JP5003855B2 - Adhesive composition, method for manufacturing semiconductor device, and semiconductor device - Google Patents

Adhesive composition, method for manufacturing semiconductor device, and semiconductor device Download PDF

Info

Publication number
JP5003855B2
JP5003855B2 JP2012512164A JP2012512164A JP5003855B2 JP 5003855 B2 JP5003855 B2 JP 5003855B2 JP 2012512164 A JP2012512164 A JP 2012512164A JP 2012512164 A JP2012512164 A JP 2012512164A JP 5003855 B2 JP5003855 B2 JP 5003855B2
Authority
JP
Japan
Prior art keywords
adhesive composition
semiconductor device
connection
semiconductor
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012512164A
Other languages
Japanese (ja)
Other versions
JPWO2012053589A1 (en
Inventor
一尊 本田
朗 永井
哲也 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2012512164A priority Critical patent/JP5003855B2/en
Application granted granted Critical
Publication of JP5003855B2 publication Critical patent/JP5003855B2/en
Publication of JPWO2012053589A1 publication Critical patent/JPWO2012053589A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J179/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
    • C09J179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09J179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Abstract

The present invention relates to an adhesive composition that seals connection parts in a semiconductor device in which the connection part of a semiconductor chip and the connection part of a wiring circuit board are electrically connected together, or in a semiconductor device in which the connection parts of a plurality of semiconductor chips are electrically connected together, wherein the adhesive composition contains an epoxy resin, a curing agent, and a vinyl-based surface treatment filler.

Description

本発明は、接着剤組成物、半導体装置の製造方法及び半導体装置に関する。   The present invention relates to an adhesive composition, a method for manufacturing a semiconductor device, and a semiconductor device.

近年、半導体チップを基板に実装し接続するには、金ワイヤ等の金属細線を用いるワイヤーボンディング方式が広く用いられている。一方、半導体装置に対する小型化、薄型化、高機能、高集積化、高速化等の要求に対応するため、半導体チップ及び基板間にバンプと呼ばれる導電性突起を形成して、半導体チップと基板と接続するフリップチップ接続方式(FC接続方式)が広まりつつある。   In recent years, in order to mount and connect a semiconductor chip to a substrate, a wire bonding method using a fine metal wire such as a gold wire has been widely used. On the other hand, in order to meet the demands for downsizing, thinning, high functionality, high integration, high speed, etc., for semiconductor devices, conductive protrusions called bumps are formed between the semiconductor chip and the substrate, Flip chip connection methods (FC connection methods) for connection are becoming widespread.

例えば、半導体チップ及び基板間の接続に関して、BGA(Ball Grid Array)、CSP(Chip Size Package)等に盛んに用いられているCOB(Chip On Board)型の接続方式もFC接続方式に該当する。また、FC接続方式は、半導体チップ上に接続部(バンプや配線)を形成して、半導体チップ間を接続するCOC(Chip On Chip)型の接続方式にも広く用いられている(例えば、特許文献1参照)。   For example, for connection between a semiconductor chip and a substrate, a COB (Chip On Board) type connection method that is actively used in BGA (Ball Grid Array), CSP (Chip Size Package), and the like also corresponds to the FC connection method. The FC connection method is also widely used in a COC (Chip On Chip) type connection method in which connection portions (bumps and wirings) are formed on a semiconductor chip to connect the semiconductor chips (for example, patents). Reference 1).

しかしながら、更なる小型化、薄型化、高機能化の要求に対応するため、上述した接続方式を積層・多段化したチップスタック型パッケージやPOP(Package On Package)、TSV(Through−Silicon Via)等も広く普及し始めている。このような積層・多段化技術は、半導体チップ等を三次元的に配置することから、二次元的に配置する手法と比較してパッケージを小さくできる。特に、TSV技術は、半導体の性能向上、ノイズ低減、実装面積の削減、省電力化にも有効であり、次世代の半導体配線技術として注目されている。   However, in order to meet the demands for further miniaturization, thinning, and high functionality, chip stack type packages, POPs (Package On Packages), TSVs (Through-Silicon Vias), etc., in which the above-mentioned connection methods are stacked and multistaged, etc. Has also started to spread widely. Such stacking / multi-stage technology arranges semiconductor chips and the like three-dimensionally, so that the package can be made smaller than the two-dimensional arrangement technique. In particular, the TSV technology is effective for improving semiconductor performance, reducing noise, reducing the mounting area, and saving power, and is attracting attention as a next-generation semiconductor wiring technology.

ところで、上記接続部(バンプや配線)に用いられる主な金属としては、ハンダ、スズ、金、銀、銅、ニッケル等があり、これらの複数種を含んだ導電材料も用いられている。接続部に用いられる金属は、表面が酸化して酸化膜が生成してしまうことや、表面に酸化物等の不純物が付着してしまうことにより、接続部の接続面に不純物が生じる場合がある。このような不純物が残存すると、半導体チップ及び基板間や2つの半導体チップ間における接続性・絶縁信頼性が低下し、上述した接続方式を採用するメリットが損なわれてしまうことが懸念される。   By the way, as a main metal used for the connection part (bump or wiring), there are solder, tin, gold, silver, copper, nickel and the like, and a conductive material including a plurality of these is also used. The metal used in the connection part may be oxidized on the surface and an oxide film may be formed, or impurities such as oxide may adhere to the surface, which may cause impurities on the connection surface of the connection part. . If such impurities remain, there is a concern that the connectivity / insulation reliability between the semiconductor chip and the substrate or between the two semiconductor chips is lowered, and the merit of employing the above-described connection method is impaired.

これらの不純物の発生を抑制すると共に接続性を向上させる方法としては、接続前に基板や半導体チップの表面に前処理を施す方法が挙げられ、OSP(Organic Solderbility Preservatives)処理に用いられるプリフラックスや防錆処理剤を施す方法が挙げられる。しかし、前処理後にプリフラックスや防錆処理剤が残存し劣化することで、接続性が低下する場合もある。   As a method for suppressing the generation of these impurities and improving the connectivity, there is a method in which a surface of a substrate or a semiconductor chip is subjected to a pretreatment before connection, and a preflux used in an OSP (Organic Solderability Preservatives) process The method of giving a rust preventive agent is mentioned. However, the pre-flux and the rust preventive agent may remain and deteriorate after pretreatment, which may reduce the connectivity.

一方、半導体チップ及び基板間等の接続部を半導体封止材料(半導体封止用接着剤)で封止する方法によれば、半導体チップ及び基板や半導体チップ同士の接続と同時に接続部を封止することが可能となる。そのため、接続部に用いられる金属の酸化や、接続部への不純物の付着を抑制し、接続部を外部環境から保護することができる。したがって、効果的に接続性・絶縁信頼性、作業性、生産性を向上させることができる。   On the other hand, according to the method of sealing the connection part between the semiconductor chip and the substrate with a semiconductor sealing material (adhesive for semiconductor sealing), the connection part is sealed simultaneously with the connection between the semiconductor chip and the substrate or the semiconductor chip. It becomes possible to do. Therefore, oxidation of the metal used for the connection part and adhesion of impurities to the connection part can be suppressed, and the connection part can be protected from the external environment. Therefore, it is possible to effectively improve connectivity / insulation reliability, workability, and productivity.

また、フリップチップ接続方式で製造された半導体装置では、半導体チップと基板との熱膨張係数差や半導体チップ同士の熱膨張係数差に由来する熱応力が接続部に集中して接続不良を起こさないようにするために、半導体チップ及び基板間等の空隙を半導体封止材料で封止する必要がある。特に、半導体チップと基板とでは熱膨張係数の異なる成分が用いられることが多く、半導体封止材料により封止して耐熱衝撃性を向上させることが求められる。   In addition, in a semiconductor device manufactured by a flip-chip connection method, thermal stress derived from a difference in thermal expansion coefficient between a semiconductor chip and a substrate or a difference in thermal expansion coefficient between semiconductor chips does not concentrate on the connection portion to cause a connection failure. In order to do so, it is necessary to seal the gap between the semiconductor chip and the substrate with a semiconductor sealing material. In particular, components having different thermal expansion coefficients are often used between the semiconductor chip and the substrate, and it is required to improve the thermal shock resistance by sealing with a semiconductor sealing material.

上述した半導体封止材料による封止方式には大きく分けて、Capillary−Flow方式とPre−applied方式とが挙げられる(例えば、特許文献2〜6参照)。Capillary−Flow方式とは、半導体チップ及び基板の接続後に、半導体チップ及び基板間の空隙に液状の半導体封止材料を毛細管現象によって注入する方式である。Pre−applied方式とは、半導体チップ及び基板の接続前に、半導体チップ又は基板にペースト状やフィルム状の半導体封止材料を供給した後、半導体チップと基板とを接続する方式である。これらの封止方式について、近年の半導体装置の小型化の進展に伴って、半導体チップ及び基板間等の空隙が狭くなっており、Capillary−Flow方式では注入に長時間必要で生産性が低下する場合や、注入できない場合、また、注入できても未充填部分が存在しボイドの原因となる場合がある。そのため、作業性・生産性・信頼性の観点からPre−applied方式が高機能・高集積・高速化可能なパッケージの作製方法として主流となっている。   The above-described sealing methods using a semiconductor sealing material are roughly classified into a capillary-flow method and a pre-applied method (for example, see Patent Documents 2 to 6). The Capillary-Flow method is a method in which a liquid semiconductor sealing material is injected into the gap between the semiconductor chip and the substrate by capillary action after the semiconductor chip and the substrate are connected. The pre-applied method is a method of connecting a semiconductor chip and a substrate after supplying a semiconductor sealing material in a paste or film form to the semiconductor chip or the substrate before connecting the semiconductor chip and the substrate. With these sealing methods, the gap between the semiconductor chip and the substrate is becoming narrower with the progress of miniaturization of semiconductor devices in recent years, and the Capillary-Flow method requires a long time for implantation and decreases productivity. In some cases, when injection is not possible, or even if injection is possible, an unfilled portion may exist and cause voids. Therefore, from the viewpoint of workability, productivity, and reliability, the pre-applied method has become the mainstream as a package manufacturing method capable of high functionality, high integration, and high speed.

特開2008−294382号公報JP 2008-294382 A 特開2001−223227号公報JP 2001-223227 A 特開2002−283098号公報JP 2002-283098 A 特開2005−272547号公報JP 2005-272547 A 特開2006−169407号公報JP 2006-169407 A 特開2006−188573号公報JP 2006-188573 A

上述したPre−applied方式では、加熱加圧による接続と同時に、半導体チップ及び基板間の空隙が半導体封止材料により封止されるため、半導体封止材料の含有成分は接続条件を考慮して選択する必要がある。一般に接続部同士の接続には、接続性・絶縁信頼性を十分に確保する観点から、金属接合が用いられている。金属接合は高温(例えば200℃以上)を用いた接続方式であるため、半導体封止材料中に残存する揮発成分や、半導体封止材料の含有成分の分解により新たに生じる揮発成分に起因して半導体封止材料が発泡してしまう場合がある。これにより、ボイドと呼ばれる気泡が発生し、半導体封止材料が半導体チップや基板から剥離してしまう。また、加熱加圧時・圧力開放時に、上記ボイドや半導体チップ等のスプリングバックが発生すると、接続部同士を接続する接続バンプの引きちぎれによる接続部の破壊等の接続不良が生じてしまう。これらに起因して、従来の半導体封止材料では、接続性・絶縁信頼性が低下することが懸念される。   In the above-mentioned pre-applied method, the gap between the semiconductor chip and the substrate is sealed with the semiconductor sealing material simultaneously with the connection by heating and pressurization. Therefore, the components contained in the semiconductor sealing material are selected in consideration of the connection conditions. There is a need to. In general, metal bonding is used for connection between connection portions from the viewpoint of sufficiently ensuring connectivity and insulation reliability. Since metal bonding is a connection method using a high temperature (for example, 200 ° C. or higher), it is caused by volatile components remaining in the semiconductor sealing material and newly generated volatile components by decomposition of the components contained in the semiconductor sealing material. The semiconductor sealing material may foam. Thereby, bubbles called voids are generated, and the semiconductor sealing material is peeled off from the semiconductor chip and the substrate. In addition, when springback occurs in the void or semiconductor chip during heating and pressurization / pressure release, connection failure such as breakage of the connection portion due to tearing of the connection bump connecting the connection portions occurs. Due to these reasons, there is a concern that the conventional semiconductor encapsulating material may deteriorate in connectivity and insulation reliability.

また、半導体封止材料が十分にフラックス活性(金属表面の酸化膜や不純物の除去効果)を有していない場合、金属表面の酸化膜や不純物を除去できず、良好な金属−金属接合が形成されず、導通が確保できない場合がある。更に、半導体封止材料の絶縁信頼性が低いと、接続部の狭ピッチ化に対応することが困難であり、絶縁不良が生じる。これらにも起因して、従来の半導体封止材料では、接続性・絶縁信頼性が低下することが懸念される。   Also, if the semiconductor sealing material does not have sufficient flux activity (removal effect of oxide film and impurities on the metal surface), the oxide film and impurities on the metal surface cannot be removed, and a good metal-metal junction is formed. In some cases, continuity cannot be ensured. Furthermore, if the insulation reliability of the semiconductor sealing material is low, it is difficult to cope with the narrow pitch of the connection portion, resulting in insulation failure. For these reasons, there is a concern that the conventional semiconductor encapsulating material may deteriorate in connectivity and insulation reliability.

半導体封止材料を用いて製造される半導体装置は、高い接続信頼性を達成することが求められる。接続信頼性は、例えばTCT(Thermal Cycle Test)評価により評価することができる。   A semiconductor device manufactured using a semiconductor sealing material is required to achieve high connection reliability. Connection reliability can be evaluated by, for example, TCT (Thermal Cycle Test) evaluation.

本発明は上記事情に鑑みてなされたものであり、接続信頼性及び絶縁信頼性に優れる半導体装置の作製を可能とする接着剤組成物(半導体封止用接着剤)、その接着剤組成物を用いた半導体装置の製造方法及び半導体装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides an adhesive composition (adhesive for semiconductor encapsulation) that enables the production of a semiconductor device excellent in connection reliability and insulation reliability, and an adhesive composition thereof. It is an object of the present invention to provide a method of manufacturing a semiconductor device and a semiconductor device used.

本発明は、半導体チップ及び配線回路基板のそれぞれの接続部が互いに電気的に接続された半導体装置、又は、複数の半導体チップのそれぞれの接続部が互いに電気的に接続された半導体装置において接続部を封止する接着剤組成物であって、エポキシ樹脂と、硬化剤と、下記一般式(1)で表される基を有する化合物で表面処理されたビニル系表面処理フィラーとを含有する接着剤組成物を提供する。   The present invention relates to a semiconductor device in which connection portions of a semiconductor chip and a printed circuit board are electrically connected to each other, or a connection portion in a semiconductor device in which connection portions of a plurality of semiconductor chips are electrically connected to each other. An adhesive composition containing an epoxy resin, a curing agent, and a vinyl-based surface treatment filler surface-treated with a compound having a group represented by the following general formula (1) A composition is provided.

式(1)中、R、R及びRはそれぞれ独立に水素原子、メチル基又はエチル基を示し、Rは炭素数1〜30のアルキレン基を示す。In formula (1), R 1 , R 2 and R 3 each independently represent a hydrogen atom, a methyl group or an ethyl group, and R 4 represents an alkylene group having 1 to 30 carbon atoms.

本発明はまた、半導体チップ及び配線回路基板のそれぞれの接続部が互いに電気的に接続された半導体装置、又は、複数の半導体チップのそれぞれの接続部が互いに電気的に接続された半導体装置において接続部を封止する接着剤組成物であって、エポキシ樹脂と、硬化剤と、下記一般式(1)で表される基を有するフィラーとを含有する接着剤組成物を提供する。   The present invention also provides a connection in a semiconductor device in which the connection portions of the semiconductor chip and the printed circuit board are electrically connected to each other, or a semiconductor device in which the connection portions of the plurality of semiconductor chips are electrically connected to each other. An adhesive composition for sealing a part is provided, which contains an epoxy resin, a curing agent, and a filler having a group represented by the following general formula (1).

式(1)中、R、R及びRはそれぞれ独立に水素原子、メチル基又はエチル基を示し、Rは炭素数1〜30のアルキレン基を示す。In formula (1), R 1 , R 2 and R 3 each independently represent a hydrogen atom, a methyl group or an ethyl group, and R 4 represents an alkylene group having 1 to 30 carbon atoms.

上記本発明の接着剤組成物は、エポキシ樹脂及び硬化剤を含有した上で、更にビニル系表面処理フィラー又は上記一般式(1)で表される基を有するフィラーを含有することにより、半導体封止用接着剤として適用した場合であっても、半導体装置の高い接続信頼性及び高い絶縁信頼性を実現することができる。   The adhesive composition of the present invention contains an epoxy resin and a curing agent, and further contains a vinyl-based surface treatment filler or a filler having a group represented by the general formula (1). Even when applied as a fastening adhesive, high connection reliability and high insulation reliability of the semiconductor device can be realized.

ここで、シランカップリング剤等を表面処理をしていないフィラーと共に樹脂中に含有させると、フィラーの表面がシランカップリング処理されてシランカップリング剤の置換基によって様々な表面状態のフィラーを合成することができることが知られている。しかし、シランカップリング剤の揮発性は高く、高温接続を必要とする金属接合等の高温でのプロセスを有する半導体装置の製造工程ではボイドが発生する原因となる。同様に、従来から用いられているフィラーを表面処理する場合、メタノール等の揮発性の高い有機物が発生する場合があり、ボイドが発生する原因となる。   Here, when a silane coupling agent or the like is included in the resin together with a filler that has not been surface-treated, the filler surface is subjected to a silane coupling treatment, and fillers of various surface states are synthesized by substituents of the silane coupling agent. It is known that you can. However, the volatility of the silane coupling agent is high, which causes voids in the manufacturing process of a semiconductor device having a process at a high temperature such as metal bonding that requires high-temperature connection. Similarly, when surface-treating a conventionally used filler, a highly volatile organic substance such as methanol may be generated, which causes a void.

また、TCT評価では−55〜125℃の温度変化を半導体パッケージに加えるが、ハンダの濡れ性が不足していた場合や接続部の金属接合が不完全であった場合、半導体チップと基板間の熱膨張率の差による接続部へのストレスの蓄積等によって接続部が破壊される。ここで、半導体封止材料の熱膨張率が低ければ、接続部へのストレスを軽減できるため、半導体装置の接続信頼性(耐TCT性)を向上させることができると考えられる。   Further, in the TCT evaluation, a temperature change of −55 to 125 ° C. is applied to the semiconductor package. However, when the solder wettability is insufficient or the metal bonding of the connection portion is incomplete, the semiconductor chip and the substrate are not connected. The connection portion is destroyed due to accumulation of stress in the connection portion due to the difference in thermal expansion coefficient. Here, if the coefficient of thermal expansion of the semiconductor sealing material is low, it is considered that the connection reliability (TCT resistance) of the semiconductor device can be improved because stress on the connection portion can be reduced.

発明者らは、接着剤組成物に上記ビニル系表面処理フィラー又は上記一般式(1)で表される基を有するフィラーを含有させることにより、接着剤組成物を半導体封止用接着剤として適用した場合に、半導体装置の高い接続信頼性を実現できることを見出した。本発明の接着剤組成物では、予め表面処理されたビニル系表面処理フィラー又は上記一般式(1)で表される基を有するフィラーを用いることで、揮発性の高い物質の発生を抑制することができる。これに加えて、フィラー表面のビニル基が他の構成成分と反応して強固な硬化物を形成することにより、硬化物の熱膨張率を低減でき、高い接続信頼性を示すものと、本発明者らは推測している。また、ビニル系表面処理フィラー又は上記一般式(1)で表される基を有するフィラーは、接続部の絶縁信頼性を低下させ難いため、接続信頼性を向上することができるものと、本発明者らは推測している。   The inventors apply the adhesive composition as an adhesive for semiconductor encapsulation by incorporating the vinyl-based surface treatment filler or the filler having a group represented by the general formula (1) into the adhesive composition. In this case, it has been found that high connection reliability of the semiconductor device can be realized. In the adhesive composition of the present invention, it is possible to suppress the generation of highly volatile substances by using a vinyl surface-treated filler that has been surface-treated in advance or a filler having a group represented by the above general formula (1). Can do. In addition to this, the vinyl group on the filler surface reacts with other components to form a hardened cured product, thereby reducing the coefficient of thermal expansion of the cured product and exhibiting high connection reliability. They speculate. Further, since the vinyl-based surface treatment filler or the filler having the group represented by the general formula (1) is difficult to reduce the insulation reliability of the connection portion, the connection reliability can be improved, and the present invention. They speculate.

上記一般式(1)で表される基を有する化合物は、下記一般式(2)で表される化合物であることが好ましい。   The compound having a group represented by the general formula (1) is preferably a compound represented by the following general formula (2).

式(2)中、R、R及びRはそれぞれ独立に水素原子、メチル基又はエチル基を示し、Rは炭素数1〜30のアルキレン基を示し、Rは炭素数1〜30のアルキル基を示す。In formula (2), R 1 , R 2 and R 3 each independently represent a hydrogen atom, a methyl group or an ethyl group, R 4 represents an alkylene group having 1 to 30 carbon atoms, and R 5 represents 1 to carbon atoms. 30 alkyl groups are shown.

本発明の接着剤組成物は、上記一般式(2)で表される化合物で表面処理されたフィラーを含有することにより、接続信頼性及び絶縁信頼性を更に向上させることができる。   The adhesive composition of this invention can further improve connection reliability and insulation reliability by containing the filler surface-treated with the compound represented by the said General formula (2).

本発明の接着剤組成物には、接着剤組成物のフィルム形成性を向上する観点から、重量平均分子量が10000以上の高分子成分を更に含有することができる。   The adhesive composition of the present invention may further contain a polymer component having a weight average molecular weight of 10,000 or more from the viewpoint of improving the film forming property of the adhesive composition.

接着剤組成物の貼付性やフィルム形成性を更に向上する観点から、上記の高分子成分は、重量平均分子量が30000以上であり、ガラス転移温度が100℃以下であることが好ましい。   From the viewpoint of further improving the adhesive properties and film formability of the adhesive composition, the polymer component preferably has a weight average molecular weight of 30000 or more and a glass transition temperature of 100 ° C. or less.

本発明の接着剤組成物は、フラックス活性剤を更に含有することで、フラックス活性を高め、接続部の金属表面の酸化膜や不純物を除去して、良好な金属−金属接合を形成することができる。   The adhesive composition of the present invention may further contain a flux activator to increase the flux activity and remove the oxide film and impurities on the metal surface of the connection part to form a good metal-metal bond. it can.

Pre−applied方式で半導体チップと配線回路基板の空隙又は複数の半導体チップ間の空隙を封止する場合の作業性を向上させることができることから、本発明の接着剤組成物は、形状がフィルム状であることが好ましい。   Since the workability in the case of sealing a gap between a semiconductor chip and a printed circuit board or a gap between a plurality of semiconductor chips by the pre-applied method can be improved, the adhesive composition of the present invention has a film shape. It is preferable that

本発明はまた、半導体チップ及び配線回路基板のそれぞれの接続部が互いに電気的に接続された半導体装置、又は、複数の半導体チップのそれぞれの接続部が互いに電気的に接続された半導体装置の製造方法であって、接続部を上記の接着剤組成物を用いて封止する工程を備える、半導体装置の製造方法を提供する。   The present invention also provides a semiconductor device in which respective connection portions of a semiconductor chip and a printed circuit board are electrically connected to each other, or a semiconductor device in which respective connection portions of a plurality of semiconductor chips are electrically connected to each other. It is a method, Comprising: The manufacturing method of a semiconductor device provided with the process of sealing a connection part using said adhesive composition is provided.

本発明の半導体装置の製造方法によれば、上記接着剤組成物を用いることにより、半導体装置の接続信頼性及び絶縁信頼性を向上させることができる。   According to the method for manufacturing a semiconductor device of the present invention, the connection reliability and the insulation reliability of the semiconductor device can be improved by using the adhesive composition.

上記接続部が、主成分として金、銀、銅、ニッケル、スズ及び鉛からなる群より選ばれる少なくとも一種の金属を含有すると、接続部の電気伝導性、熱伝導性、接続信頼性を更に向上することができる。   When the connection part contains at least one metal selected from the group consisting of gold, silver, copper, nickel, tin and lead as a main component, the electrical conductivity, thermal conductivity and connection reliability of the connection part are further improved. can do.

本発明はまた、上記半導体装置の製造方法によって得られる半導体装置を提供する。   The present invention also provides a semiconductor device obtained by the method for manufacturing a semiconductor device.

本発明の半導体装置は、上記半導体装置の製造方法を用いて作製されるため、接続信頼性及び絶縁信頼性が十分に優れるものとなる。   Since the semiconductor device of the present invention is manufactured using the method for manufacturing a semiconductor device, the connection reliability and the insulation reliability are sufficiently excellent.

本発明によれば、接続信頼性及び絶縁信頼性に優れる半導体装置の作製を可能とする接着剤組成物、その接着剤組成物を用いた半導体装置の製造方法及び半導体装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of a semiconductor device using the adhesive composition which enables preparation of the semiconductor device excellent in connection reliability and insulation reliability, and the adhesive composition, and a semiconductor device can be provided. .

本発明の半導体装置の一実施形態を示す模式断面図である。It is a schematic cross section showing one embodiment of a semiconductor device of the present invention. 本発明の半導体装置の他の一実施形態を示す模式断面図である。It is a schematic cross section which shows other one Embodiment of the semiconductor device of this invention. 本発明の半導体装置の他の一実施形態を示す模式断面図である。It is a schematic cross section which shows other one Embodiment of the semiconductor device of this invention. 本発明の半導体装置の製造方法の一実施形態を模式的に示す工程断面図である。It is process sectional drawing which shows typically one Embodiment of the manufacturing method of the semiconductor device of this invention. 絶縁信頼性試験用のサンプルの外観を示す模式図である。It is a schematic diagram which shows the external appearance of the sample for an insulation reliability test.

以下、場合により図面を参照しつつ本発明の好適な実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、図面の寸法比率は図示の比率に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as the case may be. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.

<接着剤組成物>
本実施形態の接着剤組成物(半導体封止用接着剤)は、半導体チップ及び配線回路基板(以下、場合により単に「基板」という。)のそれぞれの接続部が互いに電気的に接続された半導体装置、又は、複数の半導体チップのそれぞれの接続部が互いに電気的に接続された半導体装置において接続部を封止する接着剤組成物であって、エポキシ樹脂(以下、場合により「(a)成分」という。)と、硬化剤(以下、場合により「(b)成分」という。)と、ビニル系表面処理フィラー又は上記一般式(1)で表される基を有するフィラー(以下、場合により「(c)成分」という。)とを含有する。また、接着剤組成物は、必要に応じて、重量平均分子量10000以上の高分子成分(以下、場合により「(d)成分」という。)又はフラックス活性剤(以下、場合により「(e)成分」という。)を含有する。以下、本実施形態の接着剤組成物を構成する各成分について説明する。
<Adhesive composition>
The adhesive composition (adhesive for semiconductor encapsulation) of the present embodiment is a semiconductor in which respective connection portions of a semiconductor chip and a printed circuit board (hereinafter simply referred to as “substrate” in some cases) are electrically connected to each other. An adhesive composition for sealing a connection part in a device or a semiconductor device in which each connection part of a plurality of semiconductor chips is electrically connected to each other, and an epoxy resin (hereinafter, “(a) component” ), A curing agent (hereinafter referred to as “component (b)” in some cases), and a vinyl-based surface treatment filler or a filler having a group represented by the general formula (1) (hereinafter referred to as “ (C) component "). In addition, the adhesive composition is optionally composed of a polymer component having a weight average molecular weight of 10,000 or more (hereinafter referred to as “(d) component”) or a flux activator (hereinafter referred to as “(e) component”. "). Hereinafter, each component which comprises the adhesive composition of this embodiment is demonstrated.

(a)成分:エポキシ樹脂
エポキシ樹脂としては、分子内に2個以上のエポキシ基を有するものであれば特に制限なく用いることができる。(a)成分として、具体的には、ビスフェノールA型、ビスフェノールF型、ナフタレン型、フェノールノボラック型、クレゾールノボラック型、フェノールアラルキル型、ビフェニル型、トリフェニルメタン型、ジシクロペンタジエン型及び各種多官能エポキシ樹脂を使用することができる。これらは単独で又は2種以上の混合物として使用することができる。
(A) Component: Epoxy Resin Any epoxy resin can be used without particular limitation as long as it has two or more epoxy groups in the molecule. Specific examples of the component (a) include bisphenol A type, bisphenol F type, naphthalene type, phenol novolak type, cresol novolak type, phenol aralkyl type, biphenyl type, triphenylmethane type, dicyclopentadiene type and various polyfunctionalities. Epoxy resins can be used. These can be used alone or as a mixture of two or more.

(a)成分は、高温での接続時に分解して揮発成分が発生することを抑制する観点から、接続時の温度が250℃の場合は、250℃における熱重量減少量率が5%以下のエポキシ樹脂を用いることが好ましく、300℃の場合は、300℃における熱重量減少量率が5%以下のエポキシ樹脂を用いることが好ましい。また、ビスフェノールA型やビスフェノールF型の液状エポキシ樹脂は、1%熱重量減少温度が250℃以下であるため、高温加熱時に分解して揮発成分が発生する恐れがある。このため、室温(1気圧、25℃)で固形のエポキシ樹脂を用いることが好ましい。   (A) From the viewpoint of suppressing generation of volatile components by decomposition at the time of connection at high temperature, when the temperature at the time of connection is 250 ° C., the thermal weight loss rate at 250 ° C. is 5% or less. It is preferable to use an epoxy resin. In the case of 300 ° C., it is preferable to use an epoxy resin having a thermal weight loss rate at 300 ° C. of 5% or less. Further, bisphenol A-type and bisphenol F-type liquid epoxy resins have a 1% thermogravimetric reduction temperature of 250 ° C. or less, and thus may decompose during high-temperature heating and generate volatile components. For this reason, it is preferable to use a solid epoxy resin at room temperature (1 atm, 25 ° C.).

(b)成分:硬化剤
(b)成分としては、例えば、フェノール樹脂系硬化剤、酸無水物系硬化剤、アミン系硬化剤、イミダゾール系硬化剤及びホスフィン系硬化剤が挙げられる。(b)成分がフェノール性水酸基、酸無水物、アミン類又はイミダゾール類を含むと、接続部に酸化膜が生じることを抑制するフラックス活性を示し、接続信頼性・絶縁信頼性を向上させることができる。以下、各硬化剤について説明する。
(B) Component: Curing Agent Examples of the (b) component include a phenol resin curing agent, an acid anhydride curing agent, an amine curing agent, an imidazole curing agent, and a phosphine curing agent. (B) When the component contains a phenolic hydroxyl group, an acid anhydride, an amine or an imidazole, it exhibits a flux activity that suppresses the formation of an oxide film at the connection part, and improves connection reliability and insulation reliability. it can. Hereinafter, each curing agent will be described.

(i)フェノール樹脂系硬化剤
フェノール樹脂系硬化剤としては、分子内に2個以上のフェノール性水酸基を有するものであれば特に制限はなく、例えば、フェノールノボラック、クレゾールノボラック、フェノールアラルキル樹脂、クレゾールナフトールホルムアルデヒド重縮合物、トリフェニルメタン型多官能フェノール及び各種多官能フェノール樹脂を使用することができる。これらは単独で又は2種以上の混合物として使用することができる。
(I) Phenolic resin-based curing agent The phenolic resin-based curing agent is not particularly limited as long as it has two or more phenolic hydroxyl groups in the molecule. For example, phenol novolak, cresol novolak, phenol aralkyl resin, cresol A naphthol formaldehyde polycondensate, a triphenylmethane type polyfunctional phenol, and various polyfunctional phenol resins can be used. These can be used alone or as a mixture of two or more.

上記(a)成分に対するフェノール樹脂系硬化剤の当量比(フェノール性水酸基/エポキシ基、モル比)は、良好な硬化性、接着性及び保存安定性の観点から、0.3〜1.5が好ましく、0.4〜1.0がより好ましく、0.5〜1.0が更に好ましい。当量比が0.3以上であると、硬化性が向上し接着力が向上する傾向があり、1.5以下であると未反応のフェノール性水酸基が過剰に残存することがなく、吸水率が低く抑えられ、絶縁信頼性が向上する傾向がある。   The equivalent ratio of the phenol resin-based curing agent to the component (a) (phenolic hydroxyl group / epoxy group, molar ratio) is 0.3 to 1.5 from the viewpoint of good curability, adhesiveness, and storage stability. Preferably, 0.4 to 1.0 is more preferable, and 0.5 to 1.0 is still more preferable. When the equivalence ratio is 0.3 or more, the curability tends to be improved and the adhesive force tends to be improved. When the equivalent ratio is 1.5 or less, the unreacted phenolic hydroxyl group does not remain excessively, and the water absorption is increased. It tends to be kept low and the insulation reliability improves.

(ii)酸無水物系硬化剤
酸無水物系硬化剤としては、例えば、メチルシクロヘキサンテトラカルボン酸二無水物、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸二無水物及びエチレングリコールビスアンヒドロトリメリテートを使用することができる。これらは単独で又は2種以上の混合物として使用することができる。
(Ii) Acid anhydride curing agent Examples of the acid anhydride curing agent include methylcyclohexanetetracarboxylic dianhydride, trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic dianhydride, and ethylene glycol bis. Anhydro trimellitate can be used. These can be used alone or as a mixture of two or more.

上記(a)成分に対する酸無水物系硬化剤の当量比(酸無水物基/エポキシ基、モル比)は、良好な硬化性、接着性及び保存安定性の観点から、0.3〜1.5が好ましく、0.4〜1.0がより好ましく、0.5〜1.0が更に好ましい。当量比が0.3以上であると硬化性が向上し接着力が向上する傾向があり、1.5以下であると未反応の酸無水物が過剰に残存することがなく、吸水率が低く抑えられ、絶縁信頼性が向上する傾向がある。   The equivalent ratio of the acid anhydride curing agent to the component (a) (acid anhydride group / epoxy group, molar ratio) is 0.3 to 1. in terms of good curability, adhesiveness, and storage stability. 5 is preferable, 0.4 to 1.0 is more preferable, and 0.5 to 1.0 is still more preferable. When the equivalence ratio is 0.3 or more, the curability tends to be improved and the adhesive strength tends to be improved. When the equivalent ratio is 1.5 or less, the unreacted acid anhydride does not remain excessively, and the water absorption is low. The insulation reliability tends to be suppressed.

(iii)アミン系硬化剤
アミン系硬化剤としては、例えばジシアンジアミドを使用することができる。
(Iii) Amine-based curing agent As the amine-based curing agent, for example, dicyandiamide can be used.

上記(a)成分に対するアミン系硬化剤の当量比(アミン/エポキシ基、モル比)は、良好な硬化性、接着性、保存安定性等の観点から0.3〜1.5が好ましく、0.4〜1.0がより好ましく、0.5〜1.0が更に好ましい。当量比が0.3以上であると硬化性が向上し接着力が向上する傾向があり、1.5以下であると未反応のアミンが過剰に残存することがなく、絶縁信頼性が向上する傾向がある。   The equivalent ratio of the amine curing agent to the component (a) (amine / epoxy group, molar ratio) is preferably 0.3 to 1.5 from the viewpoints of good curability, adhesiveness, storage stability, etc. .4 to 1.0 is more preferable, and 0.5 to 1.0 is still more preferable. When the equivalence ratio is 0.3 or more, the curability is improved and the adhesive force tends to be improved. When the equivalent ratio is 1.5 or less, the unreacted amine does not remain excessively, and the insulation reliability is improved. Tend.

(iv)イミダゾール系硬化剤
イミダゾール系硬化剤としては、例えば、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノ−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾールトリメリテイト、1−シアノエチル−2−フェニルイミダゾリウムトリメリテイト、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−ウンデシルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−エチル−4’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンイソシアヌル酸付加体、2−フェニルイミダゾールイソシアヌル酸付加体、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール及びエポキシ樹脂とイミダゾール類の付加体が挙げられる。これらの中でも、優れた硬化性、保存安定性及び接続信頼性の観点から、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノ−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾールトリメリテイト、1−シアノエチル−2−フェニルイミダゾリウムトリメリテイト、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−エチル−4’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンイソシアヌル酸付加体、2−フェニルイミダゾールイソシアヌル酸付加体、2−フェニル−4,5−ジヒドロキシメチルイミダゾール及び2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾールが好ましい。これらは単独で又は2種以上を併用して用いることができる。また、これらをマイクロカプセル化した潜在性硬化剤としてもよい。
(Iv) Imidazole-based curing agent Examples of the imidazole-based curing agent include 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1- Cyanoethyl-2-undecylimidazole, 1-cyano-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6 -[2'-methylimidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2'-undecylimidazolyl- (1')]-ethyl-s-triazine, 2, 4-Diamino-6- [2'-ethyl-4'-methylimidazolyl- (1 ')]-ethyl-s Triazine, 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-4,5- Examples include dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, and adducts of epoxy resins and imidazoles. Among these, from the viewpoint of excellent curability, storage stability, and connection reliability, 1-cyanoethyl-2-undecylimidazole, 1-cyano-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole trimelli Tate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6 [2′-Ethyl-4′-methylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine Isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole and 2-phenyl -4-Methyl-5-hydroxymethylimidazole is preferred. These can be used alone or in combination of two or more. Moreover, it is good also as a latent hardening | curing agent which encapsulated these.

イミダゾール系硬化剤の含有量は、(a)成分100質量部に対して、0.1〜20質量部が好ましく、0.1〜10質量部がより好ましい。イミダゾール系硬化剤の含有量が0.1質量部以上であると硬化性が向上する傾向があり、20質量部以下であると金属接合が形成される前に接着剤組成物が硬化することがなく、接続不良が発生しにくい傾向がある。   0.1-20 mass parts is preferable with respect to 100 mass parts of (a) component, and, as for content of an imidazole series hardening | curing agent, 0.1-10 mass parts is more preferable. If the content of the imidazole-based curing agent is 0.1 parts by mass or more, the curability tends to be improved, and if it is 20 parts by mass or less, the adhesive composition may be cured before the metal bond is formed. There is a tendency that poor connection is less likely to occur.

(v)ホスフィン系硬化剤
ホスフィン系硬化剤としては、例えば、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムテトラ(4−メチルフェニル)ボレート及びテトラフェニルホスホニウム(4−フルオロフェニル)ボレートが挙げられる。
(V) Phosphine-based curing agent Examples of the phosphine-based curing agent include triphenylphosphine, tetraphenylphosphonium tetraphenylborate, tetraphenylphosphonium tetra (4-methylphenyl) borate and tetraphenylphosphonium (4-fluorophenyl) borate. Can be mentioned.

ホスフィン系硬化剤の含有量は、(a)成分100質量部に対して、0.1〜10質量部が好ましく、0.1〜5質量部がより好ましい。ホスフィン系硬化剤の含有量が0.1質量部以上であると硬化性が向上する傾向があり、10質量部以下であると金属接合が形成される前に接着剤組成物が硬化することがなく、接続不良が発生しにくい傾向がある。   0.1-10 mass parts is preferable with respect to 100 mass parts of (a) component, and, as for content of a phosphine type hardening | curing agent, 0.1-5 mass parts is more preferable. If the content of the phosphine-based curing agent is 0.1 parts by mass or more, curability tends to be improved, and if it is 10 parts by mass or less, the adhesive composition may be cured before a metal bond is formed. There is a tendency that poor connection is less likely to occur.

フェノール樹脂系硬化剤、酸無水物系硬化剤及びアミン系硬化剤は、それぞれ1種を単独で又は2種以上の混合物として使用することができる。イミダゾール系硬化剤及びホスフィン系硬化剤はそれぞれ単独で用いてもよいが、フェノール樹脂系硬化剤、酸無水物系硬化剤又はアミン系硬化剤と共に用いてもよい。   The phenol resin curing agent, the acid anhydride curing agent and the amine curing agent can be used singly or as a mixture of two or more. The imidazole-based curing agent and the phosphine-based curing agent may each be used alone, but may be used together with a phenol resin-based curing agent, an acid anhydride-based curing agent, or an amine-based curing agent.

接着剤組成物が(b)成分として、フェノール樹脂系硬化剤、酸無水物系硬化剤又はアミン系硬化剤を含む場合、酸化膜を除去するフラックス活性を示し、接続信頼性をより向上することができる。   When the adhesive composition contains a phenol resin curing agent, an acid anhydride curing agent or an amine curing agent as the component (b), it exhibits a flux activity for removing an oxide film and further improves connection reliability. Can do.

(c)成分:ビニル系表面処理フィラー又は上記一般式(1)で表される基を有するフィラー
(c)成分としては、上記一般式(1)で表される基を有する化合物で表面処理されたフィラーであれば特に制限はなく、例えば、絶縁性無機フィラー、ウィスカー及び樹脂フィラーを表面処理したものを用いることができる。すなわち、(c)成分としては、上記一般式(1)で表される基を有するフィラーを用いることができる。ここで、式(1)中、R、R及びRはそれぞれ独立に水素原子、メチル基又はエチル基を示し、比較的嵩高くない基である方が反応性が高いことから、水素原子又はメチル基であることが好ましく、R及びRが水素原子であり、Rが水素原子又はメチル基であることがより好ましい。Rは炭素数1〜30のアルキレン基を示し、揮発しにくいことから分子量が大きい方が好ましい。また、R、R、R及びRは、表面処理の容易さにより適宜選定することができる。
Component (c): Vinyl-based surface treatment filler or filler having a group represented by the above general formula (1) (c) As a component, a surface treatment is performed with a compound having a group represented by the above general formula (1). If it is a filler, there is no restriction | limiting in particular, For example, what surface-treated the insulating inorganic filler, the whisker, and the resin filler can be used. That is, as the component (c), a filler having a group represented by the general formula (1) can be used. Here, in formula (1), R 1 , R 2 and R 3 each independently represent a hydrogen atom, a methyl group or an ethyl group, and a relatively non-bulky group is more reactive, so hydrogen It is preferably an atom or a methyl group, more preferably R 1 and R 2 are hydrogen atoms, and R 3 is a hydrogen atom or a methyl group. R 4 represents an alkylene group having 1 to 30 carbon atoms, and preferably has a higher molecular weight because it is less likely to volatilize. R 1 , R 2 , R 3 and R 4 can be appropriately selected depending on the ease of surface treatment.

絶縁性無機フィラーとしては、例えば、ガラス、シリカ、アルミナ、酸化チタン、カーボンブラック、マイカ及び窒化ホウ素が挙げられ、シリカ、アルミナ、酸化チタン及び窒化ホウ素が好ましく、シリカ、アルミナ及び窒化ホウ素がより好ましい。ウィスカーとしては、例えば、ホウ酸アルミニウム、チタン酸アルミニウム、酸化亜鉛、珪酸カルシウム、硫酸マグネシウム及び窒化ホウ素が挙げられる。樹脂フィラーとしては、ポリウレタン、ポリイミドが挙げられる。これらのフィラー及びウィスカーは単独で又は2種以上の混合物として使用することができる。フィラーの形状、粒径及び配合量は、特に制限されない。これらのフィラーの中でも、表面処理の簡易さや樹脂成分との相溶性が比較的よいことからシリカフィラーが好ましい。   Examples of the insulating inorganic filler include glass, silica, alumina, titanium oxide, carbon black, mica, and boron nitride. Silica, alumina, titanium oxide, and boron nitride are preferable, and silica, alumina, and boron nitride are more preferable. . Examples of whiskers include aluminum borate, aluminum titanate, zinc oxide, calcium silicate, magnesium sulfate, and boron nitride. Examples of the resin filler include polyurethane and polyimide. These fillers and whiskers can be used alone or as a mixture of two or more. The shape, particle size and blending amount of the filler are not particularly limited. Among these fillers, silica filler is preferable because of easy surface treatment and relatively good compatibility with the resin component.

ビニル系表面処理フィラーとしては、上記一般式(2)で表される化合物で表面処理されたフィラーを用いることが好ましい。式(2)中、R、R、R及びRは上記式(1)と同様の観点から選択することができる。また、Rは炭素数1〜30のアルキル基を示し、表面処理の容易さにより適宜選定することができ、メチル基又はエチル基であることが好ましい。As the vinyl surface treatment filler, it is preferable to use a filler surface-treated with the compound represented by the general formula (2). In the formula (2), R 1 , R 2 , R 3 and R 4 can be selected from the same viewpoint as the formula (1). R 5 represents an alkyl group having 1 to 30 carbon atoms and can be appropriately selected depending on the ease of surface treatment, and is preferably a methyl group or an ethyl group.

(c)成分の形状、粒径は、接着剤組成物の用途に応じて適宜設定すればよく、特に制限されない。   The shape and particle size of the component (c) may be appropriately set according to the use of the adhesive composition, and are not particularly limited.

(c)成分の配合量は、接着剤組成物の固形分全体を基準として、5〜60質量%が好ましく、10〜50質量%が更に好ましい。5質量%以上であると硬化後の接着剤組成物の熱膨張率の低減効果が十分に発揮され易い傾向があり、60質量%以下であると粘度を調整しやすく、接着剤組成物の流動性の低下や接続部へのフィラーの噛み込み(トラッピング)が生じにくく、接続信頼性が向上する傾向がある。   The amount of component (c) is preferably 5 to 60% by mass, more preferably 10 to 50% by mass, based on the total solid content of the adhesive composition. If it is 5% by mass or more, the effect of reducing the coefficient of thermal expansion of the adhesive composition after curing tends to be sufficiently exhibited, and if it is 60% by mass or less, the viscosity can be easily adjusted, and the flow of the adhesive composition And the filler is less likely to be trapped (trapping) and the connection reliability tends to be improved.

フリップチップ接続における高温接続等の高温プロセスでのボイドの発生原因は種々考えられるが、主なものとして、接着剤組成物の構成成分の揮発が考えられる。そのため、構成成分は液状より固形成分であることが好ましい。   There are various causes for the generation of voids in high-temperature processes such as high-temperature connection in flip-chip connection, but the main cause is volatilization of the constituent components of the adhesive composition. Therefore, the constituent component is preferably a solid component rather than a liquid component.

また、シランカップリング剤を予めフィラーと表面処理せず、接着剤組成物の構成成分として添加し、系中で表面処理を行うと、メタノール等が発生し、高温プロセス時に発泡の原因となる。   Moreover, when a silane coupling agent is not surface-treated with a filler in advance and is added as a constituent component of the adhesive composition, and surface treatment is performed in the system, methanol or the like is generated, which causes foaming during a high-temperature process.

(d)成分:重量平均分子量10000以上の高分子成分
(d)成分としては、例えば、フェノキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリカルボジイミド樹脂、シアネートエステル樹脂、アクリル樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリエーテルスルホン樹脂、ポリエーテルイミド樹脂、ポリビニルアセタール樹脂、ウレタン樹脂及びアクリルゴムが挙げられる。これらの中でも耐熱性及びフィルム形成性に優れる観点から、フェノキシ樹脂、ポリイミド樹脂、アクリルゴム、シアネートエステル樹脂及びポリカルボジイミド樹脂が好ましく、フェノキシ樹脂、ポリイミド樹脂及びアクリルゴムがより好ましい。これらの(d)成分は単独で又は2種以上の混合物や共重合体として使用することもできる。但し、(d)成分には、(a)成分であるエポキシ樹脂が含まれない。
Component (d): Polymer component having a weight average molecular weight of 10,000 or more Examples of component (d) include phenoxy resin, polyimide resin, polyamide resin, polycarbodiimide resin, cyanate ester resin, acrylic resin, polyester resin, polyethylene resin, poly Examples include ether sulfone resin, polyetherimide resin, polyvinyl acetal resin, urethane resin, and acrylic rubber. Among these, from the viewpoint of excellent heat resistance and film formability, phenoxy resin, polyimide resin, acrylic rubber, cyanate ester resin, and polycarbodiimide resin are preferable, and phenoxy resin, polyimide resin, and acrylic rubber are more preferable. These components (d) can be used alone or as a mixture or copolymer of two or more. However, the (d) component does not include the epoxy resin as the (a) component.

上述したフェノキシ樹脂、ポリイミド樹脂等の高分子成分は市販品を用いてもよいし、合成したものを用いてもよい。   As the above-described polymer components such as phenoxy resin and polyimide resin, commercially available products may be used, or synthesized products may be used.

上記ポリイミド樹脂は、例えば、テトラカルボン酸二無水物とジアミンとを公知の方法で縮合反応させて得ることができる。より具体的には、有機溶媒中で、テトラカルボン酸二無水物とジアミンとを等モル又はほぼ等モル混合し(各成分の添加順序は任意)、反応温度を80℃以下、好ましくは0〜60℃に設定して付加反応させるとよい。なお、接着剤組成物の諸特性の低下を抑えるため、上記のテトラカルボン酸二無水物は無水酢酸で再結晶精製処理されていることが好ましい。   The polyimide resin can be obtained, for example, by subjecting tetracarboxylic dianhydride and diamine to a condensation reaction by a known method. More specifically, tetracarboxylic dianhydride and diamine are mixed in equimolar or almost equimolar amounts in an organic solvent (the order of addition of each component is arbitrary), and the reaction temperature is 80 ° C. or lower, preferably 0 to The addition reaction may be set at 60 ° C. The tetracarboxylic dianhydride is preferably recrystallized and purified with acetic anhydride in order to suppress deterioration of various properties of the adhesive composition.

上記付加反応が進行するにつれ反応液の粘度が徐々に上昇し、ポリイミドの前駆体であるポリアミド酸が生成する。ポリイミド樹脂は、上記ポリアミド酸を脱水閉環させて得ることができる。脱水閉環は、加熱処理する熱閉環法や、脱水剤を使用する化学閉環法で行うことができる。上記ポリアミド酸は、50〜80℃で加熱して解重合させることによって、その分子量を調整することができる。   As the addition reaction proceeds, the viscosity of the reaction solution gradually increases, and polyamic acid, which is a polyimide precursor, is generated. The polyimide resin can be obtained by dehydrating and ring-closing the polyamic acid. The dehydration ring closure can be performed by a thermal ring closure method in which heat treatment is performed or a chemical ring closure method using a dehydrating agent. The molecular weight of the polyamic acid can be adjusted by heating at 50 to 80 ° C. for depolymerization.

ポリイミド樹脂の原料として用いられるテトラカルボン酸二無水物としては、特に制限はなく、例えば、ピロメリット酸二無水物、3,3’、4,4’−ビフェニルテトラカルボン酸二無水物、2,2’、3,3’−ビフェニルテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、ベンゼン−1,2,3,4−テトラカルボン酸二無水物、3,4,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、2,3,2’,3’−ベンゾフェノンテトラカルボン酸二無水物、3,3,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,2,4,5−ナフタレンテトラカルボン酸二無水物、2,6−ジクロロナフタレン−1,4,5,8−テトラカルボン酸二無水物、2,7−ジクロロナフタレン−1,4,5,8−テトラカルボン酸二無水物、2,3,6,7−テトラクロロナフタレン−1,4,5,8−テトラカルボン酸二無水物、フェナンスレン−1,8,9,10−テトラカルボン酸二無水物、ピラジン−2,3,5,6−テトラカルボン酸二無水物、チオフェン−2,3,5,6−テトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物、2,3,2’,3’−ビフェニルテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)ジメチルシラン二無水物、ビス(3,4−ジカルボキシフェニル)メチルフェニルシラン二無水物、ビス(3,4−ジカルボキシフェニル)ジフェニルシラン二無水物、1,4−ビス(3,4−ジカルボキシフェニルジメチルシリル)ベンゼン二無水物、1,3−ビス(3,4−ジカルボキシフェニル)−1,1,3,3−テトラメチルジシクロヘキサン二無水物、p−フェニレンビス(トリメリテート無水物)、エチレンテトラカルボン酸二無水物、1,2,3,4−ブタンテトラカルボン酸二無水物、デカヒドロナフタレン−1,4,5,8−テトラカルボン酸二無水物、4,8−ジメチル−1,2,3,5,6,7−ヘキサヒドロナフタレン−1,2,5,6−テトラカルボン酸二無水物、シクロペンタン−1,2,3,4−テトラカルボン酸二無水物、ピロリジン−2,3,4,5−テトラカルボン酸二無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物、ビス(エキソ−ビシクロ〔2,2,1〕ヘプタン−2,3−ジカルボン酸二無水物、ビシクロ−〔2,2,2〕−オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス〔4−(3,4−ジカルボキシフェニル)フェニル〕プロパン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、2,2−ビス〔4−(3,4−ジカルボキシフェニル)フェニル〕ヘキサフルオロプロパン二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、1,4−ビス(2−ヒドロキシヘキサフルオロイソプロピル)ベンゼンビス(トリメリット酸無水物)、1,3−ビス(2−ヒドロキシヘキサフルオロイソプロピル)ベンゼンビス(トリメリット酸無水物)、5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸二無水物、テトラヒドロフラン−2,3,4,5−テトラカルボン酸二無水物、下記一般式(I)で表されるテトラカルボン酸二無水物及び下記式(II)で表されるテトラカルボン酸二無水物が挙げられる。   There is no restriction | limiting in particular as tetracarboxylic dianhydride used as a raw material of a polyimide resin, For example, pyromellitic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 2, 2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane Dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxy) Phenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 3,4,9,10-perylenetetraca Boronic acid dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, benzene-1,2,3,4-tetracarboxylic dianhydride, 3,4,3 ′, 4′-benzophenone tetra Carboxylic dianhydride, 2,3,2 ′, 3′-benzophenone tetracarboxylic dianhydride, 3,3,3 ′, 4′-benzophenone tetracarboxylic dianhydride, 1,2,5,6- Naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,4,5-naphthalenetetra Carboxylic dianhydride, 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,7-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2, 3, 6, 7 Tetrachloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, phenanthrene-1,8,9,10-tetracarboxylic dianhydride, pyrazine-2,3,5,6-tetracarboxylic dianhydride Anhydride, thiophene-2,3,5,6-tetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, 3,4,3 ′, 4′-biphenyltetra Carboxylic dianhydride, 2,3,2 ′, 3′-biphenyltetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) dimethylsilane dianhydride, bis (3,4-dicarboxyphenyl) Methylphenylsilane dianhydride, bis (3,4-dicarboxyphenyl) diphenylsilane dianhydride, 1,4-bis (3,4-dicarboxyphenyldimethylsilyl) benzene dianhydride, 1 , 3-bis (3,4-dicarboxyphenyl) -1,1,3,3-tetramethyldicyclohexane dianhydride, p-phenylenebis (trimellitate anhydride), ethylenetetracarboxylic dianhydride, 1, 2,3,4-butanetetracarboxylic dianhydride, decahydronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 4,8-dimethyl-1,2,3,5,6,7 -Hexahydronaphthalene-1,2,5,6-tetracarboxylic dianhydride, cyclopentane-1,2,3,4-tetracarboxylic dianhydride, pyrrolidine-2,3,4,5-tetracarboxylic Acid dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, bis (exo-bicyclo [2,2,1] heptane-2,3-dicarboxylic dianhydride, bicyclo- [2, 2,2] -o To-7-ene-2,3,5,6-tetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis [4- (3 , 4-Dicarboxyphenyl) phenyl] propane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride, 2,2-bis [4- (3,4-dicarboxy) Phenyl) phenyl] hexafluoropropane dianhydride, 4,4′-bis (3,4-dicarboxyphenoxy) diphenyl sulfide dianhydride, 1,4-bis (2-hydroxyhexafluoroisopropyl) benzenebis (trimerit Acid anhydride), 1,3-bis (2-hydroxyhexafluoroisopropyl) benzenebis (trimellitic anhydride), 5- (2,5-dioxotetrahydro Ryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic dianhydride, tetrahydrofuran-2,3,4,5-tetracarboxylic dianhydride, tetracarboxylic acid represented by the following general formula (I) Examples thereof include acid dianhydrides and tetracarboxylic dianhydrides represented by the following formula (II).

式(I)中、aは2〜20の整数を示す。   In formula (I), a represents an integer of 2 to 20.

上記一般式(I)で表されるテトラカルボン酸二無水物は、無水トリメリット酸モノクロライド及び対応するジオールから合成することができ、具体的には、1,2−(エチレン)ビス(トリメリテート無水物)、1,3−(トリメチレン)ビス(トリメリテート無水物)、1,4−(テトラメチレン)ビス(トリメリテート無水物)、1,5−(ペンタメチレン)ビス(トリメリテート無水物)、1,6−(ヘキサメチレン)ビス(トリメリテート無水物)、1,7−(ヘプタメチレン)ビス(トリメリテート無水物)、1,8−(オクタメチレン)ビス(トリメリテート無水物)、1,9−(ノナメチレン)ビス(トリメリテート無水物)、1,10−(デカメチレン)ビス(トリメリテート無水物)、1,12−(ドデカメチレン)ビス(トリメリテート無水物)、1,16−(ヘキサデカメチレン)ビス(トリメリテート無水物)及び1,18−(オクタデカメチレン)ビス(トリメリテート無水物)が挙げられる。   The tetracarboxylic dianhydride represented by the above general formula (I) can be synthesized from trimellitic anhydride monochloride and the corresponding diol, specifically, 1,2- (ethylene) bis (trimellitate). Anhydride), 1,3- (trimethylene) bis (trimellitic anhydride), 1,4- (tetramethylene) bis (trimellitic anhydride), 1,5- (pentamethylene) bis (trimellitic anhydride), 1, 6- (Hexamethylene) bis (trimellitic anhydride), 1,7- (heptamethylene) bis (trimellitic anhydride), 1,8- (octamethylene) bis (trimellitic anhydride), 1,9- (nonamethylene) Bis (trimellitic anhydride), 1,10- (decamethylene) bis (trimellitic anhydride), 1,12- (dodecamethylene) bi (Trimellitate anhydride), 1,16 (hexamethylene decamethylene) bis (trimellitate anhydride) and 1,18 (octadecamethylene) bis (trimellitate anhydride) and the like.

テトラカルボン酸二無水物としては、優れた耐湿信頼性を付与できる点で、上記式(II)で表されるテトラカルボン酸二無水物が好ましい。上記テトラカルボン酸二無水物は、単独で又は2種以上を組み合わせて使用することができる。   As the tetracarboxylic dianhydride, a tetracarboxylic dianhydride represented by the above formula (II) is preferable in that it can provide excellent moisture resistance reliability. The said tetracarboxylic dianhydride can be used individually or in combination of 2 or more types.

上記式(II)で表されるテトラカルボン酸二無水物の含有量は、全テトラカルボン酸二無水物に対して40モル%以上が好ましく、50モル%以上がより好ましく、70モル%以上が更に好ましい。含有量が40モル%以上であると、上記式(II)で表されるテトラカルボン酸二無水物を使用したことによる耐湿信頼性の効果を充分に確保し易い傾向がある。   The content of the tetracarboxylic dianhydride represented by the above formula (II) is preferably 40 mol% or more, more preferably 50 mol% or more, and more preferably 70 mol% or more based on the total tetracarboxylic dianhydride. Further preferred. When the content is 40 mol% or more, there is a tendency to sufficiently ensure the effect of moisture resistance reliability due to the use of the tetracarboxylic dianhydride represented by the above formula (II).

上記ポリイミド樹脂の原料として用いられるジアミンとしては、特に制限はなく、例えば、o−フェニレンジアミン、m−フェニレンジアミン、p−フェニレンジアミン、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテルメタン、ビス(4−アミノ−3,5−ジメチルフェニル)メタン、ビス(4−アミノ−3,5−ジイソプロピルフェニル)メタン、3,3’−ジアミノジフェニルジフルオロメタン、3,4’−ジアミノジフェニルジフルオロメタン、4,4’−ジアミノジフェニルジフルオロメタン、3,3’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルフィド、3,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルケトン、3,4’−ジアミノジフェニルケトン、4,4’−ジアミノジフェニルケトン、2,2−ビス(3−アミノフェニル)プロパン、2,2’−(3,4’−ジアミノジフェニル)プロパン、2,2−ビス(4−アミノフェニル)プロパン、2,2−ビス(3−アミノフェニル)ヘキサフルオロプロパン、2,2−(3,4’−ジアミノジフェニル)ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、3,3’−(1,4−フェニレンビス(1−メチルエチリデン))ビスアニリン、3,4’−(1,4−フェニレンビス(1−メチルエチリデン))ビスアニリン、4,4’−(1,4−フェニレンビス(1−メチルエチリデン))ビスアニリン、2,2−ビス(4−(3−アミノフェノキシ)フェニル)プロパン、2,2−ビス(4−(3−アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)ヘキサフルオロプロパン、ビス(4−(3−アミノエノキシ)フェニル)スルフィド、ビス(4−(4−アミノエノキシ)フェニル)スルフィド、ビス(4−(3−アミノエノキシ)フェニル)スルホン、ビス(4−(4−アミノエノキシ)フェニル)スルホン、3,5−ジアミノ安息香酸等の芳香族ジアミン、1,3−ビス(アミノメチル)シクロヘキサン、2,2−ビス(4−アミノフェノキシフェニル)プロパン、下記一般式(III)又は(IV)で表される脂肪族エーテルジアミン、下記一般式(V)で表される脂肪族ジアミン及び下記一般式(VI)で表されるシロキサンジアミンが挙げられる。   There is no restriction | limiting in particular as diamine used as a raw material of the said polyimide resin, For example, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 3,3'- diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylethermethane, bis (4-amino-3,5-dimethylphenyl) methane, bis ( 4-amino-3,5-diisopropylphenyl) methane, 3,3′-diaminodiphenyldifluoromethane, 3,4′-diaminodiphenyldifluoromethane, 4,4′-diaminodiphenyldifluoromethane, 3,3′-diaminodiphenyl Sulfo 3,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfone, 3,3′-diaminodiphenylsulfide, 3,4′-diaminodiphenylsulfide, 4,4′-diaminodiphenylsulfide, 3,3 ′ -Diaminodiphenyl ketone, 3,4'-diaminodiphenyl ketone, 4,4'-diaminodiphenyl ketone, 2,2-bis (3-aminophenyl) propane, 2,2 '-(3,4'-diaminodiphenyl) Propane, 2,2-bis (4-aminophenyl) propane, 2,2-bis (3-aminophenyl) hexafluoropropane, 2,2- (3,4'-diaminodiphenyl) hexafluoropropane, 2,2 -Bis (4-aminophenyl) hexafluoropropane, 1,3-bis (3-aminophenoxy) Zen, 1,4-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 3,3 ′-(1,4-phenylenebis (1-methylethylidene)) bisaniline, 3 , 4 ′-(1,4-phenylenebis (1-methylethylidene)) bisaniline, 4,4 ′-(1,4-phenylenebis (1-methylethylidene)) bisaniline, 2,2-bis (4- ( 3-aminophenoxy) phenyl) propane, 2,2-bis (4- (3-aminophenoxy) phenyl) hexafluoropropane, 2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane, bis (4- (3-aminoenoxy) phenyl) sulfide, bis (4- (4-aminoenoxy) phenyl) sulfide, bis (4- (3-aminoethyl) Noxy) phenyl) sulfone, bis (4- (4-aminoenoxy) phenyl) sulfone, aromatic diamines such as 3,5-diaminobenzoic acid, 1,3-bis (aminomethyl) cyclohexane, 2,2-bis (4 -Aminophenoxyphenyl) propane, an aliphatic ether diamine represented by the following general formula (III) or (IV), an aliphatic diamine represented by the following general formula (V), and the following general formula (VI) Examples include siloxane diamine.

式(III)中、Q、Q及びQはそれぞれ独立に炭素数1〜10のアルキレン基を示し、bは1〜80の整数を示す。In formula (III), Q 1 , Q 2 and Q 3 each independently represents an alkylene group having 1 to 10 carbon atoms, and b represents an integer of 1 to 80.

式(IV)中、Q、Q、Q及びQはそれぞれ独立に炭素数1〜10のアルキレン基を示し、c、d及びeはそれぞれ独立に1〜50の整数を示す。In formula (IV), Q 4 , Q 5 , Q 6 and Q 7 each independently represent an alkylene group having 1 to 10 carbon atoms, and c, d and e each independently represent an integer of 1 to 50.

式(V)中、fは5〜20の整数を示す。   In formula (V), f shows the integer of 5-20.

式(VI)中、Q及びQ13はそれぞれ独立に炭素数1〜5のアルキレン基又は置換基を有してもよいフェニレン基を示し、Q、Q10、Q11及びQ12はそれぞれ独立に炭素数1〜5のアルキル基、フェニル基又はフェノキシ基を示し、gは1〜5の整数を示す。In formula (VI), Q 8 and Q 13 each independently represent an alkylene group having 1 to 5 carbon atoms or a phenylene group which may have a substituent, and Q 9 , Q 10 , Q 11 and Q 12 are each Independently, it represents an alkyl group having 1 to 5 carbon atoms, a phenyl group or a phenoxy group, and g represents an integer of 1 to 5.

これらの中でも、低応力性、低温ラミネート性及び低温接着性を付与できる点で、上記一般式(III)、(IV)又は(V)で表されるジアミンが好ましく、低吸水性及び低吸湿性を付与できる点で、上記一般式(VI)で表されるジアミンが好ましい。これらのジアミンは単独で又は2種以上を組み合わせて使用することができる。   Among these, the diamine represented by the above general formula (III), (IV) or (V) is preferable in that low stress property, low temperature laminating property and low temperature adhesiveness can be imparted, and has low water absorption and low water absorption. The diamine represented by the said general formula (VI) is preferable at the point which can provide. These diamines can be used alone or in combination of two or more.

上記一般式(III)又は(IV)で表される脂肪族エーテルジアミンの含有量は、全ジアミンの1〜50モル%であることが好ましく、上記一般式(V)で表される脂肪族ジアミンの含有量は、全ジアミンの20〜80モル%であることが好ましく、上記一般式(VI)で表されるシロキサンジアミンの含有量は、全ジアミンの20〜80モル%であることが好ましい。上記含有量の範囲内であると、低温ラミネート性及び低吸水性の付与の効果が大きくなる傾向がある。   The content of the aliphatic ether diamine represented by the general formula (III) or (IV) is preferably 1 to 50 mol% of the total diamine, and the aliphatic diamine represented by the general formula (V). The content of is preferably 20 to 80 mol% of the total diamine, and the content of the siloxane diamine represented by the general formula (VI) is preferably 20 to 80 mol% of the total diamine. When the content is within the above range, the effect of imparting low temperature laminating properties and low water absorption tends to increase.

また、上記一般式(III)で表される脂肪族エーテルジアミンとしては、具体的には、下記式(III−1)〜(III−5)の脂肪族エーテルジアミンが挙げられる。なお、一般式(III−4)及び(III−5)中、nは1以上の整数を表す。   Specific examples of the aliphatic ether diamine represented by the general formula (III) include aliphatic ether diamines represented by the following formulas (III-1) to (III-5). In general formulas (III-4) and (III-5), n represents an integer of 1 or more.

上記一般式(III−4)で表される脂肪族エーテルジアミンの重量平均分子量は、例えば、350、750、1100又は2100であることが好ましい。また、上記一般式(III−5)で表される脂肪族エーテルジアミンの重量平均分子量は、例えば230、400又は2000であることが好ましい。   The weight average molecular weight of the aliphatic ether diamine represented by the general formula (III-4) is preferably, for example, 350, 750, 1100, or 2100. Moreover, it is preferable that the weight average molecular weight of the aliphatic ether diamine represented by the said general formula (III-5) is 230, 400, or 2000, for example.

上記脂肪族エーテルジアミンのうち、低温ラミネート性と有機レジスト付き基板に対する良好な接着性とを確保できる点で、上記一般式(IV)、下記一般式(VII)、(VIII)又は(IX)でそれぞれ表される脂肪族エーテルジアミンがより好ましい。   Among the above aliphatic ether diamines, the above general formula (IV), the following general formula (VII), (VIII) or (IX) is used in that low-temperature laminating properties and good adhesion to a substrate with an organic resist can be secured. The aliphatic ether diamine represented respectively is more preferable.

式(VII)中、hは2〜80の整数を示し、2〜70であることがより好ましい。   In formula (VII), h represents an integer of 2 to 80, more preferably 2 to 70.

式(VIII)中、c、d及びeは1〜50の整数を示し、2〜40であることがより好ましい。   In formula (VIII), c, d and e represent an integer of 1 to 50, more preferably 2 to 40.

式(IX)中、j及びkはそれぞれ独立に1〜70の整数を示す。   In formula (IX), j and k each independently represent an integer of 1 to 70.

上記一般式(VII)で表される脂肪族エーテルジアミンとしては、具体的には、サンテクノケミカル(株)製のジェファーミンD−230,D−400,D−2000及びD−4000、BASF製のポリエーテルアミンD−230,D−400及びD−2000が挙げられ、上記一般式(VIII)で表される脂肪族エーテルジアミンとしては、具体的には、サンテクノケミカル(株)製のジェファーミンED−600,ED−900,ED−2001が挙げられ、上記式(IX)で表される脂肪族エーテルジアミンとしては、具体的には、サンテクノケミカル(株)製のジェファーミンEDR−148が挙げられる。   Specific examples of the aliphatic ether diamine represented by the general formula (VII) include Jeffamine D-230, D-400, D-2000 and D-4000 manufactured by Sun Techno Chemical Co., Ltd., and BASF. Polyether amines D-230, D-400, and D-2000 are exemplified, and as the aliphatic ether diamine represented by the general formula (VIII), specifically, Jeffermin ED manufactured by Sun Techno Chemical Co., Ltd. -600, ED-900, and ED-2001, and specific examples of the aliphatic ether diamine represented by the above formula (IX) include Jeffamine EDR-148 manufactured by Sun Techno Chemical Co., Ltd. .

上記一般式(V)で表される脂肪族ジアミンとしては、例えば、1,2−ジアミノエタン、1,3−ジアミノプロパン、1,4−ジアミノブタン、1,5−ジアミノペンタン、1,6−ジアミノヘキサン、1,7−ジアミノヘプタン、1,8−ジアミノオクタン、1,9−ジアミノノナン、1,10−ジアミノデカン、1,11−ジアミノウンデカン、1,12−ジアミノドデカン及び1,2−ジアミノシクロヘキサンが挙げられる。これらの中でも、1,9−ジアミノノナン、1,10−ジアミノデカン、1,11−ジアミノウンデカン及び1,12−ジアミノドデカンが好ましい。   Examples of the aliphatic diamine represented by the general formula (V) include 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6- Diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane and 1,2-diaminocyclohexane Is mentioned. Among these, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane and 1,12-diaminododecane are preferable.

上記一般式(VI)で表されるシロキサンジアミンとしては、一般式(VI)中のgが1の場合には、1,1,3,3−テトラメチル−1,3−ビス(4−アミノフェニル)ジシロキサン、1,1,3,3−テトラフェノキシ−1,3−ビス(4−アミノエチル)ジシロキサン、1,1,3,3−テトラフェニル−1,3−ビス(2−アミノエチル)ジシロキサン、1,1,3,3−テトラフェニル−1,3−ビス(3−アミノプロピル)ジシロキサン、1,1,3,3−テトラメチル−1,3−ビス(2−アミノエチル)ジシロキサン、1,1,3,3−テトラメチル−1,3−ビス(3−アミノプロピル)ジシロキサン、1,1,3,3−テトラメチル−1,3−ビス(3−アミノブチル)ジシロキサン及び1,3−ジメチル−1,3−ジメトキシ−1,3−ビス(4−アミノブチル)ジシロキサンが挙げられる。gが2の場合には、1,1,3,3,5,5−ヘキサメチル−1,5−ビス(4−アミノフェニル)トリシロキサン、1,1,5,5−テトラフェニル−3,3−ジメチル−1,5−ビス(3−アミノプロピル)トリシロキサン、1,1,5,5−テトラフェニル−3,3−ジメトキシ−1,5−ビス(4−アミノブチル)トリシロキサン、1,1,5,5−テトラフェニル−3,3−ジメトキシ−1,5−ビス(5−アミノペンチル)トリシロキサン、1,1,5,5−テトラメチル−3,3−ジメトキシ−1,5−ビス(2−アミノエチル)トリシロキサン、1,1,5,5−テトラメチル−3,3−ジメトキシ−1,5−ビス(4−アミノブチル)トリシロキサン、1,1,5,5−テトラメチル−3,3−ジメトキシ−1,5−ビス(5−アミノペンチル)トリシロキサン、1,1,3,3,5,5−ヘキサメチル−1,5−ビス(3−アミノプロピル)トリシロキサン、1,1,3,3,5,5−ヘキサエチル−1,5−ビス(3−アミノプロピル)トリシロキサン及び1,1,3,3,5,5−ヘキサプロピル−1,5−ビス(3−アミノプロピル)トリシロキサンが挙げられる。   As the siloxane diamine represented by the general formula (VI), when g in the general formula (VI) is 1, 1,1,3,3-tetramethyl-1,3-bis (4-amino) Phenyl) disiloxane, 1,1,3,3-tetraphenoxy-1,3-bis (4-aminoethyl) disiloxane, 1,1,3,3-tetraphenyl-1,3-bis (2-amino) Ethyl) disiloxane, 1,1,3,3-tetraphenyl-1,3-bis (3-aminopropyl) disiloxane, 1,1,3,3-tetramethyl-1,3-bis (2-amino) Ethyl) disiloxane, 1,1,3,3-tetramethyl-1,3-bis (3-aminopropyl) disiloxane, 1,1,3,3-tetramethyl-1,3-bis (3-amino) Butyl) disiloxane and 1,3-dimethyl-1,3- Methoxy-1,3-bis (4-aminobutyl) disiloxane and the like. When g is 2, 1,1,3,3,5,5-hexamethyl-1,5-bis (4-aminophenyl) trisiloxane, 1,1,5,5-tetraphenyl-3,3 -Dimethyl-1,5-bis (3-aminopropyl) trisiloxane, 1,1,5,5-tetraphenyl-3,3-dimethoxy-1,5-bis (4-aminobutyl) trisiloxane, 1, 1,5,5-tetraphenyl-3,3-dimethoxy-1,5-bis (5-aminopentyl) trisiloxane, 1,1,5,5-tetramethyl-3,3-dimethoxy-1,5- Bis (2-aminoethyl) trisiloxane, 1,1,5,5-tetramethyl-3,3-dimethoxy-1,5-bis (4-aminobutyl) trisiloxane, 1,1,5,5-tetra Methyl-3,3-dimethoxy-1,5-bis 5-aminopentyl) trisiloxane, 1,1,3,3,5,5-hexamethyl-1,5-bis (3-aminopropyl) trisiloxane, 1,1,3,3,5,5-hexaethyl- Examples include 1,5-bis (3-aminopropyl) trisiloxane and 1,1,3,3,5,5-hexapropyl-1,5-bis (3-aminopropyl) trisiloxane.

上記ポリイミド樹脂は、単独で又は2種以上の混合物として使用することができる。   The said polyimide resin can be used individually or as a mixture of 2 or more types.

(d)成分のガラス転移温度(Tg)は、接着剤組成物の基板やチップへの貼付性に優れる観点から、100℃以下が好ましく、75℃以下がより好ましい。Tgが100℃以下である場合には、半導体チップに形成されたバンプや、基板に形成された電極や配線パターン等の凹凸を接着剤組成物により埋め込み易くなり、気泡が残存することがなくボイドが発生しにくい傾向がある。なお、上記Tgとは、DSC(パーキンエルマー社製DSC−7型)を用いて、サンプル量10mg、昇温速度5℃/分、測定雰囲気:空気の条件で測定したときのTgである。   The glass transition temperature (Tg) of the component (d) is preferably 100 ° C. or less and more preferably 75 ° C. or less from the viewpoint of excellent adhesiveness of the adhesive composition to the substrate or chip. When Tg is 100 ° C. or less, bumps formed on the semiconductor chip, and unevenness such as electrodes and wiring patterns formed on the substrate can be easily embedded with the adhesive composition, and no voids remain without voids. Tends to be less likely to occur. In addition, said Tg is Tg when using DSC (DSC-7 type | mold by Perkin-Elmer Co., Ltd.) and measuring on the conditions of sample amount 10mg, temperature increase rate 5 degree-C / min, and measurement atmosphere: air.

(d)成分の重量平均分子量は、ポリスチレン換算で10000以上であるが、単独で良好なフィルム形成性を示すために、30000以上が好ましく、40000以上がより好ましく、50000以上が更に好ましい。重量平均分子量が10000以上である場合にはフィルム形成性が向上する傾向がある。なお、本明細書において、重量平均分子量とは、高速液体クロマトグラフィー(例えば、島津製作所製、製品名「C−R4A」)を用いて、ポリスチレン換算で測定したときの重量平均分子量を意味する。   Although the weight average molecular weight of (d) component is 10,000 or more in polystyrene conversion, in order to show favorable film formation independently, 30000 or more are preferable, 40000 or more are more preferable, and 50000 or more are still more preferable. When the weight average molecular weight is 10,000 or more, the film formability tends to be improved. In addition, in this specification, a weight average molecular weight means the weight average molecular weight when measured in polystyrene conversion using a high performance liquid chromatography (For example, the product name "C-R4A" by Shimadzu Corporation).

(d)成分の含有量は特に制限されないが、フィルム状を良好に保持するため、(a)成分100質量部に対して、1〜500質量部であることが好ましく、5〜300質量部であることがより好ましく、10〜200質量部が更に好ましい。(d)成分の含有量が1質量部以上では、フィルム形成性の向上効果が得られ易い傾向があり、500質量部以下であると、接着剤組成物の硬化性が向上し、接着力が向上する傾向がある。   The content of the component (d) is not particularly limited, but is preferably 1 to 500 parts by mass, and 5 to 300 parts by mass with respect to 100 parts by mass of the component (a) in order to maintain a good film shape. More preferably, it is more preferably 10 to 200 parts by mass. When the content of the component (d) is 1 part by mass or more, there is a tendency that an effect of improving the film formability tends to be obtained, and when it is 500 parts by mass or less, the curability of the adhesive composition is improved and the adhesive strength is increased. There is a tendency to improve.

(e)成分:フラックス活性剤
本発明の接着剤組成物には(e)成分、すなわち、フラックス活性(酸化物や不純物を除去する活性)を示す化合物であるフラックス活性剤を含有することができる。フラックス活性剤としては、イミダゾール類やアミン類のように非共有電子対を有する含窒素化合物、カルボン酸類、フェノール類及びアルコール類が挙げられる。
(E) Component: Flux Activator The adhesive composition of the present invention can contain a component (e), that is, a flux activator that is a compound exhibiting flux activity (activity for removing oxides and impurities). . Examples of the flux activator include nitrogen-containing compounds having lone pairs such as imidazoles and amines, carboxylic acids, phenols, and alcohols.

これらの中でも、カルボン酸類はフラックス活性が強く、(a)成分であるエポキシ樹脂と容易に反応し、接着剤組成物の硬化物中に遊離した状態で存在しないため、絶縁信頼性の低下を防ぐことができる。   Among these, carboxylic acids have a strong flux activity, react easily with the epoxy resin as component (a), and do not exist in a free state in the cured product of the adhesive composition, thus preventing a decrease in insulation reliability. be able to.

カルボン酸類としては、例えば、エタン酸、プロパン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ドデカン酸、テトラデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸等の脂式飽和カルボン酸;オレイン酸、リノール酸、リノレン酸、アラキドン酸、ドコサヘキサエン酸、エイコサペンタエン酸等の脂式不飽和カルボン酸;マレイン酸、フマル酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸等の脂式ジカルボン酸;安息香酸、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、トリメシン酸、ヘミメリット酸、ピロメリット酸、ベンゼンペンタカルボン酸、メリト酸等の芳香族カルボン酸が挙げられる。また、ヒドロキシル基を有するカルボン酸としては、例えば、乳酸、りんご酸、クエン酸及びサリチル酸が挙げられる。   Examples of carboxylic acids include ethanoic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid, heptadecanoic acid, and octadecanoic acid. Fatty saturated carboxylic acids; oleic acid, linoleic acid, linolenic acid, arachidonic acid, docosahexaenoic acid, eicosapentaenoic acid, etc .; aliphatic unsaturated carboxylic acids; maleic acid, fumaric acid, oxalic acid, malonic acid, succinic acid, glutaric acid , Aliphatic dicarboxylic acids such as adipic acid; aromatic carboxylic acids such as benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, trimesic acid, hemimellitic acid, pyromellitic acid, benzenepentacarboxylic acid and melittic acid Is mentioned. Examples of the carboxylic acid having a hydroxyl group include lactic acid, malic acid, citric acid, and salicylic acid.

さらに、上記芳香族カルボン酸に電子吸引性又は電子供与性の置換基があり、置換基によって芳香族上のカルボン酸の酸性度を変化させた芳香族系カルボン酸を用いることもできる。カルボン酸の酸性度が高いほどフラックス活性が向上する傾向にあるが、酸性度が高すぎると絶縁信頼性が低下する場合がある。カルボン酸の酸性度を高くする電子吸引性置換基としては、ニトロ基、シアノ基、トリフルオロメチル基、ハロゲン基及びフェニル基が挙げられる。カルボン酸の酸性度を弱くする電子供与性の置換基としては、メチル基、エチル基、イソプロピル基、タ−シャルブチル基、ジメチルアミノ基及びトリメチルアミノ基が挙げられる。なお、上記置換基の数や位置は、フラックス活性や絶縁信頼性が低下しなければ特に制限されない。   Furthermore, the aromatic carboxylic acid has an electron-withdrawing or electron-donating substituent, and an aromatic carboxylic acid in which the acidity of the carboxylic acid on the aromatic is changed by the substituent can also be used. Although the flux activity tends to improve as the acidity of the carboxylic acid increases, the insulation reliability may decrease if the acidity is too high. Examples of the electron-withdrawing substituent that increases the acidity of the carboxylic acid include a nitro group, a cyano group, a trifluoromethyl group, a halogen group, and a phenyl group. Examples of the electron donating substituent that weakens the acidity of the carboxylic acid include a methyl group, an ethyl group, an isopropyl group, a tertiary butyl group, a dimethylamino group, and a trimethylamino group. The number and position of the substituents are not particularly limited as long as the flux activity and the insulation reliability are not lowered.

カルボン酸類は、高温加熱時に分解して揮発成分が発生しないよう室温で液状のものより、固形のものを用いることが好ましい。   Carboxylic acids are preferably used in solid form rather than liquid form at room temperature so as not to decompose and generate volatile components upon heating at high temperature.

(その他の成分)
本実施形態の接着剤組成物には、粘度や硬化物の物性を制御するため、及び、半導体チップ及び基板を接続した際のボイドの発生や吸湿率の上昇を抑制するために、(c)成分の他に更にフィラーを配合してもよい。
(Other ingredients)
In the adhesive composition of this embodiment, in order to control the viscosity and physical properties of the cured product, and to suppress the generation of voids and the increase in the moisture absorption rate when the semiconductor chip and the substrate are connected, (c) In addition to the components, a filler may be further blended.

フィラーとしては、絶縁性無機フィラー、ウィスカー又は樹脂フィラーを用いることができる。絶縁性無機フィラー、ウィスカー又は樹脂フィラーとしては、上記(c)成分と同様の物質を使用することができる。これらのフィラー、ウィスカー及び樹脂フィラーは1種を単独で又は2種以上の混合物として使用することができる。フィラーの形状、平均粒径及び含有量は特に制限されない。   As the filler, an insulating inorganic filler, whisker, or resin filler can be used. As the insulating inorganic filler, whisker, or resin filler, the same material as the component (c) can be used. These fillers, whiskers, and resin fillers can be used alone or as a mixture of two or more. The shape, average particle diameter and content of the filler are not particularly limited.

さらに、本実施形態の接着剤組成物には、酸化防止剤、シランカップリング剤、チタンカップリング剤、レベリング剤、イオントラップ剤等の添加剤を配合してもよい。これらは1種を単独で又は2種以上を組み合わせて用いてもよい。これらの配合量については、各添加剤の効果が発現するように適宜調整すればよい。   Furthermore, you may mix | blend additives, such as antioxidant, a silane coupling agent, a titanium coupling agent, a leveling agent, and an ion trap agent, with the adhesive composition of this embodiment. You may use these individually by 1 type or in combination of 2 or more types. About these compounding quantities, what is necessary is just to adjust suitably so that the effect of each additive may express.

本実施形態の接着剤組成物は、フィルム状に形成することができる。本実施形態の接着剤組成物を用いたフィルム状接着剤の作製方法を以下に示す。まず、(a)成分、(b)成分及び(c)成分、並びに必要に応じて添加される(d)成分又は(e)成分等を有機溶媒中に加え、攪拌混合、混錬等により、溶解又は分散させて、樹脂ワニスを調製する。その後、離型処理を施した基材フィルム上に、樹脂ワニスをナイフコーター、ロールコーターやアプリケーターを用いて塗布した後、加熱により有機溶媒を除去することにより、基材フィルム上にフィルム状接着剤が得られる。なお、(d)成分を配合する場合、(d)成分を合成した後に単離することなく、合成後に得られるワニス中に各成分を加えて上記樹脂ワニスを調製してもよい。   The adhesive composition of this embodiment can be formed into a film. A method for producing a film adhesive using the adhesive composition of the present embodiment is shown below. First, the component (a), the component (b) and the component (c), and the component (d) or the component (e) added as necessary are added to an organic solvent, and mixed by stirring, kneading, etc. A resin varnish is prepared by dissolving or dispersing. Then, after applying the resin varnish on the base film subjected to the release treatment using a knife coater, roll coater or applicator, the organic solvent is removed by heating, whereby a film adhesive is applied on the base film. Is obtained. In addition, when mix | blending (d) component, you may prepare the said resin varnish by adding each component in the varnish obtained after a synthesis | combination, without isolating after synthesize | combining (d) component.

樹脂ワニスの調製に用いる有機溶媒としては、各成分を均一に溶解又は分散し得る特性を有するものが好ましく、例えば、ジメチルホルムアミド、ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、トルエン、ベンゼン、キシレン、メチルエチルケトン、テトラヒドロフラン、エチルセロソルブ、エチルセロソルブアセテート、ブチルセロソルブ、ジオキサン、シクロヘキサノン及び酢酸エチルが挙げられる。これらの有機溶媒は、単独で又は2種類以上を組み合わせて使用することができる。樹脂ワニス調製の際の攪拌混合や混錬は、例えば、攪拌機、らいかい機、3本ロール、ボールミル、ビーズミル及びホモディスパーを用いて行うことができる。   As the organic solvent used for preparing the resin varnish, those having properties capable of uniformly dissolving or dispersing each component are preferable. For example, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, diethylene glycol dimethyl ether, Examples include toluene, benzene, xylene, methyl ethyl ketone, tetrahydrofuran, ethyl cellosolve, ethyl cellosolve acetate, butyl cellosolve, dioxane, cyclohexanone and ethyl acetate. These organic solvents can be used alone or in combination of two or more. Stir mixing and kneading at the time of preparing the resin varnish can be performed using, for example, a stirrer, a raking machine, a three roll, a ball mill, a bead mill, and a homodisper.

基材フィルムとしては、有機溶媒を揮発させる際の加熱条件に耐え得る耐熱性を有するものであれば特に制限はなく、ポリプロピレンフィルム、ポリメチルペンテンフィルム等のポリオレフィンフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム等のポリエステルフィルム、ポリイミドフィルム及びポリエーテルイミドフィルムを例示できる。基材フィルムは、これらのフィルムからなる単層のものに限られず、2種以上の材料からなる多層フィルムであってもよい。   The base film is not particularly limited as long as it has heat resistance capable of withstanding the heating conditions when the organic solvent is volatilized. Polyolefin film such as polypropylene film and polymethylpentene film, polyethylene terephthalate film, polyethylene naphthalate Examples thereof include polyester films such as films, polyimide films, and polyetherimide films. The base film is not limited to a single layer made of these films, and may be a multilayer film made of two or more materials.

基材フィルムへ塗布した樹脂ワニスから有機溶媒を揮発させる際の乾燥条件は、有機溶媒が十分に揮発する条件とすることが好ましく、具体的には、50〜200℃、0.1〜90分間の加熱を行うことが好ましい。   It is preferable that the drying conditions for volatilizing the organic solvent from the resin varnish applied to the base film are such that the organic solvent is sufficiently volatilized, specifically, 50 to 200 ° C. and 0.1 to 90 minutes. It is preferable to perform heating.

<半導体装置>
本実施形態の半導体装置について、図1及び2を用いて以下説明する。図1は、本発明の半導体装置の一実施形態を示す模式断面図である。図1(a)に示すように、半導体装置100は、互いに対向する半導体チップ10及び基板(回路配線基板)20と、半導体チップ10及び基板20の互いに対向する面にそれぞれ配置された配線15と、半導体チップ10及び基板20の配線15を互いに接続する接続バンプ30と、半導体チップ10及び基板20間の空隙に隙間なく充填された接着剤組成物40とを有している。半導体チップ10及び基板20は、配線15及び接続バンプ30によりフリップチップ接続されている。配線15及び接続バンプ30は、接着剤組成物40により封止されており外部環境から遮断されている。
<Semiconductor device>
The semiconductor device of this embodiment will be described below with reference to FIGS. FIG. 1 is a schematic cross-sectional view showing an embodiment of a semiconductor device of the present invention. As shown in FIG. 1A, a semiconductor device 100 includes a semiconductor chip 10 and a substrate (circuit wiring board) 20 that face each other, and wirings 15 that are respectively disposed on mutually facing surfaces of the semiconductor chip 10 and the substrate 20. The connection bump 30 connects the semiconductor chip 10 and the wiring 15 of the substrate 20 to each other, and the adhesive composition 40 is filled in the gap between the semiconductor chip 10 and the substrate 20 without a gap. The semiconductor chip 10 and the substrate 20 are flip-chip connected by wiring 15 and connection bumps 30. The wiring 15 and the connection bump 30 are sealed with an adhesive composition 40 and are shielded from the external environment.

図1(b)に示すように、半導体装置200は、互いに対向する半導体チップ10及び基板20と、半導体チップ10及び基板20の互いに対向する面にそれぞれ配置されたバンプ32と、半導体チップ10及び基板20間の空隙に隙間なく充填された接着剤組成物40とを有している。半導体チップ10及び基板20は、対向するバンプ32が互いに接続されることによりフリップチップ接続されている。バンプ32は、接着剤組成物40により封止されており外部環境から遮断されている。   As shown in FIG. 1B, the semiconductor device 200 includes a semiconductor chip 10 and a substrate 20 that face each other, a bump 32 that is disposed on a surface that faces the semiconductor chip 10 and the substrate 20, respectively, And an adhesive composition 40 filled in the gaps between the substrates 20 without any gaps. The semiconductor chip 10 and the substrate 20 are flip-chip connected by connecting opposing bumps 32 to each other. The bumps 32 are sealed with the adhesive composition 40 and are blocked from the external environment.

図2は、本発明の半導体装置の他の一実施形態を示す模式断面図である。図2(a)に示すように、半導体装置300は、2つの半導体チップ10が配線15及び接続バンプ30によりフリップチップ接続されている点を除き、半導体装置100と同様である。図2(b)に示すように、半導体装置400は、2つの半導体チップ10がバンプ32によりフリップチップ接続されている点を除き、半導体装置200と同様である。   FIG. 2 is a schematic cross-sectional view showing another embodiment of the semiconductor device of the present invention. As shown in FIG. 2A, the semiconductor device 300 is the same as the semiconductor device 100 except that two semiconductor chips 10 are flip-chip connected by wirings 15 and connection bumps 30. As shown in FIG. 2B, the semiconductor device 400 is the same as the semiconductor device 200 except that the two semiconductor chips 10 are flip-chip connected by the bumps 32.

半導体チップ10としては、特に限定はなく、シリコン、ゲルマニウム等の同一種類の元素から構成される元素半導体、ガリウムヒ素、インジウムリン等の化合物半導体を用いることができる。   The semiconductor chip 10 is not particularly limited, and an elemental semiconductor composed of the same kind of element such as silicon or germanium, or a compound semiconductor such as gallium arsenide or indium phosphide can be used.

基板20としては、回路基板であれば特に制限はなく、ガラスエポキシ、ポリイミド、ポリエステル、セラミック、エポキシ、ビスマレイミドトリアジン等を主な成分とする絶縁基板の表面に、金属膜の不要な個所をエッチング除去して形成された配線(配線パターン)15を有する回路基板、上記絶縁基板の表面に金属めっき等によって配線15が形成された回路基板、上記絶縁基板の表面に導電性物質を印刷して配線15が形成された回路基板を用いることができる。   The substrate 20 is not particularly limited as long as it is a circuit board, and an unnecessary portion of a metal film is etched on the surface of an insulating substrate mainly composed of glass epoxy, polyimide, polyester, ceramic, epoxy, bismaleimide triazine, or the like. Circuit board having wiring (wiring pattern) 15 formed by removing, circuit board having wiring 15 formed on the surface of the insulating substrate by metal plating or the like, wiring by printing a conductive material on the surface of the insulating substrate A circuit board on which 15 is formed can be used.

配線15やバンプ32等の接続部は、主成分として、金、銀、銅、ハンダ(主成分は、例えばスズ−銀、スズ−鉛、スズ−ビスマス、スズ−銅)、ニッケル、スズ、鉛等を含有しており、複数の金属を含有していてもよい。   The connection parts such as the wiring 15 and the bumps 32 are gold, silver, copper, solder (main components are, for example, tin-silver, tin-lead, tin-bismuth, tin-copper), nickel, tin, lead as main components. Etc., and may contain a plurality of metals.

上記金属の中でも、接続部の電気伝導性・熱伝導性に優れたパッケージとする観点から、金、銀及び銅が好ましく、銀及び銅がより好ましく、銀が更に好ましい。コストが低減されたパッケージとする観点から、安価であることに基づき銀、銅及びハンダが好ましく、銅及びハンダがより好ましく、ハンダが更に好ましい。室温において金属の表面に酸化膜が形成すると生産性が低下する場合やコストが増加する場合があるため、酸化膜の形成を抑制する観点から、金、銀、銅及びハンダが好ましく、金、銀、ハンダがより好ましく、金、銀が更に好ましい。   Among the metals described above, gold, silver and copper are preferable, silver and copper are more preferable, and silver is still more preferable from the viewpoint of making the package excellent in electrical conductivity and thermal conductivity of the connection portion. From the viewpoint of providing a package with reduced cost, silver, copper and solder are preferable, copper and solder are more preferable, and solder is still more preferable based on the low cost. If an oxide film is formed on the surface of the metal at room temperature, the productivity may decrease or the cost may increase. From the viewpoint of suppressing the formation of the oxide film, gold, silver, copper and solder are preferable, and gold, silver Solder is more preferable, and gold and silver are more preferable.

上記配線15及びバンプ32の表面には、金、銀、銅、ハンダ(主成分は、例えばスズ−銀、スズ−鉛、スズ−ビスマス、スズ−銅)、スズ、ニッケル等を主な成分とする金属層が、例えばメッキにより形成されていてもよい。この金属層は単一の成分のみで構成されていても、複数の成分から構成されていてもよい。また、上記金属層は、単層又は複数の金属層が積層された構造をしていてもよい。   Gold, silver, copper, solder (main components are, for example, tin-silver, tin-lead, tin-bismuth, tin-copper), tin, nickel, etc. The metal layer to be formed may be formed by plating, for example. This metal layer may be composed of only a single component or may be composed of a plurality of components. The metal layer may have a structure in which a single layer or a plurality of metal layers are stacked.

また、本実施形態の半導体装置は、半導体装置100〜400に示すような構造(パッケージ)が複数積層されていてもよい。この場合、半導体装置100〜400は、金、銀、銅、ハンダ(主成分は、例えばスズ−銀、スズ−鉛、スズ−ビスマス、スズ−銅)、スズ、ニッケル等を含むバンプや配線で互いに電気的に接続されていてもよい。   Further, in the semiconductor device of this embodiment, a plurality of structures (packages) as shown in the semiconductor devices 100 to 400 may be stacked. In this case, the semiconductor devices 100 to 400 are bumps or wirings including gold, silver, copper, solder (main components are, for example, tin-silver, tin-lead, tin-bismuth, tin-copper), tin, nickel, or the like. They may be electrically connected to each other.

半導体装置を複数積層する手法としては、図3に示すように、例えばTSV(Through−Silicon Via)技術が挙げられる。図3は、本発明の半導体装置の他の一実施形態を示す模式断面図であり、TSV技術を用いた半導体装置である。図3に示す半導体装置500では、インターポーザ50上に形成された配線15が半導体チップ10の配線15と接続バンプ30を介して接続されることにより、半導体チップ10とインターポーザ50とはフリップチップ接続されている。半導体チップ10とインターポーザ50との間の空隙には接着剤組成物40が隙間なく充填されている。上記半導体チップ10におけるインターポーザ50と反対側の表面上には、配線15、接続バンプ30及び接着剤組成物40を介して半導体チップ10が繰り返し積層されている。半導体チップ10の表裏におけるパターン面の配線15は、半導体チップ10の内部を貫通する孔内に充填された貫通電極34により互いに接続されている。なお、貫通電極34の材質としては、銅、アルミニウム等を用いることができる。   As a method of stacking a plurality of semiconductor devices, as shown in FIG. 3, for example, a TSV (Through-Silicon Via) technique is cited. FIG. 3 is a schematic cross-sectional view showing another embodiment of the semiconductor device of the present invention, which is a semiconductor device using the TSV technology. In the semiconductor device 500 shown in FIG. 3, the wiring 15 formed on the interposer 50 is connected to the wiring 15 of the semiconductor chip 10 via the connection bumps 30, so that the semiconductor chip 10 and the interposer 50 are flip-chip connected. ing. The gap between the semiconductor chip 10 and the interposer 50 is filled with the adhesive composition 40 without a gap. On the surface of the semiconductor chip 10 opposite to the interposer 50, the semiconductor chip 10 is repeatedly stacked via the wiring 15, the connection bumps 30, and the adhesive composition 40. The wirings 15 on the pattern surface on the front and back sides of the semiconductor chip 10 are connected to each other by through electrodes 34 filled in holes that penetrate the inside of the semiconductor chip 10. In addition, as a material of the penetration electrode 34, copper, aluminum, etc. can be used.

このようなTSV技術により、通常は使用されない半導体チップの裏面からも信号を取得することが可能となる。さらには、半導体チップ10内に貫通電極34を垂直に通すため、対向する半導体チップ10間や半導体チップ10及びインターポーザ50間の距離を短くし、柔軟な接続が可能である。本実施形態の接着剤組成物は、このようなTSV技術において、対向する半導体チップ10間や、半導体チップ10及びインターポーザ50間の半導体封止用接着剤として適用することができる。   Such a TSV technique makes it possible to acquire signals from the back surface of a semiconductor chip that is not normally used. Furthermore, since the through electrode 34 passes vertically through the semiconductor chip 10, the distance between the semiconductor chips 10 facing each other and between the semiconductor chip 10 and the interposer 50 can be shortened and flexible connection is possible. The adhesive composition of the present embodiment can be applied as an adhesive for semiconductor sealing between the semiconductor chips 10 facing each other or between the semiconductor chip 10 and the interposer 50 in such TSV technology.

また、エリヤバンプチップ技術等の自由度の高いバンプ形成方法では、インターポーザを介さないでそのまま半導体チップをマザーボードに直接実装できる。本実施形態の接着剤組成物は、このような半導体チップをマザーボードに直接実装する場合にも適用することができる。なお、本実施形態の接着剤組成物は、2つの配線回路基板を積層する場合に、基板間の空隙を封止する際にも適用することができる。   In addition, in a bump forming method with a high degree of freedom such as an area bump chip technology, a semiconductor chip can be directly mounted on a mother board without using an interposer. The adhesive composition of this embodiment can also be applied when such a semiconductor chip is directly mounted on a mother board. In addition, the adhesive composition of this embodiment can be applied also when sealing the space | gap between board | substrates, when laminating | stacking two wiring circuit boards.

<半導体装置の製造方法>
本実施形態の半導体装置の製造方法について、図4を用いて以下説明する。図4は、本発明の半導体装置の製造方法の一実施形態を模式的に示す工程断面図である。
<Method for Manufacturing Semiconductor Device>
A method for manufacturing the semiconductor device of this embodiment will be described below with reference to FIGS. FIG. 4 is a process cross-sectional view schematically showing one embodiment of a method for manufacturing a semiconductor device of the present invention.

まず、図4(a)に示すように、配線(例えば、金バンプ)15を有する基板20上に、接続バンプ30を形成する位置に開口を有するソルダーレジスト60を形成する。このソルダーレジスト60は必ずしも設ける必要はない。しかしながら、基板20上にソルダーレジストを設けることにより、配線15間のブリッジの発生を抑制し、接続信頼性・絶縁信頼性を向上させることができる。ソルダーレジスト60は、例えば、市販のパッケージ用ソルダーレジスト用インキを用いて形成することができる。市販のパッケージ用ソルダーレジスト用インキとしては、具体的には、SRシリーズ(日立化成工業株式会社製、商品名)及びPSR4000−AUSシリーズ(太陽インキ製造(株)製、商品名)が挙げられる。   First, as shown in FIG. 4A, a solder resist 60 having openings at positions where connection bumps 30 are formed is formed on a substrate 20 having wirings (for example, gold bumps) 15. The solder resist 60 is not necessarily provided. However, by providing a solder resist on the substrate 20, it is possible to suppress the occurrence of a bridge between the wirings 15 and improve the connection reliability and insulation reliability. The solder resist 60 can be formed using, for example, commercially available solder resist ink for packages. Specific examples of commercially available solder resist for package resist include SR series (trade name, manufactured by Hitachi Chemical Co., Ltd.) and PSR4000-AUS series (trade name, manufactured by Taiyo Ink Manufacturing Co., Ltd.).

次に、図4(a)に示すように、ソルダーレジスト60の開口に接続バンプ(例えば、ハンダバンプ)30を形成する。そして、図4(b)に示すように、接続バンプ30及びソルダーレジスト60が形成された基板20上に、フィルム状の接着剤組成物(以下、場合により「フィルム状接着剤」という。)40を貼付する。フィルム状接着剤40の貼付は、加熱プレス、ロールラミネート、真空ラミネート等によって行うことができる。フィルム状接着剤40の供給面積や厚みは、半導体チップ10及び基板20のサイズや、接続バンプ30の高さによって適宜設定される。   Next, as shown in FIG. 4A, connection bumps (for example, solder bumps) 30 are formed in the openings of the solder resist 60. Then, as shown in FIG. 4B, a film-like adhesive composition (hereinafter sometimes referred to as “film-like adhesive”) 40 is formed on the substrate 20 on which the connection bumps 30 and the solder resist 60 are formed. Affix. The film adhesive 40 can be attached by a hot press, roll lamination, vacuum lamination, or the like. The supply area and thickness of the film adhesive 40 are appropriately set according to the size of the semiconductor chip 10 and the substrate 20 and the height of the connection bump 30.

上記のとおりフィルム状接着剤40を基板20に貼り付けた後、半導体チップ10の配線15と接続バンプ30とをフリップチップボンダー等の接続装置を用いて、位置合わせする。続いて、半導体チップ10と基板20とを接続バンプ30の融点以上の温度で加熱しながら圧着し、図4(c)に示すように、半導体チップ10と基板20とを接続すると共に、フィルム状接着剤40によって半導体チップ10及び基板20間の空隙を封止充填する。以上により、半導体装置600が得られる。   After the film-like adhesive 40 is attached to the substrate 20 as described above, the wiring 15 and the connection bumps 30 of the semiconductor chip 10 are aligned using a connection device such as a flip chip bonder. Subsequently, the semiconductor chip 10 and the substrate 20 are pressure-bonded while being heated at a temperature equal to or higher than the melting point of the connection bump 30 to connect the semiconductor chip 10 and the substrate 20 as shown in FIG. The gap between the semiconductor chip 10 and the substrate 20 is sealed and filled with the adhesive 40. Thus, the semiconductor device 600 is obtained.

本実施形態の半導体装置の製造方法では、位置合わせをした後に仮固定し、リフロー炉で加熱処理することによって、接続バンプ30を溶融させて半導体チップ10と基板20とを接続してもよい。仮固定の段階では、金属接合を形成することが必ずしも必要ではないため、上記の加熱しながら圧着する方法に比べて低荷重、短時間、低温度による圧着でよく、生産性が向上すると共に接続部の劣化を抑制することができる。   In the manufacturing method of the semiconductor device according to the present embodiment, the semiconductor chip 10 and the substrate 20 may be connected by melting the connection bumps 30 by temporarily fixing them after alignment and performing heat treatment in a reflow furnace. Since it is not always necessary to form a metal joint at the temporary fixing stage, it can be crimped with a low load, in a short time, and at a low temperature as compared with the above-mentioned method of crimping while heating. Deterioration of the part can be suppressed.

また、半導体チップ10と基板20とを接続した後、オーブン等で加熱処理を行って、更に接続信頼性・絶縁信頼性を高めてもよい。加熱温度は、フィルム状接着剤の硬化が進行する温度が好ましく、完全に硬化する温度がより好ましい。加熱温度、加熱時間は適宜設定される。   Further, after the semiconductor chip 10 and the substrate 20 are connected, heat treatment may be performed in an oven or the like to further improve connection reliability and insulation reliability. The heating temperature is preferably a temperature at which curing of the film adhesive proceeds, and more preferably a temperature at which the film adhesive is completely cured. The heating temperature and the heating time are appropriately set.

本実施形態の半導体装置の製造方法では、フィルム状接着剤40を半導体チップ10に貼付した後に基板20を接続してもよい。また、半導体チップ10及び基板20を配線15及び接続バンプ30により接続した後、半導体チップ10及び基板20間の空隙にペースト状の接着剤組成物を充填してもよい。   In the semiconductor device manufacturing method of the present embodiment, the substrate 20 may be connected after the film-like adhesive 40 has been applied to the semiconductor chip 10. Further, after the semiconductor chip 10 and the substrate 20 are connected by the wiring 15 and the connection bumps 30, the gap between the semiconductor chip 10 and the substrate 20 may be filled with a paste-like adhesive composition.

生産性が向上する観点から、複数の半導体チップ10が連結した半導体ウェハに接着剤組成物を供給した後、ダイシングして個片化することによって、半導体チップ10上に接着剤組成物が供給された構造体を得てもよい。また、接着剤組成物がペースト状の場合は、特に制限されるものではないが、スピンコート等の塗布方法により、半導体チップ10上の配線やバンプを埋め込み、厚みを均一化させればよい。この場合、樹脂の供給量が一定となるため生産性が向上すると共に、埋め込み不足によるボイドの発生及びダイシング性の低下を抑制することができる。一方、接着剤組成物がフィルム状の場合は、特に制限されるものではないが、加熱プレス、ロールラミネート及び真空ラミネート等の貼付方式により半導体チップ10上の配線やバンプを埋め込むようにフィルム状の樹脂組成物を供給すればよい。この場合、樹脂の供給量が一定となるため生産性が向上し、埋め込み不足によるボイドの発生及びダイシング性の低下を抑制することができる。   From the viewpoint of improving productivity, the adhesive composition is supplied onto the semiconductor chip 10 by supplying the adhesive composition to a semiconductor wafer connected with a plurality of semiconductor chips 10 and then dicing into individual pieces. The obtained structure may be obtained. Further, when the adhesive composition is in a paste form, it is not particularly limited, but it is sufficient to embed wirings and bumps on the semiconductor chip 10 and make the thickness uniform by a coating method such as spin coating. In this case, since the supply amount of the resin becomes constant, productivity is improved and generation of voids due to insufficient embedding and a decrease in dicing property can be suppressed. On the other hand, when the adhesive composition is in the form of a film, it is not particularly limited. However, the adhesive composition is in a film form so as to embed wirings and bumps on the semiconductor chip 10 by a sticking method such as heating press, roll lamination, and vacuum lamination. What is necessary is just to supply a resin composition. In this case, since the supply amount of the resin is constant, productivity is improved, and generation of voids due to insufficient embedding and a decrease in dicing property can be suppressed.

接続荷重は、接続バンプ30の数や高さのばらつき、加圧による接続バンプ30、又は接続部のバンプを受ける配線の変形量を考慮して設定される。接続温度は、接続部の温度が接続バンプ30の融点以上であることが好ましいが、それぞれの接続部(バンプや配線)の金属接合が形成される温度であればよい。接続バンプ30がハンダバンプである場合は、約240℃以上であればよい。   The connection load is set in consideration of variations in the number and height of the connection bumps 30, the amount of deformation of the wiring that receives the connection bumps 30 or the bumps of the connection portions due to pressure. The connection temperature is preferably such that the temperature of the connection portion is equal to or higher than the melting point of the connection bump 30, but may be any temperature at which metal connection of each connection portion (bump or wiring) is formed. When the connection bump 30 is a solder bump, it may be about 240 ° C. or higher.

接続時の接続時間は、接続部の構成金属により異なるが、生産性が向上する観点から短時間であるほど好ましい。接続バンプ30がハンダバンプである場合、接続時間は20秒以下が好ましく、10秒以下がより好ましく、5秒以下が更に好ましい。銅−銅又は銅−金の金属接続の場合は、接続時間は60秒以下が好ましい。   The connection time at the time of connection varies depending on the constituent metal of the connection part, but a shorter time is preferable from the viewpoint of improving productivity. When the connection bump 30 is a solder bump, the connection time is preferably 20 seconds or less, more preferably 10 seconds or less, and even more preferably 5 seconds or less. In the case of copper-copper or copper-gold metal connection, the connection time is preferably 60 seconds or less.

上述した様々なパッケージ構造のフリップチップ接続部においても、本発明の接着剤組成物は、優れた接続信頼性及び絶縁信頼性を示す。   The adhesive composition of the present invention exhibits excellent connection reliability and insulation reliability even in the flip chip connection portions having various package structures described above.

以下、実施例、比較例を用いて本発明を説明するが、本発明は以下の実施例によって制限されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated using an Example and a comparative example, this invention is not restrict | limited by the following examples.

(ポリイミド合成)
温度計、攪拌機及び塩化カルシウム管を備えた300mLフラスコに、1,12−ジアミノドデカン2.10g(0.035モル)、ポリエーテルジアミン(BASF製、商品名「ED2000」、分子量:1923)17.31g(0.03モル)、1,3−ビス(3−アミノプロピル)テトラメチルジシロキサン(信越化学製、商品名「LP−7100」)2.61g(0.035モル)及びN−メチル−2−ピロリドン(関東化学製、以下「NMP」という)150gを仕込み攪拌した。上記ジアミンの溶解後、フラスコを氷浴中で冷却しながら、無水酢酸で再結晶精製した4,4’−(4,4’−イソプロピリデンジフェノキシ)ビス(フタル酸二無水物)(ALDRICH製、商品名「BPADA」)15.62g(0.10モル)を少量ずつ添加した。室温で8時間反応させたのち、キシレン100gを加え、窒素ガスを吹き込みながら180℃で加熱し、水と共にキシレンを共沸除去し、ポリイミド樹脂を得た。得られたポリイミド樹脂から溶媒(NMP)を除去し、トルエン及び酢酸エチルの混合溶媒(質量比1:1)に固形分50質量%となるように溶解したものを「ポリイミドA」とした。ポリイミドAのTgは30℃、重量平均分子量は50000、SP値(溶解度パラメーター)は10.2であった。
(Polyimide synthesis)
In a 300 mL flask equipped with a thermometer, a stirrer, and a calcium chloride tube, 2.12 g (0.035 mol) of 1,12-diaminododecane, polyether diamine (trade name “ED2000”, molecular weight: 1923) manufactured by BASF) 31 g (0.03 mol), 1,3-bis (3-aminopropyl) tetramethyldisiloxane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “LP-7100”) 2.61 g (0.035 mol) and N-methyl- 150 g of 2-pyrrolidone (manufactured by Kanto Chemical Co., hereinafter referred to as “NMP”) was charged and stirred. After dissolution of the diamine, 4,4 ′-(4,4′-isopropylidenediphenoxy) bis (phthalic dianhydride) (made by ALDRICH) was recrystallized and purified with acetic anhydride while cooling the flask in an ice bath. , Trade name “BPADA”) 15.62 g (0.10 mol) was added in small portions. After reacting at room temperature for 8 hours, 100 g of xylene was added and heated at 180 ° C. while blowing nitrogen gas to azeotropically remove xylene together with water to obtain a polyimide resin. The solvent (NMP) was removed from the obtained polyimide resin, and the “polyimide A” was dissolved in a mixed solvent of toluene and ethyl acetate (mass ratio 1: 1) to a solid content of 50% by mass. Polyimide A had a Tg of 30 ° C., a weight average molecular weight of 50,000, and an SP value (solubility parameter) of 10.2.

各実施例及び比較例で使用した化合物は以下の通りである。
(a)エポキシ樹脂
・トリフェノールメタン骨格含有多官能固形エポキシ(ジャパンエポキシレジン株式会社製、商品名「EP1032H60」、以下「EP1032」という。)
(b)硬化剤
・2−フェニル−4,5−ジヒドロキシメチルイミダゾール(四国化成株式会社製、商品名「2PHZ−PW」、以下「2PHZ」という。)
(c)ビニル系表面処理フィラー又は上記一般式(1)で表される基を有するフィラー
・ビニル表面処理シリカフィラー(株式会社アドマテックス製、商品名「SE2050−SVJ」、平均粒径0.5μm、以下「SVシリカ」という。)
(c’)その他のフィラー
・未処理のシリカフィラー(株式会社アドマテックス製、商品名「SE2050」、平均粒径0.5μm、以下、「未処理シリカ」という。)
・アミノシラン処理シリカフィラー(株式会社アドマテックス製、商品名「SE2050−SXJ」、平均粒径0.5μm、以下「SXシリカ」という。)
・エポキシシラン処理シリカフィラー(株式会社アドマテックス製、商品名「SE2050−SEJ」、平均粒径0.5μm、以下「SEシリカ」という。)
・フェニルシラン処理シリカフィラー(株式会社アドマテックス製、商品名「SE2050−SPJ」、平均粒径0.5μm、以下「SPシリカ」という。)
・メタブレン型有機フィラー(三菱レイヨン製、商品名「W5500」、以下「W5500」という。)
(d)分子量10000以上の高分子成分
・上述の通り合成したポリイミドA
(e)フラックス活性剤
・ジフェノール酸(東京化成株式会社製)
The compounds used in each example and comparative example are as follows.
(A) Epoxy resin / polyfunctional solid epoxy containing triphenolmethane skeleton (manufactured by Japan Epoxy Resin Co., Ltd., trade name “EP1032H60”, hereinafter referred to as “EP1032”)
(B) Hardener: 2-phenyl-4,5-dihydroxymethylimidazole (manufactured by Shikoku Kasei Co., Ltd., trade name “2PHZ-PW”, hereinafter referred to as “2PHZ”)
(C) Vinyl-based surface-treated filler or filler-vinyl surface-treated silica filler having a group represented by the above general formula (1) (manufactured by Admatechs, trade name “SE2050-SVJ”, average particle size 0.5 μm) Hereinafter referred to as “SV silica”)
(C ′) Other fillers / untreated silica filler (manufactured by Admatechs, trade name “SE2050”, average particle size 0.5 μm, hereinafter referred to as “untreated silica”)
Aminosilane-treated silica filler (manufactured by Admatechs Co., Ltd., trade name “SE2050-SXJ”, average particle size 0.5 μm, hereinafter referred to as “SX silica”)
Epoxy silane-treated silica filler (manufactured by Admatechs Co., Ltd., trade name “SE2050-SEJ”, average particle size 0.5 μm, hereinafter referred to as “SE silica”)
Phenylsilane-treated silica filler (manufactured by Admatechs Co., Ltd., trade name “SE2050-SPJ”, average particle size 0.5 μm, hereinafter referred to as “SP silica”)
Metabrene type organic filler (Made by Mitsubishi Rayon, trade name “W5500”, hereinafter referred to as “W5500”)
(D) Polymer component having a molecular weight of 10,000 or more. Polyimide A synthesized as described above.
(E) Flux activator / diphenolic acid (manufactured by Tokyo Chemical Industry Co., Ltd.)

<半導体封止用フィルム状接着剤の作製>
(実施例1)
エポキシ樹脂(EP1032)100質量部、硬化剤(2PHZ)7.5質量部、フィラー(SVシリカ)175質量部、フラックス活性剤(ジフェノール酸)25質量部並びにトルエン及び酢酸エチルの混合溶媒(質量比1:1)を固形分が60質量%になるように仕込み、直径0.8mmのビーズ及び直径2.0mmのビーズを固形分と同量加え、ビーズミル(フリッチュ・ジャパン株式会社、遊星型微粉砕機「P−7」)で30分間撹拌した。次いで、ポリイミドAを100質量部(固形分換算)加え、再度ビーズミルで30分間撹拌した後、撹拌に用いたビーズをろ過によって除去し、樹脂ワニスを得た。
<Preparation of film adhesive for semiconductor encapsulation>
Example 1
Epoxy resin (EP1032) 100 parts by mass, curing agent (2PHZ) 7.5 parts by mass, filler (SV silica) 175 parts by mass, flux activator (diphenolic acid) 25 parts by mass and a mixed solvent of toluene and ethyl acetate (mass) Ratio 1: 1) was added so that the solid content was 60% by mass, beads having a diameter of 0.8 mm and beads having a diameter of 2.0 mm were added in the same amount as the solid content, and a bead mill (Fritsch Japan KK, planetary type fine) was added. The mixture was stirred with a pulverizer “P-7”) for 30 minutes. Next, 100 parts by mass (in terms of solid content) of polyimide A was added, and the mixture was again stirred for 30 minutes with a bead mill, and then the beads used for stirring were removed by filtration to obtain a resin varnish.

得られた樹脂ワニスを、基材フィルム(帝人デュポンフィルム株式会社製、商品名「ピューレックスA53」)に、小型精密塗工装置(廉井精機製)で塗工し、クリーンオーブン(エスペック株式会社製)中、110℃で10分間乾燥して、フィルム状接着剤を作製した。   The resulting resin varnish was applied to a base film (trade name “Purex A53” manufactured by Teijin DuPont Films Ltd.) with a small precision coating device (manufactured by Yanai Seiki Co., Ltd.) Manufactured) and dried at 110 ° C. for 10 minutes to produce a film adhesive.

(実施例2及び比較例1〜5)
使用した原材料の組成を下記の表1の通りに変更したことを除いては、実施例1と同様にして、実施例2及び比較例1〜5のフィルム状接着剤を作製した。
(Example 2 and Comparative Examples 1-5)
Except having changed the composition of the used raw material as Table 1 below, it carried out similarly to Example 1, and produced the film adhesive of Example 2 and Comparative Examples 1-5.

以下に、実施例及び比較例で得られたフィルム状接着剤の評価方法を示す。   Below, the evaluation method of the film adhesive obtained in the Example and the comparative example is shown.

<初期接続性の評価>
作製したフィルム状接着剤を所定のサイズ(縦8mm×横8mm×厚さ0.025mm)に切り抜いて、ガラスエポキシ基板(ガラスエポキシ基材:420μm厚、銅配線:9μm厚)上に貼付し、ハンダバンプ付き半導体チップ(チップサイズ:縦7mm×横7mm×高さ0.15mm、バンプ高さ:銅ピラー及びハンダの合計約40μm、バンプ数328)をフリップチップ実装装置「FCB3」(パナソニック製、商品名)で実装した(実装条件:フィルム状接着剤の到達温度180℃、10秒間、0.5MPa。次いで、フィルム状接着剤の到達温度245℃、10秒間、0.5MPa)。これにより、図4と同様に上記ガラスエポキシ基板と、ハンダバンプ付き半導体チップとがデイジーチェーン接続された半導体装置を得た。
<Evaluation of initial connectivity>
Cut out the produced film adhesive into a predetermined size (length 8 mm × width 8 mm × thickness 0.025 mm) and paste it on a glass epoxy substrate (glass epoxy substrate: 420 μm thickness, copper wiring: 9 μm thickness), Flip chip mounting device "FCB3" (manufactured by Panasonic, products) (Mounting conditions: reaching temperature of film adhesive 180 ° C., 10 seconds, 0.5 MPa. Next, reaching temperature of film adhesive 245 ° C., 10 seconds, 0.5 MPa). As a result, a semiconductor device in which the glass epoxy substrate and the semiconductor chip with solder bumps were daisy chain connected as in FIG. 4 was obtained.

得られた半導体装置の接続抵抗値をマルチメータ(ADVANTEST製、商品名「R6871E」)を用いて測定することにより、実装後の初期導通の可否を評価した。接続抵抗値が11〜14Ωの場合を接続性良好「A」とし、それ以外の接続抵抗値の場合又は接続不良(Open)が生じて抵抗値が表示されなかった場合を「B」として評価した。   By measuring the connection resistance value of the obtained semiconductor device using a multimeter (trade name “R6871E” manufactured by ADVANTEST), the possibility of initial conduction after mounting was evaluated. The case where the connection resistance value was 11 to 14Ω was evaluated as “A”, and the connection resistance value other than that or the case where the connection value (Open) occurred and the resistance value was not displayed was evaluated as “B”. .

<熱膨張率の測定>
フィルム状接着剤を所定のサイズ(縦37mm×横4mm×厚さ0.025mmに切り
抜き、クリーンオーブン(エスペック株式会社製)中、180℃で3時間保持して硬化した。硬化後、熱膨張率測定装置(セイコーインスツル株式会社製、熱分析システムTMASS6000)を用いて、温度範囲20〜270℃、昇温速度5℃/分、荷重0.5MPaの条件下で熱膨張を測定した。熱膨張率は25〜125℃までの平均熱膨張率(ppm/℃)とした。
<Measurement of thermal expansion coefficient>
The film adhesive was cut into a predetermined size (length 37 mm × width 4 mm × thickness 0.025 mm, and cured for 3 hours at 180 ° C. in a clean oven (manufactured by ESPEC Corporation). Thermal expansion was measured under the conditions of a temperature range of 20 to 270 ° C., a temperature increase rate of 5 ° C./min, and a load of 0.5 MPa using a measuring device (manufactured by Seiko Instruments Inc., thermal analysis system TMASS6000). The rate was the average coefficient of thermal expansion (ppm / ° C) up to 25-125 ° C.

<接続信頼性の評価(耐TCT評価)>
上述の半導体装置をクリーンオーブン(エスペック株式会社製)中でアフターキュアした(180℃/3時間)。その後、冷熱サイクル試験機(ETAC製、THERMAL SHOCK CHAMBER NT1200)内に放置し、1mAの電流を流し、25℃2分間/−55℃15分間/25℃2分間/125℃で15分間/25℃2分間を1サイクルとして接続抵抗を測定した。初期の抵抗値波形と比べて300サイクル後も大きな変化がなかった場合を「A」、1Ω以上の差が100サイクル以上300サイクル未満で生じた場合を「B」、1Ω以上の差が100サイクル未満で生じた場合を「C」とした。
<Evaluation of connection reliability (TCT resistance evaluation)>
The above-described semiconductor device was after-cured (180 ° C./3 hours) in a clean oven (Espec Corp.). Then, it is left in a thermal cycle tester (manufactured by ETAC, THERMAL SHOCK CHAMBER NT1200), and a current of 1 mA is supplied, 25 ° C for 2 minutes / -55 ° C for 15 minutes / 25 ° C for 2 minutes / 125 ° C for 15 minutes / 25 ° C The connection resistance was measured with 2 minutes as one cycle. “A” when there is no significant change after 300 cycles compared to the initial resistance value waveform, “B” when a difference of 1 Ω or more occurs in 100 cycles or more and less than 300 cycles is “B”, and a difference of 1 Ω or more is 100 cycles The case where it occurred in less than "C" was designated.

<絶縁信頼性の評価(耐HAST評価)>
作製したフィルム状接着剤を所定のサイズ(縦10mm×横5mm×厚さ25μm)に切り抜き、ポリイミド基板上に配線銅配線を形成した、くし型電極基板(配線ピッチ:0.05mm)に貼付け、図5に示すように、くし型電極90が形成された基板20上にフィルム状接着剤40が積層されたサンプルを作製した。なお、図5では、便宜上フィルム状接着剤の図示を省略した。続いて、サンプルをクリーンオーブン(エスペック株式会社製)中、185℃で3時間保持して硬化した。硬化後、各サンプルを取り出し、加速寿命試験装置(HIRAYAMA社製、商品名「PL−422R8」、条件:130℃/相対湿度85%/200時間/5V印加)に設置し、絶縁抵抗を測定した。200時間を通して、絶縁抵抗が10Ω以上である場合を「A」、10Ω未満である場合を「B」として評価した。
<Evaluation of insulation reliability (HAST resistance evaluation)>
The produced film adhesive was cut out to a predetermined size (length 10 mm × width 5 mm × thickness 25 μm) and attached to a comb-type electrode substrate (wiring pitch: 0.05 mm) in which wiring copper wiring was formed on a polyimide substrate, As shown in FIG. 5, a sample in which the film adhesive 40 was laminated on the substrate 20 on which the comb-shaped electrode 90 was formed was produced. In FIG. 5, the film adhesive is not shown for convenience. Subsequently, the sample was cured by being held at 185 ° C. for 3 hours in a clean oven (manufactured by ESPEC Corporation). After curing, each sample was taken out and placed in an accelerated life test apparatus (trade name “PL-422R8” manufactured by HIRAYAMA, condition: 130 ° C./85% relative humidity / 200 hours / 5 V applied), and the insulation resistance was measured. . Throughout 200 hours, the case where the insulation resistance was 10 8 Ω or more was evaluated as “A”, and the case where it was less than 10 8 Ω was evaluated as “B”.

各実施例及び比較例の接着剤組成物の原材料の組成(単位:質量部)及び各試験の結果を表1に示す。   Table 1 shows the composition (unit: part by mass) of raw materials of the adhesive compositions of each Example and Comparative Example and the results of each test.

ビニル系表面処理フィラーを用いた実施例1及び2は、熱膨張率が低く、接続信頼性(耐TCT性)及び絶縁信頼性(耐HAST性)のいずれの特性も優れていることが確認された。   It was confirmed that Examples 1 and 2 using a vinyl surface treatment filler have a low coefficient of thermal expansion and are excellent in both connection reliability (TCT resistance) and insulation reliability (HAST resistance). It was.

10…半導体チップ、15…配線(接続部)、20…基板(配線回路基板)、30…接続バンプ、32…バンプ(接続部)、34…貫通電極、40…接着剤組成物(フィルム状接着剤)、50…インターポーザ、60…ソルダーレジスト、90…くし型電極、100,200,300,400,500,600…半導体装置。   DESCRIPTION OF SYMBOLS 10 ... Semiconductor chip, 15 ... Wiring (connection part), 20 ... Board | substrate (wiring circuit board), 30 ... Connection bump, 32 ... Bump (connection part), 34 ... Through-electrode, 40 ... Adhesive composition (film adhesive) Agent), 50 ... interposer, 60 ... solder resist, 90 ... comb electrode, 100, 200, 300, 400, 500, 600 ... semiconductor device.

Claims (8)

半導体チップ及び配線回路基板のそれぞれの接続部が互いに電気的に接続された半導体装置、又は、複数の半導体チップのそれぞれの接続部が互いに電気的に接続された半導体装置において前記接続部を封止する接着剤組成物であって、
エポキシ樹脂と、硬化剤と、下記一般式(2)で表される化合物で表面処理されたビニル系表面処理フィラーと、を含有する接着剤組成物。
[式(2)中、R 、R 及びR はそれぞれ独立に水素原子、メチル基又はエチル基を示し、R は炭素数1〜30のアルキレン基を示し、R は炭素数1〜30のアルキル基を示す。]
In a semiconductor device in which respective connection portions of a semiconductor chip and a printed circuit board are electrically connected to each other, or in a semiconductor device in which respective connection portions of a plurality of semiconductor chips are electrically connected to each other, the connection portions are sealed. An adhesive composition comprising:
The adhesive composition containing an epoxy resin, a hardening | curing agent, and the vinyl-type surface treatment filler surface-treated with the compound represented by following General formula (2) .
[In Formula (2), R 1 , R 2 and R 3 each independently represent a hydrogen atom, a methyl group or an ethyl group, R 4 represents an alkylene group having 1 to 30 carbon atoms, and R 5 represents 1 carbon atom. -30 alkyl groups are shown. ]
重量平均分子量が10000以上の高分子成分を更に含有する、請求項に記載の接着剤組成物。Weight average molecular weight further comprises the 10000 or more polymeric components, the adhesive composition according to claim 1. 前記高分子成分は、重量平均分子量が30000以上であり、ガラス転移温度が100℃以下である、請求項に記載の接着剤組成物。The adhesive composition according to claim 2 , wherein the polymer component has a weight average molecular weight of 30000 or more and a glass transition temperature of 100 ° C. or less. フラックス活性剤を更に含有する、請求項1〜のいずれか一項に記載の接着剤組成物。The adhesive composition according to any one of claims 1 to 3 , further comprising a flux activator. 形状がフィルム状である、請求項1〜のいずれか一項に記載の接着剤組成物。The adhesive composition according to any one of claims 1 to 4 , wherein the shape is a film shape. 半導体チップ及び配線回路基板のそれぞれの接続部が互いに電気的に接続された半導体装置、又は、複数の半導体チップのそれぞれの接続部が互いに電気的に接続された半導体装置の製造方法であって、
前記接続部を、請求項1〜のいずれか一項に記載の接着剤組成物を用いて封止する工程を備える、半導体装置の製造方法。
A semiconductor device in which respective connection portions of a semiconductor chip and a printed circuit board are electrically connected to each other, or a manufacturing method of a semiconductor device in which respective connection portions of a plurality of semiconductor chips are electrically connected to each other,
The manufacturing method of a semiconductor device provided with the process of sealing the said connection part using the adhesive composition as described in any one of Claims 1-5 .
前記接続部が主成分として金、銀、銅、ニッケル、スズ及び鉛からなる群より選ばれる少なくとも一種の金属を含有する、請求項記載の製造方法。The manufacturing method according to claim 6 , wherein the connection portion contains at least one metal selected from the group consisting of gold, silver, copper, nickel, tin, and lead as a main component. 請求項又はに記載の製造方法によって得られる、半導体装置。Obtained by the production method according to claim 6 or 7, the semiconductor device.
JP2012512164A 2010-10-22 2011-10-20 Adhesive composition, method for manufacturing semiconductor device, and semiconductor device Expired - Fee Related JP5003855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012512164A JP5003855B2 (en) 2010-10-22 2011-10-20 Adhesive composition, method for manufacturing semiconductor device, and semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010237542 2010-10-22
JP2010237542 2010-10-22
JP2012512164A JP5003855B2 (en) 2010-10-22 2011-10-20 Adhesive composition, method for manufacturing semiconductor device, and semiconductor device
PCT/JP2011/074153 WO2012053589A1 (en) 2010-10-22 2011-10-20 Adhesive composition, method for producing semiconductor device, and semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012066045A Division JP2012182461A (en) 2010-10-22 2012-03-22 Adhesive composition, manufacturing method of semiconductor device, and the semiconductor device

Publications (2)

Publication Number Publication Date
JP5003855B2 true JP5003855B2 (en) 2012-08-15
JPWO2012053589A1 JPWO2012053589A1 (en) 2014-02-24

Family

ID=45975299

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012512164A Expired - Fee Related JP5003855B2 (en) 2010-10-22 2011-10-20 Adhesive composition, method for manufacturing semiconductor device, and semiconductor device
JP2012066045A Pending JP2012182461A (en) 2010-10-22 2012-03-22 Adhesive composition, manufacturing method of semiconductor device, and the semiconductor device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012066045A Pending JP2012182461A (en) 2010-10-22 2012-03-22 Adhesive composition, manufacturing method of semiconductor device, and the semiconductor device

Country Status (5)

Country Link
JP (2) JP5003855B2 (en)
KR (1) KR101464454B1 (en)
CN (1) CN103189464B (en)
TW (1) TWI457413B (en)
WO (1) WO2012053589A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077122A (en) * 2012-09-24 2014-05-01 Sekisui Chem Co Ltd Adhesive for electronic component and method for manufacturing semiconductor chip package
JP2017038081A (en) * 2016-10-27 2017-02-16 住友ベークライト株式会社 Semiconductor device
JP2022049640A (en) * 2020-09-16 2022-03-29 昭和電工マテリアルズ株式会社 Adhesive for semiconductor, and semiconductor device and method for manufacturing the same
KR20230068394A (en) * 2020-09-16 2023-05-17 가부시끼가이샤 레조낙 Adhesive for semiconductor, semiconductor device and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11345517A (en) * 1998-06-02 1999-12-14 Toshiba Chem Corp Anisotropic conductive adhesive
JP2002060716A (en) * 2000-08-24 2002-02-26 Hitachi Chem Co Ltd Low-elastic adhesive, low-elastic adhesive member, substrate for loading semiconductor having low-elastic adhesive member and semiconductor device using the same
JP2006196850A (en) * 2004-12-16 2006-07-27 Sumitomo Electric Ind Ltd Adhesive for connecting circuit
JP2009239138A (en) * 2008-03-28 2009-10-15 Sumitomo Bakelite Co Ltd Film for semiconductor, method for manufacturing semiconductor device, and semiconductor device
JP2009256612A (en) * 2008-03-26 2009-11-05 Hitachi Chem Co Ltd Adhesive for semiconductor sealing, filmy adhesive for semiconductor sealing, semiconductor device, and its manufacturing method
JP2009262227A (en) * 2008-04-02 2009-11-12 Hitachi Chem Co Ltd Flux activator, adhesive resin composition, adhesive paste, adhesive film, semiconductor device fabrication method, and semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0349855A3 (en) * 1988-06-27 1991-01-23 Hercules Incorporated Molded article of metathesis polymerized polymer containing fillers and process for its preparation
TWI314153B (en) * 2002-07-12 2009-09-01 Mitsui Chemicals Inc Process for production of oxyalkylene derivative
JP4267428B2 (en) * 2003-11-14 2009-05-27 日東電工株式会社 Method for producing thermosetting resin composition for semiconductor encapsulation
CN101356643B (en) * 2006-09-13 2012-04-25 住友电木株式会社 Semiconductor device
CN101939825B (en) * 2008-02-07 2013-04-03 住友电木株式会社 Film for semiconductor, method for manufacturing semiconductor device and semiconductor device
JP5195454B2 (en) * 2009-01-22 2013-05-08 味の素株式会社 Resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11345517A (en) * 1998-06-02 1999-12-14 Toshiba Chem Corp Anisotropic conductive adhesive
JP2002060716A (en) * 2000-08-24 2002-02-26 Hitachi Chem Co Ltd Low-elastic adhesive, low-elastic adhesive member, substrate for loading semiconductor having low-elastic adhesive member and semiconductor device using the same
JP2006196850A (en) * 2004-12-16 2006-07-27 Sumitomo Electric Ind Ltd Adhesive for connecting circuit
JP2009256612A (en) * 2008-03-26 2009-11-05 Hitachi Chem Co Ltd Adhesive for semiconductor sealing, filmy adhesive for semiconductor sealing, semiconductor device, and its manufacturing method
JP2009239138A (en) * 2008-03-28 2009-10-15 Sumitomo Bakelite Co Ltd Film for semiconductor, method for manufacturing semiconductor device, and semiconductor device
JP2009262227A (en) * 2008-04-02 2009-11-12 Hitachi Chem Co Ltd Flux activator, adhesive resin composition, adhesive paste, adhesive film, semiconductor device fabrication method, and semiconductor device

Also Published As

Publication number Publication date
KR101464454B1 (en) 2014-11-21
CN103189464B (en) 2015-11-25
WO2012053589A1 (en) 2012-04-26
TWI457413B (en) 2014-10-21
CN103189464A (en) 2013-07-03
TW201231590A (en) 2012-08-01
KR20130129199A (en) 2013-11-27
JP2012182461A (en) 2012-09-20
JPWO2012053589A1 (en) 2014-02-24

Similar Documents

Publication Publication Date Title
JP5373192B2 (en) Adhesive composition, method for manufacturing semiconductor device, and semiconductor device
JP5577640B2 (en) Manufacturing method of semiconductor device
JP5569576B2 (en) Film adhesive for semiconductor, method for manufacturing semiconductor device, and semiconductor device
JP5881931B2 (en) Adhesive composition, semiconductor device manufacturing method using the same, and semiconductor device
JP5659946B2 (en) Semiconductor sealing adhesive, method for manufacturing the same, and semiconductor device
JP5003855B2 (en) Adhesive composition, method for manufacturing semiconductor device, and semiconductor device
JP2009117811A (en) Semiconductor sealing film-like adhesive, method of manufacturing semiconductor apparatus using the adhesive, and semiconductor apparatus
JP5641067B2 (en) Film adhesive for semiconductor encapsulation
JP5857462B2 (en) Semiconductor sealing adhesive, semiconductor device manufacturing method, and semiconductor device
JP5263050B2 (en) Adhesive composition, semiconductor device manufacturing method using the same, and semiconductor device
JP5881927B2 (en) Semiconductor sealing adhesive, semiconductor sealing film adhesive, semiconductor device manufacturing method, and semiconductor device
JP5671778B2 (en) Film-like adhesive for semiconductor sealing, semiconductor device and method for manufacturing the same
JP5397526B2 (en) Manufacturing method of semiconductor device
JP5710099B2 (en) Film sealing adhesive for semiconductor sealing, semiconductor device manufacturing method using the adhesive, and semiconductor device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5003855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees