TW201231590A - Adhesive composition, method for producing semiconductor device, and semiconductor device - Google Patents

Adhesive composition, method for producing semiconductor device, and semiconductor device Download PDF

Info

Publication number
TW201231590A
TW201231590A TW100138319A TW100138319A TW201231590A TW 201231590 A TW201231590 A TW 201231590A TW 100138319 A TW100138319 A TW 100138319A TW 100138319 A TW100138319 A TW 100138319A TW 201231590 A TW201231590 A TW 201231590A
Authority
TW
Taiwan
Prior art keywords
adhesive composition
semiconductor device
semiconductor
acid
bis
Prior art date
Application number
TW100138319A
Other languages
Chinese (zh)
Other versions
TWI457413B (en
Inventor
Kazutaka Honda
Akira Nagai
Tetsuya Enomoto
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of TW201231590A publication Critical patent/TW201231590A/en
Application granted granted Critical
Publication of TWI457413B publication Critical patent/TWI457413B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J179/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
    • C09J179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09J179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Wire Bonding (AREA)
  • Adhesive Tapes (AREA)

Abstract

The present invention relates to an adhesive composition that seals connection parts in a semiconductor device in which the connection part of a semiconductor chip and the connection part of a wiring circuit board are electrically connected together, or in a semiconductor device in which the connection parts of a plurality of semiconductor chips are electrically connected together, wherein the adhesive composition contains an epoxy resin, a curing agent, and a vinyl-based surface treatment filler.

Description

201231590 六、發明說明: 【發明所屬之技術領域】 本發明係關於接著劑組成物、半導體裝置的製造方法 及半導體裝置。 【先前技術】 近年在將半導體晶片實裝於基板進行接續上,廣、泛手IJ 用使用金導線等金屬細線的導線接合方式。另—方面,爲 了對應半導體裝置的小型化、薄型化、高機能、高積體化 、高速化等要求,在半導體晶片及基板間形成稱爲凸塊的 導電性突起,使半導體晶片與基板接續之覆晶接續方式( FC接續方式)逐漸廣用。 例如關於半導體晶片及基板間之接續,BGA ( Ball Grid Array) 、CSP ( Chip Size Package)等盛行的 COB ( Chip On Board)型接續方式亦爲FC接續方式。又,FC接 續方式亦廣泛使用在半導體晶片上形成接續部(凸塊或配 線),將半導體晶片間接續的COC ( Chip On Chip)型之 接續方式(例如專利文獻1作參考)。 然而,爲了應對更小型化、薄型化、高機能化之要求 ,將上述接續方式層合·多段化的晶片堆疊型封裝或POP (Package On Package)、TSV ( Through-Silicon Via)等 亦開始普及。如此層合·多段化技術,因使半導體晶片等 配置爲三次元,與二次元配置手法相比較,可使封裝變小 。尤其,TSV技術亦對半導體的性能提升、干擾減低、實 201231590 裝面積的減少、省電力化有效’作爲次世代半導體配線技 術而受注目。 而上述接續部(凸塊或配線)使用的主要金屬有焊錫 、錫、金、銀、銅、鎳等,亦可使用含有此等複數種之導 電材料。接續部使用的金屬因表面氧化生成氧化膜、或表 面附著氧化物等不純物而有在接續部之接續面產生不純物 之場合。若殘留如此不純物則半導體晶片及基板間或2個 半導體晶片間之接續性•絕緣信賴性降低,而有損害採用 上述接續方式之優點的疑慮。 作爲抑制此等不純物的產生且使接續性提升之方法, 舉例如接續前在基板或半導體晶片之表面實施前處理的方 法,例如施用 OSP ( Organic Solderbility Preservatives) 處理使用的預焊劑或防鏽處理劑之方法。但,前處理後預 焊劑或防鏽處理劑殘留、而劣化,亦有接續性降低之情況 〇 另一方面,根據使半導體晶片及基板間等的接續部以 半導體密封材料(半導體密封用接著劑)密封之方法可在 半導體晶片及基板或半導體晶片彼此接續之同時密封接續 部。因此’可抑制接續部使用的金屬之氧化、或防止不純 物附著於接續部,保護接續部免於外部環境干擾。因此, 可有效地使接續性.絕緣信賴性、作業性、生產性提升。 又’在以覆晶接續方式製造的半導體裝置,爲使來自 半導體晶片與基板之熱膨脹係數差或半導體晶片彼此之熱 膨脹係數差的熱應力集中在接續部而不產生接續不良,需 -6 - 201231590 要使半導體晶片及基板間等空隙以半導體密封材料密封。 尤其’在半導體晶片與基板,多使用熱膨脹係數不同的成 分’以半導體密封材料密封而可追求耐熱衝撃性提升。 上述因半導體密封材料之密封方式可大致分爲 Capillary-Flow方式與pre-applied方式(例如專利文獻2 〜6作參考)。Capillary-Flow方式係指半導體晶片及基 板之接續後,在半導體晶片及基板間之空隙將液狀的半導 體密封材料以毛細管現象注入之方式。Pre-applied方式係 指半導體晶片及基板之接續前,於半導體晶片或基板供給 糊漿狀或薄膜狀的半導體密封材料後,將半導體晶片與基 板接續之方式。關於此等密封方式,伴隨近年半導體裝置 的小型化之進展,半導體晶片及基板間等空隙變窄,在 Capillary-Flow方式有注入需長時間、生產性降低之場合 、或無法注入之場合,又,即使能注入亦有存在未充塡部 分而成爲孔洞原因之場合。因此,由作業性·生產性•信 賴性之觀點來看Pre-applied方式作爲可高機能·高積體 •高速化的封裝之製作方法而成爲主流。 [先前技術文獻] [專利文獻] [專利文獻1]特開2008-2943 82號公報 [專利文獻2]特開2001 -223227號公報 [專利文獻3]特開2002-283098號公報 [專利文獻4]特開20〇5_2 72547號公報 [專利文獻5]特開2006- 1 69407號公報 201231590 [專利文獻6]特開2006-188573號公報 【發明內容】 [發明所欲解決課題] 在上述Pre-applied方式,經加熱加壓之接續同時, 半導體晶片及基板間之空隙被半導體密封材料而密封,故 半導體密封材料之含有成分爲接續條件必需考量、選擇的 。一般在接續部彼此之接續,由充分確保接續性.絕緣信 賴性觀點來看,可使用金屬接合。因金屬接合爲使用高溫 (例如200 °C以上)的接續方式,有半導體密封材料中殘 留之揮發成分、或半導體密封材料含有成分之分解而新產 生的揮發成分造成半導體密封材料發泡之場合。因此,產 生稱爲孔洞的氣泡、半導體密封材料由半導體晶片或基板 剝離。又,加熱加壓時•壓力開放時,產生上述孔洞或半 導體晶片等回彈,則因接續接續部彼此的接續凸塊之撕裂 而產生接續部之破壞等接續不良。因此等而在以往的半導 體密封材料,有接續性.絕緣信賴性降低之虞。 又,半導體密封材料不具有充分助焊活性(金屬表面 的氧化膜或不純物的除去效果)之場合,無法除去金屬表 面的氧化膜或不純物,無法形成良好的金屬-金屬接合, 有無法確保傳導之場合。進而半導體密封材料的絕緣信賴 性低則難以應對接續部的窄間距化,而產生絕緣不良。亦 因此等,在以往的半導體密封材料有接續性·絕緣信賴性 降低之虞。 -8- 201231590 使用半導體密封材料所製造的半導體裝置, 高接續信賴性。接續信賴性可藉由例如TCT Cycle Test)評估來評估。 本發明係有鑑於上述情況而成者,以提供可 信賴性及絕緣信賴性優異之半導體裝置的接著劑 半導體密封用接著劑)、使用該接著劑組成物的 置的製造方法及半導體裝置爲目的。 [解決課題之手段] 本發明係提供在半導體晶片及配線電路基板 續部相互電接續的半導體裝置、或複數的半導體 的接續部相互電接續的半導體裝置中封閉接續部 組成物,且含有環氧樹脂、硬化劑、與以具有下 (1)所表示的基之化合物進行表面處理的乙烯 理塡料的接著劑組成物。 追求達成 〔Thermal 製作接續 組成物( 半導體裝 各自的接 晶片各自 的接著劑 述一般式 系表面處 [化1]201231590 VI. Description of the Invention: TECHNICAL FIELD The present invention relates to an adhesive composition, a method of manufacturing a semiconductor device, and a semiconductor device. [Prior Art] In recent years, semiconductor wafers have been mounted on a substrate for connection, and wide and hand-held IJs have been used for wire bonding using metal wires such as gold wires. On the other hand, in order to meet the requirements of miniaturization, thinning, high performance, high integration, and high speed of semiconductor devices, a conductive bump called a bump is formed between the semiconductor wafer and the substrate, and the semiconductor wafer is connected to the substrate. The flip chip connection method (FC connection method) is gradually being widely used. For example, regarding the connection between a semiconductor wafer and a substrate, a COB (Chip On Board) type connection method such as a BGA (Ball Grid Array) or a CSP (Chip Size Package) is also an FC connection method. Further, the FC connection method is also widely used in a COC (Chip On Chip) type in which a connection portion (bump or wiring) is formed on a semiconductor wafer, and the semiconductor wafer is indirectly continued (for example, refer to Patent Document 1). However, in order to cope with the demand for further miniaturization, thinning, and high performance, wafer stacking packages, POP (Package On Package), TSV (Through-Silicon Via), etc., which are laminated and multi-staged in the above-described connection method, have also become popular. . In such a lamination and multi-segmentation technique, since the semiconductor wafer or the like is arranged in a three-dimensional element, the package can be made smaller as compared with the second-element configuration method. In particular, TSV technology has also attracted attention as a performance improvement in semiconductors, a reduction in interference, a reduction in the installed area of 201231590, and an effective power-saving technology. The main metal used in the connection portion (bump or wiring) may be solder, tin, gold, silver, copper, nickel, or the like, and a plurality of conductive materials containing these may be used. The metal used in the joint portion may be formed by forming an oxide film on the surface or an impurity such as an oxide on the surface to cause impurities on the succeeding surface of the joint portion. If such an impurity remains, the continuity between the semiconductor wafer and the substrate or between the two semiconductor wafers and the reliability of the insulation are lowered, and the advantage of adopting the above-described connection method is impaired. As a method of suppressing the generation of such impurities and improving the continuity, for example, a method of performing pretreatment on the surface of a substrate or a semiconductor wafer before the connection, for example, applying a pre-flux or anti-rust treatment agent for OSP (Organic Solderbility Preservatives) treatment. The method. However, after the pre-treatment, the pre-flux or the rust-preventing agent remains and deteriorates, and the continuity is lowered. On the other hand, the semiconductor sealing material (the semiconductor sealing adhesive) is used as a connection between the semiconductor wafer and the substrate. The sealing method seals the joint while the semiconductor wafer and the substrate or the semiconductor wafer are connected to each other. Therefore, the oxidation of the metal used in the joint portion can be suppressed, or the impurities can be prevented from adhering to the joint portion, and the joint portion can be protected from external environmental interference. Therefore, it is possible to effectively improve the continuity, insulation reliability, workability, and productivity. Further, in the semiconductor device manufactured by the flip chip connection method, in order to concentrate the thermal stress difference between the semiconductor wafer and the substrate or the thermal expansion coefficient difference between the semiconductor wafers in the connection portion without causing connection failure, it is necessary to -6 - 201231590 The gap between the semiconductor wafer and the substrate is sealed with a semiconductor sealing material. In particular, in the semiconductor wafer and the substrate, a component having a different coefficient of thermal expansion is often used, and the semiconductor sealing material is sealed, and the heat-resistant punching property can be improved. The sealing method of the semiconductor sealing material described above can be roughly classified into a Capillary-Flow method and a pre-applied method (for example, Patent Documents 2 to 6 for reference). The Capillary-Flow method refers to a method in which a liquid semiconductor sealing material is injected into a gap between a semiconductor wafer and a substrate by capillary action after the connection between the semiconductor wafer and the substrate. The pre-applied method refers to a method in which a semiconductor wafer and a substrate are connected to each other after a semiconductor wafer or a substrate is supplied with a paste or film-like semiconductor sealing material before the connection of the semiconductor wafer and the substrate. With regard to these types of sealing methods, the gap between semiconductor wafers and substrates has been narrowed with the progress of miniaturization of semiconductor devices in recent years, and in the case of the Capillary-Flow method, when injection is required for a long period of time, productivity is lowered, or when it is impossible to inject, Even if it can be injected, there is a case where there is an unfilled portion and it becomes a cause of holes. Therefore, from the viewpoint of workability, productivity, and reliability, the Pre-applied method has become the mainstream for manufacturing a package capable of high-performance, high-product, and high-speed packaging. [PATENT DOCUMENT] [Patent Document 1] Japanese Laid-Open Patent Publication No. JP-A-2002-283227 (Patent Document 3) JP-A-2002-283098 (Patent Document 4) [Patent Document 5] JP-A-2006-188573 (Patent Document 6) JP-A-2006-188573 SUMMARY OF INVENTION [Problems to be Solved by the Invention] In the above Pre- In the applied method, the gap between the semiconductor wafer and the substrate is sealed by the semiconductor sealing material while being heated and pressurized. Therefore, the composition of the semiconductor sealing material must be considered and selected for the connection conditions. Generally, the joints are connected to each other, and metal joints can be used from the viewpoint of sufficiently ensuring the continuity and insulation reliability. In the case where the metal joining is a high-temperature (for example, 200 ° C or higher) joining method, the volatile component contained in the semiconductor sealing material or the volatile component which is newly decomposed by the semiconductor sealing material-containing component is caused to foam the semiconductor sealing material. Therefore, bubbles called holes are formed, and the semiconductor sealing material is peeled off from the semiconductor wafer or the substrate. Further, during heating and pressurization, when the pressure is released, rebound of the hole or the semiconductor wafer or the like occurs, and the joint bumps between the joint portions are torn to cause a failure in the joint portion or the like. Therefore, in the conventional semiconductor sealing material, there is continuity, and the reliability of the insulation is lowered. Further, when the semiconductor sealing material does not have sufficient fluxing activity (the effect of removing the oxide film or the impurity on the metal surface), the oxide film or the impurity on the metal surface cannot be removed, and good metal-metal bonding cannot be formed, and conduction cannot be ensured. occasion. Further, when the insulation reliability of the semiconductor sealing material is low, it is difficult to cope with the narrow pitch of the connecting portion, and insulation failure occurs. Therefore, in the conventional semiconductor sealing materials, the continuity and the reliability of the insulation are lowered. -8- 201231590 The semiconductor device manufactured using the semiconductor sealing material has high reliability. Successive dependability can be assessed by, for example, the TCT Cycle Test. In view of the above, the present invention has been made in order to provide an adhesive for an adhesive semiconductor and a semiconductor device having excellent reliability and reliability, and a method for manufacturing a semiconductor device using the adhesive composition. . [Means for Solving the Problem] The present invention provides a semiconductor device in which a semiconductor wafer and a printed circuit board continuation are electrically connected to each other, or a semiconductor device in which a plurality of semiconductor connection portions are electrically connected to each other, and the composition of the connection portion is closed and contains epoxy. A resin, a hardener, and an adhesive composition of an ethylenic material which is surface-treated with a compound having a group represented by the following (1). The pursuit of the achievement [Thermal production of the continuation of the composition (the semiconductor package of each of the respective wafers of the adhesive agent described in the general system surface [Chemical 1]

式(1)中,R1、R2及R3各自獨立,爲氫原 或乙基,R4爲碳數1〜30之伸烷基。 本發明進而提供在半導體晶片及配線電路基 接續部相互電接續的半導體裝置、或複數的半導 -9 - 子、甲基 板各自的 體晶片各 201231590 自的接續部相互電接續的半導體裝置中封閉接續部的接著 劑組成物,且爲含有環氧樹脂、與硬化劑、與具有下述— 般式(1 )所表示的基的塡料之接著劑組成物。 [化2]In the formula (1), R1, R2 and R3 are each independently a hydrogen atom or an ethyl group, and R4 is an alkylene group having 1 to 30 carbon atoms. Further, the present invention provides a semiconductor device in which a semiconductor device and a wiring circuit base connection portion are electrically connected to each other, or a semiconductor device in which a plurality of semiconductor wafers of a plurality of semiconductor chips and a methyl plate are electrically connected to each other in 201231590. The adhesive composition of the joint is closed, and is an adhesive composition containing an epoxy resin, a curing agent, and a crucible having the group represented by the following formula (1). [Chemical 2]

