductor sealing resin.
  • an oxazine compound is used as a curing agent for an epoxy resin, it is not known at all to be used as a flux activator.
  • the present invention has been made in view of the above circumstances, and shows a flux activator, an adhesive resin composition, an adhesive paste, an adhesive film, an electrical film, which exhibit good flux activity and easily ensure storage stability.
  • An object of the present invention is to provide a method for manufacturing a semiconductor device with high connection reliability and a semiconductor device.
  • the flux activator according to the first aspect of the present invention contains a compound having a condensed polycyclic oxazine skeleton.
  • the flux activator according to the second aspect of the present invention contains a compound obtained by ring-closing condensation of a compound having a phenolic hydroxyl group, formaldehyde, and a compound having a primary amino group.
  • the flux activator of the present invention exhibits good flux activity and easily secures storage stability. Although the detailed reason for showing good flux activity is not clear, it is reduced by a phenolic hydroxyl group formed by opening the oxazine ring by heating, and reduction by electron donating property derived from an unpaired electron of a tertiary nitrogen atom This is presumed to be due to the combined effects. In addition, it is presumed that the storage stability is easily secured because the oxazine ring is stable without opening at low temperatures.
  • the adhesive resin composition of the present invention contains an epoxy resin, a curing agent, and the flux activator.
  • the epoxy resin is cured by the action of the curing agent.
  • the adhesive resin composition of this invention contains the said flux activator, while ensuring favorable flux activity, ensuring of storage stability is easy.
  • the compound having the condensed polycyclic oxazine skeleton in the flux activator is preferably in a liquid state.
  • the adhesiveness of the adhesive resin composition is improved as compared with the case where the compound having a condensed polycyclic oxazine skeleton is a solid substance. Therefore, for example, a plurality of members can be favorably bonded.
  • the compound having a condensed polycyclic oxazine skeleton is preferably in a liquid state at any temperature within a temperature range of 40 to 50 ° C., for example.
  • the curing agent contains imidazoles. In this case, the storage stability of the adhesive resin composition and the heat resistance of the cured product of the adhesive resin composition are improved.
  • the adhesive resin composition further contains an inorganic filler.
  • the linear expansion coefficient (elastic modulus) of the cured product of the adhesive resin composition can be reduced.
  • the adhesive paste of the present invention contains the adhesive resin composition, and the epoxy resin and the curing agent in the adhesive resin composition are liquid. Since the adhesive paste of this invention contains the said adhesive resin composition, while ensuring favorable flux activity, ensuring of storage stability is easy.
  • the adhesive film of the present invention contains the above adhesive resin composition and a thermoplastic resin. Since the adhesive film of this invention contains the said adhesive resin composition, while ensuring favorable flux activity, ensuring of storage stability is easy.
  • the compounding amount of the compound having the condensed polycyclic oxazine skeleton in the adhesive resin composition is 0.5 to 20 parts by mass with 100 parts by mass as the total amount of the thermoplastic resin and the epoxy resin. Is preferred.
  • the compounding amount of the compound having a condensed polycyclic oxazine skeleton is less than 0.5 parts by mass, the flux activity tends not to be sufficiently exhibited.
  • the compounding amount exceeds 20 parts by mass, the film formability is reduced or the adhesive film is cured. The heat resistance of the steel tends to be reduced.
  • the method for manufacturing a semiconductor device of the present invention includes a step of interposing the adhesive resin composition between a circuit board having a first metal electrode and a semiconductor element having a second metal electrode, and the adhesive resin composition. Curing the substrate, bonding the circuit board and the semiconductor element, and electrically connecting the first metal electrode and the second metal electrode.
  • the adhesive resin composition since the adhesive resin composition is used, the electrical connection reliability between the circuit board and the semiconductor element can be improved.
  • a semiconductor device includes a circuit board having a first metal electrode, a semiconductor element having a second metal electrode electrically connected to the first metal electrode, and the circuit board and the semiconductor element. And an adhesive layer made of a cured product of the adhesive resin composition, and arranged to adhere the circuit board and the semiconductor element. Since the semiconductor device of the present invention includes an adhesive layer made of a cured product of the adhesive resin composition, the electrical connection reliability between the circuit board and the semiconductor element is increased.
  • a flux activator an adhesive resin composition, an adhesive paste, an adhesive film, and a semiconductor device with high electrical connection reliability that exhibit good flux activity and easily ensure storage stability.
  • a method and a semiconductor device are provided.
  • the flux activator according to this embodiment contains a compound having a condensed polycyclic oxazine skeleton.
  • a flux activator made of an organic acid such as carboxylic acid it is difficult to ensure storage stability, and problems such as corrosion of wiring due to an acid component occur.
  • the flux activator of the present embodiment exhibits good flux activity and easily secures storage stability.
  • the detailed reason for showing good flux activity is not clear, it is reduced by a phenolic hydroxyl group formed by opening the oxazine ring by heating, and reduction by electron donating property derived from an unpaired electron of a tertiary nitrogen atom This is presumed to be due to the combined effects.
  • the storage stability is easily secured because the oxazine ring is stable without opening at low temperatures.
  • the flux activator reduces and removes the oxide film on the metal surface so that the metal can be easily melted.
  • the flux activator does not inhibit the molten metal from spreading and can achieve a state in which a metal bond is formed.
  • the solder ball becomes larger than the initial diameter and spreads on the surface of the copper plate.
  • the solder ball after melting is subjected to a shear test, the solder ball is not broken at the interface between the solder ball and the copper plate, but is bulk broken of the solder ball.
  • solder wetting spread rate when the rate of change with respect to the initial diameter of the solder ball after melting is defined as a “solder wetting spread rate” described later, the solder wetting spread rate is preferably 20% or more in order to achieve good flux activity. 30% or more, more preferably 40% or more.
  • the compound having a condensed polycyclic oxazine skeleton is not particularly limited, but is a monofunctional compound represented by general formula (I) or a polyfunctional compound represented by general formula (II) or (III). Can be used. An example is benzoxazine.
  • [A] represents a monocyclic or condensed polycyclic aromatic hydrocarbon ring forming a condensed ring so as to share two adjacent carbon atoms with the oxazine ring
  • R 1 and R 2 each represents a functional group selected from a hydrogen atom, an alkyl group, an aryl group, a substituted aryl group, a vinyl group, and an allyl group, and may be all the same or different from each other
  • m is 0 to Represents an integer of 4.
  • [B] represents a monocyclic or condensed polycyclic aromatic hydrocarbon ring forming a condensed ring so as to share two adjacent carbon atoms with respect to the oxazine ring
  • R 3 represents a functional group selected from a hydrogen atom, an alkyl group, an aryl group, a substituted aryl group, a vinyl group, and an allyl group
  • R 4 represents any one of the structures of formulas (i) to (ix), where n is Represents an integer of 1 to 4.
  • [C] represents a monocyclic or condensed polycyclic aromatic hydrocarbon ring forming a condensed ring so as to share two adjacent carbon atoms with respect to the oxazine ring
  • R 5 and R 6 represent a functional group selected from a hydrogen atom, an alkyl group, an aryl group, a substituted aryl group, a vinyl group, and an allyl group
  • R 7 represents any one of the structures of formulas (i) to (ix)
  • N represents an integer of 1 to 4.
  • Preferred examples of the monofunctional compound represented by the general formula (I) include compounds represented by structural formulas (IV) to (XIII).
  • Preferred examples of the polyfunctional compound represented by general formulas (II) and (III) include compounds represented by structural formulas (XIV) to (XVIII).
  • examples of the polyfunctional compound include compounds represented by structural formulas (XIX) and (XX).
  • R 8 represents an aryl group or a substituted aryl group, and x and y represent an integer of 0 or more).
  • the above compounds having a condensed polycyclic oxazine skeleton may be used alone or in combination of two or more.
  • the flux activator according to this embodiment may contain a compound obtained by ring-closing condensation of a compound having a phenolic hydroxyl group, formaldehyde, and a compound having a primary amino group.
  • the flux activator according to the present embodiment can be synthesized by heat-mixing a compound having a phenolic hydroxyl group, formaldehyde, and a compound having a primary amino group, followed by ring-closing condensation.
  • the compound thus obtained is, for example, a compound having a condensed polycyclic oxazine skeleton.
  • phenol substituted phenols, naphthols, substituted naphthols, bisphenols, biphenols, triphenolmethanes, phenol novolacs, phenol aralkyls and the like
  • compound having a primary amino group for example, alkylamines, anilines, substituted anilines, diaminodiphenylmethanes and the like can be used.
  • the adhesive resin composition according to this embodiment contains an epoxy resin, a curing agent, and the flux activator of this embodiment.
  • the adhesive resin composition of the present embodiment exhibits good flux activity and is easy to ensure storage stability.
  • the adhesive resin composition according to the present embodiment is used to connect circuit members having metal electrodes such as bumps and wirings and to metal bond metal electrodes to each other.
  • the epoxy resin is not particularly limited as long as it is bifunctional or higher.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, naphthalene skeleton-containing polyfunctional epoxy resin, dicyclopentadiene skeleton-containing polyfunctional epoxy resin, tri It is desirable to use a polyfunctional epoxy resin containing a phenylmethane skeleton.
  • the properties of these epoxy resins may be liquid or solid at 25 ° C.
  • solid epoxy resin for example, when solder is connected by heating and melting, it is desirable to use a resin whose melting point or softening point of the epoxy resin is lower than the melting point of the solder.
  • imidazoles for example, imidazoles, acid anhydrides, amines, hydrazides, polymercaptans, Lewis acid-amine complexes and the like can be used.
  • imidazoles which are excellent in the storage stability of the adhesive resin composition and the heat resistance of the cured product of the adhesive resin composition are desirable.
  • the curing agent is an imidazole
  • those encapsulating these curing agents with a polyurethane-based or polyester-based polymer substance and making them into microcapsules are preferable because the pot life is extended. These may be used alone or in admixture of two or more.
  • the adhesiveness of the adhesive resin composition is improved as compared with the case where the compound having the condensed polycyclic oxazine skeleton is a solid. Therefore, for example, a plurality of members can be favorably bonded.
  • the compound having a condensed polycyclic oxazine skeleton is liquid at any temperature within a temperature range of 40 to 50 ° C., for example.
  • the adhesive resin composition according to this embodiment may contain an inorganic filler in order to reduce the average coefficient of linear expansion of the cured product of the adhesive resin composition.
  • the inorganic filler material is not particularly limited, and examples thereof include glass, silicon dioxide (silica), aluminum oxide (alumina), titanium oxide (titania), magnesium oxide (magnesia), carbon black, mica, and barium sulfate. It is done. You may use these individually or in mixture of 2 or more types.
  • the material of the inorganic filler is a composite oxide containing two or more types of metal oxides (two or more types of metal oxides are not simply mixed, but the metal oxides are chemically bonded and separated.
  • the average particle size of the inorganic filler is desirably 10 ⁇ m or less in order to prevent the inorganic filler from being trapped between the counter electrodes during the flip chip connection and hindering the electrical connection.
  • two or more inorganic fillers having different average particle diameters may be used in combination.
  • the adhesive resin composition according to this embodiment may contain additives such as a curing accelerator, a silane coupling agent, a titanium coupling agent, an antioxidant, a leveling agent, and an ion trapping agent. These may be used alone or in combination of two or more. What is necessary is just to adjust about a compounding quantity so that the effect of each additive may express.
  • additives such as a curing accelerator, a silane coupling agent, a titanium coupling agent, an antioxidant, a leveling agent, and an ion trapping agent.
  • the flux activator when connecting the solder by heating and melting, it is preferable that the flux activator remains in the adhesive resin composition without being decomposed or volatilized during heating. That is, the minimum temperature at which the thermogravimetric change rate of the flux activator measured by the TGA (Thermal Gravimetry Analysis) method is 0% (the remaining weight is 0) is preferably higher than the melting temperature of the solder. Moreover, when using a solid thing at normal temperature as a flux activator, it is desirable that the melting temperature and softening point temperature of a flux activator are lower than the melting temperature of solder. That is, in order to uniformly remove the oxide film on the solder surface, it is desirable that the flux activator exists in a liquid state at the solder melting temperature.
  • the adhesive paste according to this embodiment contains the adhesive resin composition of this embodiment. Moreover, the epoxy resin and the curing agent in the adhesive resin composition are liquid.
  • the adhesive paste of the present embodiment exhibits good flux activity and easily ensures storage stability.
  • the adhesive film 6a (refer FIG. 2) which concerns on this embodiment contains the adhesive resin composition of this embodiment, and a thermoplastic resin.
  • the adhesive film 6a of the present embodiment exhibits a good flux activity, and it is easy to ensure storage stability.
  • Thermoplastic resins include phenoxy resin, polyimide resin, polyamide resin, polycarbodiimide resin, phenol resin, cyanate ester resin, acrylic resin, polyester resin, polyethylene resin, polyethersulfone resin, polyetherimide resin, polyvinyl acetal resin, urethane Examples thereof include resins and acrylic rubber. Among them, phenoxy resin, polyimide resin, cyanate ester resin, polycarbodiimide resin, and the like that are excellent in heat resistance and film formability are desirable, and phenoxy resin and polyimide resin are more preferable. Particularly preferred is a phenoxy resin having a fluorene skeleton in the molecule.
  • the weight average molecular weight of the thermoplastic resin is desirably greater than 5000, more desirably 10,000 or more, and even more desirably 20000 or more. When the weight average molecular weight is 5000 or less, the film forming ability tends to decrease.
  • the weight average molecular weight is a value measured in terms of polystyrene using GPC (Gel Permeation Chromatography).
  • these thermoplastic resins can be used alone or as a mixture or copolymer of two or more.
  • the blending amount of the thermoplastic resin is preferably 5 to 50 parts by mass, more preferably 5 to 40 parts by mass with respect to 100 parts by mass of the total amount of the thermoplastic resin and the epoxy resin. It is particularly preferable to use parts. If the blending amount is less than 5 parts by mass, film formation tends to be difficult, and if it exceeds 50 parts by mass, the viscosity tends to increase and the possibility of poor connection tends to increase.
  • the blending amount of the epoxy resin is preferably 10 to 90 parts by weight, more preferably 15 to 90 parts by weight, and more preferably 20 to 80 parts by weight with respect to 100 parts by weight of the total amount of the thermoplastic resin and the epoxy resin. It is particularly preferable that If this blending amount is less than 10 parts by mass, the heat resistance of the cured product tends to decrease, and if it exceeds 90 parts by mass, the film formability tends to decrease.
  • the blending amount of the curing agent varies depending on the type of the curing agent, but when the curing agent is an imidazole, it is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the epoxy resin, and 1 to 10 parts by mass. More preferably. If the blending amount is less than 0.1 parts by mass, curing is insufficient, and if it exceeds 20 parts by mass, the heat resistance of the cured product tends to be reduced.
  • the compounding amount of the compound having a condensed polycyclic oxazine skeleton is preferably 0.5 to 20 parts by mass, and preferably 0.5 to 15 parts by mass with respect to 100 parts by mass of the total amount of the thermoplastic resin and the epoxy resin. More preferred is 1 to 10 parts by mass. If the blending amount is less than 0.5 parts by mass, the flux activity tends not to be sufficiently exhibited, and if it exceeds 20 parts by mass, the film formability tends to decrease or the heat resistance of the cured product tends to decrease.
  • the type and the optimum blending amount of the compound having a condensed polycyclic oxazine skeleton are not only the presence or absence of flux activity, but also film formability, workability during film production (such as viscosity change of varnish), and film handling (tack) It is preferable to set in consideration of the property, workability such as punching and slit).
  • the compounding amount of the inorganic filler is preferably 200 parts by mass or less, and more preferably 150 parts by mass or less with respect to 100 parts by mass of the total amount of the thermoplastic resin and the epoxy resin. If this amount exceeds 200 parts by mass, the viscosity of the adhesive resin composition increases, the possibility of poor connection increases, and the flexibility of the adhesive film tends to decrease and become brittle.
  • the viscosity of the adhesive film 6a of the present embodiment in an uncured state is desirably 100 Pa ⁇ s or less at 150 ° C., more desirably 50 Pa ⁇ s or less, and further desirably 30 Pa ⁇ s or less.
  • the viscosity is higher than 100 Pa ⁇ s, the melted metal is prevented from spreading and the possibility of poor connection tends to increase.
  • a shear viscoelasticity measuring device for example, ARES manufactured by TA Instruments Co., Ltd.
  • the viscosity is set at a frequency of 1 to It can be measured under the condition of 10 Hz. Viscosity measurement is performed fully automatically.
  • the adhesive film 6a punched in a circular shape is sandwiched between glass plates, pressed at a predetermined temperature for a predetermined time at a predetermined temperature, and the viscosity is calculated from a change in the thickness of the adhesive film 6a (resin) before and after pressing.
  • the method can be used. That is, it is computable by following Formula (1) (Healey's formula regarding the uniaxial compression flow between parallel plates).
  • the gelation time of the adhesive film 6a of this embodiment at 260 ° C. is desirably 1 to 60 seconds, more desirably 3 to 40 seconds, and further desirably 5 to 30 seconds. If the gelation time is shorter than 1 second, the solder is hardened before melting, and there is a tendency that a connection failure is likely to occur. It tends to be insufficient and reliability is lowered.
  • the gelation time refers to the time until the adhesive film 6a is placed on a hot plate set at 260 ° C., stirred with a spatula or the like, and cannot be stirred.
  • the adhesive film 6a of the present embodiment can be manufactured, for example, as follows. First, a varnish is prepared by mixing a thermoplastic resin, an epoxy resin, a curing agent, an inorganic filler, the flux activator of this embodiment, and other additives in an organic solvent such as toluene, ethyl acetate, methyl ethyl ketone. Subsequently, the varnish is applied onto a film substrate made of a polyethylene terephthalate resin or the like that has been subjected to a release treatment using a knife coater or a roll coater, and then the organic solvent is removed by drying. Thereby, the adhesive film 6a of this embodiment can be formed on a film base material.
  • a varnish is prepared by mixing a thermoplastic resin, an epoxy resin, a curing agent, an inorganic filler, the flux activator of this embodiment, and other additives in an organic solvent such as toluene, ethyl acetate, methyl ethyl ket
  • FIG. 1 is a cross-sectional view schematically showing an example of a semiconductor device according to the embodiment.
  • a semiconductor device 10 shown in FIG. 1 includes a circuit board 21, a semiconductor element 22, and an adhesive layer 6 disposed between the circuit board 21 and the semiconductor element 22.
  • the adhesive layer 6 adheres the circuit board 21 and the semiconductor element 22 and is made of a cured product of the adhesive resin composition of the present embodiment.
  • the adhesive layer 6 may be made of a cured product of the adhesive film 6a or adhesive paste of the present embodiment.
  • the circuit board 21 includes a substrate 7 such as an interposer and a wiring 4 (first metal electrode) provided on one surface of the substrate 7. On the other surface of the substrate 7, an electrode pad 2 and a solder ball 1 are provided in this order.
  • the circuit board 21 may be a semiconductor chip.
  • the substrate 7 is made of an insulating material such as glass epoxy, polyimide, polyester, or ceramic.
  • the wiring 4 is made of a metal material such as copper, for example.
  • the wiring 4 may be patterned by forming a metal layer on the substrate 7 and removing unnecessary portions of the metal layer by etching.
  • the wiring 4 may be patterned on the substrate 7 by copper plating or the like, or may be patterned by printing a conductive substance on the substrate 7.
  • a metal layer made of low melting point solder, high melting point solder, tin, indium, gold, nickel, silver, copper, palladium, or the like may be formed on the surface of the wiring 4.
  • This metal layer may be composed of only a single component or may be composed of a plurality of components. Moreover, you may have the structure where the some metal layer was laminated
  • the semiconductor element 22 includes a semiconductor chip 5 and bumps 3 (second metal electrodes) electrically connected to the semiconductor chip 5.
  • the bump 3 is electrically connected to the wiring 4.
  • the constituent material of the semiconductor chip 5 is not particularly limited, and various semiconductors such as elemental semiconductors such as silicon and germanium, and compound semiconductors such as gallium arsenide and indium phosphide can be used.
  • the bump 3 is a conductive protrusion. Examples of the material of the bump 3 include low melting point solder, high melting point solder, tin, indium, gold, silver, and copper.
  • the bump 3 may be composed of only a single component or may be composed of a plurality of components.
  • the bump 3 may have a laminated structure including a metal layer made of these components.
  • the semiconductor element 22 may not include the bump 3, and the circuit board 21 may include the bump 3 on the wiring 4.
  • the wiring 4 of the circuit board 21 and the bump 3 of the semiconductor element 22 are metal-bonded. Since the semiconductor device 10 includes the adhesive layer 6 made of a cured product of the adhesive resin composition of the present embodiment, the electrical connection reliability between the wiring 4 of the circuit board 21 and the bump 3 of the semiconductor element 22 is improved. It can be improved. Further, the electrical insulation reliability between the adjacent wirings 4 and between the adjacent bumps 3 can be improved.
  • FIG. 2 is a process cross-sectional view schematically showing an example of a method for manufacturing a semiconductor device according to the embodiment.
  • a method for manufacturing the semiconductor device 10 shown in FIG. 1 will be described.
  • the circuit board 21 is prepared by forming the wiring 4 on the board 7.
  • the adhesive film 6 a of this embodiment is attached to the circuit board 21 so as to cover the wiring 4.
  • Affixing can be performed by a hot press, roll lamination, vacuum lamination, or the like.
  • the supply amount of the adhesive film 6a is preferably set according to the pasting area and the thickness of the adhesive film 6a.
  • the supply amount of the adhesive film 6a when the adhesive film 6a is attached to the circuit board 21 is defined by the size of the semiconductor chip 5, the height of the bump 3, etc., and can be easily controlled by the area and thickness of the adhesive film 6a. Can do.
  • the circuit board 21 with the adhesive film 6a attached is placed on the stage 20 of the connecting device such as a flip chip bonder. Further, the semiconductor element 22 is attached to the head 17 of the connection device.
  • the adhesive film 6 a is interposed between the wiring 4 of the circuit board 21 and the bump 3 of the semiconductor element 22. In addition, it may replace with the adhesive film 6a and may use the adhesive resin composition and adhesive paste of this embodiment.
  • the adhesive film 6a may be affixed to the semiconductor chip 5, and after adhering the adhesive film 6a to the semiconductor wafer, the semiconductor chip 5 to which the adhesive film 6a is affixed is diced into individual pieces. May be produced.
  • the adhesive film 6a is cured by heat and pressure using a connecting device such as a flip chip bonder.
  • a connecting device such as a flip chip bonder.
  • the circuit board 21 and the semiconductor element 22 are bonded together, and the wiring 4 of the circuit board 21 and the bumps 3 of the semiconductor element 22 are electrically connected.
  • the circuit board 21 and the semiconductor element 22 are aligned.
  • the circuit board 21 and the semiconductor element 22 are pressed while being heated at a temperature equal to or higher than the melting point of the bump 3 (for example, the melting point of solder).
  • the circuit board 21 and the semiconductor element 22 are connected, and the gap between the circuit board 21 and the semiconductor element 22 is sealed and filled with the molten adhesive film 6a.
  • the oxide film on the surface of the bump 3 is reduced and removed by the flux activity of the adhesive film 6a, the bump 3 is melted, and the wiring 4 and the bump 3 are metal-bonded.
  • the adhesive layer 6 is formed by curing the adhesive film 6a. In this way, the semiconductor device 10 is manufactured.
  • the wiring 4 and the bump 3 may be metal-bonded as follows. First, the circuit board 21 and the semiconductor element 22 are aligned. Subsequently, the circuit board 21 and the semiconductor element 22 are pressed while being heated at a temperature at which the bumps 3 do not melt. As a result, the adhesive film 6a is melted to remove the adhesive film 6a between the wiring 4 and the bump 3, and the gap between the circuit board 21 and the semiconductor element 22 is sealed and filled. As a result, the circuit board 21 and the semiconductor element 22 are temporarily fixed. Thereafter, the bump 3 is melted by heat treatment in a reflow furnace, and the circuit board 21 and the semiconductor element 22 are connected.
  • the semiconductor device 10 may be heat-treated in a heating oven or the like to further cure the adhesive film 6a.
  • the adhesive film 6a is used, the electrical connection reliability between the circuit board 21 and the semiconductor element 22 can be improved. Therefore, the productivity of the semiconductor device 10 is improved.
  • the adhesive film 6a cut out in pieces may be attached to the circuit board 21 or the bumps 3 of the semiconductor element 22 are formed. It may be pasted on the surface.
  • the adhesive film 6a is attached to the whole of the plurality of circuit boards 21 and the semiconductor elements 22 are connected. Also good.
  • the adhesive film 6a may be attached to a semiconductor wafer before being singulated into semiconductor elements 22 and diced into semiconductor elements 22 by dicing.
  • the transmittance of the adhesive film 6a is 10% or more with respect to light having a wavelength of 555 nm.
  • the transmittance of the adhesive film 6a is 10% or more with respect to light having a wavelength of 555 nm.
  • the above-described transmittance can be achieved by making the refractive index of the inorganic filler and the refractive index of the resin in the adhesive film 6a substantially the same.
  • the refractive index of the inorganic filler is 1.5 to 1.7 with respect to the refractive index of the epoxy resin of about 1.6.
  • the inorganic filler material exhibiting such a refractive index include barium sulfate, magnesium oxide, composite oxide composed of silicon dioxide and titanium oxide, composite oxide composed of silicon dioxide and aluminum oxide, and composite composed of boron oxide and aluminum oxide. Examples thereof include oxides, composite oxides composed of silicon dioxide, aluminum oxide, and magnesium oxide.
  • FIG. 3 is a cross-sectional view schematically showing an example of a semiconductor device according to another embodiment.
  • the semiconductor device 30 shown in FIG. 3 includes a circuit board 31, a semiconductor element 10a, and an adhesive layer 12 disposed between the circuit board 31 and the semiconductor element 10a.
  • the semiconductor element 10 a has a structure similar to that of the semiconductor device 10.
  • the adhesive layer 12 is made of a cured product of the adhesive resin composition of the present embodiment while adhering the circuit board 31 and the semiconductor element 10a.
  • the adhesive layer 12 may be made of a cured product of the adhesive film 6a or adhesive paste of the present embodiment.
  • the circuit board 31 is, for example, a motherboard.
  • the circuit board 31 includes a substrate 14 and an inner layer wiring 9 formed inside the substrate 14.
  • a wiring 11 (first metal electrode) is formed on the surface of the substrate 14.
  • the wiring 11 is electrically connected to the solder ball 1 (second metal electrode) of the semiconductor element 10a.
  • a via 15 is formed on the surface of the substrate 14, and a conductor layer 15 a is formed in the via 15.
  • a through hole 13 is formed in the substrate 14, and a conductor layer 13 a is formed in the through hole 13.
  • the semiconductor device 30 is, for example, a semiconductor package.
  • Examples of the semiconductor package in which the semiconductor chip is mounted on the interposer include CSP (chip size package) and BGA (ball grid array).
  • CSP chip size package
  • BGA ball grid array
  • a semiconductor package in which the semiconductor chip can be mounted on the circuit board 31 without using an interposer by rewiring the electrode portion of the semiconductor chip on the surface of the semiconductor chip for example, a so-called wafer level package is available. Can be mentioned.
  • the electrical connection reliability between the circuit board 31 and the semiconductor element 10a can be improved.
  • a semiconductor device may be manufactured using an adhesive paste or other adhesive resin composition.
  • thermoplastic resin 25 parts by mass of a phenoxy resin FX293 (manufactured by Toto Kasei Co., Ltd., product name), as an epoxy resin, 30 parts by mass of a solid polyfunctional epoxy resin EP1032H60 (manufactured by Japan Epoxy Resin, product name) and a liquid bisphenol A type epoxy Resin EP828 (manufactured by Japan Epoxy Resin, product name) 45 parts by mass, a compound having a condensed polycyclic oxazine skeleton (flux activator), 5 parts by mass of the compounds shown in Table 1, and SE6050 (AD Corporation) A varnish was prepared by dissolving and mixing 100 parts by mass of Matex, product name, average particle size 2 ⁇ m) in a toluene-ethyl acetate solvent so that the solid concentration was 60 to 70%.
  • the varnish was applied onto a separator film (PET film) using a knife coater and then dried in an oven at 70 ° C. for 10 minutes to produce adhesive films of Production Examples 1 to 5 having a thickness of 40 to 45 ⁇ m. did.
  • Two adhesive films were overlapped with a hot roll laminator to adjust the thickness to 80 to 90 ⁇ m.
  • the volatilization end temperature of the flux activator shown in Table 1 (the lowest temperature at which the thermogravimetric change rate becomes 0%) was measured. The measurement was performed using a TG / DTA6300 (product name) manufactured by Seiko Instruments Inc. at a temperature rising rate of 10 ° C./min, an air flow rate of 200 ml / min, a measurement temperature range of 30 to 300 ° C., and a sample weight of 5 to 10 mg. .
  • the measurement results of the volatilization end temperature are shown in Table 1.
  • a mode in which the fracture occurred at the interface between the solder ball and the copper foil was designated as an A mode
  • B mode a mode in which the solder ball was bulk fractured
  • the B mode was designated as acceptable.
  • the shear test was conducted using a bond tester series 4000 (product name) manufactured by Daisy Corporation at room temperature (25 ° C.) under conditions of a shear height of 50 ⁇ m and a shear rate of 100 ⁇ m / s.
  • the results of the flux activity evaluation (number of remaining solder balls, solder wetting spread rate, shear test result) are shown in Table 1.
  • thermoplastic resin 25 parts by mass of a phenoxy resin FX293 (manufactured by Toto Kasei Co., Ltd., product name), as an epoxy resin, 30 parts by mass of a solid polyfunctional epoxy resin EP1032H60 (manufactured by Japan Epoxy Resin, product name) and a liquid bisphenol A type epoxy Resin EP828 (made by Japan Epoxy Resin, product name) 45 parts by mass, as curing agent 2,4-dihydroxymethyl-5-phenylimidazole 2PHZ (product name, manufactured by Shikoku Kasei Kogyo Co., Ltd.), 3 parts by mass, condensed polycyclic oxazine As a compound having a skeleton (flux activator), 5 parts by mass of the compound shown in Table 2 and 100 parts by mass of SE6050 (product name, manufactured by Admatechs Co., Ltd.) as a spherical silica fill
  • Comparative Example 3 An adhesive film of Comparative Example 3 was produced in the same manner as Examples 1 to 3 and Comparative Examples 1 and 2 except that the amount of the spherical silica filler was 220 parts by mass.
  • the radius of the adhesive film after pressurization was measured with a microscope, and the viscosity (Pa ⁇ s) at 150 ° C. was calculated according to the above-described formula (1).
  • Z / Z 0 (r 0 / r) Formula 2 (3)
  • Z 0 Thickness of the adhesive film before pressurization
  • Z Thickness of the adhesive film after pressurization
  • r 0 Radius of the adhesive film before pressurization (Because it is punched at a diameter of 4 mm, it is 2 mm.)
  • r radius of the adhesive film after pressing
  • Adhesive film cut into a 10mm square in the chip mounting area of the printed circuit board JKIT TYPE III (product name, manufactured by Hitachi Ultra LSI Systems) with a receiving solder layer (Sn-3.0Ag-0.5Cu) formed on the copper wiring surface was affixed at 80 ° C. for 5 seconds with a load of 50 N. After that, the separator film is peeled off and chip Phase 2E175 (product name, size 10 mm square, thickness 550 ⁇ m, number of bumps 832, bump pitch 175 ⁇ m, manufactured by Hitachi ULSI Systems) on which high melting point solder bumps (95Pb-5Sn) are formed and printed.
  • Phase 2E175 product name, size 10 mm square, thickness 550 ⁇ m, number of bumps 832, bump pitch 175 ⁇ m, manufactured by Hitachi ULSI Systems
  • the substrate was connected using a flip chip bonder FCB3 (manufactured by Panasonic Factory Solutions, product name). Specifically, first, the position of the chip Phase2E175 and the printed circuit board is aligned, heated at 180 ° C. for 5 to 30 seconds while being pressurized with a load of 5N, and then heated at 230 to 280 ° C. for 5 seconds while being pressurized with a load of 5N. did. Subsequently, a heat treatment was performed in an oven at 165 ° C. for 2 hours to produce a connection sample.
  • FCB3 manufactured by Panasonic Factory Solutions, product name
  • connection sample was prepared. The thing which was able to take continuity was set as the pass. The cross section of the connection portion between the high melting point solder bump and the receiving solder layer was observed for the conductive material. Those in which the high melting point solder bumps and the receiving solder layer were uniformly wetted and joined were regarded as acceptable, and those in which they were not uniformly wetted and joined were regarded as unacceptable.
  • connection sample was left for 100 hours in a test tank set at a temperature of 130 ° C. and a relative humidity of 85%. Thereafter, a continuity test was performed. When the resistance change rate is within ⁇ 10% compared to the connection resistance before leaving, the test was accepted. In addition, about the thing which failed in the cross-sectional observation of solder joint evaluation, moisture resistance reliability evaluation was not performed.
  • An adhesive film was attached to a polyimide substrate having a comb pattern made of copper wiring formed with a wiring width of 20 ⁇ m and a distance between wirings of 40 ⁇ m at 80 ° C. for 5 seconds so as to cover the comb pattern with a load of 100 N. After the separator film was peeled off, heat treatment was performed in an oven at 165 ° C. for 2 hours to prepare a sample for evaluation.
  • the evaluation sample was left for 100 hours in a test tank set at a temperature of 130 ° C. and a relative humidity of 85%.
  • IMV migration tester MIG-8600 product name
  • the insulation resistance of the sample for evaluation in the test tank was continuously measured.
  • An evaluation sample having an insulation resistance of 10 6 ⁇ or more during measurement for 100 hours was regarded as acceptable.
  • the insulation reliability evaluation was not performed about the thing which failed in the cross-sectional observation of solder joint property evaluation.
  • ⁇ in Table 3 indicates “pass” and ⁇ indicates “fail”.
  • Examples 1 to 3 to which the flux activator was added did not lower the physical properties of the adhesive film compared to Comparative Example 1 to which no flux activator was added. .
  • Examples 1 to 3 showed good solderability, moisture resistance reliability, and insulation reliability.
  • the solderability was good, but a defect occurred in the insulation reliability evaluation.
  • Comparative Example 3 as a result of cross-sectional observation, the high melting point solder bump and the receiving solder layer were not wet uniformly. It is thought that since the adhesive film has a high viscosity, the molten solder has been inhibited from spreading.
  • the adhesive films of Examples 1 to 3 exhibit good flux activity.
  • the metal bonding is facilitated by using the adhesive films of Examples 1 to 3, the electrical connection reliability is improved.
  • 6a adhesive film, 6, 12 ... adhesive layer, 10, 30 ... semiconductor device, 21, 31 ... circuit board, 22, 10a ... semiconductor element.

Abstract

Disclosed is a flux activator that comprises a compound with a condensed polycyclic oxazine skeleton.

Description

フラックス活性剤、接着剤樹脂組成物、接着ペースト、接着フィルム、半導体装置の製造方法、及び半導体装置Flux activator, adhesive resin composition, adhesive paste, adhesive film, semiconductor device manufacturing method, and semiconductor device
 本発明は、フラックス活性剤、接着剤樹脂組成物、接着ペースト、接着フィルム、半導体装置の製造方法、及び半導体装置に関する。 The present invention relates to a flux activator, an adhesive resin composition, an adhesive paste, an adhesive film, a semiconductor device manufacturing method, and a semiconductor device.
 近年、電子機器の小型化、高機能化の進展に伴って、半導体装置に対して小型化、薄型化及び電気特性の向上(高周波伝送への対応など)が求められている。このため、従来のワイヤーボンディングで半導体チップを基板に実装する方式から、半導体チップにバンプと呼ばれる導電性の突起を形成して基板電極と直接接続するフリップチップ接続方式への移行が始まっている。 In recent years, with the progress of miniaturization and high functionality of electronic devices, there has been a demand for miniaturization, thinning, and improvement of electrical characteristics (corresponding to high frequency transmission, etc.) for semiconductor devices. For this reason, a shift from a conventional method of mounting a semiconductor chip to a substrate by wire bonding to a flip chip connection method in which conductive protrusions called bumps are formed on the semiconductor chip and directly connected to the substrate electrode has begun.
 フリップチップ接続方式としては、はんだやスズなどを用いて金属接合させる方法、超音波振動を印加して金属接合させる方法、樹脂の収縮力を利用して機械的接触を保持する方法などが知られている。これらの中でも、生産性や接続信頼性の観点から、はんだやスズなどを用いて金属接合させる方法が広く用いられており、特にはんだを用いる方法は、高い接続信頼性を示すことからMPUなどの実装に適用されている。 Known flip-chip connection methods include metal bonding using solder, tin, etc., metal bonding by applying ultrasonic vibration, and method of maintaining mechanical contact using the shrinkage force of the resin. ing. Among these, from the viewpoint of productivity and connection reliability, a method of metal bonding using solder, tin, or the like is widely used. Particularly, a method using solder exhibits high connection reliability, and thus, such as MPU. Applied to the implementation.
 フリップチップ接続方式では半導体チップと基板の熱膨張係数差に由来する熱応力が接続部に集中して接続部を破壊するおそれがある。そのため、この熱応力を分散して接続信頼性を高めるために、半導体チップと基板との間の空隙を樹脂で封止充てんする必要がある。一般に、樹脂の封止充てん方式としては、半導体チップと基板とをはんだなどを用いて接続した後、毛細管現象を利用して空隙に液状封止樹脂を注入する方式が採用されている。半導体チップと基板とを接続する際には、はんだなどの表面に存在する酸化膜を還元除去して金属接合を容易にするために、ロジンや有機酸などからなるフラックス活性剤を用いている。しかし、フラックス活性剤の残渣が残ると、液状封止樹脂を注入した場合にボイドと呼ばれる気泡が発生する原因になったり、酸成分によって配線の腐食が発生し、接続信頼性が低下する。そのため、フラックス活性剤の残渣を洗浄する工程が必須である。しかし、近年、接続ピッチの狭ピッチ化に伴い、半導体チップと基板との間の空隙が狭くなっているため、フラックス活性剤の残渣の洗浄が困難になる場合がある。さらに、半導体チップと基板との間の狭い空隙に液状封止樹脂を注入するのに長時間を要して生産性が低下するという課題がある。 In the flip-chip connection method, there is a risk that thermal stress derived from the difference in thermal expansion coefficient between the semiconductor chip and the substrate concentrates on the connection portion and breaks the connection portion. Therefore, in order to disperse this thermal stress and improve connection reliability, it is necessary to seal and fill the gap between the semiconductor chip and the substrate. Generally, as a resin sealing and filling method, a method in which a semiconductor chip and a substrate are connected using solder or the like and then a liquid sealing resin is injected into the gap using a capillary phenomenon. When connecting the semiconductor chip and the substrate, a flux activator made of rosin, organic acid, or the like is used in order to reduce and remove an oxide film existing on the surface of solder or the like to facilitate metal bonding. However, if the flux activator residue remains, it may cause bubbles called voids when the liquid sealing resin is injected, or corrosion of the wiring may occur due to the acid component, resulting in reduced connection reliability. Therefore, a step of cleaning the flux activator residue is essential. However, in recent years, as the connection pitch is narrowed, the gap between the semiconductor chip and the substrate is narrowed, and thus it may be difficult to clean the flux activator residue. Furthermore, there is a problem that it takes a long time to inject the liquid sealing resin into a narrow gap between the semiconductor chip and the substrate and the productivity is lowered.
 そこで、はんだなどの金属の表面に存在する酸化膜を還元除去する性質(フラックス活性)を示す封止樹脂が提案されている。これらの封止樹脂を基板上に供給した後、半導体チップと基板とを接続すると同時に、半導体チップと基板との間の空隙を樹脂で封止充てんし、フラックス活性剤の残渣の洗浄を省略することが求められている。 Therefore, a sealing resin having a property (flux activity) for reducing and removing an oxide film present on the surface of a metal such as solder has been proposed. After supplying these sealing resins onto the substrate, the semiconductor chip and the substrate are connected simultaneously, and at the same time, the gap between the semiconductor chip and the substrate is sealed and filled with the resin, and cleaning of the flux activator residue is omitted. It is demanded.
特開2001-223227号公報JP 2001-223227 A 特開2005-272547号公報JP 2005-272547 A 特開2006-169407号公報JP 2006-169407 A 特開2001-278954号公報Japanese Patent Laid-Open No. 2001-27895
 フラックス活性を示す封止樹脂として、カルボン酸などの有機酸を配合したものが検討されている。しかし、カルボン酸などの有機酸は、封止樹脂に広く用いられているエポキシ樹脂の硬化剤として作用することから、反応性の制御や保存安定性の確保が困難である。また、酸成分によって配線の腐食が発生し、絶縁信頼性が低下する場合がある。また、封止樹脂が液状の場合、ディスペンスなどで基板上に封止樹脂を塗布する際に、樹脂粘度の経時変化によって、供給量を安定的に制御することが困難になる場合がある。 As a sealing resin exhibiting flux activity, those containing an organic acid such as carboxylic acid have been studied. However, since organic acids such as carboxylic acids act as curing agents for epoxy resins widely used for sealing resins, it is difficult to control reactivity and ensure storage stability. In addition, the corrosion of the wiring may occur due to the acid component, and the insulation reliability may decrease. In addition, when the sealing resin is in a liquid state, when the sealing resin is applied onto the substrate by dispensing or the like, it may be difficult to stably control the supply amount due to a change in the resin viscosity over time.
 一方、エポキシ樹脂と、オキサジン化合物を含む硬化剤とを含有する半導体封止用樹脂が知られている(特許文献4参照)。半導体封止用樹脂は、回路基板上の半導体チップやワイヤ等をモールドするためのものであり、半導体チップと回路基板とを電気的に接続するものではない。すなわち、半導体封止用樹脂ではフラックス活性が全く必要とされない。また、オキサジン化合物をエポキシ樹脂の硬化剤として用いることは知られていたものの、フラックス活性剤として用いることは全く知られていない。 On the other hand, a semiconductor sealing resin containing an epoxy resin and a curing agent containing an oxazine compound is known (see Patent Document 4). The semiconductor sealing resin is for molding a semiconductor chip, a wire or the like on the circuit board, and does not electrically connect the semiconductor chip and the circuit board. That is, the flux activity is not required at all for the semiconductor sealing resin. Further, although it has been known that an oxazine compound is used as a curing agent for an epoxy resin, it is not known at all to be used as a flux activator.
 本発明は、上記事情に鑑みて為されたものであり、良好なフラックス活性を示すと共に、保存安定性の確保が容易なフラックス活性剤、接着剤樹脂組成物、接着ペースト、接着フィルム、電気的な接続信頼性の高い半導体装置の製造方法、及び半導体装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and shows a flux activator, an adhesive resin composition, an adhesive paste, an adhesive film, an electrical film, which exhibit good flux activity and easily ensure storage stability. An object of the present invention is to provide a method for manufacturing a semiconductor device with high connection reliability and a semiconductor device.
 上述の課題を解決するため、本発明の第1側面に係るフラックス活性剤は、縮合多環オキサジン骨格を有する化合物を含有する。本発明の第2側面に係るフラックス活性剤は、フェノール性水酸基を有する化合物と、ホルムアルデヒドと、1級アミノ基を有する化合物と、を閉環縮合して得られる化合物を含有する。 In order to solve the above-mentioned problem, the flux activator according to the first aspect of the present invention contains a compound having a condensed polycyclic oxazine skeleton. The flux activator according to the second aspect of the present invention contains a compound obtained by ring-closing condensation of a compound having a phenolic hydroxyl group, formaldehyde, and a compound having a primary amino group.
 カルボン酸等の有機酸からなるフラックス活性剤では、保存安定性の確保が困難であり、酸成分によって配線を腐食してしまう等の問題が発生する。これに対して、本発明のフラックス活性剤では、良好なフラックス活性を示すと共に、保存安定性の確保が容易である。良好なフラックス活性を示す詳細な理由は明らかではないが、加熱によりオキサジン環が開環して生成するフェノール性水酸基による還元作用と、3級窒素原子の不対電子に由来する電子供与性による還元作用とが併せて発現するからと推測される。また、保存安定性の確保が容易なのは、低温ではオキサジン環が開環せずに安定しているからと推測される。 With flux activators made of organic acids such as carboxylic acids, it is difficult to ensure storage stability, and problems such as corrosion of wiring due to acid components occur. On the other hand, the flux activator of the present invention exhibits good flux activity and easily secures storage stability. Although the detailed reason for showing good flux activity is not clear, it is reduced by a phenolic hydroxyl group formed by opening the oxazine ring by heating, and reduction by electron donating property derived from an unpaired electron of a tertiary nitrogen atom This is presumed to be due to the combined effects. In addition, it is presumed that the storage stability is easily secured because the oxazine ring is stable without opening at low temperatures.
 本発明の接着剤樹脂組成物は、エポキシ樹脂と、硬化剤と、上記フラックス活性剤と、を含有する。本発明の接着剤樹脂組成物を加熱すると、硬化剤の作用によってエポキシ樹脂が硬化する。これにより、例えば複数の部材同士を接着することができる。ここで、本発明の接着剤樹脂組成物は上記フラックス活性剤を含有するので、良好なフラックス活性を示すと共に、保存安定性の確保が容易である。 The adhesive resin composition of the present invention contains an epoxy resin, a curing agent, and the flux activator. When the adhesive resin composition of the present invention is heated, the epoxy resin is cured by the action of the curing agent. Thereby, for example, a plurality of members can be bonded together. Here, since the adhesive resin composition of this invention contains the said flux activator, while ensuring favorable flux activity, ensuring of storage stability is easy.
 また、前記フラックス活性剤中の前記縮合多環オキサジン骨格を有する化合物が液状であることが好ましい。この場合、縮合多環オキサジン骨格を有する化合物が固形物の場合に比べて、接着剤樹脂組成物の接着性が向上する。そのため、例えば複数の部材同士を良好に接着することができる。なお、縮合多環オキサジン骨格を有する化合物は、例えば40~50℃の温度範囲におけるいずれかの温度において液状であることが好ましい。 In addition, the compound having the condensed polycyclic oxazine skeleton in the flux activator is preferably in a liquid state. In this case, the adhesiveness of the adhesive resin composition is improved as compared with the case where the compound having a condensed polycyclic oxazine skeleton is a solid substance. Therefore, for example, a plurality of members can be favorably bonded. The compound having a condensed polycyclic oxazine skeleton is preferably in a liquid state at any temperature within a temperature range of 40 to 50 ° C., for example.
 また、前記硬化剤が、イミダゾール類を含むことが好ましい。この場合、接着剤樹脂組成物の保存安定性及び接着剤樹脂組成物の硬化物の耐熱性が向上する。 Further, it is preferable that the curing agent contains imidazoles. In this case, the storage stability of the adhesive resin composition and the heat resistance of the cured product of the adhesive resin composition are improved.
 また、上記接着剤樹脂組成物が無機フィラーを更に含有することが好ましい。この場合、接着剤樹脂組成物の硬化物の線膨張係数(弾性率)を小さくすることができる。 Moreover, it is preferable that the adhesive resin composition further contains an inorganic filler. In this case, the linear expansion coefficient (elastic modulus) of the cured product of the adhesive resin composition can be reduced.
 本発明の接着ペーストは、上記接着剤樹脂組成物を含有し、前記接着剤樹脂組成物中の前記エポキシ樹脂及び前記硬化剤が液状である。本発明の接着ペーストは上記接着剤樹脂組成物を含有するので、良好なフラックス活性を示すと共に、保存安定性の確保が容易である。 The adhesive paste of the present invention contains the adhesive resin composition, and the epoxy resin and the curing agent in the adhesive resin composition are liquid. Since the adhesive paste of this invention contains the said adhesive resin composition, while ensuring favorable flux activity, ensuring of storage stability is easy.
 本発明の接着フィルムは、上記接着剤樹脂組成物と、熱可塑性樹脂と、を含有する。本発明の接着フィルムは上記接着剤樹脂組成物を含有するので、良好なフラックス活性を示すと共に、保存安定性の確保が容易である。 The adhesive film of the present invention contains the above adhesive resin composition and a thermoplastic resin. Since the adhesive film of this invention contains the said adhesive resin composition, while ensuring favorable flux activity, ensuring of storage stability is easy.
 また、前記接着剤樹脂組成物中の前記縮合多環オキサジン骨格を有する化合物の配合量は、前記熱可塑性樹脂及び前記エポキシ樹脂の総量を100質量部として、0.5~20質量部であることが好ましい。縮合多環オキサジン骨格を有する化合物の配合量が0.5質量部未満では、フラックス活性が充分発揮されない傾向にあり、20質量部を超えると、フィルム形成性が低下したり、接着フィルムの硬化物の耐熱性が低下する傾向にある。 The compounding amount of the compound having the condensed polycyclic oxazine skeleton in the adhesive resin composition is 0.5 to 20 parts by mass with 100 parts by mass as the total amount of the thermoplastic resin and the epoxy resin. Is preferred. When the compounding amount of the compound having a condensed polycyclic oxazine skeleton is less than 0.5 parts by mass, the flux activity tends not to be sufficiently exhibited. When the compounding amount exceeds 20 parts by mass, the film formability is reduced or the adhesive film is cured. The heat resistance of the steel tends to be reduced.
 本発明の半導体装置の製造方法は、第1金属電極を有する回路基板と第2金属電極を有する半導体素子との間に、上記接着剤樹脂組成物を介在させる工程と、前記接着剤樹脂組成物を硬化させることによって、前記回路基板と前記半導体素子とを接着すると共に、前記第1金属電極と前記第2金属電極とを電気的に接続する工程と、を含む。本発明の半導体装置の製造方法では、上記接着剤樹脂組成物を用いているので、回路基板と半導体素子との電気的な接続信頼性を向上できる。 The method for manufacturing a semiconductor device of the present invention includes a step of interposing the adhesive resin composition between a circuit board having a first metal electrode and a semiconductor element having a second metal electrode, and the adhesive resin composition. Curing the substrate, bonding the circuit board and the semiconductor element, and electrically connecting the first metal electrode and the second metal electrode. In the manufacturing method of the semiconductor device of the present invention, since the adhesive resin composition is used, the electrical connection reliability between the circuit board and the semiconductor element can be improved.
 本発明の半導体装置は、第1金属電極を有する回路基板と、前記第1金属電極と電気的に接続された第2金属電極を有する半導体素子と、前記回路基板と前記半導体素子との間に配置され、前記回路基板と前記半導体素子とを接着すると共に、上記接着剤樹脂組成物の硬化物からなる接着層と、を備える。本発明の半導体装置は、上記接着剤樹脂組成物の硬化物からなる接着層を備えているので、回路基板と半導体素子との電気的な接続信頼性が高くなる。 A semiconductor device according to the present invention includes a circuit board having a first metal electrode, a semiconductor element having a second metal electrode electrically connected to the first metal electrode, and the circuit board and the semiconductor element. And an adhesive layer made of a cured product of the adhesive resin composition, and arranged to adhere the circuit board and the semiconductor element. Since the semiconductor device of the present invention includes an adhesive layer made of a cured product of the adhesive resin composition, the electrical connection reliability between the circuit board and the semiconductor element is increased.
 本発明によれば、良好なフラックス活性を示すと共に、保存安定性の確保が容易なフラックス活性剤、接着剤樹脂組成物、接着ペースト、接着フィルム、電気的な接続信頼性の高い半導体装置の製造方法、及び半導体装置が提供される。 According to the present invention, a flux activator, an adhesive resin composition, an adhesive paste, an adhesive film, and a semiconductor device with high electrical connection reliability that exhibit good flux activity and easily ensure storage stability. A method and a semiconductor device are provided.
実施形態に係る半導体装置の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the semiconductor device which concerns on embodiment. 実施形態に係る半導体装置の製造方法の一例を模式的に示す工程断面図である。It is process sectional drawing which shows typically an example of the manufacturing method of the semiconductor device which concerns on embodiment. 他の実施形態に係る半導体装置の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the semiconductor device which concerns on other embodiment.
 以下、添付図面を参照しながら本発明の実施形態を詳細に説明する。なお、図面の説明において、同一又は同等の要素には同一符号を用い、重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same reference numerals are used for the same or equivalent elements, and duplicate descriptions are omitted.
(フラックス活性剤)
 本実施形態に係るフラックス活性剤は、縮合多環オキサジン骨格を有する化合物を含有する。通常、カルボン酸等の有機酸からなるフラックス活性剤では、保存安定性の確保が困難であり、酸成分によって配線を腐食してしまう等の問題が発生する。これに対して本実施形態のフラックス活性剤では、良好なフラックス活性を示すと共に、保存安定性の確保が容易である。良好なフラックス活性を示す詳細な理由は明らかではないが、加熱によりオキサジン環が開環して生成するフェノール性水酸基による還元作用と、3級窒素原子の不対電子に由来する電子供与性による還元作用とが併せて発現するからと推測される。また、保存安定性の確保が容易なのは、低温ではオキサジン環が開環せずに安定している
からと推測される。
(Flux activator)
The flux activator according to this embodiment contains a compound having a condensed polycyclic oxazine skeleton. Usually, with a flux activator made of an organic acid such as carboxylic acid, it is difficult to ensure storage stability, and problems such as corrosion of wiring due to an acid component occur. On the other hand, the flux activator of the present embodiment exhibits good flux activity and easily secures storage stability. Although the detailed reason for showing good flux activity is not clear, it is reduced by a phenolic hydroxyl group formed by opening the oxazine ring by heating, and reduction by electron donating property derived from an unpaired electron of a tertiary nitrogen atom This is presumed to be due to the combined effects. In addition, it is presumed that the storage stability is easily secured because the oxazine ring is stable without opening at low temperatures.
 フラックス活性剤は、金属表面の酸化膜を還元除去して、金属が容易に溶融できるようにする。また、フラックス活性剤は、溶融した金属が濡れ広がるのを阻害せず、金属接合が形成される状態を達成できる。例えば、はんだボールを銅板上で加熱溶融させることによってはんだボールと銅板とを接続する場合、フラックス活性剤を用いると、はんだボールが初期径よりも大きくなって銅板表面に濡れ広がる。また、溶融後のはんだボールをシェア試験すると、はんだボールと銅板との界面で破断するのではなく、はんだボールのバルク破壊となる。また、溶融後のはんだボールの初期径に対する変化率を、後述する「はんだ濡れ広がり率」として定義すると、良好なフラックス活性を実現するには、はんだ濡れ広がり率が20%以上となることが好ましく、30%以上となることがより好ましく、40%以上となることがさらに好ましい。 The flux activator reduces and removes the oxide film on the metal surface so that the metal can be easily melted. In addition, the flux activator does not inhibit the molten metal from spreading and can achieve a state in which a metal bond is formed. For example, when connecting a solder ball and a copper plate by heating and melting the solder ball on a copper plate, if a flux activator is used, the solder ball becomes larger than the initial diameter and spreads on the surface of the copper plate. In addition, when the solder ball after melting is subjected to a shear test, the solder ball is not broken at the interface between the solder ball and the copper plate, but is bulk broken of the solder ball. Further, when the rate of change with respect to the initial diameter of the solder ball after melting is defined as a “solder wetting spread rate” described later, the solder wetting spread rate is preferably 20% or more in order to achieve good flux activity. 30% or more, more preferably 40% or more.
 縮合多環オキサジン骨格を有する化合物としては、特に制限はないが、一般式(I)で表される単官能型の化合物、一般式(II)や(III)で表される多官能型の化合物を用いることができる。一例としては、ベンゾオキサジンが挙げられる。 The compound having a condensed polycyclic oxazine skeleton is not particularly limited, but is a monofunctional compound represented by general formula (I) or a polyfunctional compound represented by general formula (II) or (III). Can be used. An example is benzoxazine.
Figure JPOXMLDOC01-appb-C000001
(一般式(I)において、[A]はオキサジン環に対して、隣接する二つの炭素原子を共有するように縮合環を形成している単環または縮合多環芳香族炭化水素環を表し、RおよびRは水素原子、アルキル基、アリール基、置換アリール基、ビニル基、アリル基から選ばれる官能基を表し、全て同じであっても、互いに異なっていてもよい。mは0~4の整数を表す。)
Figure JPOXMLDOC01-appb-C000001
(In the general formula (I), [A] represents a monocyclic or condensed polycyclic aromatic hydrocarbon ring forming a condensed ring so as to share two adjacent carbon atoms with the oxazine ring, R 1 and R 2 each represents a functional group selected from a hydrogen atom, an alkyl group, an aryl group, a substituted aryl group, a vinyl group, and an allyl group, and may be all the same or different from each other, and m is 0 to Represents an integer of 4.)
Figure JPOXMLDOC01-appb-C000002
(一般式(II)において、[B]はオキサジン環に対して、隣接する二つの炭素原子を共有するように縮合環を形成している単環または縮合多環芳香族炭化水素環を表し、Rは水素原子、アルキル基、アリール基、置換アリール基、ビニル基、アリル基から選ばれる官能基を表し、Rは式(i)~(ix)の構造のいずれかを表す。nは1~4の整数を表す。)
Figure JPOXMLDOC01-appb-C000002
(In the general formula (II), [B] represents a monocyclic or condensed polycyclic aromatic hydrocarbon ring forming a condensed ring so as to share two adjacent carbon atoms with respect to the oxazine ring, R 3 represents a functional group selected from a hydrogen atom, an alkyl group, an aryl group, a substituted aryl group, a vinyl group, and an allyl group, and R 4 represents any one of the structures of formulas (i) to (ix), where n is Represents an integer of 1 to 4.)
Figure JPOXMLDOC01-appb-C000003
(一般式(III)において、[C]はオキサジン環に対して、隣接する二つの炭素原子を共有するように縮合環を形成している単環または縮合多環芳香族炭化水素環を表し、R及びRは水素原子、アルキル基、アリール基、置換アリール基、ビニル基、アリル基から選ばれる官能基を表し、Rは式(i)~(ix)の構造のいずれかを表す。nは1~4の整数を表す。)
Figure JPOXMLDOC01-appb-C000003
(In the general formula (III), [C] represents a monocyclic or condensed polycyclic aromatic hydrocarbon ring forming a condensed ring so as to share two adjacent carbon atoms with respect to the oxazine ring, R 5 and R 6 represent a functional group selected from a hydrogen atom, an alkyl group, an aryl group, a substituted aryl group, a vinyl group, and an allyl group, and R 7 represents any one of the structures of formulas (i) to (ix) N represents an integer of 1 to 4.)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(I)で表される単官能型の化合物として好ましい化合物としては、例えば、構造式(IV)~(XIII)で表される化合物が挙げられる。一般式(II)及び(III)で表される多官能型の化合物として好ましい化合物としては、例えば、構造式(XIV)~(XVIII)で表される化合物が挙げられる。 Preferred examples of the monofunctional compound represented by the general formula (I) include compounds represented by structural formulas (IV) to (XIII). Preferred examples of the polyfunctional compound represented by general formulas (II) and (III) include compounds represented by structural formulas (XIV) to (XVIII).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 また、多官能型の化合物としては、構造式(XIX)や(XX)で表される化合物も挙げられる。 Also, examples of the polyfunctional compound include compounds represented by structural formulas (XIX) and (XX).
Figure JPOXMLDOC01-appb-C000007
(式中、Rはアリール基または置換アリール基を表し、x及びyは0以上の整数を表す)。
Figure JPOXMLDOC01-appb-C000007
(Wherein R 8 represents an aryl group or a substituted aryl group, and x and y represent an integer of 0 or more).
 上記縮合多環オキサジン骨格を有する化合物は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The above compounds having a condensed polycyclic oxazine skeleton may be used alone or in combination of two or more.
 また、本実施形態に係るフラックス活性剤は、フェノール性水酸基を有する化合物と、ホルムアルデヒドと、1級アミノ基を有する化合物と、を閉環縮合して得られる化合物を含有してもよい。例えば、フェノール性水酸基を有する化合物と、ホルムアルデヒドと、1級アミノ基を有する化合物とを加熱混合して、閉環縮合させることによって、本実施形態に係るフラックス活性剤を合成することができる。このようにして得られる化合物は、例えば縮合多環オキサジン骨格を有する化合物である。 Further, the flux activator according to this embodiment may contain a compound obtained by ring-closing condensation of a compound having a phenolic hydroxyl group, formaldehyde, and a compound having a primary amino group. For example, the flux activator according to the present embodiment can be synthesized by heat-mixing a compound having a phenolic hydroxyl group, formaldehyde, and a compound having a primary amino group, followed by ring-closing condensation. The compound thus obtained is, for example, a compound having a condensed polycyclic oxazine skeleton.
 フェノール性水酸基を有する化合物としては、例えば、フェノール、置換フェノール類、ナフトール類、置換ナフトール類、ビスフェノール類、ビフェノール類、トリフェノールメタン類、フェノールノボラック類、フェノールアラルキル類などを用いることができる。1級アミノ基を有する化合物としては、例えば、アルキルアミン類、アニリン、置換アニリン類、ジアミノジフェニルメタン類などを用いることができる。 As the compound having a phenolic hydroxyl group, for example, phenol, substituted phenols, naphthols, substituted naphthols, bisphenols, biphenols, triphenolmethanes, phenol novolacs, phenol aralkyls and the like can be used. As the compound having a primary amino group, for example, alkylamines, anilines, substituted anilines, diaminodiphenylmethanes and the like can be used.
(接着剤樹脂組成物)
 本実施形態に係る接着剤樹脂組成物は、エポキシ樹脂と、硬化剤と、本実施形態のフラックス活性剤とを含有する。本実施形態の接着剤樹脂組成物は、良好なフラックス活性を示すと共に、保存安定性の確保が容易である。本実施形態に係る接着剤樹脂組成物は、バンプや配線等の金属電極を有する回路部材同士を接続し、金属電極同士を金属接合させるために用いられる。
(Adhesive resin composition)
The adhesive resin composition according to this embodiment contains an epoxy resin, a curing agent, and the flux activator of this embodiment. The adhesive resin composition of the present embodiment exhibits good flux activity and is easy to ensure storage stability. The adhesive resin composition according to the present embodiment is used to connect circuit members having metal electrodes such as bumps and wirings and to metal bond metal electrodes to each other.
 エポキシ樹脂としては、2官能以上であれば特に限定されず、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、ジフェニルスルフィド骨格含有エポキシ樹脂、フェノールアラルキル型多官能エポキシ樹脂、ナフタレン骨格含有多官能エポキシ樹脂、ジシクロペンタジエン骨格含有多官能エポキシ樹脂、トリフェニルメタン骨格含有多官能エポキシ樹脂、アミノフェノール型エポキシ樹脂、ジアミノジフェニルメタン型エポキシ樹脂、その他各種多官能エポキシ樹脂などを用いることができる。これらの中でも、低粘度化、低吸水率、高耐熱性の観点から、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン骨格含有多官能エポキシ樹脂、ジシクロペンタジエン骨格含有多官能エポキシ樹脂、トリフェニルメタン骨格含有多官能エポキシ樹脂などを用いることが望ましい。また、これらのエポキシ樹脂の性状としては25℃で液状でも固形でも構わない。固形のエポキシ樹脂では、例えばはんだを加熱溶融させて接続する場合、エポキシ樹脂の融点または軟化点が、はんだの融点よりも低いものを用いることが望ましい。また、これらのエポキシ樹脂は単独または2種以上を混合して用いてもよい。 The epoxy resin is not particularly limited as long as it is bifunctional or higher. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy Resin, hydroquinone type epoxy resin, diphenyl sulfide skeleton containing epoxy resin, phenol aralkyl type polyfunctional epoxy resin, naphthalene skeleton containing polyfunctional epoxy resin, dicyclopentadiene skeleton containing polyfunctional epoxy resin, triphenylmethane skeleton containing polyfunctional epoxy resin, An aminophenol type epoxy resin, a diaminodiphenylmethane type epoxy resin, and other various polyfunctional epoxy resins can be used. Among these, from the viewpoint of low viscosity, low water absorption, and high heat resistance, bisphenol A type epoxy resin, bisphenol F type epoxy resin, naphthalene skeleton-containing polyfunctional epoxy resin, dicyclopentadiene skeleton-containing polyfunctional epoxy resin, tri It is desirable to use a polyfunctional epoxy resin containing a phenylmethane skeleton. The properties of these epoxy resins may be liquid or solid at 25 ° C. In the case of solid epoxy resin, for example, when solder is connected by heating and melting, it is desirable to use a resin whose melting point or softening point of the epoxy resin is lower than the melting point of the solder. Moreover, you may use these epoxy resins individually or in mixture of 2 or more types.
 硬化剤としては、例えばイミダゾール類、酸無水物類、アミン類、ヒドラジド類、ポリメルカプタン類、ルイス酸-アミン錯体などを用いることができる。その中でも、接着剤樹脂組成物の保存安定性と接着剤樹脂組成物の硬化物の耐熱性に優れるイミダゾール類が望ましい。硬化剤がイミダゾール類の場合、例えば、2MZ、C11Z、2PZ、2E4MZ、2P4MZ、1B2MZ、1B2PZ、2MZ-CN、2E4MZ-CN、2PZ-CN、C11Z-CN、2PZ-CNS、C11Z-CNS、2MZ-A、C11Z-A、2E4MZ-A、2P4MHZ、2PHZ、2MA-OK、2PZ-OK(四国化成工業株式会社製、製品名)などや、これらのイミダゾール類をエポキシ樹脂と付加させた化合物などを用いることができる。また、これら硬化剤をポリウレタン系、ポリエステル系の高分子物質等で被覆してマイクロカプセル化したものは可使時間が延長されるために好ましい。これらは単独または2種以上を混合して使用することもできる。 As the curing agent, for example, imidazoles, acid anhydrides, amines, hydrazides, polymercaptans, Lewis acid-amine complexes and the like can be used. Among these, imidazoles which are excellent in the storage stability of the adhesive resin composition and the heat resistance of the cured product of the adhesive resin composition are desirable. When the curing agent is an imidazole, for example, 2MZ, C11Z, 2PZ, 2E4MZ, 2P4MZ, 1B2MZ, 1B2PZ, 2MZ-CN, 2E4MZ-CN, 2PZ-CN, C11Z-CN, 2PZ-CNS, C11Z-CNS, 2MZ- A, C11Z-A, 2E4MZ-A, 2P4MHZ, 2PHZ, 2MA-OK, 2PZ-OK (manufactured by Shikoku Kasei Kogyo Co., Ltd., product name), etc., and compounds obtained by adding these imidazoles to an epoxy resin are used. be able to. In addition, those encapsulating these curing agents with a polyurethane-based or polyester-based polymer substance and making them into microcapsules are preferable because the pot life is extended. These may be used alone or in admixture of two or more.
 フラックス活性剤中の縮合多環オキサジン骨格を有する化合物が液状である場合、縮合多環オキサジン骨格を有する化合物が固形物の場合に比べて、接着剤樹脂組成物の接着性が向上する。そのため、例えば複数の部材同士を良好に接着することができる。縮合多環オキサジン骨格を有する化合物は、例えば40~50℃の温度範囲におけるいずれかの温度において液状である。 When the compound having a condensed polycyclic oxazine skeleton in the flux activator is liquid, the adhesiveness of the adhesive resin composition is improved as compared with the case where the compound having the condensed polycyclic oxazine skeleton is a solid. Therefore, for example, a plurality of members can be favorably bonded. The compound having a condensed polycyclic oxazine skeleton is liquid at any temperature within a temperature range of 40 to 50 ° C., for example.
 本実施形態に係る接着剤樹脂組成物は、接着剤樹脂組成物の硬化物の平均線膨張係数を小さくするために、無機フィラーを含有していてもよい。無機フィラーの材料としては、特に限定されないが、例えば、ガラス、二酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)、酸化チタン(チタニア)、酸化マグネシウム(マグネシア)、カーボンブラック、マイカ、硫酸バリウムなどが挙げられる。これらは単独または2種以上を混合して使用してもよい。また、無機フィラーの材料は、2種類以上の金属酸化物を含む複合酸化物(2種類以上の金属酸化物が単に混合されてなるものではなく、金属酸化物同士が化学的に結合して分離不能な状態となっているもの)であってもよく、例えば、二酸化ケイ素と酸化チタン、二酸化ケイ素と酸化アルミニウム、酸化ホウ素と酸化アルミニウム、二酸化ケイ素と酸化アルミニウムと酸化マグネシウムなどからなる複合酸化物であってもよい。また、無機フィラーの平均粒径は、フリップチップ接続時に無機フィラーが対向電極間に捕捉されて電気的な接続を阻害することを防止するため、10μm以下であることが望ましい。さらに、接着剤樹脂組成物の粘度や接着剤樹脂組成物の硬化物物性を調整するために、平均粒径の異なる無機フィラーを2種以上組み合わせて用いてもよい。 The adhesive resin composition according to this embodiment may contain an inorganic filler in order to reduce the average coefficient of linear expansion of the cured product of the adhesive resin composition. The inorganic filler material is not particularly limited, and examples thereof include glass, silicon dioxide (silica), aluminum oxide (alumina), titanium oxide (titania), magnesium oxide (magnesia), carbon black, mica, and barium sulfate. It is done. You may use these individually or in mixture of 2 or more types. In addition, the material of the inorganic filler is a composite oxide containing two or more types of metal oxides (two or more types of metal oxides are not simply mixed, but the metal oxides are chemically bonded and separated. For example, a composite oxide composed of silicon dioxide and titanium oxide, silicon dioxide and aluminum oxide, boron oxide and aluminum oxide, silicon dioxide, aluminum oxide and magnesium oxide, etc. There may be. In addition, the average particle size of the inorganic filler is desirably 10 μm or less in order to prevent the inorganic filler from being trapped between the counter electrodes during the flip chip connection and hindering the electrical connection. Furthermore, in order to adjust the viscosity of the adhesive resin composition and the cured product properties of the adhesive resin composition, two or more inorganic fillers having different average particle diameters may be used in combination.
 さらに、本実施形態に係る接着剤樹脂組成物には、硬化促進剤、シランカップリング剤、チタンカップリング剤、酸化防止剤、レベリング剤、イオントラップ剤などの添加剤を配合してもよい。これらは単独で用いてもよいし、2種以上を組み合わせてもよい。配合量については、各添加剤の効果が発現するように調整すればよい。 Furthermore, the adhesive resin composition according to this embodiment may contain additives such as a curing accelerator, a silane coupling agent, a titanium coupling agent, an antioxidant, a leveling agent, and an ion trapping agent. These may be used alone or in combination of two or more. What is necessary is just to adjust about a compounding quantity so that the effect of each additive may express.
 例えばはんだを加熱溶融させて接続する場合、フラックス活性剤が、加熱時に分解、揮発せずに接着剤樹脂組成物中に残っていることが好ましい。すなわち、フラックス活性剤のTGA(ThermalGravimetory Analysis)法によって測定される熱重量変化率が0%となる(残存重量が0となる)最低温度が、はんだの溶融温度より高いことが望ましい。また、フラックス活性剤として常温で固体状のものを用いる場合、フラックス活性剤の溶融温度や軟化点温度がはんだの溶融温度より低いことが望ましい。すなわち、はんだ表面の酸化膜を均一に除去するために、はんだの溶融温度において、フラックス活性剤が液体状態で存在することが望ましい。 For example, when connecting the solder by heating and melting, it is preferable that the flux activator remains in the adhesive resin composition without being decomposed or volatilized during heating. That is, the minimum temperature at which the thermogravimetric change rate of the flux activator measured by the TGA (Thermal Gravimetry Analysis) method is 0% (the remaining weight is 0) is preferably higher than the melting temperature of the solder. Moreover, when using a solid thing at normal temperature as a flux activator, it is desirable that the melting temperature and softening point temperature of a flux activator are lower than the melting temperature of solder. That is, in order to uniformly remove the oxide film on the solder surface, it is desirable that the flux activator exists in a liquid state at the solder melting temperature.
(接着ペースト)
 本実施形態に係る接着ペーストは、本実施形態の接着剤樹脂組成物を含有する。また、接着剤樹脂組成物中のエポキシ樹脂及び硬化剤が液状である。本実施形態の接着ペーストは、良好なフラックス活性を示すと共に、保存安定性の確保が容易である。
(Adhesive paste)
The adhesive paste according to this embodiment contains the adhesive resin composition of this embodiment. Moreover, the epoxy resin and the curing agent in the adhesive resin composition are liquid. The adhesive paste of the present embodiment exhibits good flux activity and easily ensures storage stability.
(接着フィルム)
 本実施形態に係る接着フィルム6a(図2参照)は、本実施形態の接着剤樹脂組成物と、熱可塑性樹脂とを含有する。本実施形態の接着フィルム6aは、良好なフラックス活性を示すと共に、保存安定性の確保が容易である。
(Adhesive film)
The adhesive film 6a (refer FIG. 2) which concerns on this embodiment contains the adhesive resin composition of this embodiment, and a thermoplastic resin. The adhesive film 6a of the present embodiment exhibits a good flux activity, and it is easy to ensure storage stability.
 熱可塑性樹脂としては、フェノキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリカルボジイミド樹脂、フェノール樹脂、シアネートエステル樹脂、アクリル樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリエーテルスルホン樹脂、ポリエーテルイミド樹脂、ポリビニルアセタール樹脂、ウレタン樹脂、アクリルゴム等が挙げられる。その中でも耐熱性およびフィルム形成性に優れるフェノキシ樹脂、ポリイミド樹脂、シアネートエステル樹脂、ポリカルボジイミド樹脂等が望ましく、フェノキシ樹脂、ポリイミド樹脂がより好ましい。また特に好ましいのは、分子内にフルオレン骨格を有するフェノキシ樹脂である。このフェノキシ樹脂のガラス転移温度は約90℃と他のフェノキシ樹脂(約60℃)より高いため、接着フィルムのガラス移転温度が向上する。そのため、耐熱性の向上が期待できる。熱可塑性樹脂の重量平均分子量は、望ましくは5000より大きく、より望ましくは10000以上、さらに望ましくは20000以上である。重量平均分子量が5000以下の場合にはフィルム形成能が低下する傾向にある。なお、重量平均分子量はGPC(Gel Permeation Chromatography)を用いて、ポリスチレン換算で測定した値である。また、これらの熱可塑性樹脂は単独または2種以上の混合体や共重合体として使用することもできる。 Thermoplastic resins include phenoxy resin, polyimide resin, polyamide resin, polycarbodiimide resin, phenol resin, cyanate ester resin, acrylic resin, polyester resin, polyethylene resin, polyethersulfone resin, polyetherimide resin, polyvinyl acetal resin, urethane Examples thereof include resins and acrylic rubber. Among them, phenoxy resin, polyimide resin, cyanate ester resin, polycarbodiimide resin, and the like that are excellent in heat resistance and film formability are desirable, and phenoxy resin and polyimide resin are more preferable. Particularly preferred is a phenoxy resin having a fluorene skeleton in the molecule. Since the glass transition temperature of this phenoxy resin is about 90 ° C., which is higher than that of other phenoxy resins (about 60 ° C.), the glass transfer temperature of the adhesive film is improved. Therefore, improvement in heat resistance can be expected. The weight average molecular weight of the thermoplastic resin is desirably greater than 5000, more desirably 10,000 or more, and even more desirably 20000 or more. When the weight average molecular weight is 5000 or less, the film forming ability tends to decrease. The weight average molecular weight is a value measured in terms of polystyrene using GPC (Gel Permeation Chromatography). Moreover, these thermoplastic resins can be used alone or as a mixture or copolymer of two or more.
 熱可塑性樹脂の配合量は、熱可塑性樹脂及びエポキシ樹脂の総量100質量部に対して、5~50質量部とすることが好ましく、5~40質量部とすることがより好ましく、10~35質量部とすることが特に好ましい。この配合量が5質量部未満ではフィルム形成が困難となる傾向があり、50質量部を超えると粘度が高くなって接続不良が発生する可能性が高くなる傾向にある。 The blending amount of the thermoplastic resin is preferably 5 to 50 parts by mass, more preferably 5 to 40 parts by mass with respect to 100 parts by mass of the total amount of the thermoplastic resin and the epoxy resin. It is particularly preferable to use parts. If the blending amount is less than 5 parts by mass, film formation tends to be difficult, and if it exceeds 50 parts by mass, the viscosity tends to increase and the possibility of poor connection tends to increase.
 エポキシ樹脂の配合量は、熱可塑性樹脂及びエポキシ樹脂の総量100質量部に対して、10~90質量部とすることが好ましく、15~90質量部とすることがより好ましく、20~80質量部とすることが特に好ましい。この配合量が10質量部未満では硬化物の耐熱性が低下する傾向があり、90質量部を超えるとフィルム形成性が低下する傾向にある。 The blending amount of the epoxy resin is preferably 10 to 90 parts by weight, more preferably 15 to 90 parts by weight, and more preferably 20 to 80 parts by weight with respect to 100 parts by weight of the total amount of the thermoplastic resin and the epoxy resin. It is particularly preferable that If this blending amount is less than 10 parts by mass, the heat resistance of the cured product tends to decrease, and if it exceeds 90 parts by mass, the film formability tends to decrease.
 硬化剤の配合量は、硬化剤の種類によって異なるが、硬化剤がイミダゾール類の場合、エポキシ樹脂100質量部に対して0.1~20質量部とすることが好ましく、1~10質量部とすることがより好ましい。この配合量が0.1質量部未満では、硬化が不充分となり、20質量部を超えると硬化物の耐熱性が低下する傾向にある。 The blending amount of the curing agent varies depending on the type of the curing agent, but when the curing agent is an imidazole, it is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the epoxy resin, and 1 to 10 parts by mass. More preferably. If the blending amount is less than 0.1 parts by mass, curing is insufficient, and if it exceeds 20 parts by mass, the heat resistance of the cured product tends to be reduced.
 縮合多環オキサジン骨格を有する化合物の配合量は、熱可塑性樹脂及びエポキシ樹脂の総量100質量部に対して、0.5~20質量部とすることが好ましく、0.5~15質量部とすることがより好ましく、1~10質量部とすることが特に好ましい。この配合量が0.5質量部未満では、フラックス活性が充分発揮されない傾向にあり、20質量部を超えると、フィルム形成性が低下したり、硬化物の耐熱性が低下する傾向にある。なお、縮合多環オキサジン骨格を有する化合物の種類および最適配合量は、フラックス活性の有無だけでなく、フィルム形成性、フィルム製造時の作業性(ワニスの粘度変化など)、フィルムの取扱性(タック性、打ち抜きやスリットなどの加工性など)などを考慮して設定されることが好ましい。 The compounding amount of the compound having a condensed polycyclic oxazine skeleton is preferably 0.5 to 20 parts by mass, and preferably 0.5 to 15 parts by mass with respect to 100 parts by mass of the total amount of the thermoplastic resin and the epoxy resin. More preferred is 1 to 10 parts by mass. If the blending amount is less than 0.5 parts by mass, the flux activity tends not to be sufficiently exhibited, and if it exceeds 20 parts by mass, the film formability tends to decrease or the heat resistance of the cured product tends to decrease. In addition, the type and the optimum blending amount of the compound having a condensed polycyclic oxazine skeleton are not only the presence or absence of flux activity, but also film formability, workability during film production (such as viscosity change of varnish), and film handling (tack) It is preferable to set in consideration of the property, workability such as punching and slit).
 無機フィラーの配合量は、熱可塑性樹脂及びエポキシ樹脂の総量100質量部に対して、200質量部以下とすることが好ましく、150質量部以下とすることがより好ましい。この配合量が200質量部を超えると、接着剤樹脂組成物の粘度が高くなり、接続不良が起きる可能性が高くなり、また、接着フィルムの可とう性が低下して脆くなる傾向がある。 The compounding amount of the inorganic filler is preferably 200 parts by mass or less, and more preferably 150 parts by mass or less with respect to 100 parts by mass of the total amount of the thermoplastic resin and the epoxy resin. If this amount exceeds 200 parts by mass, the viscosity of the adhesive resin composition increases, the possibility of poor connection increases, and the flexibility of the adhesive film tends to decrease and become brittle.
 本実施形態の接着フィルム6aの未硬化状態における粘度は、150℃において100Pa・s以下であることが望ましく、より望ましくは50Pa・s以下であり、さらに望ましくは30Pa・s以下である。粘度が100Pa・sより高いと、溶融した金属が濡れ広がるのを阻害して、接続不良が発生する可能性が高くなる傾向にある。粘度は、ずり粘弾性測定装置(例えば、ティーエーインスツルメント株式会社製 ARES)を用いて、直径8~25mmの平行円板間に接着フィルム6aを挟んで、所定の温度において、周波数1~10Hzの条件下で測定可能である。粘度測定は全自動で行われる。また、円形に打ち抜いた接着フィルム6aをガラス板間に挟み、所定の温度において、所定の圧力で所定の時間加圧し、加圧前後の接着フィルム6a(樹脂)の厚みの変化から粘度を計算する方法を用いることができる。すなわち、次式(1)(平行板間の1軸圧縮流動に関するヒーリーの式)によって、算出できる。 The viscosity of the adhesive film 6a of the present embodiment in an uncured state is desirably 100 Pa · s or less at 150 ° C., more desirably 50 Pa · s or less, and further desirably 30 Pa · s or less. When the viscosity is higher than 100 Pa · s, the melted metal is prevented from spreading and the possibility of poor connection tends to increase. Using a shear viscoelasticity measuring device (for example, ARES manufactured by TA Instruments Co., Ltd.), the viscosity is set at a frequency of 1 to It can be measured under the condition of 10 Hz. Viscosity measurement is performed fully automatically. Further, the adhesive film 6a punched in a circular shape is sandwiched between glass plates, pressed at a predetermined temperature for a predetermined time at a predetermined temperature, and the viscosity is calculated from a change in the thickness of the adhesive film 6a (resin) before and after pressing. The method can be used. That is, it is computable by following Formula (1) (Healey's formula regarding the uniaxial compression flow between parallel plates).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 260℃における本実施形態の接着フィルム6aのゲル化時間は、1~60秒であることが望ましく、より望ましくは3~40秒であり、さらに望ましくは5~30秒である。ゲル化時間が1秒より短いと、はんだなどが溶融する前に硬化してしまい、接続不良が発生する可能性が高くなる傾向にあり、60秒より長いと生産性が低下したり、硬化が不充分になって信頼性が低下する傾向にある。なお、ゲル化時間は、260℃に設定した熱板上に接着フィルム6aを置き、スパチュラなどで攪拌し、攪拌不能になるまでの時間を指す。 The gelation time of the adhesive film 6a of this embodiment at 260 ° C. is desirably 1 to 60 seconds, more desirably 3 to 40 seconds, and further desirably 5 to 30 seconds. If the gelation time is shorter than 1 second, the solder is hardened before melting, and there is a tendency that a connection failure is likely to occur. It tends to be insufficient and reliability is lowered. The gelation time refers to the time until the adhesive film 6a is placed on a hot plate set at 260 ° C., stirred with a spatula or the like, and cannot be stirred.
 本実施形態の接着フィルム6aは、例えば以下のようにして製造することができる。まず、熱可塑性樹脂、エポキシ樹脂、硬化剤、無機フィラー、本実施形態のフラックス活性剤及びその他添加剤をトルエン、酢酸エチル、メチルエチルケトンなどの有機溶媒中で混合することによってワニスを作製する。続いて、そのワニスを、ナイフコーターやロールコーターを用いて、離型処理が施されたポリエチレンテレフタレート樹脂などからなるフィルム基材上に塗布した後、有機溶媒を乾燥除去する。これにより、フィルム基材上に本実施形態の接着フィルム6aを形成することができる。 The adhesive film 6a of the present embodiment can be manufactured, for example, as follows. First, a varnish is prepared by mixing a thermoplastic resin, an epoxy resin, a curing agent, an inorganic filler, the flux activator of this embodiment, and other additives in an organic solvent such as toluene, ethyl acetate, methyl ethyl ketone. Subsequently, the varnish is applied onto a film substrate made of a polyethylene terephthalate resin or the like that has been subjected to a release treatment using a knife coater or a roll coater, and then the organic solvent is removed by drying. Thereby, the adhesive film 6a of this embodiment can be formed on a film base material.
(半導体装置)
 図1は、実施形態に係る半導体装置の一例を模式的に示す断面図である。図1に示される半導体装置10は、回路基板21と、半導体素子22と、回路基板21と半導体素子22との間に配置された接着層6とを備える。接着層6は、回路基板21と半導体素子22とを接着すると共に、本実施形態の接着剤樹脂組成物の硬化物からなる。接着層6は、本実施形態の接着フィルム6aや接着ペーストの硬化物からなってもよい。
(Semiconductor device)
FIG. 1 is a cross-sectional view schematically showing an example of a semiconductor device according to the embodiment. A semiconductor device 10 shown in FIG. 1 includes a circuit board 21, a semiconductor element 22, and an adhesive layer 6 disposed between the circuit board 21 and the semiconductor element 22. The adhesive layer 6 adheres the circuit board 21 and the semiconductor element 22 and is made of a cured product of the adhesive resin composition of the present embodiment. The adhesive layer 6 may be made of a cured product of the adhesive film 6a or adhesive paste of the present embodiment.
 回路基板21は、インターポーザー等の基板7と、基板7の一方の面上に設けられた配線4(第1金属電極)とを備える。基板7の他方の面上には、電極パッド2及びはんだボール1がこの順に設けられている。回路基板21は、半導体チップでもよい。基板7は、例えばガラスエポキシ、ポリイミド、ポリエステル、セラミックなどの絶縁材料からなる。配線4は、例えば銅などの金属材料からなる。配線4は、基板7上に金属層を形成し、金属層の不要な箇所をエッチングにより除去することによってパターン形成されてもよい。また、配線4は、基板7上に銅めっきなどによってパターン形成されてもよいし、基板7上に導電性物質を印刷してパターン形成されてもよい。配線4の表面には、低融点はんだ、高融点はんだ、スズ、インジウム、金、ニッケル、銀、銅、パラジウムなどからなる金属層が形成されていてもよい。この金属層は単一の成分のみで構成されていても、複数の成分から構成されていてもよい。また、複数の金属層が積層された構造をしていてもよい。 The circuit board 21 includes a substrate 7 such as an interposer and a wiring 4 (first metal electrode) provided on one surface of the substrate 7. On the other surface of the substrate 7, an electrode pad 2 and a solder ball 1 are provided in this order. The circuit board 21 may be a semiconductor chip. The substrate 7 is made of an insulating material such as glass epoxy, polyimide, polyester, or ceramic. The wiring 4 is made of a metal material such as copper, for example. The wiring 4 may be patterned by forming a metal layer on the substrate 7 and removing unnecessary portions of the metal layer by etching. The wiring 4 may be patterned on the substrate 7 by copper plating or the like, or may be patterned by printing a conductive substance on the substrate 7. A metal layer made of low melting point solder, high melting point solder, tin, indium, gold, nickel, silver, copper, palladium, or the like may be formed on the surface of the wiring 4. This metal layer may be composed of only a single component or may be composed of a plurality of components. Moreover, you may have the structure where the some metal layer was laminated | stacked.
 半導体素子22は、半導体チップ5と、半導体チップ5に電気的に接続されたバンプ3(第2金属電極)とを備える。バンプ3は、配線4と電気的に接続される。半導体チップ5の構成材料としては、特に限定はなく、シリコン、ゲルマニウムなどの元素半導体、ガリウムヒ素、インジウムリンなどの化合物半導体等、各種半導体を用いることができる。バンプ3は導電性の突起である。バンプ3の材質としては、低融点はんだ、高融点はんだ、スズ、インジウム、金、銀、銅などが挙げられる。バンプ3は、単一の成分のみで構成されていても、複数の成分から構成されていてもよい。また、バンプ3は、これらの成分からなる金属層を含む積層構造を有してもよい。なお、半導体素子22がバンプ3を備えなくてもよいし、回路基板21が配線4上にバンプ3を備えてもよい。 The semiconductor element 22 includes a semiconductor chip 5 and bumps 3 (second metal electrodes) electrically connected to the semiconductor chip 5. The bump 3 is electrically connected to the wiring 4. The constituent material of the semiconductor chip 5 is not particularly limited, and various semiconductors such as elemental semiconductors such as silicon and germanium, and compound semiconductors such as gallium arsenide and indium phosphide can be used. The bump 3 is a conductive protrusion. Examples of the material of the bump 3 include low melting point solder, high melting point solder, tin, indium, gold, silver, and copper. The bump 3 may be composed of only a single component or may be composed of a plurality of components. The bump 3 may have a laminated structure including a metal layer made of these components. The semiconductor element 22 may not include the bump 3, and the circuit board 21 may include the bump 3 on the wiring 4.
 本実施形態の半導体装置10では、回路基板21の配線4と半導体素子22のバンプ3とが金属接合されている。半導体装置10は、本実施形態の接着剤樹脂組成物の硬化物からなる接着層6を備えているので、回路基板21の配線4と半導体素子22のバンプ3との電気的な接続信頼性を向上できる。また、隣り合う配線4間及び隣り合うバンプ3間の電気的な絶縁信頼性を向上できる。 In the semiconductor device 10 of this embodiment, the wiring 4 of the circuit board 21 and the bump 3 of the semiconductor element 22 are metal-bonded. Since the semiconductor device 10 includes the adhesive layer 6 made of a cured product of the adhesive resin composition of the present embodiment, the electrical connection reliability between the wiring 4 of the circuit board 21 and the bump 3 of the semiconductor element 22 is improved. It can be improved. Further, the electrical insulation reliability between the adjacent wirings 4 and between the adjacent bumps 3 can be improved.
 図2は、実施形態に係る半導体装置の製造方法の一例を模式的に示す工程断面図である。一例として、図1に示される半導体装置10の製造方法について説明する。まず、図2(a)に示されるように、基板7上に配線4を形成することによって回路基板21を準備する。続いて、図2(b)に示されるように、配線4を覆うように、回路基板21に本実施形態の接着フィルム6aを貼り付ける。貼り付けは加熱プレス、ロールラミネート、真空ラミネートなどによって行うことができる。接着フィルム6aの供給量は貼付面積と接着フィルム6aの厚みによって設定されることが好ましい。接着フィルム6aを回路基板21に貼り付ける際の接着フィルム6aの供給量は、半導体チップ5の大きさ、バンプ3の高さなどによって規定され、接着フィルム6aの面積と厚みによって容易に制御することができる。 FIG. 2 is a process cross-sectional view schematically showing an example of a method for manufacturing a semiconductor device according to the embodiment. As an example, a method for manufacturing the semiconductor device 10 shown in FIG. 1 will be described. First, as shown in FIG. 2A, the circuit board 21 is prepared by forming the wiring 4 on the board 7. Subsequently, as illustrated in FIG. 2B, the adhesive film 6 a of this embodiment is attached to the circuit board 21 so as to cover the wiring 4. Affixing can be performed by a hot press, roll lamination, vacuum lamination, or the like. The supply amount of the adhesive film 6a is preferably set according to the pasting area and the thickness of the adhesive film 6a. The supply amount of the adhesive film 6a when the adhesive film 6a is attached to the circuit board 21 is defined by the size of the semiconductor chip 5, the height of the bump 3, etc., and can be easily controlled by the area and thickness of the adhesive film 6a. Can do.
 その後、図2(c)に示されるように、フリップチップボンダーなどの接続装置のステージ20上に、接着フィルム6aが貼り付けられた回路基板21を載置する。また、接続装置のヘッド17に半導体素子22を取り付ける。これにより、回路基板21の配線4と半導体素子22のバンプ3との間に接着フィルム6aを介在させる。なお、接着フィルム6aに代えて、本実施形態の接着剤樹脂組成物や接着ペーストを用いてもよい。また、接着フィルム6aは半導体チップ5に貼り付けられてもよく、半導体ウエハに接着フィルム6aを貼り付けた後、ダイシングして個片化することによって、接着フィルム6aが貼り付けられた半導体チップ5を作製してもよい。 Thereafter, as shown in FIG. 2C, the circuit board 21 with the adhesive film 6a attached is placed on the stage 20 of the connecting device such as a flip chip bonder. Further, the semiconductor element 22 is attached to the head 17 of the connection device. Thus, the adhesive film 6 a is interposed between the wiring 4 of the circuit board 21 and the bump 3 of the semiconductor element 22. In addition, it may replace with the adhesive film 6a and may use the adhesive resin composition and adhesive paste of this embodiment. Moreover, the adhesive film 6a may be affixed to the semiconductor chip 5, and after adhering the adhesive film 6a to the semiconductor wafer, the semiconductor chip 5 to which the adhesive film 6a is affixed is diced into individual pieces. May be produced.
 次に、図2(d)に示されるように、フリップチップボンダーなどの接続装置を用いて、加熱加圧により接着フィルム6aを硬化させる。これにより、回路基板21と半導体素子22とを接着すると共に、回路基板21の配線4と半導体素子22のバンプ3とを電気的に接続する。例えば、まず、回路基板21と半導体素子22とを位置合わせする。続いて、回路基板21と半導体素子22とをバンプ3の融点(例えば、はんだの融点)以上の温度で加熱しながら押し付ける。これにより、回路基板21と半導体素子22とを接続すると共に、溶融した接着フィルム6aによって回路基板21と半導体素子22との間の空隙を封止充てんする。この際、接着フィルム6aのフラックス活性によって、バンプ3表面の酸化膜が還元除去され、バンプ3が溶融し、配線4とバンプ3とが金属接合される。接着フィルム6aが硬化することによって、接着層6が形成される。このようにして、半導体装置10を製造する。 Next, as shown in FIG. 2 (d), the adhesive film 6a is cured by heat and pressure using a connecting device such as a flip chip bonder. Thereby, the circuit board 21 and the semiconductor element 22 are bonded together, and the wiring 4 of the circuit board 21 and the bumps 3 of the semiconductor element 22 are electrically connected. For example, first, the circuit board 21 and the semiconductor element 22 are aligned. Subsequently, the circuit board 21 and the semiconductor element 22 are pressed while being heated at a temperature equal to or higher than the melting point of the bump 3 (for example, the melting point of solder). As a result, the circuit board 21 and the semiconductor element 22 are connected, and the gap between the circuit board 21 and the semiconductor element 22 is sealed and filled with the molten adhesive film 6a. At this time, the oxide film on the surface of the bump 3 is reduced and removed by the flux activity of the adhesive film 6a, the bump 3 is melted, and the wiring 4 and the bump 3 are metal-bonded. The adhesive layer 6 is formed by curing the adhesive film 6a. In this way, the semiconductor device 10 is manufactured.
 また、次のように配線4とバンプ3とを金属接合してもよい。まず、回路基板21と半導体素子22とを位置合わせする。続いて、回路基板21と半導体素子22とをバンプ3が溶融しない温度で加熱しながら押し付ける。これにより、接着フィルム6aを溶融させて、配線4とバンプ3との間の接着フィルム6aを除去するとともに、回路基板21と半導体素子22との間の空隙を封止充てんする。その結果、回路基板21と半導体素子22とが仮固定される。その後、リフロー炉で加熱処理することによってバンプ3を溶融させて、回路基板21と半導体素子22とを接続する。 Further, the wiring 4 and the bump 3 may be metal-bonded as follows. First, the circuit board 21 and the semiconductor element 22 are aligned. Subsequently, the circuit board 21 and the semiconductor element 22 are pressed while being heated at a temperature at which the bumps 3 do not melt. As a result, the adhesive film 6a is melted to remove the adhesive film 6a between the wiring 4 and the bump 3, and the gap between the circuit board 21 and the semiconductor element 22 is sealed and filled. As a result, the circuit board 21 and the semiconductor element 22 are temporarily fixed. Thereafter, the bump 3 is melted by heat treatment in a reflow furnace, and the circuit board 21 and the semiconductor element 22 are connected.
 さらに、接続信頼性を高めるために、半導体装置10を加熱オーブンなどで加熱処理し、接着フィルム6aの硬化をさらに進行させてもよい。 Furthermore, in order to improve connection reliability, the semiconductor device 10 may be heat-treated in a heating oven or the like to further cure the adhesive film 6a.
 本実施形態の半導体装置の製造方法では、接着フィルム6aを用いているので、回路基板21と半導体素子22との電気的な接続信頼性を向上できる。よって、半導体装置10の生産性が向上する。 In the manufacturing method of the semiconductor device of this embodiment, since the adhesive film 6a is used, the electrical connection reliability between the circuit board 21 and the semiconductor element 22 can be improved. Therefore, the productivity of the semiconductor device 10 is improved.
 接着フィルム6aを用いて半導体素子22と回路基板21とを接続する場合、個片に切り出した接着フィルム6aを、回路基板21に貼り付けてもよいし、半導体素子22のバンプ3が形成された面に貼り付けてもよい。また、回路基板21を個片化する前に、複数の回路基板21がつながった状態において、複数の回路基板21全体に接着フィルム6aを貼り付け、半導体素子22を接続した後、個片化してもよい。また、半導体素子22に個片化する前の半導体ウエハに接着フィルム6aを貼り付け、ダイシングによって半導体素子22に個片化してもよい。接着フィルム6aを回路基板21または半導体素子22に貼り付けた後に個片化する方法においては、接着フィルム6aの透過率が、波長555nmの光に対して10%以上であることが望ましい。この場合、接着フィルム6aを透過する波長555nmの光を用いて、個片化する位置のマークや、回路基板21と半導体素子22との位置合わせを行うための位置合わせマークを認識することができる。 When the semiconductor element 22 and the circuit board 21 are connected using the adhesive film 6a, the adhesive film 6a cut out in pieces may be attached to the circuit board 21 or the bumps 3 of the semiconductor element 22 are formed. It may be pasted on the surface. In addition, before the circuit board 21 is separated into individual pieces, in a state where the plurality of circuit boards 21 are connected, the adhesive film 6a is attached to the whole of the plurality of circuit boards 21 and the semiconductor elements 22 are connected. Also good. Alternatively, the adhesive film 6a may be attached to a semiconductor wafer before being singulated into semiconductor elements 22 and diced into semiconductor elements 22 by dicing. In the method of separating the adhesive film 6a after being attached to the circuit board 21 or the semiconductor element 22, it is desirable that the transmittance of the adhesive film 6a is 10% or more with respect to light having a wavelength of 555 nm. In this case, using the light having a wavelength of 555 nm transmitted through the adhesive film 6a, it is possible to recognize a mark at a position to be separated into pieces and an alignment mark for aligning the circuit board 21 and the semiconductor element 22. .
 また、接着フィルム6aが無機フィラーを含有している場合、無機フィラーの屈折率と接着フィルム6a中の樹脂の屈折率とをほぼ同一にすることによって、前述の透過率を達成できる。例えば、樹脂としてエポキシ樹脂を用いる場合、エポキシ樹脂の屈折率約1.6に対して、無機フィラーの屈折率を1.5~1.7とすることが望ましい。このような屈折率を示す無機フィラーの材料としては、硫酸バリウム、酸化マグネシウム、二酸化ケイ素と酸化チタンからなる複合酸化物、二酸化ケイ素と酸化アルミニウムからなる複合酸化物、酸化ホウ素と酸化アルミニウムからなる複合酸化物、二酸化ケイ素と酸化アルミニウムと酸化マグネシウムからなる複合酸化物などが挙げられる。 When the adhesive film 6a contains an inorganic filler, the above-described transmittance can be achieved by making the refractive index of the inorganic filler and the refractive index of the resin in the adhesive film 6a substantially the same. For example, when an epoxy resin is used as the resin, it is desirable that the refractive index of the inorganic filler is 1.5 to 1.7 with respect to the refractive index of the epoxy resin of about 1.6. Examples of the inorganic filler material exhibiting such a refractive index include barium sulfate, magnesium oxide, composite oxide composed of silicon dioxide and titanium oxide, composite oxide composed of silicon dioxide and aluminum oxide, and composite composed of boron oxide and aluminum oxide. Examples thereof include oxides, composite oxides composed of silicon dioxide, aluminum oxide, and magnesium oxide.
 図3は、他の実施形態に係る半導体装置の一例を模式的に示す断面図である。図3に示される半導体装置30は、回路基板31と、半導体素子10aと、回路基板31と半導体素子10aとの間に配置された接着層12とを備える。半導体素子10aは、半導体装置10と同様の構造を有する。接着層12は、回路基板31と半導体素子10aとを接着すると共に、本実施形態の接着剤樹脂組成物の硬化物からなる。接着層12は、本実施形態の接着フィルム6aや接着ペーストの硬化物からなってもよい。 FIG. 3 is a cross-sectional view schematically showing an example of a semiconductor device according to another embodiment. The semiconductor device 30 shown in FIG. 3 includes a circuit board 31, a semiconductor element 10a, and an adhesive layer 12 disposed between the circuit board 31 and the semiconductor element 10a. The semiconductor element 10 a has a structure similar to that of the semiconductor device 10. The adhesive layer 12 is made of a cured product of the adhesive resin composition of the present embodiment while adhering the circuit board 31 and the semiconductor element 10a. The adhesive layer 12 may be made of a cured product of the adhesive film 6a or adhesive paste of the present embodiment.
 回路基板31は、例えばマザーボードである。回路基板31は、基板14と、基板14の内部に形成された内層配線9とを備える。基板14の表面には、配線11(第1金属電極)が形成されている。配線11は、半導体素子10aのはんだボール1(第2金属電極)と電気的に接続されている。基板14の表面には、ビア15が形成されており、ビア15内に導体層15aが形成されている。また、基板14には、スルーホール13が形成されており、スルーホール13内に導体層13aが形成されている。 The circuit board 31 is, for example, a motherboard. The circuit board 31 includes a substrate 14 and an inner layer wiring 9 formed inside the substrate 14. A wiring 11 (first metal electrode) is formed on the surface of the substrate 14. The wiring 11 is electrically connected to the solder ball 1 (second metal electrode) of the semiconductor element 10a. A via 15 is formed on the surface of the substrate 14, and a conductor layer 15 a is formed in the via 15. A through hole 13 is formed in the substrate 14, and a conductor layer 13 a is formed in the through hole 13.
 半導体装置30は、例えば半導体パッケージである。インターポーザー上に半導体チップが搭載された半導体パッケージとしては、例えばCSP(チップサイズパッケージ)やBGA(ボールグリッドアレイ)などが挙げられる。また、半導体チップの電極部を半導体チップ表面上で再配線することによって、インターポーザーを用いずに半導体チップを回路基板31に搭載可能とした半導体パッケージとしては、例えば、ウエハーレベルパッケージと呼ばれるものが挙げられる。 The semiconductor device 30 is, for example, a semiconductor package. Examples of the semiconductor package in which the semiconductor chip is mounted on the interposer include CSP (chip size package) and BGA (ball grid array). Further, as a semiconductor package in which the semiconductor chip can be mounted on the circuit board 31 without using an interposer by rewiring the electrode portion of the semiconductor chip on the surface of the semiconductor chip, for example, a so-called wafer level package is available. Can be mentioned.
 本実施形態の半導体装置30では、半導体装置10と同様に、回路基板31と半導体素子10aとの電気的な接続信頼性を向上できる。 In the semiconductor device 30 of the present embodiment, like the semiconductor device 10, the electrical connection reliability between the circuit board 31 and the semiconductor element 10a can be improved.
 以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記実施形態に限定されない。例えば、接着フィルムに代えて、接着ペースト又はその他の接着剤樹脂組成物を用いて半導体装置を製造してもよい。 As mentioned above, although the suitable embodiment of the present invention was described in detail, the present invention is not limited to the above-mentioned embodiment. For example, instead of the adhesive film, a semiconductor device may be manufactured using an adhesive paste or other adhesive resin composition.
(実施例)
 以下、製造例、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(Example)
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on a manufacture example, an Example, and a comparative example, this invention is not limited to a following example.
<製造例1~5>
 熱可塑性樹脂として、フェノキシ樹脂FX293(東都化成株式会社製、製品名)25質量部、エポキシ樹脂として、固形多官能エポキシ樹脂EP1032H60(ジャパンエポキシレジン製、製品名)30質量部及び液状ビスフェノールA型エポキシ樹脂EP828(ジャパンエポキシレジン製、製品名)45質量部、縮合多環オキサジン骨格を有する化合物(フラックス活性剤)として、表1に示す化合物を5質量部、球状シリカフィラーとして、SE6050(株式会社アドマテックス製、製品名、平均粒径2μm)100質量部、をトルエン-酢酸エチル溶媒中に固形分濃度が60~70%になるように溶解混合してワニスを作製した。続いて、ワニスをセパレータフィルム(PETフィルム)上にナイフコーターを用いて塗布した後、70℃のオーブンで10分間乾燥させることによって、厚さ40~45μmの製造例1~5の接着フィルムを作製した。ホットロールラミネータにて接着フィルムを2枚重ね合わせて、厚さを80~90μmに調整した。
<Production Examples 1 to 5>
As a thermoplastic resin, 25 parts by mass of a phenoxy resin FX293 (manufactured by Toto Kasei Co., Ltd., product name), as an epoxy resin, 30 parts by mass of a solid polyfunctional epoxy resin EP1032H60 (manufactured by Japan Epoxy Resin, product name) and a liquid bisphenol A type epoxy Resin EP828 (manufactured by Japan Epoxy Resin, product name) 45 parts by mass, a compound having a condensed polycyclic oxazine skeleton (flux activator), 5 parts by mass of the compounds shown in Table 1, and SE6050 (AD Corporation) A varnish was prepared by dissolving and mixing 100 parts by mass of Matex, product name, average particle size 2 μm) in a toluene-ethyl acetate solvent so that the solid concentration was 60 to 70%. Subsequently, the varnish was applied onto a separator film (PET film) using a knife coater and then dried in an oven at 70 ° C. for 10 minutes to produce adhesive films of Production Examples 1 to 5 having a thickness of 40 to 45 μm. did. Two adhesive films were overlapped with a hot roll laminator to adjust the thickness to 80 to 90 μm.
(揮発終了温度の測定)
 表1に示すフラックス活性剤の揮発終了温度(熱重量変化率が0%となる最低温度)の測定を行った。測定は、セイコーインスツルメント社製TG/DTA6300(製品名)を用いて、昇温速度10℃/min、エア流量200ml/min、測定温度範囲30~300℃、サンプル重量5~10mgで行った。揮発終了温度の測定結果を表1に示す。
(Measurement of volatilization end temperature)
The volatilization end temperature of the flux activator shown in Table 1 (the lowest temperature at which the thermogravimetric change rate becomes 0%) was measured. The measurement was performed using a TG / DTA6300 (product name) manufactured by Seiko Instruments Inc. at a temperature rising rate of 10 ° C./min, an air flow rate of 200 ml / min, a measurement temperature range of 30 to 300 ° C., and a sample weight of 5 to 10 mg. . The measurement results of the volatilization end temperature are shown in Table 1.
(フラックス活性評価)
 製造例1~5の接着フィルムのフラックス活性を以下の手順で評価した。
(Flux activity evaluation)
The flux activity of the adhesive films of Production Examples 1 to 5 was evaluated by the following procedure.
 まず、25mm角に切断した両面銅はく付きガラスエポキシ基板(MCL-E-679F、日立化成工業株式会社製、製品名、厚み0.3mm、脱脂及び酸洗処理済み)の銅はくに、10mm角に切り出した製造例1~5の接着フィルムを貼り付けた。セパレータフィルムをはく離した後、はんだボール(M705(Sn-3Ag-0.5Cu)、千住金属工業株式会社製、製品名、ボール径0.4mm、融点217~220℃)を接着フィルム上に5個配置した。さらに、カバーガラス(サイズ18mm角、厚み0.17mm)をはんだボール上に置いて評価用サンプルを作製した。各接着フィルムについて評価用サンプルを2個ずつ作製し、評価を行った。 First, 10 mm of copper foil on a glass epoxy board (MCL-E-679F, manufactured by Hitachi Chemical Co., Ltd., product name, thickness 0.3 mm, degreased and pickled) that has been cut into 25 mm squares. The adhesive films of Production Examples 1 to 5 cut out at the corners were attached. After the separator film is peeled off, 5 solder balls (M705 (Sn-3Ag-0.5Cu), manufactured by Senju Metal Industry Co., Ltd., product name, ball diameter 0.4 mm, melting point 217 to 220 ° C.) are provided on the adhesive film. Arranged. Furthermore, a cover glass (size 18 mm square, thickness 0.17 mm) was placed on a solder ball to produce an evaluation sample. Two evaluation samples were prepared for each adhesive film and evaluated.
 評価用サンプルを、160℃に加熱した熱板上に30秒置き、引き続いて260℃に加熱した熱板上に30秒置いて、室温(25℃)に戻した。その後、評価用サンプルをメチルエチルケトン中に浸漬して、接着フィルムを溶解除去し、ガラスエポキシ基板の表面に残ったはんだボールの数および直径を計測した。はんだボールの残存数は、10個中残った個数を計測した。はんだ濡れ広がり率は次式(2)に従って算出した。
はんだ濡れ広がり率(%)=(基板表面に残ったはんだボールの直径-初期はんだボールの直径)/初期はんだボールの直径×100   式(2)
The sample for evaluation was placed on a hot plate heated to 160 ° C. for 30 seconds, and subsequently placed on a hot plate heated to 260 ° C. for 30 seconds to return to room temperature (25 ° C.). Thereafter, the sample for evaluation was immersed in methyl ethyl ketone to dissolve and remove the adhesive film, and the number and diameter of solder balls remaining on the surface of the glass epoxy substrate were measured. For the remaining number of solder balls, the remaining number was measured. The solder wetting spread rate was calculated according to the following formula (2).
Solder wetting spread rate (%) = (diameter of solder ball remaining on substrate surface−diameter of initial solder ball) / initial solder ball diameter × 100 formula (2)
 さらに、ガラスエポキシ基板の表面に残ったはんだボールについて、シェア試験を実施した。はんだボールと銅はくとの界面で破断したものをAモード、はんだボールのバルク破壊となったものをBモードとし、Bモードを合格とした。なお、シェア試験はデイジ社製ボンドテスターシリーズ4000(製品名)を用いて、室温(25℃)において、シェア高さ50μm、シェア速度100μm/sの条件で行った。フラックス活性評価の結果(はんだボールの残存数、はんだ濡れ広がり率、シェア試験結果)を表1に示す。 Furthermore, a shear test was performed on the solder balls remaining on the surface of the glass epoxy board. A mode in which the fracture occurred at the interface between the solder ball and the copper foil was designated as an A mode, a mode in which the solder ball was bulk fractured was designated as a B mode, and the B mode was designated as acceptable. The shear test was conducted using a bond tester series 4000 (product name) manufactured by Daisy Corporation at room temperature (25 ° C.) under conditions of a shear height of 50 μm and a shear rate of 100 μm / s. The results of the flux activity evaluation (number of remaining solder balls, solder wetting spread rate, shear test result) are shown in Table 1.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表1に示されるように、製造例4では、フェノキシ樹脂やエポキシ樹脂に存在するアルコール性水酸基に起因すると思われるフラックス活性が見られるが、その効果は不充分である。製造例1~3のように縮合多環オキサジン骨格を有する化合物を用いることによって、製造例4と比較して、はんだボール残存率及びはんだ濡れ広がり率が向上する。また、製造例1~3では、シェア試験においてはんだボールのバルク破壊(Bモード)となり、有機酸である2,5-ジヒドロキシ安息香酸と同等のフラックス活性を示すことが分かる。 As shown in Table 1, in Production Example 4, a flux activity that is considered to be caused by an alcoholic hydroxyl group present in the phenoxy resin or epoxy resin is observed, but the effect is insufficient. By using a compound having a condensed polycyclic oxazine skeleton as in Production Examples 1 to 3, the solder ball residual rate and the solder wetting spread rate are improved as compared with Production Example 4. In addition, it can be seen that in Production Examples 1 to 3, the solder ball was bulk destroyed (B mode) in the shear test and exhibited flux activity equivalent to 2,5-dihydroxybenzoic acid, which is an organic acid.
<実施例1~3及び比較例1、2>
 熱可塑性樹脂として、フェノキシ樹脂FX293(東都化成株式会社製、製品名)25質量部、エポキシ樹脂として、固形多官能エポキシ樹脂EP1032H60(ジャパンエポキシレジン製、製品名)30質量部及び液状ビスフェノールA型エポキシ樹脂EP828(ジャパンエポキシレジン製、製品名)45質量部、硬化剤として、2,4-ジヒドロキシメチル-5-フェニルイミダゾール2PHZ(四国化成工業株式会社製、製品名)3質量部、縮合多環オキサジン骨格を有する化合物(フラックス活性剤)として、表2に示す化合物を5質量部、球状シリカフィラーとしてSE6050(株式会社アドマテックス製、製品名)100質量部をトルエン-酢酸エチル溶媒中に固形分濃度が60~70重量%になるように溶解混合してワニスを作製した。続いて、ワニスをセパレータフィルム(PETフィルム)上にナイフコーターを用いて塗布した後、70℃のオーブンで10分間乾燥させることによって、厚さ40~45μmの実施例1~3及び比較例1、2の接着フィルムを作製した。ホットロールラミネータにて接着フィルムを2枚重ね合わせて、厚さを80~90μmに調整して使用した。
<Examples 1 to 3 and Comparative Examples 1 and 2>
As a thermoplastic resin, 25 parts by mass of a phenoxy resin FX293 (manufactured by Toto Kasei Co., Ltd., product name), as an epoxy resin, 30 parts by mass of a solid polyfunctional epoxy resin EP1032H60 (manufactured by Japan Epoxy Resin, product name) and a liquid bisphenol A type epoxy Resin EP828 (made by Japan Epoxy Resin, product name) 45 parts by mass, as curing agent 2,4-dihydroxymethyl-5-phenylimidazole 2PHZ (product name, manufactured by Shikoku Kasei Kogyo Co., Ltd.), 3 parts by mass, condensed polycyclic oxazine As a compound having a skeleton (flux activator), 5 parts by mass of the compound shown in Table 2 and 100 parts by mass of SE6050 (product name, manufactured by Admatechs Co., Ltd.) as a spherical silica filler are added in a solid content concentration in a toluene-ethyl acetate solvent. Is dissolved and mixed so that the amount is 60 to 70% by weight. The scan was made. Subsequently, the varnish was applied onto a separator film (PET film) using a knife coater and then dried in an oven at 70 ° C. for 10 minutes, whereby Examples 1 to 3 having a thickness of 40 to 45 μm and Comparative Example 1 and 2 adhesive films were prepared. Two adhesive films were overlapped with a hot roll laminator to adjust the thickness to 80 to 90 μm.
<比較例3>
 球状シリカフィラーの配合量を220質量部にした以外は、実施例1~3及び比較例1、2と同様に比較例3の接着フィルムを作製した。
<Comparative Example 3>
An adhesive film of Comparative Example 3 was produced in the same manner as Examples 1 to 3 and Comparative Examples 1 and 2 except that the amount of the spherical silica filler was 220 parts by mass.
 実施例1~3及び比較例1~3の接着フィルムを用いて、以下の測定及び評価を行った。 Using the adhesive films of Examples 1 to 3 and Comparative Examples 1 to 3, the following measurements and evaluations were performed.
(ゲル化時間測定)
 セパレーターをはく離した接着フィルムを260℃の熱板上に配置し、スパチュラで攪拌不能になるまでの時間(秒)をゲル化時間とした。
(Measurement of gelation time)
The adhesive film from which the separator was peeled was placed on a hot plate at 260 ° C., and the time (seconds) until stirring with a spatula became impossible was defined as the gel time.
(粘度測定)
 15mm角(厚さ0.7mm)のガラス板の上に直径4mmの円形に打ち抜いた接着フィルムを貼り付けた。セパレーターフィルムをはく離した後、接着フィルムを覆うようにカバーガラス(サイズ18mm角、厚さ0.17mm)を載せたものを準備した。これを、フリップチップボンダーFCB3(パナソニックファクトリーソリューションズ製、製品名)に配置し、ヘッド温度185℃、ステージ温度50℃、荷重12.6N、加圧時間1秒(到達温度150℃)の条件で加熱、加圧した。接着フィルムの体積を一定と仮定すると式(3)の関係が成立する。加圧後の接着フィルムの半径を顕微鏡で測定し、前述した式(1)に従い、150℃での粘度(Pa・s)を算出した。
Z/Z=(r/r)  式(3)
:加圧前の接着フィルムの厚み
Z:加圧後の接着フィルムの厚み
:加圧前の接着フィルムの半径(直径4mmで打ち抜いているので2mmとなる。)
r:加圧後の接着フィルムの半径
(Viscosity measurement)
An adhesive film punched into a circle with a diameter of 4 mm was attached on a 15 mm square (0.7 mm thick) glass plate. After peeling off the separator film, a cover glass (size 18 mm square, thickness 0.17 mm) was prepared so as to cover the adhesive film. This is placed on flip chip bonder FCB3 (manufactured by Panasonic Factory Solutions, product name) and heated under the conditions of a head temperature of 185 ° C, a stage temperature of 50 ° C, a load of 12.6N, and a pressurization time of 1 second (final temperature of 150 ° C). And pressurized. Assuming that the volume of the adhesive film is constant, the relationship of Expression (3) is established. The radius of the adhesive film after pressurization was measured with a microscope, and the viscosity (Pa · s) at 150 ° C. was calculated according to the above-described formula (1).
Z / Z 0 = (r 0 / r) Formula 2 (3)
Z 0 : Thickness of the adhesive film before pressurization Z: Thickness of the adhesive film after pressurization r 0 : Radius of the adhesive film before pressurization (Because it is punched at a diameter of 4 mm, it is 2 mm.)
r: radius of the adhesive film after pressing
(貯蔵弾性率及びガラス転移温度(Tg)の測定)
 200℃で1時間加熱処理した接着フィルムを5.0mm×45mmの大きさに切り出したものを準備した。セイコーインスツルメント社製DMS6100(製品名)を用いて、チャック間距離20mm、周波数1Hz、測定温度範囲20~300℃、昇温速度5.0℃/minの条件で、貯蔵弾性率、損失弾性率、及びtanδの測定を行った。測定結果から、40℃の貯蔵弾性率(GPa)及びガラス転移温度(℃)を読み取った。なお、ガラス転移温度はtanδのピーク温度とした。
(Measurement of storage modulus and glass transition temperature (Tg))
What prepared by cutting out the adhesive film heat-processed at 200 degreeC for 1 hour in the magnitude | size of 5.0 mm x 45 mm was prepared. Using a DMS6100 (product name) manufactured by Seiko Instruments Inc., storage modulus and loss elasticity under the conditions of a distance between chucks of 20 mm, a frequency of 1 Hz, a measurement temperature range of 20 to 300 ° C., and a heating rate of 5.0 ° C./min. The rate and tan δ were measured. The storage elastic modulus (GPa) and glass transition temperature (° C.) at 40 ° C. were read from the measurement results. The glass transition temperature was the tan δ peak temperature.
(平均線膨張係数の測定)
 200℃で1時間加熱処理した接着フィルムを3.0mm×25mmの大きさに切り出したものを準備した。セイコーインスツルメント社製TMA/SS6000(製品名)を用いて、チャック間距離15mm、測定温度範囲20~300℃、昇温速度5℃/min、接着フィルムの断面積に対して0.5MPaとなる引っ張り荷重の条件で、測定を行った。40~100℃の温度範囲における平均線膨張係数(/℃)を算出した。
(Measurement of average linear expansion coefficient)
An adhesive film heat-treated at 200 ° C. for 1 hour was cut out to a size of 3.0 mm × 25 mm to prepare. Using TMA / SS6000 (product name) manufactured by Seiko Instruments Inc., the distance between chucks is 15 mm, the measurement temperature range is 20 to 300 ° C., the heating rate is 5 ° C./min, and the cross-sectional area of the adhesive film is 0.5 MPa. The measurement was performed under the condition of the tensile load. The average linear expansion coefficient (/ ° C.) in the temperature range of 40 to 100 ° C. was calculated.
(はんだ接合性評価)
 銅配線表面に受けはんだ層(Sn-3.0Ag-0.5Cu)が形成されたプリント基板JKIT TYPE III(日立超LSIシステムズ製、製品名)のチップ搭載領域に、10mm角に切り出した接着フィルムを80℃で5秒間、荷重50Nで貼り付けた。その後、セパレータフィルムをはく離し、高融点はんだバンプ(95Pb-5Sn)が形成されたチップPhase2E175(日立超LSIシステムズ製、製品名、サイズ10mm角、厚み550μm、バンプ数832、バンプピッチ175μm)とプリント基板とを、フリップチップボンダーFCB3(パナソニックファクトリーソリューションズ製、製品名)を用いて接続した。具体的には、まずチップPhase2E175とプリント基板との位置合わせを行い、荷重5Nで加圧しながら180℃で5~30秒間加熱し、その後、荷重5Nで加圧しながら230~280℃で5秒間加熱した。続いて、165℃のオーブンで2時間加熱処理を行い、接続サンプルを作製した。
(Solderability evaluation)
Adhesive film cut into a 10mm square in the chip mounting area of the printed circuit board JKIT TYPE III (product name, manufactured by Hitachi Ultra LSI Systems) with a receiving solder layer (Sn-3.0Ag-0.5Cu) formed on the copper wiring surface Was affixed at 80 ° C. for 5 seconds with a load of 50 N. After that, the separator film is peeled off and chip Phase 2E175 (product name, size 10 mm square, thickness 550 μm, number of bumps 832, bump pitch 175 μm, manufactured by Hitachi ULSI Systems) on which high melting point solder bumps (95Pb-5Sn) are formed and printed. The substrate was connected using a flip chip bonder FCB3 (manufactured by Panasonic Factory Solutions, product name). Specifically, first, the position of the chip Phase2E175 and the printed circuit board is aligned, heated at 180 ° C. for 5 to 30 seconds while being pressurized with a load of 5N, and then heated at 230 to 280 ° C. for 5 seconds while being pressurized with a load of 5N. did. Subsequently, a heat treatment was performed in an oven at 165 ° C. for 2 hours to produce a connection sample.
 続いて、作製した接続サンプルの導通検査を行った。導通がとれたものを合格とした。導通がとれたものについて、高融点はんだバンプと受けはんだ層との接続部の断面を観察した。高融点はんだバンプと受けはんだ層とが均一に濡れて接合されているものを合格とし、均一に濡れて接合されていないものを不合格とした。 Subsequently, continuity inspection was performed on the prepared connection sample. The thing which was able to take continuity was set as the pass. The cross section of the connection portion between the high melting point solder bump and the receiving solder layer was observed for the conductive material. Those in which the high melting point solder bumps and the receiving solder layer were uniformly wetted and joined were regarded as acceptable, and those in which they were not uniformly wetted and joined were regarded as unacceptable.
(耐湿信頼性評価)
 温度130℃、相対湿度85%に設定した試験槽内に、上記接続サンプルを100時間放置した。その後、導通検査を行った。放置前の接続抵抗と比較して、抵抗変化率が±10%以内であるものを合格とした。なお、はんだ接合性評価の断面観察において不合格となったものについては、耐湿信頼性評価を行わなかった。
(Moisture resistance reliability evaluation)
The connection sample was left for 100 hours in a test tank set at a temperature of 130 ° C. and a relative humidity of 85%. Thereafter, a continuity test was performed. When the resistance change rate is within ± 10% compared to the connection resistance before leaving, the test was accepted. In addition, about the thing which failed in the cross-sectional observation of solder joint evaluation, moisture resistance reliability evaluation was not performed.
(絶縁信頼性評価)
 配線幅20μm、配線間距離40μmで形成された銅配線からなる櫛型パターンを有するポリイミド基板に、接着フィルムを80℃で5秒間、荷重100Nで櫛型パターンを覆うように貼り付けた。セパレータフィルムをはがした後、165℃のオーブンで2時間加熱処理を行い、評価用サンプルを作製した。
(Insulation reliability evaluation)
An adhesive film was attached to a polyimide substrate having a comb pattern made of copper wiring formed with a wiring width of 20 μm and a distance between wirings of 40 μm at 80 ° C. for 5 seconds so as to cover the comb pattern with a load of 100 N. After the separator film was peeled off, heat treatment was performed in an oven at 165 ° C. for 2 hours to prepare a sample for evaluation.
 櫛型パターン間に5Vの直流電圧を印加しながら、温度130℃、相対湿度85%に設定した試験槽内に評価用サンプルを100時間放置した。IMV社製マイグレーションテスターMIG-8600(製品名)を用いて、試験槽内における評価用サンプルの絶縁抵抗を連続測定した。100時間の測定中に10Ω以上の絶縁抵抗を保持している評価用サンプルを合格とした。なお、はんだ接合性評価の断面観察において不合格となったものについては、絶縁信頼性評価を行わなかった。 While applying a DC voltage of 5 V between the comb patterns, the evaluation sample was left for 100 hours in a test tank set at a temperature of 130 ° C. and a relative humidity of 85%. Using an IMV migration tester MIG-8600 (product name), the insulation resistance of the sample for evaluation in the test tank was continuously measured. An evaluation sample having an insulation resistance of 10 6 Ω or more during measurement for 100 hours was regarded as acceptable. In addition, the insulation reliability evaluation was not performed about the thing which failed in the cross-sectional observation of solder joint property evaluation.
 上記はんだ接合性、耐湿信頼性及び絶縁信頼性の全てが合格の場合、総合判定を合格とした。その他の場合は総合判定を不合格とした。 総 合 If all of the above solderability, moisture resistance reliability and insulation reliability are acceptable, the overall judgment is acceptable. In other cases, the overall judgment was rejected.
 測定結果及び評価結果を表2及び表3に示す。 Measurement results and evaluation results are shown in Table 2 and Table 3.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表3中の○は「合格」を示し、×は「不合格」を示す。表2及び表3に示されるように、フラックス活性剤を添加した実施例1~3は、フラックス活性剤を添加していない比較例1に比べて、接着フィルムの物性を低下させることはなかった。表3に示す結果から分かるように、実施例1~3では良好なはんだ接合性、耐湿信頼性及び絶縁信頼性を示した。比較例2では、はんだ接合性は良好であったが、絶縁信頼性評価において不良が発生した。比較例3では、断面観察の結果、高融点はんだバンプと受けはんだ層とが均一に濡れていなかった。接着フィルムの粘度が高いため、溶融したはんだが濡れ広がるのを阻害したと考えられる。 ○ in Table 3 indicates “pass” and × indicates “fail”. As shown in Tables 2 and 3, Examples 1 to 3 to which the flux activator was added did not lower the physical properties of the adhesive film compared to Comparative Example 1 to which no flux activator was added. . As can be seen from the results shown in Table 3, Examples 1 to 3 showed good solderability, moisture resistance reliability, and insulation reliability. In Comparative Example 2, the solderability was good, but a defect occurred in the insulation reliability evaluation. In Comparative Example 3, as a result of cross-sectional observation, the high melting point solder bump and the receiving solder layer were not wet uniformly. It is thought that since the adhesive film has a high viscosity, the molten solder has been inhibited from spreading.
 以上に説明したとおり、実施例1~3の接着フィルムは良好なフラックス活性を示す。また、実施例1~3の接着フィルムを用いることによって金属接合が容易となるので、電気的な接続信頼性が向上する。 As described above, the adhesive films of Examples 1 to 3 exhibit good flux activity. In addition, since the metal bonding is facilitated by using the adhesive films of Examples 1 to 3, the electrical connection reliability is improved.
 6a…接着フィルム、6,12…接着層、10,30…半導体装置、21,31…回路基板、22,10a…半導体素子。 6a: adhesive film, 6, 12 ... adhesive layer, 10, 30 ... semiconductor device, 21, 31 ... circuit board, 22, 10a ... semiconductor element.

Claims (11)

  1.  縮合多環オキサジン骨格を有する化合物を含有する、フラックス活性剤。 A flux activator containing a compound having a condensed polycyclic oxazine skeleton.
  2.  フェノール性水酸基を有する化合物と、ホルムアルデヒドと、1級アミノ基を有する化合物と、を閉環縮合して得られる化合物を含有する、フラックス活性剤。 A flux activator containing a compound obtained by ring-closing condensation of a compound having a phenolic hydroxyl group, formaldehyde and a compound having a primary amino group.
  3.  エポキシ樹脂と、硬化剤と、請求項1又は2に記載のフラックス活性剤と、を含有する、接着剤樹脂組成物。 An adhesive resin composition containing an epoxy resin, a curing agent, and the flux activator according to claim 1.
  4.  前記フラックス活性剤中の前記縮合多環オキサジン骨格を有する化合物が液状である、請求項3に記載の接着剤樹脂組成物。 The adhesive resin composition according to claim 3, wherein the compound having the condensed polycyclic oxazine skeleton in the flux activator is liquid.
  5.  前記硬化剤が、イミダゾール類を含む、請求項3又は4に記載の接着剤樹脂組成物。 The adhesive resin composition according to claim 3 or 4, wherein the curing agent contains imidazoles.
  6.  無機フィラーを更に含有する、請求項3~5のいずれか一項に記載の接着剤樹脂組成物。 The adhesive resin composition according to any one of claims 3 to 5, further comprising an inorganic filler.
  7.  請求項3~6のいずれか一項に記載の接着剤樹脂組成物を含有し、前記接着剤樹脂組成物中の前記エポキシ樹脂及び前記硬化剤が液状である、接着ペースト。 An adhesive paste comprising the adhesive resin composition according to any one of claims 3 to 6, wherein the epoxy resin and the curing agent in the adhesive resin composition are liquid.
  8.  請求項3~6のいずれか一項に記載の接着剤樹脂組成物と、熱可塑性樹脂と、を含有する、接着フィルム。 An adhesive film comprising the adhesive resin composition according to any one of claims 3 to 6 and a thermoplastic resin.
  9.  前記接着剤樹脂組成物中の前記縮合多環オキサジン骨格を有する化合物の配合量は、前記熱可塑性樹脂及び前記エポキシ樹脂の総量を100質量部として、0.5~20質量部である、請求項8に記載の接着フィルム。 The compounding amount of the compound having a condensed polycyclic oxazine skeleton in the adhesive resin composition is 0.5 to 20 parts by mass, where the total amount of the thermoplastic resin and the epoxy resin is 100 parts by mass. 8. The adhesive film according to 8.
  10.  第1金属電極を有する回路基板と第2金属電極を有する半導体素子との間に、請求項3~6のいずれか一項に記載の接着剤樹脂組成物を介在させる工程と、
     前記接着剤樹脂組成物を硬化させることによって、前記回路基板と前記半導体素子とを接着すると共に、前記第1金属電極と前記第2金属電極とを電気的に接続する工程と、
    を含む、半導体装置の製造方法。
    Interposing the adhesive resin composition according to any one of claims 3 to 6 between a circuit board having a first metal electrode and a semiconductor element having a second metal electrode;
    Bonding the circuit board and the semiconductor element by curing the adhesive resin composition, and electrically connecting the first metal electrode and the second metal electrode;
    A method for manufacturing a semiconductor device, comprising:
  11.  第1金属電極を有する回路基板と、
     前記第1金属電極と電気的に接続された第2金属電極を有する半導体素子と、
     前記回路基板と前記半導体素子との間に配置され、前記回路基板と前記半導体素子とを接着すると共に、請求項3~6のいずれか一項に記載の接着剤樹脂組成物の硬化物からなる接着層と、
    を備える、半導体装置。
    A circuit board having a first metal electrode;
    A semiconductor element having a second metal electrode electrically connected to the first metal electrode;
    The adhesive resin composition according to any one of claims 3 to 6, which is disposed between the circuit board and the semiconductor element, adheres the circuit board and the semiconductor element, and is made of a cured product of the adhesive resin composition according to any one of claims 3 to 6. An adhesive layer;
    A semiconductor device comprising:
PCT/JP2009/056889 2008-04-02 2009-04-02 Flux activator, adhesive resin composition, adhesive paste, adhesive film, semiconductor device fabrication method, and semiconductor device WO2009123285A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009801045384A CN101939379A (en) 2008-04-02 2009-04-02 Flux activator, adhesive resin composition, adhesive paste, adhesive film, semiconductor device fabrication method, and semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-096139 2008-04-02
JP2008096139 2008-04-02
JP2008210862A JP5581576B2 (en) 2008-04-02 2008-08-19 Flux activator, adhesive resin composition, adhesive paste, adhesive film, semiconductor device manufacturing method, and semiconductor device
JP2008-210862 2008-08-19

Publications (1)

Publication Number Publication Date
WO2009123285A1 true WO2009123285A1 (en) 2009-10-08

Family

ID=41135652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056889 WO2009123285A1 (en) 2008-04-02 2009-04-02 Flux activator, adhesive resin composition, adhesive paste, adhesive film, semiconductor device fabrication method, and semiconductor device

Country Status (3)

Country Link
JP (1) JP5581576B2 (en)
CN (1) CN101939379A (en)
WO (1) WO2009123285A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241245A (en) * 2010-05-14 2011-12-01 Mitsubishi Chemicals Corp Epoxy resin composition and cured product
WO2014112540A1 (en) * 2013-01-17 2014-07-24 積水化学工業株式会社 Curable composition for electronic component and connection structure
JP2015170854A (en) * 2014-03-05 2015-09-28 インテル・コーポレーション Package structure to enhance yield of tmi interconnections
CN108368216A (en) * 2015-12-08 2018-08-03 Dic株式会社 Oxazines compound, composition and solidfied material
US20180362477A1 (en) * 2015-12-08 2018-12-20 Dic Corporation Oxazine compound, composition and cured product
EP3388460A4 (en) * 2015-12-08 2019-05-22 DIC Corporation Oxazine compound, composition and cured product
WO2020116313A1 (en) * 2018-12-03 2020-06-11 パナソニックIpマネジメント株式会社 Reinforcing resin composition, electronic component, electronic component manufacturing method, mounting structure, and mounting structure manufacturing method
CN111745324A (en) * 2019-03-28 2020-10-09 松下知识产权经营株式会社 Solder paste and mounting structure
JP2021084968A (en) * 2019-11-28 2021-06-03 住友ベークライト株式会社 Resin membrane with substrate, printed wiring board and electronic device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110262697A1 (en) * 2008-12-26 2011-10-27 Satoru Katsurayama Flexible substrate and electronic device
JP5664558B2 (en) * 2010-01-29 2015-02-04 住友ベークライト株式会社 Conductive connection sheet, connection method between terminals, formation method of connection terminal, semiconductor device and electronic device
JP5564964B2 (en) * 2010-01-29 2014-08-06 住友ベークライト株式会社 Conductive connection sheet, connection method between terminals, formation method of connection terminal, semiconductor device and electronic device
JP5471551B2 (en) * 2010-02-10 2014-04-16 住友ベークライト株式会社 Conductive connection sheet, connection method between terminals, formation method of connection terminal, semiconductor device and electronic device
JP5581734B2 (en) * 2010-03-01 2014-09-03 住友ベークライト株式会社 Conductive connection sheet, connection method between terminals, formation method of connection terminal, semiconductor device and electronic device
JP5471601B2 (en) * 2010-03-02 2014-04-16 住友ベークライト株式会社 Conductive connection sheet, connection method between terminals, formation method of connection terminal, semiconductor device and electronic device
JP6045774B2 (en) * 2010-03-16 2016-12-14 日立化成株式会社 Epoxy resin composition for semiconductor sealing filling, semiconductor device, and manufacturing method thereof
JP5223946B2 (en) * 2010-06-14 2013-06-26 日立化成株式会社 Adhesive film for circuit connection, circuit connection structure using the same, and circuit member connection method
JP5528936B2 (en) 2010-07-28 2014-06-25 日東電工株式会社 Flip chip type film for semiconductor backside
JP5003855B2 (en) * 2010-10-22 2012-08-15 日立化成工業株式会社 Adhesive composition, method for manufacturing semiconductor device, and semiconductor device
JP5866851B2 (en) * 2011-08-05 2016-02-24 日立化成株式会社 Semiconductor device manufacturing method, film adhesive, and adhesive sheet
CN104137240A (en) * 2012-02-24 2014-11-05 日立化成株式会社 Adhesive for semiconductor, fluxing agent, manufacturing method for semiconductor device, and semiconductor device
JP2014168791A (en) * 2013-03-01 2014-09-18 Hitachi Chemical Co Ltd Flux film, flip-chip connection method, and semiconductor device
TWI694109B (en) * 2013-06-12 2020-05-21 日商味之素股份有限公司 Resin composition
JP6926891B2 (en) * 2017-09-25 2021-08-25 Jsr株式会社 Object processing method, temporary fixing composition, semiconductor device and its manufacturing method
KR102558125B1 (en) * 2017-11-27 2023-07-20 나믹스 가부시끼가이샤 Film-like semiconductor encapsulant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016576A (en) * 2004-07-05 2006-01-19 Hitachi Chem Co Ltd Epoxy resin composition for sealing and electronic part apparatus
JP2008085264A (en) * 2006-09-29 2008-04-10 Sumitomo Bakelite Co Ltd Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016576A (en) * 2004-07-05 2006-01-19 Hitachi Chem Co Ltd Epoxy resin composition for sealing and electronic part apparatus
JP2008085264A (en) * 2006-09-29 2008-04-10 Sumitomo Bakelite Co Ltd Semiconductor device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241245A (en) * 2010-05-14 2011-12-01 Mitsubishi Chemicals Corp Epoxy resin composition and cured product
WO2014112540A1 (en) * 2013-01-17 2014-07-24 積水化学工業株式会社 Curable composition for electronic component and connection structure
JP5639304B1 (en) * 2013-01-17 2014-12-10 積水化学工業株式会社 Curable composition for electronic parts and connection structure
KR20150036709A (en) * 2013-01-17 2015-04-07 세키스이가가쿠 고교가부시키가이샤 Curable composition for electronic component and connection structure
KR101686357B1 (en) 2013-01-17 2016-12-13 세키스이가가쿠 고교가부시키가이샤 Curable composition for electronic component and connection structure
US9928934B2 (en) 2013-01-17 2018-03-27 Sekisui Chemical Co., Ltd. Curable composition for electronic component and connection structure
JP2015170854A (en) * 2014-03-05 2015-09-28 インテル・コーポレーション Package structure to enhance yield of tmi interconnections
US20180362477A1 (en) * 2015-12-08 2018-12-20 Dic Corporation Oxazine compound, composition and cured product
CN108368216A (en) * 2015-12-08 2018-08-03 Dic株式会社 Oxazines compound, composition and solidfied material
EP3388459A4 (en) * 2015-12-08 2019-05-22 DIC Corporation Oxazine compound, composition and cured product
EP3388460A4 (en) * 2015-12-08 2019-05-22 DIC Corporation Oxazine compound, composition and cured product
EP3388461A4 (en) * 2015-12-08 2019-05-22 DIC Corporation Oxazine compound, composition, and cured product
CN108368216B (en) * 2015-12-08 2020-09-18 Dic株式会社 Oxazine compound, composition and cured product
US11028059B2 (en) 2015-12-08 2021-06-08 Dic Corporation Oxazine compound, composition and cured product
US11117872B2 (en) 2015-12-08 2021-09-14 Dic Corporation Oxazine compound, composition and cured product
WO2020116313A1 (en) * 2018-12-03 2020-06-11 パナソニックIpマネジメント株式会社 Reinforcing resin composition, electronic component, electronic component manufacturing method, mounting structure, and mounting structure manufacturing method
CN111745324A (en) * 2019-03-28 2020-10-09 松下知识产权经营株式会社 Solder paste and mounting structure
JP2021084968A (en) * 2019-11-28 2021-06-03 住友ベークライト株式会社 Resin membrane with substrate, printed wiring board and electronic device

Also Published As

Publication number Publication date
JP2009262227A (en) 2009-11-12
JP5581576B2 (en) 2014-09-03
CN101939379A (en) 2011-01-05

Similar Documents

Publication Publication Date Title
JP5581576B2 (en) Flux activator, adhesive resin composition, adhesive paste, adhesive film, semiconductor device manufacturing method, and semiconductor device
JP5299279B2 (en) Film-like resin composition for sealing filling, semiconductor package using the same, method for manufacturing semiconductor device, and semiconductor device
TWI559471B (en) Thermosetting resin composition for sealing packing of semiconductor, and semiconductor device
KR100932045B1 (en) Curable resin composition, adhesive epoxy resin paste, adhesive epoxy resin sheet, conductive connection paste, conductive connection sheet, and electronic component bonding body
US8273457B2 (en) Adhesive for bonding circuit members, circuit board and process for its production
EP2479228A1 (en) Adhesive film, multilayer circuit board, electronic component, and semiconductor device
TWI552237B (en) A semiconductor wafer bonding method, a semiconductor wafer bonding method, a semiconductor device manufacturing method, and a semiconductor device
JP2009194359A (en) Adhesive film for circuit connection, and connection structure of circuit member and method of connecting circuit member using the same
JP2011231137A (en) Epoxy resin composition for seal-filling semiconductor and semiconductor device
JP4994743B2 (en) Film adhesive and method of manufacturing semiconductor package using the same
US20120205820A1 (en) Encapsulating resin sheet and semiconductor device using the same, and manufacturing method for the semiconductor device
JP4449325B2 (en) Adhesive film for semiconductor, semiconductor device, and manufacturing method of semiconductor device.
JP2005264109A (en) Film-shaped adhesive and manufacturing method of semiconductor device using the same
JP5445169B2 (en) Adhesive film, semiconductor device, multilayer circuit board, and electronic component
JP5493327B2 (en) Resin composition for sealing filling, semiconductor device and method for manufacturing the same
JP2011014717A (en) Adhesive film, multilayer circuit board, electronic component and semiconductor device
TWI384592B (en) Filmy adhesive for fixing semiconductor element, semeconductor device using the same and manufacturing method of semiconductor device
JP2012074636A (en) Joining method, semiconductor device, multilayer circuit board, and electronic component
CN116195040A (en) Method for manufacturing semiconductor device and film-like adhesive
JP2013071941A (en) Epoxy resin composition for sealing and filling semiconductor, method for manufacturing semiconductor device, and semiconductor device
JP2014090173A (en) Adhesive film, semiconductor device, multilayer substrate and electronic component

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980104538.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09728542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09728542

Country of ref document: EP

Kind code of ref document: A1