式(1)中’R1、!^2及R3各自獨立,爲氫原子、甲基 或乙基,R4爲碳數1〜30之伸烷基。 上述本發明的接著劑組成物’除含有環氧樹脂及硬化 劑外’藉由再含有乙烯系表面處理塡料或具有上述一般式 (1)所表不的基之塡料,即使用作爲半導體密封用接著 劑之場合’可實現半導體裝置的高接續信賴性及高絕緣信 賴性。 在此’已知將矽烷耦合劑等與未經表面處理的塡料一 起含在樹脂中,則塡料的表面被矽烷耦合處理,因矽烷耦 合劑的取代基而可合成種種表面狀態的塡料。但,矽烷親 合劑的揮發性高、在具有需要高溫接續的金屬接合等高溫 的製程之半導體裝置的製造步驟成爲產生孔洞之原因。同 樣地將以往所用之塡料進行表面處理之場合,有產生甲醇 等揮發性高之有機物的場合,成爲孔洞產生之原因。 又’在TCT評估’使_55〜125°C的溫度變化加在半導 體封裝,但在焊錫之濕潤性不足的場合或接續部的金屬接 -10- 201231590 合不完全的場合,因半導體晶片與基板間之熱膨脹率差在 接續部累積的應力等而破壞接續部。在此,認爲因半導體 密封材料的熱膨脹率低可使接續部之應力減輕,可使半導 體裝置的接續信賴性(耐TCT性)提升。 發明者們發現藉由在接著劑組成物含有上述乙烯系表 面處理塡料或具有上述一般式(1)所表示的基之塡料, 在將接著劑組成物用作爲半導體密封用接著劑之場合,可 實現半導體裝置的高接續信賴性。在本發明的接著劑組成 物,使用預先經表面處理的乙烯系表面處理塡料或具有上 述一般式(1)所表示的基之塡料,可抑制高揮發性物質 之產生。此外,本發明者們推測,塡料表面的乙烯基與其 他構成成分反應形成堅固的硬化物,可使硬化物的熱膨脹 率減低成爲具高接續信賴性者。又,本發明者們推測因乙 烯系表面處理塡料或具有上述一般式(1)所表示的基之 塡料難以使接續部的絕緣信賴性降低,而爲可使接續信賴 性提升者。 具有上述一般式(1)所表示的基之化合物以下述一 般式(2)所表示的化合物爲佳。 [化3] R2 R3 C=C—R4—Si—(〇R5) (2) R1 式(2)中,R^R2及R3各自獨立,爲氫原子、甲基 -11 - 201231590 或乙基,R4爲碳數1〜30之伸烷基,R5爲碳數1〜30之 烷基。 本發明的接著劑組成物藉由含有以上述一般式(2 ) 所表示的化合物進行表面處理的塡料,可使接續信賴性及 絕緣信賴性更提升。 在本發明的接著劑組成物,由接著劑組成物的薄膜形 成性提升觀點來看,可再含有重量平均分子量爲1 0000以 上之高分子成分。 由使接著劑組成物的貼附性或薄膜形成性更提升觀點 來看,上述高分子成分,以重量平均分子量爲30000以上 且玻璃化溫度爲1 0 0 °c以下爲佳。 本發明的接著劑組成物藉由再含有助焊活性劑,使助 焊活性增高、除去接續部的金屬表面的氧化膜或不純物, 可形成良好的金屬-金屬接合。 以Pre-applied方式可使在將半導體晶片與配線電路 基板之空隙或複數的半導體晶片間之空隙密封之場合的作 業性提升’故本發明的接著劑組成物,形狀以薄膜狀爲佳 〇 本發明進而提供半導體晶片及配線電路基板各自的接 續部相互電接續的半導體裝置、或複數的半導體晶片各自 的接續部相互電接續的半導體裝置的製造方法,且具備將 接續部使用上述接著劑組成物密封的步驟之半導體裝置的 製造方法。 根據本發明的半導體裝置的製造方法,藉由使用上述 -12- 201231590 接著劑組成物,可使半導體裝置的接續信賴性及絕緣信賴 性提升。 上述接續部含有由金、銀、銅、鎳、錫及鉛所成之群 選出的至少一種之金屬作爲主成分,可使接續部的電傳導 性、熱傳導性、接續信賴性更提升。 本發明進而提供以上述半導體裝置的製造方法得到的 半導體裝置。 因本發明的半導體裝置係使用上述半導體裝置的製造 方法所製作,故成爲接續信賴性及絕緣信賴性十分優異者 [發明的效果] 根據本發明’可提供能製作接續信賴性及絕緣信賴性 優異之半導體裝置的接著劑組成物、使用該接著劑組成物 的半導體裝置的製造方法及半導體裝置。 [實施發明之最佳形態] 以下因場合並參考圖面將本發明的較佳實施形態進行 詳細說明。又’圖面中’相同或相當部分標示相同符號而 省略重複說明。又’上下左右等位置關係未特別限制時, 爲圖面表示之位置關係。進一步,圖面的尺寸比率不限於 圖示之比率。 <接著劑組成物> -13- 201231590 本實施形態的接著劑組成物(半導體密封用接著劑) 爲半導體晶片及配線電路基板(以下、因場合而僅稱爲「 基板」)。之各自的接續部相互電接續的半導體裝置、或 複數的半導體晶片各自的接續部相互電接續的半導體裝置 中將接續部密封之接著劑組成物,且含有環氧樹脂(以下 、因場合而稱作「(a)成分」)、與硬化劑(以下、因 場合而稱作「(b)成分」)、與乙烯系表面處理塡料或 具有上述一般式(1)所表示的基之塡料(以下、因場合 而稱作「( c )成分」)。又,接著劑組成物因應需要, 含有重量平均分子量1 0000以上之高分子成分(以下、因 場合而稱作「( d )成分」)或助焊活性劑(以下、因場 合而稱作「( e )成分」)。以下、說明構成本實施形態 的接著劑組成物之各成分。 (a )成分:環氧樹脂 環氧樹脂爲分子內具有2個以上之環氧基者即可而無 特別限制。(a )成分,具體上可使用雙酚A型、雙酚F 型、萘型、酚酚醛清漆型、甲酚酚醛清漆型、酚芳烷基型 、聯苯基型、三苯基甲烷型、二環戊二烯型及各種多官能 環氧樹脂。此等可單獨或以2種以上之混合物使用。 (a)成分,由抑制在高溫接續時分解產生揮發成分 觀點來看,接續時溫度爲25 0 °C的場合以使用2 5 0°C中熱 重量減少量率爲5%以下的環氧樹脂爲佳’ 3 00 °C的場合以 使用3 00t中熱重量減少量率爲5 %以下的環氧樹脂爲佳。 -14- 201231590 又,雙酣A型或雙酚F型之液狀環氧樹脂因1%熱重量減 少溫度爲250 °C以下,故有在高溫加熱時分解產生揮發成 分之虞。因此,以使用在室溫(1氣壓、2 5 °C )爲固形的 環氧樹脂爲佳。 (b )成分:硬化劑 (b )成分,可舉例如酚樹脂系硬化劑、酸酐系硬化 劑、胺系硬化劑、咪唑系硬化劑及膦系硬化劑。(b )成 分若含有酚性羥基、酸酐、胺類或咪唑類,顯示抑制接續 部產生氧化膜的助焊活性,可使接續信賴性•絕緣信賴性 提升。以下、說明各硬化劑。 (i )酚樹脂系硬化劑 酚樹脂系硬化劑爲分子內具有2個以上之酚性羥基者 即可而無特別限制,例如可使用酚酚醛清漆、甲酚酚醛清 漆、酚芳烷基樹脂、甲酚萘酚甲醛聚縮合物、三苯基甲烷 型多官能酚及各種多官能酚樹脂。此等可單獨或以2種以 上之混合物使用。 對上述(a )成分之酚樹脂系硬化劑的當量比(酚性 羥基/環氧基、莫耳比),由良好的硬化性、接著性及保 存安定性之觀點來看,以0.3〜1.5爲佳,0.4〜1.0較佳, 0.5〜1.0更佳。當量比在0.3以上則有硬化性提升、接著 力提升之傾向,在1 .5以下則有未反應的酚性羥基不過度 殘留 '使吸水率低、絕緣信賴性提升之傾向。 -15- 201231590 (i i )酸酐系硬化劑 酸酐系硬化劑,可舉例如甲基環己烷四羧酸二酐、無 水偏苯三酸、均苯四甲酸二酐、二苯甲酮四羧酸二酐及乙 二醇雙脫水偏苯三酸。此等可單獨或以2種以上之混合物 使用。 相對上述(a )成分之酸酐系硬化劑的當量比(酸酐 基/環氧基、莫耳比),由良好的硬化性、接著性及保存 安定性之觀點來看,以0.3〜1.5爲佳,0.4〜1.0較佳, 〇 · 5〜1 · 〇更佳。當量比若在〇 . 3以上則有硬化性提升、接 著力提升之傾向,若在1.5以下則有未反應的酸酐不過度 殘留、使吸水率低、絕緣信賴性提升之傾向。 (i i i )胺系硬化劑 胺系硬化劑,例如可使用二氰二醯胺。 相對上述(a )成分之胺系硬化劑的當量比(胺/環氧 基、莫耳比),由良好的硬化性、接著性、保存安定性等 觀點以0.3〜1.5爲佳,0.4〜1.0較佳,0.5〜1·0更佳。當 量比若在0.3以上則有硬化性提升、接著力提升之傾向, 若在1 . 5以下則有未反應的胺不過度殘留、絕緣信賴性提 升之傾向。 (iv )咪唑系硬化劑 -16- 201231590 咪唑系硬化劑,可舉例如 2 -苯基咪唑、2 -苯基-4·甲 基咪唑、1-苄基-2-甲基咪唑、1-苄基-2-苯基咪唑、卜氰乙 基-2-十一基咪唑、1-氰-2-苯基咪唑、1-氰乙基-2-十一基 咪唑偏苯三酸、1-氰乙基-2-苯基咪唑鑰偏苯三酸、2,4·二 胺基-6-〔2,-甲基咪唑基-(1,)〕-乙基-3-三嗪、2,4-二胺基_ 6-〔 2’-十一基咪唑基- (1,)〕-乙基-s-三嗪、2,4-二胺基- 6-〔2’ -乙基-4,-甲基咪唑基- (1,)〕-乙基-s-三嗪、2,4-二胺 基-6-〔 2,-甲基咪唑基- (1,)〕-乙基-s-三嗪異三聚氰酸加成 體、2-苯基咪唑異三聚氰酸加成體、2·苯基-4,5-二經基甲 基咪唑、2 -苯基-4-甲基-5-羥基甲基咪唑及環氧樹脂與咪 唑類的加成體。此等中,由優異的硬化性、保存安定性及 接續信賴性之觀點來看,以1-氰乙基-2-十一基咪唑、1-氰-2-苯基咪唑、1-氰乙基-2-十一基咪唑偏苯三酸、1-氰 乙基-2-苯基咪唑鑰偏苯三酸、2,4-二胺基-6-〔2’-甲基咪 唑基-(1,)〕-乙基-s-三嗪、2,4-二胺基-6-〔 2’-乙基-4’-甲 基咪唑基-(1’)〕-乙基-8-三嗪、2,4-二胺基-6-〔2’-甲基咪 唑基-(〗’)〕-乙基-s-三嗪異三聚氰酸加成體、2-苯基咪唑 異三聚氰酸加成體、2-苯基-4,5-二羥基甲基咪唑及2-苯 基-4-甲基-5-羥基甲基咪唑爲佳。此等可單獨或2種以上 倂用。又,此等亦可作爲微膠囊化的潛在性硬化劑。 咪唑系硬化劑的含量相對(a )成分1 00質量份以0.1 〜2 0質量份爲佳,〇 · 1〜〗〇質量份更佳。咪唑系硬化劑的 含量若爲0.1質量份以上則有硬化性提升之傾向、若爲20 質量份以下則有形成金屬接合前接著劑組成物不硬化、不 -17- 201231590 易產生接續不良之傾向。 (V )膦系硬化劑 膦系硬化劑,可舉例如三苯基膦、四苯基鱗四苯基硼 酸酯、四苯基鱗四(4_甲基苯基)硼酸酯及四苯基鱗(4· 氟苯基)硼酸酯。 膦系硬化劑的含量相對(a )成分1 〇〇質量份以〇. 1〜 1 〇質量份爲佳,〇. 1〜5質量份更佳。膦系硬化劑的含量 若爲0.1質量份以上則有硬化性提升之傾向、若爲10質 量份以下則有形成金屬接合前接著劑組成物不硬化、不易 產生接續不良之傾向。 酚樹脂系硬化劑、酸酐系硬化劑及胺系硬化劑各自可 以1種單獨或作爲2種以上之混合物使用。咪唑系硬化劑 及膦系硬化劑雖可各自單獨使用,但亦可與酚樹脂系硬化 劑、酸酐系硬化劑或胺系硬化劑倂用。 接著劑組成物’作爲(b )成分含有酚樹脂系硬化劑 、酸酐系硬化劑或胺系硬化劑之場合,具有除去氧化膜之 助焊活性,可使接續信賴性更提升。 (c)成分:乙烯系表面處理墳料或具有上述—般式(1) 所表不的基之填料 (C)成分爲以具有上述—般式(1)所表示的基之化 合物進行表面處理的塡料即可而無特別限制’例如可使用 將絕緣性無機塡料、晶鬚及樹脂塡料進行表面處理者。亦 -18- 201231590 即,(C)成分,可使用具有上述一般式(1)所表示的基 之塡料。在此,式(1)中,R^R2及R3各自獨立,爲氫 原子、甲基或乙基,因體積較小的基反應性高’故以氫原 子或甲基爲佳,以R1及R2爲氫原子、R3爲氫原子或甲基 更佳。R4爲碳數1〜30之伸烷基,因不易揮發以分子量大 者爲佳。又,R'R^R3及R4可依表面處理的難易而適 宜選擇。 絕緣性無機塡料,可舉例如玻璃、二氧化矽、氧化鋁 、氧化鈦、碳黑、雲母及氮化硼,以二氧化矽、氧化鋁、 氧化鈦及氮化硼爲佳,二氧化矽、氧化鋁及氮化硼更佳。 晶鬚,可舉例如硼酸鋁、鈦.酸鋁、氧化鋅、矽酸鈣、硫酸 鎂及氮化硼。樹脂塡料,可舉例如聚胺基甲酸酯、聚醯亞 胺。此等塡料及晶鬚可單獨或以2種以上之混合物使用。 塡料的形狀、粒徑及搭配量不特別限制。此等塡料中因表 面處理容易或與樹脂成分之相溶性較佳而以二氧化矽塡料 爲佳。 乙烯系表面處理塡料以使用以上述一般式(2)所表 示的化合物進行表面處理的塡料爲佳。式(2)中,R1、 R2、R3及R4可與上述式(1 )同樣觀點來選擇。又,R5 爲碳數1〜30之烷基,可依表面處理的難易而適宜選擇, 以甲基或乙基爲佳。 (c )成分之形狀、粒徑因應接著劑組成物的用途而 適宜設定即可,無特別限制。 (C )成分之搭配量以接著劑組成物的固形分全體爲 -19- 201231590 基準,以5〜60質量%爲佳,10〜50質量%更佳。若爲5 質量%以上則有容易充分發揮硬化後的接著劑組成物的熱 膨脹率降低效果之傾向、若爲6 0質量%以下則有易調整黏 度、不易產生接著劑組成物的流動性降低或塡料滲入( traping)接續部,接續信賴性提升之傾向。 覆晶接續之高溫接續等高溫製程的孔洞產生原因雖有 種種考量,主要認爲係因接著劑組成物的構成成分之揮發 。因此,構成成分固形成分比液狀佳。 又,將矽烷耦合劑預先與塡料不進行表面處理,作爲 接著劑組成物的構成成分添加,在系中進行表面處理,則 產生甲醇等,成爲高溫製程時發泡的原因。 (d)成分:重量平均分子量10000以上之高分子成分 (d )成分,可舉例如苯氧基樹脂、聚醯亞胺樹脂、 聚醯胺樹脂、聚碳二醯亞胺樹脂、氰酸酯樹脂、丙烯酸樹 脂、聚酯樹脂、聚乙烯樹脂、聚醚颯樹脂、聚醚醯亞胺樹 脂、聚乙烯縮醛樹脂、胺基甲酸酯樹脂及丙烯橡膠。此等 中由耐熱性及薄膜形成性優異觀點來看,以苯氧基樹脂、 聚醯亞胺樹脂、丙烯橡膠、氰酸酯樹脂及聚碳二醯亞胺樹 脂爲佳’苯氧基樹脂、聚醯亞胺樹脂及丙烯橡膠更佳。此 等(d)成分可以單獨或作爲2種以上之混合物或共聚物 使用。但’ (d)成分中不含(a)成分之環氧樹脂。 上述苯氧基樹脂、聚醯亞胺樹脂等高分子成分可使用 市售品、或合成者。 -20- 201231590 上述聚醯亞胺樹脂,例如可使四竣酸二酐與二胺與以 習知方法進行縮合反應而得到。更具體上在有機溶劑中, 使四羧酸二酐與二胺以等莫耳或幾乎等莫耳混合(各成分 之添加順序隨意)、反應溫度在8 0 °C以下、較佳設定在〇 〜6 0 °C進行加成反應即可。又’爲了抑制接著劑組成物的 諸特性降低’上述四羧酸二酐以乙酸酐進行再結晶精製處 理爲佳。 伴隨上述加成反應進行,反應液黏度緩緩上升,生成 聚醯亞胺的前驅物之聚醯胺酸。聚醯亞胺樹脂.,可使上述 聚醯胺酸脫水閉環而得到。脫水閉環可以加熱處理之熱閉 環法或使用脫水劑之化學閉環法進行。上述聚醯胺酸藉由 在50〜80 °C加熱使解聚合而可調整其分子量。 可用作爲聚醯亞胺樹脂的原料的四羧酸二酐,並無特 別限制’例如均苯四甲酸二酐、3,3,、4,4,-聯苯基四羧酸 二酐、2,2’、3,3,-聯苯基四羧酸二酐、2,2-雙(3,4-二羧基 苯基)丙烷二酐、2,2-雙(2,3-二羧基苯基)丙烷二酐、 1,1_雙(2,3-二羧基苯基)乙烷二酐、ι,ι_雙(3,4_二羧基 苯基)乙烷二酐、雙(2,3-二羧基苯基)甲烷二酐、雙( 3,4·二羧基苯基)甲烷二酐、雙(3,4-二羧基苯基)楓二 酐、3,4,9,1〇·茈四羧酸二酐、雙(3,4_二羧基苯基)醚二 酐、苯-1,2,3,4-四羧酸二酐、3,4,3’,4,-二苯甲酮四羧酸二 酐、2,3,2’,3’-二苯甲酮四羧酸二酐、3,3,3’,4,-二苯甲酮 四殘酸二酐、1,2,5,6-萘四羧酸二酐、1,4,5,8-萘四羧酸二 酐、2,3,6,7-萘四羧酸二酐、i,2,4,5-萘四羧酸二酐、2,6- -21 - 201231590 二氯萘-1,4,5,8-四羧酸二酐、2,7-二氯萘-1,4,5,8-四羧酸二 酐、2,3,6,7-四氯萘-1,4,5,8-四羧酸二酐、菲-1,8,9,10-四 羧酸二酐、吡嗪-2,3,5,6-四羧酸二酐、噻吩-2,3,5,6-四羧 酸二酐、2,3,3’,4’_聯苯基四羧酸二酐、3,4,3’,4’-聯苯基 四羧酸二酐、2,3,2’,3’-聯苯基四羧酸二酐、雙(3,4-二羧 基苯基)二甲基矽烷二酐、雙(3,4-二羧基苯基)甲基苯 基矽烷二酐、雙(3,4-二羧基苯基)二苯基矽烷二酐、 1,4-雙(3,4-二羧基苯基二甲基矽烷基)苯二酐、1,3-雙( 3,4-二羧基苯基)-1,1,3,3-四甲基二環己烷二酐、1)-苯撐 雙(偏苯三酸酐)、乙烯四羧酸二酐、1,2,3,4-丁烷四羧 酸二酐、十氫萘-1,4,5,8-四羧酸二酐、4,8-二甲基-1,2,3,5,6,7-六氫萘-1,2,5,6-四羧酸二酐、環戊烷-1,2,3,4-四羧酸二酐、吡咯烷-2,3,4,5-四羧酸二酐、1,2,3,4-環丁烷 四羧酸二酐、雙(外-雙環[2,2,1]庚烷-2,3-二羧酸二酐、 雙環-[2,2,2]-辛-7-烯-2,3,5,6-四羧酸二酐、2,2-雙(3,4-二 羧基苯基)丙烷二酐、2,2-雙[4- (3,4_二羧基苯基)苯基] 丙烷二酐、2,2-雙(3,4-二羧基苯基)六氟丙烷二酐、2,2-雙[4-(3,4-二羧基苯基)苯基]六氟丙烷二酐、4,4’-雙( 3,4-二羧基苯氧基)二苯基硫化物二酐、1,4-雙(2-羥基 六氟異丙基)苯雙(偏苯三酸酐)、:l,3-雙(2-羥基六氟 異丙基)苯雙(偏苯三酸酐)、5-(2,5 -二氧四氫呋喃基 )-3·甲基-3 —環己烯-1,2-二羧酸二酐、四氫呋喃-2,3,4,5-四羧酸二酐、下述一般式(I)所表示的四羧酸二酐及下 述式(Π )所表示的四羧酸二酐。 -22- 201231590 [化4]In the formula (1), 'R1, ! ^2 and R3 are each independently a hydrogen atom, a methyl group or an ethyl group, and R4 is an alkylene group having a carbon number of 1 to 30. The above-mentioned adhesive composition of the present invention 'in addition to the epoxy resin and the hardener' is used as a semiconductor by further containing a vinyl-based surface treatment material or a base having the above-described general formula (1). In the case of an adhesive sealing agent, high reliability and high insulation reliability of a semiconductor device can be achieved. Here, it is known that a decane coupling agent or the like is contained in a resin together with a non-surface-treated mash, and the surface of the mash is subjected to decane coupling treatment, and various surface state materials can be synthesized due to the substituent of the decane coupling agent. . However, the production process of a semiconductor device having a high volatility of a decane-compatible agent and a high-temperature process such as metal bonding requiring high-temperature bonding is a cause of voids. In the case where the conventionally used material is subjected to surface treatment in the same manner, when organic matter having high volatility such as methanol is generated, the pores are caused. In the 'TCT evaluation', the temperature change of _55~125°C is added to the semiconductor package. However, when the solder wettability is insufficient or the metal connection of the connection part is incomplete, the semiconductor wafer and The thermal expansion coefficient between the substrates is inferior to the stress accumulated in the joint portion to break the joint portion. Here, it is considered that the stress of the joint portion is reduced by the low coefficient of thermal expansion of the semiconductor sealing material, and the connection reliability (TCT resistance) of the semiconductor device can be improved. The inventors have found that when the adhesive composition contains the above-described vinyl-based surface treatment or the base having the above-described general formula (1), the adhesive composition is used as an adhesive for semiconductor sealing. The high reliability of the semiconductor device can be achieved. In the adhesive composition of the present invention, the surface-treated vinyl-based surface treatment material or the base material having the above-described general formula (1) can be used to suppress the generation of highly volatile substances. Further, the inventors have speculated that the vinyl group on the surface of the coating reacts with other constituent components to form a strong cured product, and the thermal expansion coefficient of the cured product can be reduced to have high reliability. Further, the inventors of the present invention have estimated that it is difficult to reduce the insulation reliability of the joint portion due to the ethylene-based surface treatment material or the base material having the base represented by the above general formula (1), and it is possible to improve the reliability of the connection. The compound having the group represented by the above general formula (1) is preferably a compound represented by the following general formula (2). R2 R3 C=C—R4—Si—(〇R5) (2) R1 In the formula (2), R^R2 and R3 are each independently a hydrogen atom, methyl-11 - 201231590 or ethyl, R4 is an alkylene group having 1 to 30 carbon atoms, and R5 is an alkyl group having 1 to 30 carbon atoms. The adhesive composition of the present invention can further improve the reliability of the connection and the reliability of the insulation by containing the material which is surface-treated with the compound represented by the above general formula (2). In the adhesive composition of the present invention, a polymer component having a weight average molecular weight of more than 100,000 may be further contained from the viewpoint of improving the film formability of the adhesive composition. The polymer component has a weight average molecular weight of 30,000 or more and a glass transition temperature of 100 ° C or less, from the viewpoint of improving the adhesion of the adhesive composition or improving the film formability. The adhesive composition of the present invention can form a good metal-metal bond by further containing a fluxing active agent to increase the fluxing activity and remove an oxide film or an impurity on the metal surface of the joint portion. The workability in the case where the gap between the semiconductor wafer and the printed circuit board or the plurality of semiconductor wafers is sealed can be improved by the Pre-applied method. Therefore, the adhesive composition of the present invention is preferably in the form of a film. Further, the invention further provides a semiconductor device in which the connection portions of the semiconductor wafer and the printed circuit board are electrically connected to each other, or a method of manufacturing a semiconductor device in which the connection portions of the plurality of semiconductor wafers are electrically connected to each other, and the use of the adhesive composition in the connection portion A method of manufacturing a semiconductor device in a sealed step. According to the method of manufacturing a semiconductor device of the present invention, by using the above-mentioned composition of -12-201231590, the connection reliability and insulation reliability of the semiconductor device can be improved. The connection portion contains at least one metal selected from the group consisting of gold, silver, copper, nickel, tin, and lead as a main component, and the electrical conductivity, thermal conductivity, and connection reliability of the joint portion can be further improved. The present invention further provides a semiconductor device obtained by the above method for fabricating a semiconductor device. Since the semiconductor device of the present invention is produced by the above-described method for manufacturing a semiconductor device, it is excellent in connection reliability and insulation reliability. [Effects of the Invention] According to the present invention, it is possible to provide excellent reliability and reliability of insulation. An adhesive composition of a semiconductor device, a method of manufacturing a semiconductor device using the adhesive composition, and a semiconductor device. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are designated by the same reference numerals, and the repeated description is omitted. Further, when the positional relationship such as up, down, left, and right is not particularly limited, the positional relationship is shown in the drawing. Further, the dimensional ratio of the drawing is not limited to the illustrated ratio. <Adhesive composition> -13-201231590 The adhesive composition (the semiconductor sealing adhesive) of the present embodiment is a semiconductor wafer and a printed circuit board (hereinafter, simply referred to as "substrate" as the case). The semiconductor device in which the respective connection portions are electrically connected to each other or the connection portion in which the connection portions of the plurality of semiconductor wafers are electrically connected to each other in the semiconductor device in which the connection portion is sealed, and the epoxy resin is contained (hereinafter, referred to as occasion) "(a) component"), a curing agent (hereinafter referred to as "(b) component"), a vinyl-based surface treatment material, or a substrate having the above-described general formula (1) (The following is called "(c) component" depending on the occasion). In addition, the adhesive composition contains a polymer component having a weight average molecular weight of 10,000 or more (hereinafter referred to as "(d) component") or a fluxing active agent (hereinafter, referred to as "( e) Ingredients"). Hereinafter, each component constituting the adhesive composition of the present embodiment will be described. (a) Component: Epoxy Resin The epoxy resin is not particularly limited as long as it has two or more epoxy groups in the molecule. (a) component, specifically, bisphenol A type, bisphenol F type, naphthalene type, phenol novolac type, cresol novolak type, phenol aralkyl type, biphenyl type, triphenylmethane type, Dicyclopentadiene type and various multifunctional epoxy resins. These may be used singly or in combination of two or more. (a) In the case of suppressing the decomposition of volatile components at the time of high temperature connection, when the temperature at the connection is 25 ° C, the epoxy resin having a thermal weight loss of 5% or less at 250 ° C is used. For the case of good '300 °C, it is preferable to use an epoxy resin having a thermal weight loss rate of 5% or less in 30,000 tons. -14- 201231590 In addition, the liquid epoxy resin of the double bismuth A type or bisphenol F type has a temperature of 250 °C or less due to the 1% thermal weight reduction, so that it decomposes and generates a volatile component at a high temperature. Therefore, it is preferred to use an epoxy resin which is solid at room temperature (1 atm, 25 ° C). (b) component: hardener (b) component, for example, a phenol resin-based curing agent, an acid anhydride-based curing agent, an amine-based curing agent, an imidazole-based curing agent, and a phosphine-based curing agent. (b) If the component contains a phenolic hydroxyl group, an acid anhydride, an amine or an imidazole, it exhibits a soldering activity for suppressing the formation of an oxide film in the joint portion, and the reliability of the connection and the reliability of the insulation can be improved. Hereinafter, each curing agent will be described. (i) Phenolic resin-based curing agent The phenol resin-based curing agent is not particularly limited as long as it has two or more phenolic hydroxyl groups in the molecule, and for example, a phenol novolak, a cresol novolac, a phenol aralkyl resin, or the like may be used. A cresol naphthol formaldehyde polycondensate, a triphenylmethane type polyfunctional phenol, and various polyfunctional phenol resins. These may be used singly or in combination of two or more. The equivalent ratio (phenolic hydroxyl group/epoxy group, molar ratio) of the phenol resin-based curing agent of the above component (a) is from 0.3 to 1.5 from the viewpoints of good hardenability, adhesion, and storage stability. Preferably, 0.4 to 1.0 is preferred, and 0.5 to 1.0 is more preferred. When the equivalent ratio is 0.3 or more, the curability is improved and the adhesion is increased. When the ratio is 1.5 or less, the unreacted phenolic hydroxyl group does not excessively remain. 'The water absorption rate is low and the insulation reliability tends to be improved. -15- 201231590 (ii) An acid anhydride-based curing agent anhydride-based curing agent, for example, methylcyclohexanetetracarboxylic dianhydride, anhydrous trimellitic acid, pyromellitic dianhydride, and benzophenone tetracarboxylic acid Di-anhydride and ethylene glycol double-dehydrated trimellitic acid. These may be used singly or in combination of two or more. The equivalent ratio (anhydride group/epoxy group, molar ratio) to the acid anhydride-based curing agent of the above component (a) is preferably from 0.3 to 1.5 from the viewpoint of good hardenability, adhesion, and storage stability. , 0.4~1.0 is better, 〇·5~1 · 〇 better. When the equivalent ratio is 〇3 or more, the curing property tends to increase and the adhesion tends to increase. When the ratio is 1.5 or less, the unreacted acid anhydride does not excessively remain, the water absorption rate is low, and the insulation reliability tends to be improved. (i i i ) Amine-based curing agent For the amine-based curing agent, for example, dicyandiamide can be used. The equivalent ratio (amine/epoxy group, molar ratio) to the amine-based curing agent of the above component (a) is preferably from 0.3 to 1.5 from the viewpoints of good curability, adhesion, storage stability, etc., 0.4 to 1.0. Preferably, 0.5 to 1.0 is better. When the amount is more than 0.3, the curability is improved and the adhesion is increased. When the ratio is 1.5 or less, the unreacted amine does not excessively remain and the insulation reliability tends to increase. (iv) Imidazole-based hardener-16-201231590 Imidazole-based hardener, for example, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl 2-phenylimidazole, cyanoethyl-2-undecylimidazole, 1-cyano-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole trimellitic acid, 1-cyano Ethyl-2-phenylimidazole-trimellitic acid, 2,4·diamino-6-[2,-methylimidazolyl-(1,)]-ethyl-3-triazine, 2,4 -diamino-6-[2'-undecidamidazolyl-(1,)]-ethyl-s-triazine, 2,4-diamino-6-[2'-ethyl-4, -methylimidazolyl-(1,)]-ethyl-s-triazine, 2,4-diamino-6-[ 2,-methylimidazolyl-(1,)]-ethyl-s- Triazine iso-cyanuric acid addition, 2-phenylimidazole isocyanuric acid addition, 2·phenyl-4,5-di-tramethylimidazole, 2-phenyl-4-methyl -5-Hydroxymethylimidazole and an adduct of an epoxy resin and an imidazole. Among these, 1-cyanoethyl-2-undecylimidazole, 1-cyano-2-phenylimidazole, 1-cyanoethyl bromide, from the viewpoints of excellent hardenability, storage stability, and subsequent reliability Benz-2-undecyl imidazole trimellitic acid, 1-cyanoethyl-2-phenylimidazole, trimellitic acid, 2,4-diamino-6-[2'-methylimidazolyl-( 1,)]-Ethyl-s-triazine, 2,4-diamino-6-[ 2'-ethyl-4'-methylimidazolyl-(1')]-ethyl-8-three Pyrazine, 2,4-diamino-6-[2'-methylimidazolyl-(]')]-ethyl-s-triazine iso-cyanuric acid addition, 2-phenylimidazole A polycyanate addition product, 2-phenyl-4,5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole are preferred. These may be used alone or in combination of two or more. Moreover, these can also be used as microcapsule latent hardeners. The content of the imidazole-based curing agent is preferably 0.1 to 20 parts by mass, and more preferably 1 part by mass, based on 100 parts by mass of the component (a). When the content of the imidazole-based curing agent is 0.1 part by mass or more, the curing property tends to be improved, and if it is 20 parts by mass or less, the metal bonding agent composition is not hardened, and the tendency of -17-201231590 is liable to cause splicing failure. . (V) a phosphine-based hardener phosphine-based curing agent, and examples thereof include triphenylphosphine, tetraphenylphosphinium tetraphenyl borate, tetraphenyltetradecyl (4-methylphenyl) borate, and tetraphenylene. Keel (4·fluorophenyl) borate. The content of the phosphine-based hardener is preferably 1 part by mass to 1 part by mass of the component (a), preferably 1 to 5 parts by mass. When the content of the phosphine-based curing agent is 0.1 part by mass or more, the curing property tends to be improved, and if it is 10 parts by mass or less, the metal bonding agent composition is not hardened, and the connection failure tends to be less likely to occur. Each of the phenol resin-based curing agent, the acid anhydride-based curing agent, and the amine-based curing agent may be used singly or in combination of two or more kinds. The imidazole curing agent and the phosphine curing agent may be used singly, but may be used together with a phenol resin-based curing agent, an acid anhydride-based curing agent or an amine-based curing agent. When the component (b) contains a phenol resin-based curing agent, an acid anhydride-based curing agent or an amine-based curing agent as the component (b), it has a flux-removing activity for removing the oxide film, and the connection reliability can be further improved. (c) component: a vinyl-based surface treatment grave or a filler (C) having a base represented by the above formula (1) is surface-treated with a compound having the group represented by the above formula (1) The material can be used without particular limitation. For example, an insulating inorganic coating, whisker and resin coating can be used for surface treatment. Also, -18-201231590 That is, as the component (C), a base having the base represented by the above general formula (1) can be used. Here, in the formula (1), R^R2 and R3 are each independently a hydrogen atom, a methyl group or an ethyl group, and a base having a small volume is highly reactive, so that a hydrogen atom or a methyl group is preferred, and R1 and R2 is a hydrogen atom, and R3 is preferably a hydrogen atom or a methyl group. R4 is an alkylene group having 1 to 30 carbon atoms, and it is preferably a small molecular weight because it is not volatile. Further, R'R^R3 and R4 can be appropriately selected depending on the difficulty of surface treatment. Examples of the insulating inorganic coating material include glass, cerium oxide, aluminum oxide, titanium oxide, carbon black, mica, and boron nitride, and cerium oxide, aluminum oxide, titanium oxide, and boron nitride are preferred, and cerium oxide. Alumina and boron nitride are preferred. The whiskers may, for example, be aluminum borate, titanium, aluminum acid, zinc oxide, calcium silicate, magnesium sulfate or boron nitride. The resin material may, for example, be a polyurethane or a polyimide. These materials and whiskers may be used singly or in combination of two or more. The shape, particle size and matching amount of the dip material are not particularly limited. Among these materials, cerium oxide is preferred because of surface treatment or compatibility with a resin component. The vinyl-based surface treatment material is preferably a surface-treated material using the compound represented by the above general formula (2). In the formula (2), R1, R2, R3 and R4 can be selected in the same manner as in the above formula (1). Further, R5 is an alkyl group having 1 to 30 carbon atoms, and may be appropriately selected depending on the ease of surface treatment, and a methyl group or an ethyl group is preferred. The shape and particle diameter of the component (c) are appropriately set depending on the use of the composition of the adhesive, and are not particularly limited. The amount of the component (C) is preferably from 5 to 60% by mass, more preferably from 10 to 50% by mass, based on the total solid content of the adhesive composition, from -19 to 201231590. When the amount is 5% by mass or more, the effect of lowering the coefficient of thermal expansion of the adhesive composition after curing tends to be sufficiently exhibited, and if it is 60% by mass or less, the viscosity is easily adjusted, and the fluidity of the adhesive composition is less likely to be lowered or The feed is infiltrated and continues to increase the reliability. There are various considerations for the causes of the holes in the high-temperature process such as the high-temperature bonding of the flip-chip connection, and it is mainly considered to be due to the volatilization of the constituent components of the adhesive composition. Therefore, the solid content of the constituent components is better than that of the liquid. Further, the decane coupling agent is not surface-treated in advance with the mash, and is added as a constituent component of the composition of the subsequent agent. When the surface is treated in the system, methanol or the like is generated, which causes foaming during the high-temperature process. (d) component: a polymer component (d) component having a weight average molecular weight of 10,000 or more, and examples thereof include a phenoxy resin, a polyimine resin, a polyamide resin, a polycarbodiimide resin, and a cyanate resin. , acrylic resin, polyester resin, polyethylene resin, polyether oxime resin, polyether phthalimide resin, polyvinyl acetal resin, urethane resin and propylene rubber. Among these, from the viewpoint of excellent heat resistance and film formability, a phenoxy resin, a polyamidene resin, an acryl rubber, a cyanate resin, and a polycarbodiimide resin are preferred as the phenoxy resin. Polyimine resin and propylene rubber are preferred. These (d) components may be used singly or as a mixture or copolymer of two or more kinds. However, the epoxy resin of component (a) is not contained in component (d). A commercially available product or a synthetic product can be used as the polymer component such as the phenoxy resin or the polyimide resin. -20- 201231590 The above polyimine resin can be obtained, for example, by a condensation reaction of tetradecanoic dianhydride with a diamine by a conventional method. More specifically, in the organic solvent, the tetracarboxylic dianhydride and the diamine are mixed in a molar or almost molar (the order of addition of the components is optional), the reaction temperature is below 80 ° C, preferably set in 〇 Addition reaction can be carried out at ~60 °C. Further, in order to suppress the deterioration of the properties of the adhesive composition, it is preferred that the above tetracarboxylic dianhydride is subjected to recrystallization purification treatment with acetic anhydride. As the addition reaction proceeds, the viscosity of the reaction solution gradually rises to form a polyamine acid which is a precursor of polyimine. The polyimine resin can be obtained by dehydrating and ring-closing the above polyamic acid. The dehydration ring closure can be carried out by a heat closed loop method using a heat treatment or a chemical ring closure method using a dehydrating agent. The above polylysine can be adjusted to have a molecular weight by depolymerization by heating at 50 to 80 °C. The tetracarboxylic dianhydride which can be used as a raw material of the polyimine resin is not particularly limited, for example, pyromellitic dianhydride, 3,3,4,4,-biphenyltetracarboxylic dianhydride, 2, 2', 3,3,-biphenyltetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-dicarboxyphenyl) Propane dianhydride, 1,1_bis(2,3-dicarboxyphenyl)ethane dianhydride, iota, bis-bis(3,4-dicarboxyphenyl)ethane dianhydride, bis (2,3) -dicarboxyphenyl)methane dianhydride, bis(3,4.dicarboxyphenyl)methane dianhydride, bis(3,4-dicarboxyphenyl) dianhydride, 3,4,9,1〇·茈Tetracarboxylic dianhydride, bis(3,4-dicarboxyphenyl)ether dianhydride, benzene-1,2,3,4-tetracarboxylic dianhydride, 3,4,3',4,-diphenyl Ketotetracarboxylic dianhydride, 2,3,2',3'-benzophenonetetracarboxylic dianhydride, 3,3,3',4,-benzophenone tetraresidic acid dianhydride, 1,2 , 5,6-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, i, 2, 4, 5- Naphthalene tetracarboxylic dianhydride, 2,6- -21 - 201231590 dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,7-dichloronaphthalene-1,4,5,8-tetra Carboxylic dianhydride, 2, 3, 6,7-tetrachloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, phenanthrene-1,8,9,10-tetracarboxylic dianhydride, pyrazine-2,3,5,6-four Carboxylic dianhydride, thiophene-2,3,5,6-tetracarboxylic dianhydride, 2,3,3',4'-biphenyltetracarboxylic dianhydride, 3,4,3',4'- Biphenyltetracarboxylic dianhydride, 2,3,2',3'-biphenyltetracarboxylic dianhydride, bis(3,4-dicarboxyphenyl)dimethyl phthalane dianhydride, double (3, 4-Dicarboxyphenyl)methylphenylnonane dianhydride, bis(3,4-dicarboxyphenyl)diphenyldecane dianhydride, 1,4-bis(3,4-dicarboxyphenyldimethyl矽alkyl)phthalic anhydride, 1,3-bis(3,4-dicarboxyphenyl)-1,1,3,3-tetramethyldicyclohexane dianhydride, 1)-phenylene bis(trimellitic anhydride) , ethylene tetracarboxylic dianhydride, 1,2,3,4-butane tetracarboxylic dianhydride, decalin-1,4,5,8-tetracarboxylic dianhydride, 4,8-dimethyl- 1,2,3,5,6,7-hexahydronaphthalene-1,2,5,6-tetracarboxylic dianhydride, cyclopentane-1,2,3,4-tetracarboxylic dianhydride, pyrrolidine -2,3,4,5-tetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, bis(exo-bicyclo[2,2,1]heptane-2,3 -dicarboxylic dianhydride, bicyclo-[2,2,2]-oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 2,2-dual (3 , 4-dicarboxyphenyl)propane dianhydride, 2,2-bis[4-(3,4-dicarboxyphenyl)phenyl]propane dianhydride, 2,2-bis(3,4-dicarboxybenzene Hexafluoropropane dianhydride, 2,2-bis[4-(3,4-dicarboxyphenyl)phenyl]hexafluoropropane dianhydride, 4,4'-bis(3,4-dicarboxyphenoxy Diphenyl sulfide dianhydride, 1,4-bis(2-hydroxyhexafluoroisopropyl)benzene bis(trimellitic anhydride), :l,3-bis(2-hydroxyhexafluoroisopropyl)benzene bis ( Trimellitic anhydride), 5-(2,5-dioxotetrahydrofuranyl)-3·methyl-3-cyclohexene-1,2-dicarboxylic dianhydride, tetrahydrofuran-2,3,4,5-tetracarboxylic acid The dianhydride, the tetracarboxylic dianhydride represented by the following general formula (I), and the tetracarboxylic dianhydride represented by the following formula (Π). -22- 201231590 [Chem. 4]

式(I)中,a爲2〜20之整數。 [化5]In the formula (I), a is an integer of from 2 to 20. [Chemical 5]

三酸單氯化物及對應二醇合成,具體上如1,2-(乙烯)雙 (偏苯三酸酐)、1,3-(三亞甲基)雙(偏苯三酸酐)、 1,4-(四亞甲基)雙(偏苯三酸酐)、1,5-(五亞甲基) 雙(偏苯三酸酐)、1,6-(六亞甲基)雙(偏苯三酸酐) 、:1,7-(七亞甲基)雙(偏苯三酸酐)、1,8-(八亞甲基 )雙(偏苯三酸酐)' 1,9-(九亞甲基)雙(偏苯三酸酐 )、1,1〇_ (十亞甲基)雙(偏苯三酸酐)、1,12-(十二 亞甲基)雙(偏苯三酸酐)、1,16-(十六亞甲基)雙(偏 苯三酸酐)及1,18-(十八亞甲基)雙(偏苯三酸酐)。 四羧酸二酐,在可賦予優異耐濕信賴性點上,以上述 -23- 201231590 式(Π)所表示的四羧酸二酐爲佳。上述四羧酸二酐可以 單獨或2種以上組合使用。 上述式(II)所表示的四羧酸二酐之含量相對全四羧 酸一酐以4〇莫耳%以上爲佳,50莫耳%以上較佳,7〇莫 耳。/。以上更佳。含量爲40莫耳%以上則使用上述式(11 ) 斤表不的四竣酸—酐而有易充分確保耐濕信賴性的效果之 傾向。 上述聚醯亞胺樹脂的原料可使用的二胺,並無特別限 制’可舉例如0 -苯二胺、m _苯二胺、ρ _苯二胺、3,3,_二胺 基二苯基醚、3,4,-二胺基二苯基醚、4,4,_二胺基二苯基醚 3,3’ -二胺基二苯基甲烷、3,4’ -二胺基二苯基甲烷、 ’4 胺基一苯基酸甲院、雙(4 -胺基-3,5 -二甲基苯基) 甲院、雙(4_胺基-3,5-二異丙基苯基)甲烷、3,3,_二胺基 〜本基—氟甲院、3,4’-二胺基二苯基二氟甲院、4,4,-二胺 基'—本基—氟甲院、3,3’-二胺基二苯基颯、3,4,-二胺基二 苯基颯、4,4,-二胺基二苯基颯、3,3,_二胺基二苯基硫化物 3,4’·二胺基二苯基硫化物、4,4’-二胺基二苯基硫化物、 ’3 - — fl女基—本基酮、3,4’ -二胺基二苯基酮、4,4’ -二胺 基二苯基酮、2,2-雙(3-胺基苯基)丙烷、2,2,_(3,4,_二 胺基—苯基)丙院、2,2_雙(4_胺基苯基)丙院、2,2_雙 (3-胺基苯基)六氟丙烷、2,2- (3,4,-二胺基二苯基)六 氣丙烷、2,2-雙(4_胺基苯基)六氟丙烷' 丨,3_雙(3_胺基 本氧基)苯' I,4-雙(3_胺基苯氧基)苯、154_雙(4:胺基 本氧基)苯、3,3,-(1,4·苯撐雙(卜甲基亞乙基))雙苯 -24 - 201231590 胺、3,4’-(l,4-苯撐雙(卜甲基亞乙基))雙苯胺、ΐν-ΐ: 1,4-苯撐雙 ( 1-甲基 亞乙基 ) ) 雙 苯胺、 2,2-雙 ( 4- ( 3- 胺基苯氧基)苯基)丙烷、2,2-雙(4- (3-胺基苯氧基) 苯基)六氟丙烷、2,2-雙(4- (4-胺基苯氧基)苯基)六 氟丙烷、雙(4- ( 3-胺基苯氧基)苯基)硫化物、雙(4-(4-胺基苯氧基)苯基)硫化物、雙(4- ( 3-胺基苯氧基 )苯基)楓、雙(4-(4-胺基苯氧基)苯基)颯、3,5-二 胺基安息香酸等芳香族二胺、1,3-雙(胺基甲基)環己烷 、2,2-雙(4-胺基苯氧基苯基)丙烷、下述一般式(III) 或(IV )所表示的脂肪族醚二胺、下述一般式(V )所表 示的脂肪族二胺及下述一般式(VI)所表示的矽氧烷二胺 [化6] (III) H2N—Q1—^-〇—Q2-j~0—Q3—NH2 式(III)中,Q1、Q2及Q3各自獨立,爲碳數1〜10 之伸烷基,b爲1〜80之整數。 [化7] H2N—Q4——Q5^—^-O—Q6-^0一Q7 七 NH2 (IV) 式(IV)中,Q4、Q5、Q6及Q7各自獨立,爲碳數1 〜10之伸烷基,c、d及e各自獨立,爲1〜50之整數。 -25- 201231590 [化8] (V) H2N—(~CH 士 NH2 式(v)中,f爲5〜20之整數 [化9] Q9 Q11 -ΟSynthesis of triacid monochloride and corresponding diol, specifically 1,2-(ethylene) bis(trimellitic anhydride), 1,3-(trimethylene) bis(trimellitic anhydride), 1,4-(tetramethylene) Bis(trimellitic anhydride), 1,5-(pentamethylene)bis(trimellitic anhydride), 1,6-(hexamethylene)bis(trimellitic anhydride), 1,7-(heptylene)bis(trimellitic anhydride) 1,8-(octamethylene)bis(trimellitic anhydride)' 1,9-(ninemethylene)bis(trimellitic anhydride), 1,1 〇_(decamethylene)bis(trimellitic anhydride), 1,12 - (Dudecyl) bis(trimellitic anhydride), 1,16-(hexamethylene)bis(trimellitic anhydride) and 1,18-(octamethylene)bis (trimellitic anhydride). The tetracarboxylic dianhydride is preferably a tetracarboxylic dianhydride represented by the above formula -23-201231590 (Π) in terms of imparting excellent moisture resistance. The above tetracarboxylic dianhydride may be used singly or in combination of two or more kinds. The content of the tetracarboxylic dianhydride represented by the above formula (II) is preferably 4 〇 mol% or more, more preferably 50 mol% or more, and 7 mol%, based on the total tetracarboxylic acid monoanhydride. /. The above is better. When the content is 40 mol% or more, the tetradecanoic acid-anhydride of the above formula (11) is used, and there is a tendency that the effect of moisture resistance is sufficiently ensured. The diamine which can be used as a raw material of the above polyimine resin is not particularly limited, and examples thereof include 0-phenylenediamine, m-phenylenediamine, ρ-phenylenediamine, and 3,3,-diaminodiphenyl. Ether, 3,4,-diaminodiphenyl ether, 4,4,-diaminodiphenyl ether 3,3'-diaminodiphenylmethane, 3,4'-diaminodi Phenylmethane, '4-amino-monophenyl acid ketone, bis(4-amino-3,5-dimethylphenyl)-methyl, bis(4-amino-3,5-diisopropyl Phenyl)methane, 3,3,-diamino-benyl-fluorophthalic acid, 3,4'-diaminodiphenyldifluoromethyl, 4,4,-diamino'--- Fluorine, 3,3'-diaminodiphenylphosphonium, 3,4,-diaminodiphenylphosphonium, 4,4,-diaminodiphenylphosphonium, 3,3,-diamine Diphenyl sulfide 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, '3 - fl-fema-based ketone, 3,4' -diaminodiphenyl ketone, 4,4'-diaminodiphenyl ketone, 2,2-bis(3-aminophenyl)propane, 2,2,_(3,4,-diamine Base-phenyl) propyl, 2,2_bis(4-aminophenyl)propyl, 2,2_bis(3-aminobenzene Hexafluoropropane, 2,2-(3,4,-diaminodiphenyl)hexapropane, 2,2-bis(4-aminophenyl)hexafluoropropane' 丨, 3_double (3) _amine basic oxy)benzene 'I,4-bis(3-aminophenoxy)benzene, 154_bis(4:amine basic oxy)benzene, 3,3,-(1,4·phenylene double (Methylethylidene)) bisphenyl-24 - 201231590 Amine, 3,4'-(l,4-phenylenebis(bethylethylidene))diphenylamine, ΐν-ΐ: 1,4-phenylene double ( 1-methylethylidene) diphenylamine, 2,2-bis(4-(3-aminophenoxy)phenyl)propane, 2,2-bis(4-(3-aminophenoxy) Phenyl) hexafluoropropane, 2,2-bis(4-(4-aminophenoxy)phenyl)hexafluoropropane, bis(4-(3-aminophenoxy)phenyl) sulfide , bis(4-(4-aminophenoxy)phenyl) sulfide, bis(4-(3-aminophenoxy)phenyl) maple, bis(4-(4-aminophenoxy) An aromatic diamine such as phenyl) ruthenium, 3,5-diaminobenzoic acid, 1,3-bis(aminomethyl)cyclohexane, 2,2-bis(4-aminophenoxybenzene) Alkane, an aliphatic ether diamine represented by the following general formula (III) or (IV), The aliphatic diamine represented by the general formula (V) and the oxirane diamine represented by the following general formula (VI) [Chemical Formula 6] (III) H2N-Q1—^-〇—Q2-j~0— Q3—NH2 In the formula (III), Q1, Q2 and Q3 are each independently, and are an alkylene group having a carbon number of 1 to 10, and b is an integer of 1 to 80. H2N—Q4——Q5^—^-O—Q6-^0—Q7 Seven NH2 (IV) In formula (IV), Q4, Q5, Q6 and Q7 are independent, and the carbon number is 1~10. The alkyl group, c, d and e are each independently and are an integer of from 1 to 50. -25- 201231590 [V8] (V) H2N—(~CH 士 NH2 In the formula (v), f is an integer of 5 to 20 [Chemical 9] Q9 Q11 -Ο

Si— I Q12 H2N——Q8—Si- Q1 -Q13—NH2 (VI) 式(VI)中’Q«及Q"各自獨立,爲碳數i〜5之伸 烷基或可具有取代基的苯撐基,Q9、Q1。、Qii及Qi2各自 獨立’爲碳數1〜5之院基、苯基或苯氧基,g爲1〜5之 整數。 此等中在可賦予低應力性、低溫層合性及低溫接著性 點上,以上述一般式(III) 、 (IV)或(v)所表示的二 胺爲佳’在可賦予低吸水性及低吸濕性點上,以上述一般 式(VI )所表示的二胺爲佳。此等二胺可單獨或2種以上 組合使用。 上述一般式(III)或(IV)所表示的脂肪族醚二胺的 含量以全二胺的1〜50莫耳%爲佳,上述—般式(V )所 表示的脂肪族二胺的含量以全二胺的2 〇〜8 〇莫耳%爲佳, 上述一般式(VI)所表示的矽氧烷二胺的含量以全二胺的 20〜80莫耳%爲佳。在上述含量之範圍內則有陚予低溫層 -26- Η2Ν—CH一CH2 CH, Ο-CH-CH2 I CH, 201231590 合性及低吸水性效果變大之傾向。 又’上述一般式(III)所表示的脂肪族醚二 上可舉例如下述式(III-1 )〜(III-5 )之脂肪族 又,一般式(III-4)及(III-5)中,n爲1以上; [化 10] Η2Ν-^-οη2·^~ο—^-CH2*^-〇~^·〇Η2·^~ΝΗ2 η2Ν—^-ch2-^-o—^-οη2·^-ο—^-οη2·^—o—^-ch2-^-nh2 η2ν—^·〇η2-^-ο—^-ch2-^-o—^-ch2·^—ο—^-ch2-^—ο—^-οη2·^-νη2 Η2Ν—(-CH2-^-|〇-(-CH2*)j- -〇-(-ch2-)-nh2 Ό——CH2—CH—NH2 CH, 上述一般式(III-4 )所表示的脂肪族醚二胺 均分子量,例如以350、750、1100或2100爲佳 述一般式(III-5 )所表示的脂肪族醚二胺的重量 量以例如2 3 0、4 0 0或2 0 0 0爲佳。 上述脂肪族醚二胺中,在可確保低溫層合性 有機阻劑基板之良好的接著性點上,各自以上述 IV )、下述一般式(VII ) 、( VIII )或(IX ) 肪族醚二胺更佳。 胺,具體 醚二胺。 :整數。 (IIM) (111-2) (111-3) (111-4) (IH-5) 的重量平 。又’上 平均分子 與對附著 一般式( 表示的脂 •27- (VII) 201231590 [化 11] H2N—CH-CH3Si—I Q12 H2N——Q8—Si— Q1 —Q13—NH2 (VI) In the formula (VI), 'Q« and Q" are independent, and are alkyl groups having a carbon number of i~5 or a benzene having a substituent. Support base, Q9, Q1. Each of Qii and Qi2 is independently a hospital base having a carbon number of 1 to 5, a phenyl group or a phenoxy group, and g is an integer of 1 to 5. Among these, a diamine represented by the above general formula (III), (IV) or (v) is preferred in imparting low stress, low-temperature lamination property and low-temperature adhesion property, and low water absorption can be imparted. Further, the diamine represented by the above general formula (VI) is preferred at the point of low hygroscopicity. These diamines may be used alone or in combination of two or more. The content of the aliphatic ether diamine represented by the above general formula (III) or (IV) is preferably from 1 to 50 mol% of the total diamine, and the content of the aliphatic diamine represented by the above formula (V) is preferable. Preferably, the total diamine is 2 〇 to 8 〇 mol%, and the content of the oxirane diamine represented by the above general formula (VI) is preferably 20 to 80 mol% of the total diamine. Within the above range, there is a tendency for the low temperature layer -26- Η2Ν-CH-CH2 CH, Ο-CH-CH2 I CH, 201231590 to have a synergistic effect and low water absorption. Further, the aliphatic ether represented by the above general formula (III) may, for example, be an aliphatic group of the following formulas (III-1) to (III-5), and general formulas (III-4) and (III-5). In the middle, n is 1 or more; [Chemical 10] Η2Ν-^-οη2·^~ο-^-CH2*^-〇~^·〇Η2·^~ΝΗ2 η2Ν—^-ch2-^-o-^-οη2 ·^-ο—^-οη2·^—o—^-ch2-^-nh2 η2ν—^·〇η2-^-ο—^-ch2-^-o—^-ch2·^—ο—^-ch2 -^-ο-^-οη2·^-νη2 Η2Ν—(-CH2-^-|〇-(-CH2*)j- -〇-(-ch2-)-nh2 Ό——CH2-CH—NH2 CH, The average molecular weight of the aliphatic ether diamine represented by the above general formula (III-4), for example, 350, 750, 1100 or 2100 is preferably the weight of the aliphatic ether diamine represented by the general formula (III-5). For example, 2 3 0, 4 0 0 or 2 0 0 0 is preferable. Among the above aliphatic ether diamines, each of the above-mentioned IV) and the lower ones can be ensured at a good adhesion point of the low-temperature laminated organic resist substrate. The general formula (VII), (VIII) or (IX) aliphatic ether diamine is more preferred. Amine, specific ether diamine. : integer. (IIM) (111-2) (111-3) (111-4) (IH-5) The weight is flat. And the upper average molecule and the pair attached to the general formula (represented by the lipid • 27- (VII) 201231590 [Chemical 11] H2N-CH-CH3

O一CH2一CH I CHO-CH2-CH I CH

NH2 式(VII)中,h爲2〜80之整數,以2〜70更佳。 [化 12]In the formula (VII), h is an integer of from 2 to 80, more preferably from 2 to 70. [化 12]

式(VIII)中,c、d及e爲1〜50之整數,以2〜40 更佳。 [化 13] H2N—(cH2—CH2^-0-CH2一CH2一Ο—^CH2一CH2^—NH2 (IX) 式(IX)中,j及k各自獨立,爲1〜70之整數。 上述一般式(VII )所表示的脂肪族醚二胺,具體上 可舉例如山鐵克化學(股)製的JEFFAMINED-230,D-400,D-2000 及 D-4000、BASF 製之聚醚胺 D-230,D-400 及D-2000,上述一般式(VIII )所表示的脂肪族醚二胺, 具體上可舉例如山鐵克化學(股)製的JEFFA^ΠNEED-•600’ ED-900,ED-2001’上述式(IX)所表示的脂肪族醚 二胺,具體上可舉例如山鐵克化學(股)製的 JEFFAMINEEDR-148。 -28- 201231590 上述一般式(V )所表示的脂肪族二胺,可舉例如 1,2-二胺基乙烷、1,3-二胺基丙烷、1,4-二胺基丁烷、1,5-二胺基戊烷、1,6-二胺基己烷、1,7-二胺基庚烷、1,8-二胺 基辛烷、1,9-二胺基壬烷、ι,ι〇-二胺基癸烷、ι,ιΐ-二胺基 十一烷、1,12-二胺基十二烷及1,2-二胺基環己烷。此等中 以1,9-二胺基壬烷、1,1〇-二胺基癸烷、ι,ιι_二胺基十一 烷及1,12-二胺基十二烷爲佳。 上述一般式(VI)所表示的矽氧烷二胺,在一般式( VI)中g爲1之場合,可舉例如l,l,3,3-四甲基-1,3-雙( 4- 胺基苯基)二矽氧烷、1,1,3,3-四苯氧基-1,3-雙(4-胺基 乙基)二矽氧烷、1,1,3,3-四苯基-1,3·雙(2-胺基乙基) 二矽氧烷、1,1,3,3 -四苯基-1,3 -雙(3·胺基丙基)二矽氧 烷、1,1,3,3 -四甲基-1,3-雙(2-胺基乙基)二矽氧烷、 1,1,3,3-四甲基-13-雙(3·胺基丙基)二矽氧烷、1,l,3,3-四甲基-l,3-雙(3-胺基丁基)二矽氧烷及l,3-二甲基-l,3-二甲氧基-l,3-雙(4-胺基丁基)二矽氧烷。g爲2之場合 ,可舉例如1,1,3,3,5,5-六甲基-1,5-雙(4-胺基苯基)三矽 氧烷、1,1,5,5-四苯基-3,3-二甲基-1,5-雙(3-胺基丙基) 三矽氧烷、1,1,5,5-四苯基-3,3-二甲氧基-1,5-雙(4-胺基 丁基)三矽氧烷、1,1,5,5-四苯基-3,3-二甲氧基-1,5-雙( 5- 胺基戊基)三矽氧烷、l,l,5,5-四甲基-3,3-二甲氧基_ 1,5-雙(2-胺基乙基)三矽氧烷、1,1,5,5-四甲基-3,3-二甲 氧基-1,5-雙(4-胺基丁基)三矽氧烷' 1,1,5,5-四甲基_ 3,3-二甲氧基-i,5-雙(5-胺基戊基)三矽氧烷、 -29- 201231590 1,1 ,3,3,5,5-六甲基-1,5 -雙(3-胺基丙基)三砂氧院、 1,1,3,3,5,5·六乙基-1,5-雙(3-胺基丙基)三矽氧烷及 1,1,3,3,5,5-六丙基-1,5-雙(3-胺基丙基)三矽氧烷。 上述聚醯亞胺樹脂可單獨或以2種以上之混合物使用 〇 (d )成分之玻璃化溫度(Tg )由接著劑組成物對基 板或晶片之貼附性優異觀點來看’以100 °c以下爲佳,75 °C以下更佳。在Tg爲1 00°C以下場合,有半導體晶片上 所形成的凸塊、或基板上所形成的電極或配線圖型等凹凸 因接著劑組成物而變得容易被包埋、無氣泡殘留且不易產 生孔洞之傾向。又,上述Tg係指使用DSC(PerkinElmer 公司製DSC-7型),樣本量l〇mg、昇溫速度5°C /分鐘、 測定環境:在空氣條件測定時的T g。 (d)成分之重量平均分子量以聚苯乙烯換算爲loooo 以上,但爲了單獨顯示良好的薄膜形成性,以3 0000以上 爲佳’ 40000以上較佳,50000以上更佳。在重量平均分 子量爲1 0000以上場合,有薄膜形成性提升之傾向。又, 本說明書中’重量平均分子量係指使用高速液體層析法( 例如島津製作所製、製品名「C - R 4 A」),以聚苯乙烯換 算測定時的重量平均分子量。 (d )成分之含量不特別限制,但爲了維持良好地薄 膜狀’相對(a)成分1〇〇質量份以i〜5〇〇質量份爲佳, 5〜300質量份較佳,1〇〜2〇〇質量份更佳。(£l)成分之 含量在1質量份以上’有容易得到薄膜形成性的提升效果 -30- 201231590 傾向,在500質量份以下則有接著劑組成物的硬化性提升 、接著力提升之傾向。 (e )成分:助焊活性劑 在本發明的接著劑組成物可含有(e )成分,亦即, 含有具有助焊活性(將氧化物或不純物除去之活性)的化 合物之助焊活性劑。助焊活性劑,可舉例如咪唑類或胺類 般具有非共有電子對的含氮化合物、羧酸類、酚類及醇類 〇 此等中,羧酸類助焊活性強 '易與(a)成分之環氧 樹脂反應,在接著劑組成物的硬化物中不以遊離狀態存在 ,可防止絕緣信賴性降低。 羧酸類,可舉例如乙烷酸、丙烷酸、丁烷酸、戊烷酸 、己烷酸、庚烷酸、辛烷酸、壬烷酸、癸烷酸、十二烷酸 、十四烷酸、十六烷酸、十七烷酸、十八烷酸等脂式飽和 羧酸;油酸、亞麻油酸、次亞麻酸、花生烯四酸、二十二 碳六烯酸、二十碳五烯酸等脂式不飽和羧酸;馬來酸、富 馬酸、草酸、丙二酸、琥珀酸、戊二酸、己二酸等脂式二 羧酸;安息香酸、苯二甲酸、異苯二甲酸、對苯二甲酸、 偏苯三酸、均苯三甲酸、半蜜臘酸、均苯四甲酸、苯五羧 酸、蜜臘酸等芳香族羧酸。又,具有羥基之羧酸’可舉例 如乳酸、蘋果酸、檸檬酸及水楊酸。 進一步,在上述芳香族羧酸有電子吸引性或電子供給 性的取代基,亦可使用因取代基而使芳香族上之殘酸之酸 -31 - 201231590 性度改變的芳香族系羧酸。羧酸之酸性度愈高愈有助焊活 性提升之傾向,但酸性度過高則有絕緣信賴性降低之情形 。使羧酸之酸性度增高的電子吸引性取代基,可舉例如硝 基、氰基、三氟甲基、鹵素基及苯基。使羧酸之酸性度變 弱的電子供給性的取代基,可舉例如甲基、乙基、異丙基 、第三丁基、二甲基胺基及三甲基胺基。又,上述取代基 之數或位置只要不使助焊活性或絕緣信賴性降低則無特別 限制。 爲使羧酸類於高溫加熱時分解不產生揮發成分,相較 室溫下液狀者以使用固形者爲佳。 (其他成分) 本實施形態的接著劑組成物中,爲了控制黏度或硬化 物的物性,及抑制將半導體晶片及基板接續時孔洞之產生 或吸濕率之上昇,(C)成分之外可再搭配塡料。 塡料,可使用絕緣性無機塡料、晶鬚或樹脂塡料。絕 緣性無機塡料、晶鬚或樹脂塡料,可使用與上述(C)成 分同樣物質。此等塡料、晶鬚及樹脂塡料可1種單獨或以 2種以上之混合物使用。塡料的形狀、平均粒徑及含量不 特別限制。 進一步,本實施形態的接著劑組成物中,亦可搭配抗 氧化劑、矽烷耦合劑、鈦耦合劑、平坦劑、離子捕捉劑等 添加劑。此等可1種單獨或2種以上組合使用。關於此等 搭配量以可表現各添加劑的效果方式適宜調整即可。 -32- 201231590 本實施形態的接著劑組成物可形成薄膜狀。使用本實 施形態的接著劑組成物的薄膜狀接著劑的製作方法如下。 首先將(a)成分' (b)成分及(c)成分、以及因應必 要添加的(d)成分或(e)成分等加入有機溶劑中,經攪 拌混合、混練等,使溶解或分散,調製樹脂清漆。之後, 在實施脫膜處理的基材薄膜上,將樹脂清漆以刀式塗佈機 、輥塗佈機或器具塗佈後,以加熱將有機溶劑除去,可在 基材薄膜上得到薄膜狀接著劑。又,搭配(d)成分之場 合,在合成(d)成分後,可不進行純化,合成後在得到 的清漆中添加各成分調製上述樹脂清漆。 樹脂清漆調製使用的有機溶劑以具有可將各成分均一 溶解或分散的特性者爲佳,例如二甲基甲醯胺、二甲基乙 醯胺、N -甲基-2 -吡咯烷酮、二甲基亞颯、二乙二醇二甲 基醚、甲苯、苯、二甲苯'甲基乙基酮、四氫呋喃、乙基 溶纖劑、乙基溶纖劑乙酸酯、丁基溶纖劑、二噁烷、環己 酮及乙酸乙酯。此等有機溶劑可單獨或2種類以上組合使 用。樹脂清漆調製時的攪拌混合或混練,例如可使用攪拌 機 '擂潰機、3支輥、球磨機、珠磨機及均質機進行。 基材薄膜具有可耐受有機溶劑揮發時的加熱條件之耐 熱性者即可,而無特別限制,例如聚丙烯薄膜、聚甲基戊 烯薄膜等聚烯烴薄膜、聚乙烯對苯二甲酸酯薄膜、聚萘二 甲酸乙二醇酯薄膜等聚酯薄膜 '聚醯亞胺薄膜及聚醚醯亞 胺薄膜。基材薄膜不限於此等薄膜所成之單層者,亦可爲 2種以上之材料所成之多層薄膜。 -33- 201231590 使有機溶劑由塗佈在基材薄膜之樹脂清漆揮發時的乾 燥條件,以使有機溶劑充分揮發之條件爲佳,具體上以5 0 〜200°C、0.1〜90分鐘之加熱爲佳。 &lt;半導體裝置&gt; 關於本實施形態的半導體裝置使用圖1及2說明如下 。圖1爲本發明的半導體裝置的一實施形態模式剖面圖。 圖1 (a)所示般,半導體裝置100具有互爲對向的半導體 晶片1 〇及基板(電路配線基板)20、與在半導體晶片1 0 及基板20的互爲面對的面上各自配置的配線15、與將半 導體晶片10及基板20之配線15相互接續的接續凸塊30 、與在半導體晶片1 〇及基板20間之空隙使無間隙充塡的 接著劑組成物40。半導體晶片1 0及基板20經由配線1 5 及接續凸塊3 0而被覆晶接續。配線1 5及接續凸塊3 0經 接著劑組成物40密封而與外部環境阻斷。 圖1 (b)所示般,半導體裝置2 00具有互爲對向的半 導體晶片1 〇及基板20、與半導體晶片1 〇及基板20的互 爲面對的面上各自配置的凸塊32、與將半導體晶片1〇及 基板20間之空隙無間隙地充塡的接著劑組成物40 °半導 體晶片10及基板20藉由對向的凸塊32相互接續而被覆 晶接續。凸塊32藉由接著劑組成物40被密封’而與外部 環境阻隔。 圖2爲本發明的半導體裝置的其他實施形態模式剖面 圖。圖2(a)所示般,半導體裝置3 00,除2個半導體晶 -34- 201231590 片1 〇經由配線1 5及接續凸塊3 0被覆晶接續點外,與半 導體裝置100相同。圖2(b)所示般,半導體裝置4 00, 除2個半導體晶片1〇經由凸塊32被覆晶接續點外,與半 導體裝置200相同。 半導體晶片1 〇,並無特別限制,可使用矽、鍺等相同 種類的元素所構成的元素半導體、鎵砷、磷化銦等化合物 半導體。 基板2 0爲電路基板即可而無特別限制,可使用在以 玻璃環氧、聚醯亞胺、聚酯、陶瓷、環氧樹脂、雙馬來醯 亞胺三嗪等爲主成分的絕緣基板之表面,具有將不要的金 屬膜部分以蝕刻除去所形成的配線(配線圖型)1 5之電路 基板、於上述絕緣基板之表面經金屬鍍敷等形成有配線15 的電路基板'在上述絕緣基板之表面印刷導電性物質而形 成配線15的電路基板。 配線15或凸塊32等接續部,主成分含有金、銀、銅 、焊錫(主成分爲例如錫-銀、錫-鉛' 錫-鉍、錫-銅)、 鎳、錫、鉛等,亦可含複數的金屬。 上述金屬之中’由成爲接續部的電傳導性·熱傳導性 優異的封裝觀點來看’以金、銀及銅爲佳,銀及銅較佳, 銀更佳。由成爲花費降低的封裝觀點來看,基於便宜,以 銀、銅及焊錫爲佳,銅及焊錫較佳,焊錫更佳。室溫中金 屬之表面形成氧化膜則有生產性降低之情形或花費增加之 情形,故由抑制氧化膜形成觀點來看,以金、銀、銅及焊 錫爲佳,金、銀、焊錫較佳,金、銀更佳。 -35- 201231590 上述配線1 5及凸塊3 2之表面,以金、銀、銅、焊錫 (主成分爲例如錫-銀、錫-鉛、錫·鉍、錫-銅)、錫、鎳 等爲主成分的金屬層,可以例如經鍍敷形成。該金屬層可 僅以單一成分構成或複數的成分構成。又,上述金屬層亦 可爲單層或層合複數的金屬層之構造。 又,本實施形態的半導體裝置,可複數層合如半導體 裝置100〜400所示般構造(封裝)。此時,半導體裝置 100〜4〇0可以含金、銀、銅、焊錫(主成分爲例如錫-銀 、錫-鉛、錫-鉍、錫-銅)、錫、鎳等的凸塊或配線相互電 接續。 將半導體裝置複數層合之手法,如圖3所示般,可舉 例如TSV ( Through-Silicon Via)技術。圖3爲本發明的 半導體裝置的其他實施形態模式剖面圖,爲使用TSV技術 的半導體裝置。在圖3所示的半導體裝置5 00,在插入物 5 〇上所形成的配線1 5與半導體晶片1 〇之配線1 5透過接 續凸塊3 0被接續而半導體晶片1 0與插入物5 0被覆晶接 續。在半導體晶片1 〇與插入物5 0間之空隙,無間隙地充 塡接著劑組成物40。在與上述半導體晶片1 〇的插入物50 另一側之表面上,透過配線1 5、接續凸塊3 0及接著劑組 成物40重複層合半導體晶片10。半導體晶片1〇之表裏的 圖型面的配線1 5藉由貫穿半導體晶片1 〇之內部的孔內充 塡之貫穿電極34而相互接續。又,貫穿電極34的材質, 可使用銅、鋁等。 藉由如此TSV技術,在通常不使用的半導體晶片之裏 -36- 201231590 面亦可取得訊號。進而因半導體晶片10內貫穿電極34垂 直貫穿,而使對向半導體晶片10間或半導體晶片1〇及插 入物50間之距離變短、可柔軟接續。本實施形態的接著 劑組成物,在如此T S V技術中,可用作爲對向半導體晶片 10間、或半導體晶片10及插入物50間之半導體密封用接 著劑。 又,在area bump chip技術等自由度高的凸塊形成方 法,可不透過插入物而直接將半導體晶片直接實裝於主機 板。本實施形態的接著劑組成物亦可適用在將如此半導體 晶片直接實裝在主機板之場合。又,本實施形態的接著劑 組成物在層合2個配線電路基板之場合,在密封基板間之 空隙時亦可適用。 &lt;半導體裝置的製造方法&gt; 關於本實施形態的半導體裝置的製造方法,以圖4進 行以下說明。圖4爲將本發明的半導體裝置的製造方法的 一實施形態以模式所示的步驟剖面圖。 首先圖4 ( a )所示般,在具有配線(例如金凸塊)1 5 的基板20上’在形成接續凸塊30的位置形成具有開口的 阻焊劑60。該阻焊劑60不一定要設置。然而,藉由在基 板2 0上設置阻焊劑’可抑制配線1 5間之橋接之產生、提 升接續信賴性·絕緣信賴性。阻焊劑6 0可使用例如市售 之封裝用阻焊劑用油墨來形成。市售的封裝用阻焊劑用油 墨’具體上可舉例如S R系列(日立化成工業股份公司製 -37- 201231590 、商品名)及PSR4000-AUS系列(太陽油墨製造(股) 製、商品名)。 接著,圖4 ( a )所示般,在阻焊劑60之開口形成接 續凸塊(例如焊錫凸塊)30。接著,圖4(b)所示般,在 形成有接續凸塊30及阻焊劑60的基板20上,貼附薄膜 狀的接著劑組成物(以下、因場合而稱作「薄膜狀接著劑 」)。40。薄膜狀接著劑40之貼附可藉由加熱加壓、輥 層合、真空層合等進行。薄膜狀接著劑40之供給面積或 厚度依半導體晶片10及基板20之尺寸、或接續凸塊30 之高度而適宜設定》 同上述,使薄膜狀接著劑40貼附於基板20後,使半 導體晶片1 〇之配線1 5與接續凸塊3 0使用覆晶焊接機等 接續裝置,瞄準位置。接著,使半導體晶片10與基板20 在接續凸塊3 0之融點以上之溫度邊加熱邊壓著,如圖4 ( c)所示般,將半導體晶片10與基板20接續,同時以薄 膜狀接著劑40將半導體晶片1 0及基板20間之空隙密封 充塡。經以上,可得到半導體裝置600。 在本實施形態的半導體裝置的製造方法,可藉由在瞄 準位置後暫時固定,以回焊爐進行加熱處理,使接續凸塊 30熔融而將半導體晶片1〇與基板20接續。在暫時固定之 階段,因不一定需要形成金屬接合,與上述邊加熱邊壓著 的方法相比,可以低荷重、短時間、低溫度進行壓著,提 升生產性同時可抑制接續部的劣化。 又,使半導體晶片1 〇與基板20接續後,可以烤箱等 -38- 201231590 進行加熱處理、更提高接續信賴性·絕緣信賴性。加熱溫 度以薄膜狀接著劑進行硬化之溫度爲佳,以完全硬化的溫 度更佳。加熱溫度、加熱時間被適宜地設定。 在本實施形態的半導體裝置的製造方法,可將薄膜狀 接著劑40貼附於半導體晶片10後,接續基板20。又,使 半導體晶片10及基板20以配線15及接續凸塊30接續後 ,使半導體晶片1 〇及基板20間之空隙充塡糊漿狀的接著 劑組成物。 由生產性提升觀點來看,亦可藉由於連結有複數的半 導體晶片1 〇的半導體晶圓供給接著劑組成物後,進行切 割而個片化,得到在半導體晶片1 〇上供給有接著劑組成 物的構造體。又,接著劑組成物爲糊漿狀的場合,雖無特 別限制,藉由旋轉塗佈等塗佈方法,將半導體晶片1〇上 之配線或凸塊包埋、使厚度均一化即可。此時,因樹脂的 供給量爲一定,提升生產性同時可抑制包埋不足造成的孔 洞之產生及切割性降低。另一方面,接著劑組成物爲薄膜 狀的場合,雖無特別限制,藉由加熱加壓、輥層合及真空 層合等貼附方式,以將半導體晶片10上之配線或凸塊包 埋之方式供給薄膜狀的樹脂組成物即可。此時,因樹脂的 供給量爲一定而生產性提升、可抑制包埋不足造成的孔洞 之產生及切割性降低。 接續荷重考量接續凸塊30之數目或高度之偏差、承 受加壓的接續凸塊3 0、或接續部的凸塊之配線變形量而設 定。接續溫度以接續部的溫度在接續凸塊3 0之融點以上 -39- 201231590 爲佳,但在各自的接續部(凸塊或配線)之形成金屬 溫度即可。接續凸塊30爲焊錫凸塊之場合約240 °C以 可 〇 接續時的接續時間因接續部的構成金屬而異,但 高生產性觀點,時間愈短愈佳。接續凸塊3 0爲焊錫 之場合,接續時間以20秒以下爲佳,10秒以下較ΐ 秒以下更佳。銅-銅或銅-金的金屬接續之場合,接續 以60秒以下爲佳。 即使在上述種種封裝構造的覆晶接續部,本發明 著劑組成物亦表現優異的接續信賴性及絕緣信賴性。 【實施方式】 [實施例] 以下、以實施例、比較例說明本發明,但本發明 於以下的實施例》 (聚醯亞胺合成) 在具備溫度計、攪拌機及氯化鈣管的300mL燒瓶 入1,12 -二胺基十二烷2.10g(0.035莫耳)、聚醚二 BASF製、商品名r ED2000」、分子量:1 923 ) 1 7 3 0.03莫耳)、1,3-雙(3-胺基丙基)四甲基二矽氧烷 越化學製、商品名「LP-7100」)2_61g(〇.〇35莫耳 N-甲基-2-吡咯烷酮(關東化學製、以下稱「nMP」) 並進行攪拌。上述二胺的溶解後,使燒瓶邊在冰浴中 接合 上即 由提 凸塊 £ &gt; 5 時間 的接 不限 ,加 胺( Ig ( (信 )及 150g 冷卻 -40- 201231590 ,邊分次少量添加以乙酸酐再結晶精製的4,4’-(4,4’-異 亞丙基二苯氧基)雙(苯二甲酸二酐)(ALDRICH製、 商品名「BPADA」)15.62g(0.10莫耳)。在室溫進行8 小時反應後’加入二甲苯100g,邊吹入氮氣體邊在180°C 進行加熱,與水一起使二甲苯共沸除去而得到聚醯亞胺樹 脂。由得到的聚醯亞胺樹脂除去溶劑(NMP ),以在甲苯 及乙酸乙酯之混合溶劑(質量比1: 1)以固形分成爲50 質量%之方式溶解者作爲「聚醯亞胺A」。聚醯亞胺A的 Tg爲30 °C、重量平均分子量爲50000、SP値(溶解度參 數)爲1 0.2。 各實施例及比較例所使用化合物如下。 (a )環氧樹脂 •含三酚甲烷骨架多官能固形環氧(Japan Epoxy Resins Co.,Ltd.製、商品名「EP1032H60」、以下稱「 EP1032」)。 (b )硬化劑 • 2-苯基-4,5-二羥基甲基咪唑(四國化成股份公司製 、商品名「2PHZ-PW」、以下稱「2PHZ」)。 (c)乙稀系表面處理塡料或具有上述一般式(1)所表示 的基之塡料 •乙烯表面處理二氧化矽塡料(股份公司Admatechs -41 - 201231590 製、商品名「SE2050-SVJ」、平均粒徑0.5μιη、以下稱「 SV二氧化矽」)。 (c ’)其他塡料 .未處理的一氧化砂塡料(股份公司Admatechs製、 商品名「SE2050」、平均粒徑0·5μπι、以下稱「未處理二 氧化矽」)。 •胺基矽烷處理二氧化矽塡料(股份公司Admatechs 製、商品名「SE2050-SXJ」、平均粒徑〇·5μπι、以下稱「 S X二氧化矽」)。 •環氧矽烷處理二氧化矽塡料(股份公司Admatechs 製、商品名「SE2050-SEJ」、平均粒徑0.5μπι、以下稱「 SE二氧化砂」)。 •苯基砂院處理一氧化砂塡料(股份公司Admatechs 製、商品名「SE2050-SPJ」、平均粒徑〇·5μηι、以下稱「 S Ρ二氧化矽」)。 • Metablen 型有機塡料(MITSUBISHI RAYON CO., LTD.製、商品名「W5 5 00」、以下稱「W5 5 00」)。 (d )分子量1 0000以上之高分子成分In the formula (VIII), c, d and e are integers of from 1 to 50, more preferably from 2 to 40. H2N-(cH2-CH2^-0-CH2-CH2-Ο-^CH2-CH2^-NH2 (IX) In the formula (IX), j and k are each independently, and are integers of 1 to 70. The aliphatic ether diamine represented by the general formula (VII) may, for example, be JEFFAMINED-230, D-400, D-2000 and D-4000 manufactured by Yamatake Chemical Co., Ltd., and polyetheramine D manufactured by BASF. -230, D-400 and D-2000, the aliphatic ether diamine represented by the above general formula (VIII), specifically, for example, JEFFA^NEED-•600' ED-900 manufactured by Shantike Chemical Co., Ltd. ED-2001', the aliphatic ether diamine represented by the above formula (IX), specifically, for example, JEFFAMINEEDR-148 manufactured by Shantike Chemical Co., Ltd. -28- 201231590 The aliphatic group represented by the above general formula (V) The diamine may, for example, be 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-di Aminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminodecane, ι, ι〇-diaminodecane, ι, ιΐ- Diaminoundecane, 1,12-diaminododecane and 1,2-diaminocyclohexane. 9-diaminodecane, 1,1 fluorene-diaminodecane, ι, ιι_diaminoundecane and 1,12-diaminododecane are preferred. The above general formula (VI) The alkoxyalkylenediamine represented by the formula (VI) wherein g is 1, may, for example, be 1,1,3,3-tetramethyl-1,3-bis(4-aminophenyl)di Oxane, 1,1,3,3-tetraphenoxy-1,3-bis(4-aminoethyl)dioxane, 1,1,3,3-tetraphenyl-1,3 Bis(2-aminoethyl)dioxane, 1,1,3,3-tetraphenyl-1,3-bis(3·aminopropyl)dioxane, 1,1,3 ,3-tetramethyl-1,3-bis(2-aminoethyl)dioxane, 1,1,3,3-tetramethyl-13-bis(3·aminopropyl)difluorene Oxylkane, 1,1,3,3-tetramethyl-l,3-bis(3-aminobutyl)dioxane and 1,3-dimethyl-l,3-dimethoxy- l,3-bis(4-aminobutyl)dioxane. When g is 2, for example, 1,1,3,3,5,5-hexamethyl-1,5-bis (4) -aminophenyl)trioxane, 1,1,5,5-tetraphenyl-3,3-dimethyl-1,5-bis(3-aminopropyl)trioxane, 1 1,5,5-tetraphenyl-3,3-dimethoxy-1,5-bis(4-aminobutyl)trioxane 1,1,5,5-tetraphenyl-3,3-dimethoxy-1,5-bis(5-aminopentyl)trioxane, l,l,5,5-tetramethyl 3-,3-dimethoxy-1,5-bis(2-aminoethyl)trioxane, 1,1,5,5-tetramethyl-3,3-dimethoxy- 1,5-bis(4-aminobutyl)trioxane' 1,1,5,5-tetramethyl-3,3-dimethoxy-i,5-bis(5-aminopenta Base) trioxane, -29- 201231590 1,1,3,3,5,5-hexamethyl-1,5-bis(3-aminopropyl)sanson, 1,1,3, 3,5,5·hexaethyl-1,5-bis(3-aminopropyl)trioxane and 1,1,3,3,5,5-hexapropyl-1,5-bis ( 3-aminopropyl)trioxane. The polyimine resin may be used singly or in a mixture of two or more kinds. The glass transition temperature (Tg) of the component (d) is preferably 100 ° C from the viewpoint of excellent adhesion of the adhesive composition to the substrate or the wafer. The following is better, preferably below 75 °C. When the Tg is 100 ° C or less, bumps formed on the semiconductor wafer, or irregularities such as electrodes or wiring patterns formed on the substrate are easily embedded by the adhesive composition, and no bubbles remain. The tendency to create holes is not easy. In addition, the above Tg means a DSC (DSC-7 type manufactured by PerkinElmer Co., Ltd.), a sample size of 10 mg, a temperature increase rate of 5 ° C /min, and a measurement environment: T g when measured under air conditions. The weight average molecular weight of the component (d) is loooo or more in terms of polystyrene. However, in order to exhibit good film formability alone, it is preferably 30,000 or more, and more preferably 40000 or more, more preferably 50,000 or more. When the weight average molecular weight is 1,000,000 or more, the film formability tends to increase. In the present specification, the weight average molecular weight is a weight average molecular weight measured by high-speed liquid chromatography (for example, product name "C - R 4 A" manufactured by Shimadzu Corporation). The content of the component (d) is not particularly limited, but it is preferably 1 to 5 parts by mass, more preferably 5 to 300 parts by mass, in order to maintain a good film shape. 2〇〇 parts by mass is better. (£1) The content of the component is 1 part by mass or more. The effect of improving the film formability is easily obtained. -30-201231590. When the amount is 500 parts by mass or less, the curing property of the adhesive composition tends to increase and the adhesive force tends to increase. (e) component: fluxing active agent The adhesive composition of the present invention may contain the component (e), that is, a fluxing active agent containing a compound having a fluxing activity (activity for removing an oxide or an impurity). The flux activator may, for example, be a nitrogen-containing compound having an unshared electron pair such as an imidazole or an amine, a carboxylic acid, a phenol, or an alcohol. Among them, the carboxylic acid-based fluxing activity is strong and easy to be combined with the component (a). The epoxy resin reaction does not exist in a free state in the cured product of the adhesive composition, and the insulation reliability can be prevented from being lowered. Examples of the carboxylic acid include ethane acid, propane acid, butane acid, pentanoic acid, hexane acid, heptane acid, octane acid, decanoic acid, decanoic acid, dodecanoic acid, and myristic acid. , fatty acid such as palmitic acid, heptadecanoic acid or octadecanoic acid; oleic acid, linoleic acid, linolenic acid, arachidonic acid, docosahexaenoic acid, twenty carbon five a fatty unsaturated carboxylic acid such as an acid; a fatty dicarboxylic acid such as maleic acid, fumaric acid, oxalic acid, malonic acid, succinic acid, glutaric acid or adipic acid; benzoic acid, phthalic acid, isophthalic acid An aromatic carboxylic acid such as dicarboxylic acid, terephthalic acid, trimellitic acid, trimesic acid, semi-melanic acid, pyromellitic acid, benzenepentacarboxylic acid or beeswaxic acid. Further, the carboxylic acid having a hydroxyl group can be exemplified by lactic acid, malic acid, citric acid, and salicylic acid. Further, in the above-mentioned aromatic carboxylic acid having an electron-attracting property or an electron-donating substituent, an aromatic carboxylic acid having a change in the acidity of the aromatic residual acid -31 - 201231590 due to the substituent may be used. The higher the acidity of the carboxylic acid, the higher the tendency of the soldering activity to be improved, but the higher the acidity, the lower the reliability of the insulation. Examples of the electron attracting substituent which increases the acidity of the carboxylic acid include a nitro group, a cyano group, a trifluoromethyl group, a halogen group and a phenyl group. The electron-donating substituent which weakens the acidity of the carboxylic acid may, for example, be a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a dimethylamino group or a trimethylamino group. Further, the number or position of the substituents is not particularly limited as long as the fluxing activity or the insulating reliability is not lowered. In order to decompose the carboxylic acid when heated at a high temperature, no volatile component is produced, and it is preferred to use a solid form when it is liquid at room temperature. (Other components) In the adhesive composition of the present embodiment, in order to control the viscosity or the physical properties of the cured product, and to suppress the occurrence of voids or the moisture absorption rate when the semiconductor wafer and the substrate are connected, the component (C) can be further Match the ingredients. For the purpose of the coating, an insulating inorganic coating, whisker or resin coating can be used. As the insulating inorganic material, whisker or resin material, the same substance as the above (C) component can be used. These materials, whiskers and resin materials may be used singly or in combination of two or more. The shape, average particle size and content of the dip material are not particularly limited. Further, the adhesive composition of the present embodiment may be blended with an additive such as an antioxidant, a decane coupling agent, a titanium coupling agent, a flat agent, or an ion trapping agent. These may be used alone or in combination of two or more. It is sufficient to adjust the amount of such blending in such a manner that the effect of each additive can be expressed. -32- 201231590 The adhesive composition of this embodiment can be formed into a film shape. The film-form adhesive using the adhesive composition of this embodiment is produced as follows. First, the components (a) and (c) of the component (a) and the component (d) or the component (e) to be added as necessary are added to an organic solvent, and the mixture or the like is stirred and mixed, and dissolved or dispersed to prepare and dissolve. Resin varnish. Thereafter, after the resin varnish is applied by a knife coater, a roll coater, or an apparatus on the base film subjected to the release treatment, the organic solvent is removed by heating, and a film form can be obtained on the base film. Agent. Further, in the case of the component (d), after the component (d) is synthesized, the purification may be carried out, and after the synthesis, each component is added to the obtained varnish to prepare the resin varnish. The organic solvent used for the preparation of the resin varnish preferably has a property of uniformly dissolving or dispersing each component, for example, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl group. Azulene, diethylene glycol dimethyl ether, toluene, benzene, xylene 'methyl ethyl ketone, tetrahydrofuran, ethyl cellosolve, ethyl cellosolve acetate, butyl cellosolve, dioxane, Cyclohexanone and ethyl acetate. These organic solvents may be used singly or in combination of two or more kinds. Stirring mixing or kneading at the time of preparation of the resin varnish can be carried out, for example, by using a stirrer, a smashing machine, a three-roller, a ball mill, a bead mill, and a homogenizer. The base film may have heat resistance to withstand heating conditions when the organic solvent is volatilized, and is not particularly limited, and is, for example, a polyolefin film such as a polypropylene film or a polymethylpentene film, or a polyethylene terephthalate. A polyester film such as a film or a polyethylene naphthalate film, a polyimide film and a polyether quinone film. The base film is not limited to a single layer formed of such a film, and may be a multilayer film made of two or more kinds of materials. -33- 201231590 The organic solvent is preferably dried under the conditions of volatilization of the resin varnish applied to the substrate film to sufficiently evaporate the organic solvent, specifically, heating at 50 to 200 ° C for 0.1 to 90 minutes. It is better. &lt;Semiconductor device&gt; The semiconductor device of the present embodiment will be described below with reference to Figs. 1 and 2 . 1 is a cross-sectional view showing an embodiment of a semiconductor device of the present invention. As shown in FIG. 1(a), the semiconductor device 100 has a semiconductor wafer 1 and a substrate (circuit wiring substrate) 20 facing each other, and is disposed on a surface facing each other on the semiconductor wafer 10 and the substrate 20. The wiring 15 and the bonding bump 30 which connects the semiconductor wafer 10 and the wiring 15 of the substrate 20 to each other and the adhesive composition 40 which is filled with the gap between the semiconductor wafer 1 and the substrate 20 are filled. The semiconductor wafer 10 and the substrate 20 are covered by a wiring via the wiring 15 and the succeeding bumps 30. The wiring 1 5 and the succeeding bumps 30 are sealed by the subsequent composition 40 and blocked from the external environment. As shown in FIG. 1(b), the semiconductor device 200 has semiconductor wafers 1 and 20 facing each other, and bumps 32 disposed on the surfaces of the semiconductor wafer 1 and the substrate 20 facing each other. The adhesive composition 40 is filled with the gap between the semiconductor wafer 1 and the substrate 20 without gaps. The semiconductor wafer 10 and the substrate 20 are bonded by the opposing bumps 32 to each other. The bump 32 is sealed from the external environment by the sealant composition 40 being sealed. Fig. 2 is a schematic cross-sectional view showing another embodiment of the semiconductor device of the present invention. As shown in Fig. 2(a), the semiconductor device 300 is the same as the semiconductor device 100 except that the two semiconductor crystals - 34 - 201231590 are spliced through the wiring 15 and the bonding bump 30. As shown in Fig. 2(b), the semiconductor device 400 is the same as the semiconductor device 200 except that the two semiconductor wafers 1 are covered by the bumps 32. The semiconductor wafer 1 is not particularly limited, and an elemental semiconductor such as an elemental semiconductor such as yttrium or lanthanum, a compound semiconductor such as gallium arsenide or indium phosphide can be used. The substrate 20 is a circuit board, and is not particularly limited, and an insulating substrate mainly composed of glass epoxy, polyimide, polyester, ceramic, epoxy resin, bismaleimide, or the like can be used. The surface of the circuit board having the wiring (wiring pattern) 15 formed by etching away the unnecessary metal film portion, and the circuit board on which the wiring 15 is formed by metal plating or the like on the surface of the insulating substrate. A circuit board on which the conductive material is printed on the surface of the substrate to form the wiring 15 is formed. The wiring 15 or the bump 32 and the like are connected to each other, and the main component contains gold, silver, copper, solder (the main component is, for example, tin-silver, tin-lead' tin-bismuth, tin-copper), nickel, tin, lead, etc. Can contain a plurality of metals. Among the above-mentioned metals, it is preferable that gold, silver, and copper are preferable from the viewpoint of a package having excellent electrical conductivity and thermal conductivity as a joint portion, silver and copper are preferable, and silver is more preferable. From the standpoint of being a cost-reducing package, it is preferable to use silver, copper, and solder, and copper and solder are preferable, and solder is preferable. When an oxide film is formed on the surface of the metal at room temperature, the productivity may be lowered or the cost may be increased. Therefore, gold, silver, copper, and solder are preferred from the viewpoint of suppressing the formation of the oxide film, and gold, silver, and solder are preferred. Gold and silver are better. -35- 201231590 The surface of the wiring 1 5 and the bump 3 2 is made of gold, silver, copper, solder (main components such as tin-silver, tin-lead, tin-bismuth, tin-copper), tin, nickel, etc. The metal layer as the main component can be formed, for example, by plating. The metal layer may be composed of only a single component or a plurality of components. Further, the metal layer may have a single layer or a laminated metal layer. Further, the semiconductor device of the present embodiment can be laminated (packaged) as shown in the semiconductor devices 100 to 400 in a plurality of layers. At this time, the semiconductor devices 100 to 4〇0 may contain bumps or wirings of gold, silver, copper, solder (main components such as tin-silver, tin-lead, tin-bismuth, tin-copper), tin, nickel, or the like. Electrical connection. A method of laminating a plurality of semiconductor devices as shown in Fig. 3 is, for example, a TSV (Through-Silicon Via) technique. Fig. 3 is a cross-sectional view showing another embodiment of the semiconductor device of the present invention, which is a semiconductor device using the TSV technology. In the semiconductor device 500 shown in FIG. 3, the wiring 15 formed on the interposer 5 and the wiring 15 of the semiconductor wafer 1 are connected through the continuous bump 30 and the semiconductor wafer 10 and the interposer 50. The covered crystal is continued. In the gap between the semiconductor wafer 1 and the interposer 50, the adhesive composition 40 is filled without a gap. On the surface on the other side of the interposer 50 of the semiconductor wafer 1 , the semiconductor wafer 10 is repeatedly laminated through the wiring 15 , the bonding bump 30 , and the adhesive composition 40 . The wirings 15 of the pattern surface in the surface of the semiconductor wafer are connected to each other by the through electrodes 34 which are filled in the holes of the inside of the semiconductor wafer 1. Further, copper, aluminum, or the like can be used as the material of the through electrode 34. With such TSV technology, signals can also be obtained from -36-201231590 in semiconductor wafers that are not normally used. Further, since the through electrodes 34 are vertically penetrated in the semiconductor wafer 10, the distance between the opposing semiconductor wafers 10 or between the semiconductor wafer 1 and the interposer 50 is shortened, and the connection can be made soft. The adhesive composition of the present embodiment can be used as a semiconductor sealing adhesive between the semiconductor wafers 10 and between the semiconductor wafer 10 and the interposer 50 in the T S V technique. Further, in the bump forming method having a high degree of freedom such as the area bump chip technique, the semiconductor wafer can be directly mounted on the host board without interposing the insert. The adhesive composition of this embodiment can also be applied to the case where such a semiconductor wafer is directly mounted on a motherboard. Further, in the case where two wiring circuit substrates are laminated in the adhesive composition of the present embodiment, it is also applicable to sealing the gap between the substrates. &lt;Manufacturing Method of Semiconductor Device&gt; The method of manufacturing the semiconductor device of the present embodiment will be described below with reference to Fig. 4 . Fig. 4 is a cross-sectional view showing the steps of an embodiment of a method of manufacturing a semiconductor device of the present invention in a mode. First, as shown in Fig. 4 (a), a solder resist 60 having an opening is formed on the substrate 20 having wiring (e.g., gold bumps) 15 at a position where the bumps 30 are formed. The solder resist 60 does not have to be provided. However, by providing the solder resist on the substrate 20, the occurrence of bridging between the wirings 15 can be suppressed, and the reliability of the connection and the reliability of the insulation can be improved. The solder resist 60 can be formed using, for example, a commercially available ink for soldering for package. For example, the S R series (manufactured by Hitachi Chemical Co., Ltd., -37-201231590, trade name) and the PSR4000-AUS series (manufactured by Sun Ink Manufacturing Co., Ltd., trade name) are exemplified. Next, as shown in Fig. 4 (a), a continuous bump (e.g., solder bump) 30 is formed in the opening of the solder resist 60. Next, as shown in FIG. 4(b), a film-form adhesive composition is attached to the substrate 20 on which the bumps 30 and the solder resist 60 are formed (hereinafter, referred to as "film-like adhesive" depending on the occasion) ). 40. The adhesion of the film-like adhesive 40 can be carried out by heat and pressure, roll lamination, vacuum lamination, or the like. The supply area or thickness of the film-like adhesive 40 is appropriately set depending on the size of the semiconductor wafer 10 and the substrate 20 or the height of the succeeding bumps 30. As described above, the film-like adhesive 40 is attached to the substrate 20 to form a semiconductor wafer. 1 配线 The wiring 1 5 and the connecting bump 30 use a splicing device such as a flip chip soldering machine to aim at the position. Next, the semiconductor wafer 10 and the substrate 20 are heated while being heated at a temperature equal to or higher than the melting point of the bumps 30, and the semiconductor wafer 10 and the substrate 20 are connected as shown in FIG. 4(c) while being in the form of a film. The adhesive 40 seals the gap between the semiconductor wafer 10 and the substrate 20. Through the above, the semiconductor device 600 can be obtained. In the method of manufacturing a semiconductor device of the present embodiment, the semiconductor wafer 1A can be connected to the substrate 20 by heat-treating in the reflow furnace by temporarily fixing it at the target position and melting the bonding bumps 30. In the temporary fixing stage, since the metal joining is not necessarily required, the pressing can be performed at a low load, a short time, and a low temperature as compared with the method of pressing while heating, and the productivity can be improved and the deterioration of the joint portion can be suppressed. Further, after the semiconductor wafer 1 is connected to the substrate 20, heat treatment can be performed in an oven or the like -38 to 201231590, and the reliability and the reliability of the connection can be further improved. The heating temperature is preferably a temperature at which the film-like adhesive is hardened, and the temperature at which the film is completely cured is more preferable. The heating temperature and the heating time are appropriately set. In the method of manufacturing a semiconductor device of the present embodiment, the film-like adhesive 40 can be attached to the semiconductor wafer 10, and the substrate 20 can be connected. Further, after the semiconductor wafer 10 and the substrate 20 are connected by the wiring 15 and the bonding bumps 30, the gap between the semiconductor wafer 1 and the substrate 20 is filled with a paste-like adhesive composition. From the viewpoint of productivity improvement, the adhesive composition may be supplied by a semiconductor wafer to which a plurality of semiconductor wafers 1 are connected, and then diced and sliced to obtain an adhesive composition on the semiconductor wafer 1 . The structure of the object. In the case where the adhesive composition is in the form of a syrup, the wiring or the bump on the semiconductor wafer 1 is embedded by a coating method such as spin coating to uniformize the thickness. At this time, since the supply amount of the resin is constant, the productivity is improved and the occurrence of voids due to insufficient embedding and the decrease in the cutting property can be suppressed. On the other hand, when the adhesive composition is in the form of a film, it is not particularly limited, and the wiring or bumps on the semiconductor wafer 10 are embedded by adhesion methods such as heat and pressure, roll lamination, and vacuum lamination. In this manner, a film-like resin composition may be supplied. At this time, the productivity is improved by the supply amount of the resin, and the occurrence of voids due to insufficient embedding and the decrease in the cutting property can be suppressed. The continuation load is determined by the deviation of the number or height of the splicing bumps 30, the continuous bumps 30 subjected to the pressurization, or the amount of wiring deformation of the bumps of the splicing portions. The splicing temperature is preferably the temperature of the splicing portion above the melting point of the splicing block 30 - 39 - 201231590, but the metal temperature may be formed at each of the splicing portions (bumps or wiring). In the case where the bumps 30 are solder bumps, the connection time at the time of about 240 °C is different depending on the constituent metal of the joint portion. However, from the viewpoint of high productivity, the shorter the time, the better. When the bonding bump 30 is solder, the connection time is preferably 20 seconds or less, and 10 seconds or less is more preferably less than ΐ second. In the case of copper-copper or copper-gold metal connection, the connection is preferably 60 seconds or less. Even in the flip chip bonding portion of the above various package structures, the inventive composition exhibits excellent connection reliability and insulation reliability. [Embodiment] [Examples] Hereinafter, the present invention will be described by way of Examples and Comparative Examples. However, the present invention is based on the following examples (polyimine synthesis) in a 300 mL flask equipped with a thermometer, a stirrer, and a calcium chloride tube. 1,12-diaminododecane 2.10g (0.035 mole), polyether two BASF, trade name r ED2000", molecular weight: 1 923 ) 1 7 3 0.03 mol), 1,3-double (3 -aminopropyl)tetramethyldioxane, chemically produced, trade name "LP-7100") 2_61g (〇.〇35 mol N-methyl-2-pyrrolidone (made by Kanto Chemical Co., hereinafter referred to as "nMP") </ br> and stirring. After the above diamine is dissolved, the flask is joined in an ice bath, that is, the bump is not limited, and the amine is added (Ig ((信) and 150g cooling-40) - 201231590, a small amount of 4,4'-(4,4'-isopropylidenediphenoxy) bis(phthalic anhydride) recrystallized with acetic anhydride (manufactured by ALDRICH, trade name " BPADA") 15.62g (0.10 mole). After 8 hours of reaction at room temperature, '100% of xylene was added, and while heating at 180 ° C while blowing nitrogen gas, with water The xylene is removed by azeotropic removal to obtain a polyimine resin. The solvent (NMP) is removed from the obtained polyamidene resin to form a solid solvent in a mixed solvent of toluene and ethyl acetate (mass ratio: 1:1). 50% by mass of the compound was dissolved as "polyimine A." Polyethyleneimine A had a Tg of 30 ° C, a weight average molecular weight of 50,000, and an SP 値 (solubility parameter) of 1 0.2. Examples and Comparative Examples The compound to be used is as follows: (a) Epoxy resin and trisphenol-containing skeleton polyfunctional solid epoxy (manufactured by Japan Epoxy Resins Co., Ltd., trade name "EP1032H60", hereinafter referred to as "EP1032"). (b) Hardening • 2-Phenyl-4,5-dihydroxymethylimidazole (manufactured by Shikoku Chemicals Co., Ltd., trade name “2PHZ-PW”, hereinafter “2PHZ”). (c) Beneficial surface treatment materials or The base material/ethylene surface-treated cerium oxide material represented by the above general formula (1) (manufactured by the company Admatechs -41 - 201231590, trade name "SE2050-SVJ", average particle size 0.5 μιη, hereinafter referred to as " SV cerium oxide"). (c ') Other sputum. Untreated oxidized塡 ( ( ( Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad "SE2050-SXJ", average particle size 〇·5μπι, hereinafter referred to as "SX cerium oxide"). • Epoxy decane treated cerium oxide (manufactured by the company Admatechs, trade name "SE2050-SEJ", average particle size 0.5μπι, hereinafter referred to as "SE silica sand"). • Phenyl sand yard treatment of sulphur oxide sand (manufactured by the company Admatechs, trade name "SE2050-SPJ", average particle size 〇·5μηι, hereinafter referred to as "S Ρ Ρ dioxide"). • Metablen type organic material (manufactured by MITSUBISHI RAYON CO., LTD., trade name "W5 5 00", hereinafter referred to as "W5 5 00"). (d) a polymer component having a molecular weight of 1 0000 or more

•如上述般合成的聚醯亞胺A (e )助焊活性劑 •二酚酸(東京化成股份公司製) -42- 201231590 &lt;半導體密封用薄膜狀接著劑的製作&gt; (實施例1 ) 使環氧樹脂(EP1032) 100質量份、硬化劑(2PHZ) 7.5質量份、塡料(SV二氧化矽)175質量份、助焊活性 劑(二酚酸)25質量份以及甲苯及乙酸乙酯之混合溶劑( 質量比1 : 1 )以固形分成爲60質量%之方式添加,將直 徑0.8mm的珠及直徑2.0mm的珠與固形分同量加入,以 珠磨機(Fritsch Japan Co ,ltd 、遊星型微粉碎機「P-7」 )進行30分鐘攪拌。接著,加入聚醯亞胺A100質量份( 固形分換算),再度以珠磨機進行30分鐘攪拌後,將攪 拌使用的珠以過濾除去,得到樹脂清漆。 將得到的樹脂清漆在基材薄膜(帝人杜邦薄膜股份公 司製、商品名「PurexA53」)上,以小型精密塗佈裝置( 廉井精機製)塗佈,在無塵烘箱(ESPEC股份公司製)中 ,以U0°C進行10分鐘乾燥,製作薄膜狀接著劑。 (實施例2及比較例1〜5 ) 除將使用的原材料的組成如下述表1般變更外,與實 施例1同樣地製作實施例2及比較例1〜5之薄膜狀接著 劑。 以下爲實施例及比較例所得到的薄膜狀接著劑的評估 方法》 -43- 201231590 &lt;初期接續性的評估&gt; 將製作的薄膜狀接著劑切爲特定尺寸(長8mmx寬 8mmx厚度0.025mm ),貼附在玻璃環氧基板(玻璃環氧 基材·· 420μπι厚、銅配線:9μηι厚)上,使附焊錫凸塊半 導體晶片(晶片尺寸:長7mmx寬7mmx高度0.15mm、凸 塊高度:銅柱及焊錫合計約40μιη、凸塊數3 2 8 )以覆晶實 裝裝置「FCB3」 (Panasonic製、商品名)進行實裝(實 裝條件:薄膜狀接著劑的到達溫度1 8 0 °C、1 0秒鐘、 0.5MPa。接著,薄膜狀接著劑的到達溫度245°C、10秒鐘 、0.5MPa)。藉此與圖4同樣地得到上述玻璃環氧基板與 附焊錫凸塊半導體晶片菊鏈連接的半導體裝置。 藉由將得到的半導體裝置的接續電阻値使用萬用表( ADVANTEST製、商品名「R 6 8 7 1 E」)進行測定,評估實 裝後的初期傳導如何。將接續電阻値爲1 1〜1 4 Ω場合評估 爲接續性良好「A」,其以外的接續電阻値場合或產生接 續不良(Open)而無法表示電阻値場合評估爲「b」。 &lt;熱膨脹率之測定&gt; 將薄膜狀接著劑切爲特定尺寸(長37mmx寬4mmx厚 度0.025mm),在無塵烘箱(ESPEC股份公司製)中,在 1 8 0 °C維持3小時後硬化。硬化後使用熱膨脹率測定裝置 (Seiko Instruments股份公司製、熱分析系統TMASS6000 )’在溫度範圍20〜270 °C、昇溫速度5 °C/分鐘、荷重 0.5MPa條件下測定熱膨脹。熱膨脹率爲25〜125t:的平均 -44- 201231590 熱膨脹率(PPm/°C )。 &lt;接續信賴性的評估(耐TCT評估)&gt; 使上述半導體裝置在無塵烘箱(ESPEC股份公司製) 中進行後硬化(1 8 0 °C /3小時)。之後,放置於冷熱循環 試驗機(ETAC 製、THERMAL SHOCK CHAMBER NT1200 )內,流通1mA之電流,以25°C 2分鐘/-55°C 15分鐘/25 °C 2分鐘/125°C 15分鐘/25°C 2分鐘爲1循環測定接續電阻 。與初期電阻値波形相比在3 00循環後亦無大變化場合評 估爲「A」、1Ω以上之差產生在100循環以上未達300循 環的場合評估爲「B」、1Ω以上之差產生在未達100循環 場合評估爲「C」。 &lt;絕緣信賴性的評估(耐HAST評估)&gt; 將製作的薄膜狀接著劑切爲特定尺寸(長lOmmx寬 5mmX厚度25μιη),貼附在聚醯亞胺基板上形成有配線銅 配線的梳型電極基板(配線間距:0.05mm),如圖5所示 般,製作在形成有梳型電極90的基板20上層合薄膜狀接 著劑40的樣本。又,圖5方便上省略薄膜狀接著劑的圖 示。接著,將樣本在無塵烘箱(ESPEC股份公司製)中,• Polyimine A (e) fluxing active agent and diphenolic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) synthesized as described above - 42-201231590 &lt;Production of film-like adhesive for semiconductor sealing&gt; (Example 1 100 parts by mass of epoxy resin (EP1032), 7.5 parts by mass of hardener (2PHZ), 175 parts by mass of sputum (SV cerium oxide), 25 parts by mass of fluxing active agent (diphenolic acid), and toluene and acetic acid The mixed solvent of the ester (mass ratio: 1:1) was added in such a manner that the solid content was 60% by mass, and the beads having a diameter of 0.8 mm and the beads having a diameter of 2.0 mm were added in the same amount as the solid, to a bead mill (Fritsch Japan Co, Ltd., the star-type micro-pulverizer "P-7") was stirred for 30 minutes. Then, 100 parts by mass of polyimine A (in terms of solid content) was added, and the mixture was again stirred in a bead mill for 30 minutes, and then the beads used for the agitation were removed by filtration to obtain a resin varnish. The obtained resin varnish was applied to a base film (manufactured by Teijin DuPont Film Co., Ltd., trade name "Purex A53"), and coated with a small precision coating device (Lengjing Precision Mechanism) in a dust-free oven (manufactured by ESPEC Co., Ltd.). The film was dried at U0 ° C for 10 minutes to prepare a film-like adhesive. (Example 2 and Comparative Examples 1 to 5) Film-like adhesives of Example 2 and Comparative Examples 1 to 5 were produced in the same manner as in Example 1 except that the composition of the materials to be used was changed as shown in Table 1 below. The evaluation methods of the film-form adhesives obtained in the examples and the comparative examples are as follows -43-201231590 &lt;Evaluation of initial continuity&gt; The film-form adhesive to be produced is cut into a specific size (length 8 mm x width 8 mm x thickness 0.025 mm) ), attached to a glass epoxy substrate (glass epoxy substrate · 420μπι thick, copper wiring: 9μηι thick), to make solder bump semiconductor wafer (wafer size: length 7mm x width 7mm x height 0.15mm, bump height) : The total number of copper pillars and solders is approximately 40 μm, and the number of bumps is 3 2 8 ). The flip-chip mounting device "FCB3" (manufactured by Panasonic, trade name) is mounted (installation conditions: the temperature of the film-like adhesive reaches 1 800) ° C, 10 seconds, 0.5 MPa. Next, the film-like adhesive reached a temperature of 245 ° C, 10 seconds, 0.5 MPa). Thus, a semiconductor device in which the glass epoxy substrate and the solder bump semiconductor wafer are daisy-chain-connected is obtained in the same manner as in Fig. 4 . The connection resistance of the obtained semiconductor device was measured using a multimeter (manufactured by ADVANTEST, trade name "R 6 8 7 1 E"), and the initial conduction after the mounting was evaluated. When the connection resistance 値 is 1 1 to 1 4 Ω, it is evaluated as "A" with good continuity, and if the connection resistance is different, or if the resistance is not displayed, the evaluation is "b". &lt;Measurement of thermal expansion rate&gt; The film-like adhesive was cut into a specific size (length: 37 mm x width: 4 mm x thickness: 0.025 mm), and hardened in a dust-free oven (manufactured by ESPEC Co., Ltd.) at 180 ° C for 3 hours. . After the hardening, the thermal expansion was measured using a thermal expansion coefficient measuring device (manufactured by Seiko Instruments Co., Ltd., thermal analysis system TMASS6000) under the conditions of a temperature range of 20 to 270 ° C, a temperature increase rate of 5 ° C/min, and a load of 0.5 MPa. The coefficient of thermal expansion is 25~125t: the average -44- 201231590 thermal expansion rate (PPm/°C). &lt;Evaluation of Continuity of Reliability (TTC Evaluation)&gt; The semiconductor device was post-cured in a clean oven (manufactured by ESPEC Co., Ltd.) (180 ° C / 3 hours). After that, it was placed in a hot and cold cycle tester (ETAC system, THERMAL SHOCK CHAMBER NT1200), and a current of 1 mA was passed, at 25 ° C for 2 minutes / -55 ° C for 15 minutes / 25 ° C for 2 minutes / 125 ° C for 15 minutes / The connection resistance was measured in one cycle at 25 ° C for 2 minutes. When the difference between the initial resistance and the 値 waveform is not changed after the 3000 cycle, the difference is “A”, and the difference of 1 Ω or more is estimated to be “B” when the cycle is less than 100 cycles, and the difference is 1 Ω or more. The evaluation is "C" when the cycle is less than 100 cycles. &lt;Evaluation of Insulation Reliability (HAST Evaluation)&gt; The film-form adhesive to be produced was cut into a specific size (length lOmm x width 5 mm X thickness 25 μm), and a comb having a wiring copper wiring formed on a polyimide substrate A sample electrode substrate (wiring pitch: 0.05 mm) was prepared by laminating a film-like adhesive 40 on the substrate 20 on which the comb-shaped electrode 90 was formed, as shown in Fig. 5 . Further, Fig. 5 is convenient for omitting the illustration of the film-like adhesive. Next, the sample was placed in a clean oven (made by ESPEC AG).

1 8 5 °C維持3小時進行硬化。硬化後,取出各樣本,設置 在加速壽命試驗裝置(HIRAYAMA公司製、商品名「PL-422118」 、 條件 : 130t/相 對濕度 85%/200 小時/外加 5V ),測定絕緣電阻。經過200小時,絕緣電阻爲108Ω以 -45- 201231590 上之場合評估爲「A」、未達108Ω之場合評估爲「B」。 各實施例及比較例之接著劑組成物的原材料的組成( 單位:質量份)及各試驗之結果如表1所示。 [表1]Hardening was carried out at 1 8 5 °C for 3 hours. After the hardening, each sample was taken out and set in an accelerated life tester (manufactured by HIRAYAMA, trade name "PL-422118", condition: 130 t / relative humidity 85% / 200 hours / plus 5 V), and the insulation resistance was measured. After 200 hours, the insulation resistance was 108 Ω and the evaluation was "A" when the case was -45-201231590, and "B" was evaluated when it was less than 108 Ω. The composition (unit: parts by mass) of the raw materials of the adhesive compositions of the respective examples and comparative examples and the results of the respective tests are shown in Table 1. [Table 1]

原材料 實施例 比較例 1 2 1 2 3 4 5 環氧樹脂 EP1032 100 100 100 100 100 100 100 硬化劑 2PH2 7. 5 7. 5 7. 5 7. 5 7. 5 7. 5 7. 5 塡料 SV二氧化矽 175 150 — — 一 — — 未處理二氧化砂 — — 175 — — — — SX二氧化矽 — — 一 175 — 150 — SE二氧化矽 — 一 — — 175 — 一 SP二氧化矽 — — — — — — 150 W5500 — 25 一 — 一 25 25 髙肝成分 聚醯亞胺A 100 100 100 100 100 100 100 助焊活性劑 二酚酸 25 25 25 25 25 25 25 評估結果 初期接續性 A A A A A A A 熱膨脹率(ppm/°C) 94. 5 105 120 125 110 118 125 接續信賴性(耐TCT性) A A C C C B C 絕緣信頼性(耐HAST性) A A A A A A A 確認到使用乙烯系表面處理塡料的實施例1及2熱膨 脹率低、(耐TCT性)及絕緣信賴性(耐HAST性)諸特 性皆優。 【圖式簡單說明】 [圖1 ]本發明的半導體裝置的一實施形態的模式剖面 圖。 [圖2]本發明的半導體裝置的其他實施形態的模式剖 面圖 -46- 201231590 [圖3 ]本發明的半導體裝置的其他實施形態的模式剖 面圖。 [圖4]本發明的半導體裝置的製造方法的一實施形態 以模式表示之步驟剖面圖。 [圖5 ]絕緣信賴性試驗用之樣本外觀模式圖。 【主要元件符號說明】 1 0 :半導體晶片 15 :配線(接續部) 2〇:基板(配線電路基板) 3 0 :接續凸塊 3 2 :凸塊(接續部) 3 4 :貫穿電極 4〇 :接著劑組成物(薄膜狀接著劑) 50 :插入物 60 :阻焊劑 90 :梳型電極 100,200,300,400,5 00,600:半導體裝置 -47-Raw Material Examples Comparative Example 1 2 1 2 3 4 5 Epoxy Resin EP1032 100 100 100 100 100 100 100 Hardener 2PH2 7. 5 7. 5 7. 5 7. 5 7. 5 7. 5 7. 5 Dip SV Ceria 175 150 - one - untreated sand dioxide - 175 - - - SX cerium oxide - 175 - 150 - SE cerium oxide - one - 175 - one SP cerium oxide - — — — — 150 W5500 — 25 — — 25 25 髙 Liver ingredient Polyimine A 100 100 100 100 100 100 100 Flux active agent diphenolic acid 25 25 25 25 25 25 25 Evaluation results Initial continuity AAAAAAA Thermal expansion rate (ppm/°C) 94. 5 105 120 125 110 118 125 Succession reliability (TCT resistance) AACCCBC Insulation reliability (HAST resistance) AAAAAAA Confirmation of thermal expansion rates of Examples 1 and 2 using vinyl-based surface treatment Low, (TCT resistance) and insulation reliability (HAST resistance) are excellent. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view showing an embodiment of a semiconductor device according to the present invention. Fig. 2 is a schematic cross-sectional view showing another embodiment of the semiconductor device of the present invention. Fig. 4 is a schematic cross-sectional view showing another embodiment of the semiconductor device of the present invention. Fig. 4 is a cross-sectional view showing a step of a mode of a method of manufacturing a semiconductor device of the present invention. [Fig. 5] A sample appearance pattern diagram for the insulation reliability test. [Description of main component symbols] 1 0 : Semiconductor wafer 15 : Wiring (connecting portion) 2 〇 : Substrate (wiring circuit substrate) 3 0 : Connecting bump 3 2 : Bump (joining portion) 3 4 : Through electrode 4〇: Substance composition (film-like adhesive) 50 : Insert 60 : solder resist 90 : comb-type electrode 100, 200, 300, 400, 5 00, 600: semiconductor device - 47-

Claims (1)

201231590 七、申請專利範圍: 1 · 一種接著劑組成物,其係半導體晶片及配線電路 基板之各自的接續部相互電接續的半導體裝置、或複數之 半導體晶片之各自的接續部相互電接續的半導體裝置中用 以封閉前述接續部之接著劑組成物, 其特徵係含有環氧樹脂、與硬化劑、與以具有下述一 般式(1)所表示的基之化合物進行表面處理的乙烯系表 面處理塡料, [化1]201231590 VII. Patent application scope: 1 . An adhesive composition which is a semiconductor device in which respective connection portions of a semiconductor wafer and a printed circuit board are electrically connected to each other, or a semiconductor in which respective connection portions of a plurality of semiconductor wafers are electrically connected to each other An adhesive composition for sealing the above-mentioned joint portion in the apparatus, which is characterized by comprising an epoxy resin, a hardener, and a surface treatment of a surface treated with a compound having a group represented by the following general formula (1) Information, [Chemical 1] 〔式(1)中’ Ri'R2及R3各自獨立,爲氫原子、甲基或 乙基’R4爲碳數1〜30之伸烷基〕。 2.如請求項1記載之接著劑組成物,其中,前述化 合物爲下述一般式(2)所表示的化合物, [化2] f f C~C一R4—Si~(〇R5)3 (2) R1 〔式(2)中,R1、r2及各自獨立,爲氫原子、甲基或 乙基’R4爲碳數1〜30之伸烷基,R5爲碳數1〜30之烷 -48 - 201231590 基〕。 3 - 一種接著劑組成物’其係在半導體晶片及配線電 路基板之各自的接續部相互電接續的半導體裝置、或複數 之半導體晶片之各自的接續部相互電接續的半導體裝置中 用以封閉前述接續部之接著劑組成物, 其特徵係含有環氧樹脂、與硬化劑、與具有下述一般 式(1)所表示的基之塡料, [化3][In the formula (1), Ri'R2 and R3 are each independently a hydrogen atom, a methyl group or an ethyl group, and R4 is an alkylene group having 1 to 30 carbon atoms. 2. The composition of the adhesive according to claim 1, wherein the compound is a compound represented by the following general formula (2): [Chem. 2] ff C~C-R4-Si~(〇R5)3 (2) R1 [In the formula (2), R1, r2 and each independently are a hydrogen atom, a methyl group or an ethyl group, 'R4 is an alkylene group having a carbon number of 1 to 30, and R5 is an alkane-48 having a carbon number of 1 to 30. 201231590 base]. 3 - an adhesive composition in which a semiconductor device in which respective connection portions of a semiconductor wafer and a printed circuit board are electrically connected to each other or a semiconductor device in which respective connection portions of a plurality of semiconductor wafers are electrically connected to each other is used to close the aforementioned The adhesive composition of the joint portion, which is characterized by containing an epoxy resin, a hardener, and a base having the base represented by the following general formula (1), [Chem. 3] 〔式(1)中,|^1、尺2及R3各自獨立,爲氫原子、甲基或 乙基’R4爲碳數1〜30之伸烷基〕。 4 .如請求項1〜3中任一項記載之接著劑組成物,其 中’更含有重量平均分子量1 0000以上之高分子成分。 5 ·如請求項4記載之接著劑組成物,其中,前述高 分子成分之重量平均分子量在3 0000以上且玻璃化溫度在 1 0 0 °C以下。 6·如請求項1〜5中任一項記載之接著劑組成物,其 中’再含有助熔活性劑(flux activator )。 7·如請求項1〜6中任一項記載之接著劑組成物,其 中’形狀爲薄膜狀。 8· 一種半導體裝置之製造方法,其係半導體晶片及 -49- 201231590 配線電路基板之各自的接續部相互電接續的半導體裝置、 或複數之半導體晶片之各自的接續部相互電接續的半導體 裝置之製造方法, 其特徵係具備使前述接續部以請求項1〜7中任一項 記載之接著劑組成物進行封閉的步驟。 9. 如I靑求項8記載之製造方法,其中,前述接續部 含有由金、銀、銅、鎳、錫及鉛所成群中選出的至少一種 之金屬作爲主成分》 10. —種半導體裝置’其特徵係以請求項8或9記載 之製造方法所得到。 -50-[In the formula (1), |^1, 2, and R3 are each independently a hydrogen atom, a methyl group or an ethyl group, and R4 is an alkylene group having 1 to 30 carbon atoms. The adhesive composition according to any one of claims 1 to 3, wherein the polymer component further contains a polymer component having a weight average molecular weight of 1,000,000 or more. The adhesive composition according to claim 4, wherein the high molecular weight component has a weight average molecular weight of 30,000 or more and a glass transition temperature of at most 100 °C. The adhesive composition according to any one of claims 1 to 5, wherein the flux activator is further contained. The adhesive composition according to any one of claims 1 to 6, wherein the shape is a film. 8. A method of manufacturing a semiconductor device, wherein a semiconductor device and a semiconductor device in which respective connection portions of a wiring circuit substrate are electrically connected to each other, or a semiconductor device in which respective connection portions of a plurality of semiconductor wafers are electrically connected to each other The manufacturing method is characterized in that the step of closing the adhesive composition described in any one of claims 1 to 7 is performed. 9. The manufacturing method according to claim 8, wherein the connecting portion contains at least one metal selected from the group consisting of gold, silver, copper, nickel, tin, and lead as a main component. The device 'is characterized by the manufacturing method described in claim 8 or 9. -50-
TW100138319A 2010-10-22 2011-10-21 An agent composition, a method for manufacturing a semiconductor device, and a semiconductor device TWI457413B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010237542 2010-10-22

Publications (2)

Publication Number Publication Date
TW201231590A true TW201231590A (en) 2012-08-01
TWI457413B TWI457413B (en) 2014-10-21

Family

ID=45975299

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100138319A TWI457413B (en) 2010-10-22 2011-10-21 An agent composition, a method for manufacturing a semiconductor device, and a semiconductor device

Country Status (5)

Country Link
JP (2) JP5003855B2 (en)
KR (1) KR101464454B1 (en)
CN (1) CN103189464B (en)
TW (1) TWI457413B (en)
WO (1) WO2012053589A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077122A (en) * 2012-09-24 2014-05-01 Sekisui Chem Co Ltd Adhesive for electronic component and method for manufacturing semiconductor chip package
JP2017038081A (en) * 2016-10-27 2017-02-16 住友ベークライト株式会社 Semiconductor device
WO2022059640A1 (en) * 2020-09-16 2022-03-24 昭和電工マテリアルズ株式会社 Adhesive agent for semiconductors, and semiconductor device and method for manufacturing same
JP2022049640A (en) * 2020-09-16 2022-03-29 昭和電工マテリアルズ株式会社 Adhesive for semiconductor, and semiconductor device and method for manufacturing the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0349855A3 (en) * 1988-06-27 1991-01-23 Hercules Incorporated Molded article of metathesis polymerized polymer containing fillers and process for its preparation
JPH11345517A (en) * 1998-06-02 1999-12-14 Toshiba Chem Corp Anisotropic conductive adhesive
JP2002060716A (en) * 2000-08-24 2002-02-26 Hitachi Chem Co Ltd Low-elastic adhesive, low-elastic adhesive member, substrate for loading semiconductor having low-elastic adhesive member and semiconductor device using the same
TWI314153B (en) * 2002-07-12 2009-09-01 Mitsui Chemicals Inc Process for production of oxyalkylene derivative
JP4267428B2 (en) * 2003-11-14 2009-05-27 日東電工株式会社 Method for producing thermosetting resin composition for semiconductor encapsulation
JP5030196B2 (en) * 2004-12-16 2012-09-19 住友電気工業株式会社 Adhesive for circuit connection
KR101195408B1 (en) * 2006-09-13 2012-10-29 스미토모 베이클라이트 가부시키가이샤 Semiconductor device
JP5417729B2 (en) 2008-03-28 2014-02-19 住友ベークライト株式会社 Film for semiconductor, method for manufacturing semiconductor device, and semiconductor device
WO2009099191A1 (en) * 2008-02-07 2009-08-13 Sumitomo Bakelite Company Limited Film for semiconductor, method for manufacturing semiconductor device and semiconductor device
JP5439863B2 (en) * 2008-03-26 2014-03-12 日立化成株式会社 Semiconductor sealing adhesive, semiconductor sealing film adhesive, semiconductor device and manufacturing method thereof
JP5581576B2 (en) * 2008-04-02 2014-09-03 日立化成株式会社 Flux activator, adhesive resin composition, adhesive paste, adhesive film, semiconductor device manufacturing method, and semiconductor device
JP5195454B2 (en) * 2009-01-22 2013-05-08 味の素株式会社 Resin composition

Also Published As

Publication number Publication date
JP5003855B2 (en) 2012-08-15
JP2012182461A (en) 2012-09-20
KR101464454B1 (en) 2014-11-21
TWI457413B (en) 2014-10-21
JPWO2012053589A1 (en) 2014-02-24
CN103189464A (en) 2013-07-03
WO2012053589A1 (en) 2012-04-26
KR20130129199A (en) 2013-11-27
CN103189464B (en) 2015-11-25

Similar Documents

Publication Publication Date Title
TWI424038B (en) An agent composition, a method for manufacturing a semiconductor device, and a semiconductor device
JP5577640B2 (en) Manufacturing method of semiconductor device
JP5569576B2 (en) Film adhesive for semiconductor, method for manufacturing semiconductor device, and semiconductor device
TWI493010B (en) Thin film-like adhesive for semiconductor sealing, semiconductor device, and method of manufacturing the same
JP5881931B2 (en) Adhesive composition, semiconductor device manufacturing method using the same, and semiconductor device
JP5659946B2 (en) Semiconductor sealing adhesive, method for manufacturing the same, and semiconductor device
JP2009260232A (en) Film-like adhesive for sealing semiconductor, and semiconductor apparatus and method of manufacturing the same
TWI457413B (en) An agent composition, a method for manufacturing a semiconductor device, and a semiconductor device
JP5857462B2 (en) Semiconductor sealing adhesive, semiconductor device manufacturing method, and semiconductor device
JP5881927B2 (en) Semiconductor sealing adhesive, semiconductor sealing film adhesive, semiconductor device manufacturing method, and semiconductor device
JP5332799B2 (en) Film-like adhesive for semiconductor sealing, semiconductor device and method for manufacturing the same
JP5362315B2 (en) Film sealing adhesive for semiconductor sealing, semiconductor device manufacturing method using the adhesive, and semiconductor device
JP5263050B2 (en) Adhesive composition, semiconductor device manufacturing method using the same, and semiconductor device
JP5671778B2 (en) Film-like adhesive for semiconductor sealing, semiconductor device and method for manufacturing the same
JP5397526B2 (en) Manufacturing method of semiconductor device
JP2019165125A (en) Film adhesive for semiconductor

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees