JP2004256646A - Resin composition for underfilling, and semiconductor device - Google Patents
Resin composition for underfilling, and semiconductor device Download PDFInfo
- Publication number
- JP2004256646A JP2004256646A JP2003048328A JP2003048328A JP2004256646A JP 2004256646 A JP2004256646 A JP 2004256646A JP 2003048328 A JP2003048328 A JP 2003048328A JP 2003048328 A JP2003048328 A JP 2003048328A JP 2004256646 A JP2004256646 A JP 2004256646A
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- resin composition
- underfill
- curing agent
- inorganic filler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、耐熱性に優れたアンダーフィル用樹脂組成物及びこれを用いた半導体装置に関するものである。
【0002】
【従来の技術】
近年、樹脂封止型の半導体装置(半導体パッケージ)は、デバイスの高密度化、高集積化、動作の高速化等の傾向にあり、従来型のパッケージ(QFP(クワドフラットパッケージ)等)よりさらに小型化、薄型化することができる半導体素子のパッケージが要求されている。
【0003】
これらの要求に対してBGA(ボールグリッドアレイ)及びCSP(チップサイズパッケージ)、ベアチップ実装といった高密度実装が可能なパッケージがあるが、ベアチップ実装の一つにフリップチップ実装がある。フリップチップ実装とは、チップの配線面に約10〜150μmのバンプ電極を数十個から数千個つけ、このバンプ電極を基板の電極とはんだ、金属接合、導電ペースト等で接合して基板上にチップを実装する方法である。
【0004】
上記のような実装方法や半導体装置において、チップと基板の隙間にはアンダーフィルが充填されている(例えば、特許文献1参照)。アンダーフィルは液状の樹脂封止材であって、アンダーフィルの硬化物で金属製のバンプ電極を補強することよって、半導体装置(チップ実装品)の温度サイクル性能を高めることができるものである。すなわち、アンダーフィルによる未封止品では温度サイクル試験で容易にバンプ破壊が生じるのに対して、アンダーフィルによる封止品では温度サイクル試験でのバンプ破壊の発生を低減することができるものである。
【0005】
このような半導体装置を用いた電化製品としてはデジタルカメラやビデオ、ノート型パソコン、携帯電話などが挙げられるが、今後、製品自体の小型化、薄型化、複雑化に伴って耐衝撃性及び高信頼性が求められ、製品の内部の基板や電子部品にも同様な性質が求められる。また、環境規制面から一般的なはんだ(Sn−Pb系)に含まれている鉛が使用できなくなるために、代替品(SnAgCu系、SnAgCuBi系、SnZnBi系、SnCu系)を用いる必要があるが、これらの代替品は融点が高いために、そのまわりの基板や封止材もそれに耐えうる耐熱性が求められている。
【0006】
そして、封止材を高耐熱性にするためには無機充填材の高充填化により低線膨張、低吸湿にする必要があった。
【0007】
【特許文献1】
特開平11−67981号公報(特許請求の範囲等)
【0008】
【発明が解決しようとする課題】
しかし、液状のアンダーフィル用の樹脂組成物に無機充填材を高充填すると、粘度が上昇して流動性が損なわれてフリップチップ実装などの封止材として使用することが困難になるという問題があった。また、無機充填材を高充填したアンダーフィル用樹脂組成物はその硬化物の密着性及び耐熱衝撃性が低下する傾向にあった。
【0009】
本発明は上記の点に鑑みてなされたものであり、硬化時の耐熱性を向上させることができるアンダーフィル用樹脂組成物及びこれを用いた半導体装置を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
本発明の請求項1に係るアンダーフィル用樹脂組成物は、エポキシ樹脂、硬化剤、硬化促進剤、無機充填材を含有するアンダーフィル用樹脂組成物において、エポキシ樹脂の全量に対して多官能型エポキシ樹脂を5〜20質量%配合し、硬化剤としてフェノール系化合物及び酸無水物を用いると共に硬化剤の全量に対してフェノール系化合物を3〜20質量%配合して成ることを特徴とするものである。
【0011】
また、本発明の請求項2に係るアンダーフィル用樹脂組成物は、請求項1に加えて、硬化剤として用いるフェノール系化合物及び酸無水物のうち少なくとも一部が多官能型であることを特徴とするものである。
【0012】
また、本発明の請求項3に係るアンダーフィル用樹脂組成物は、請求項1又は2に加えて、硬化促進剤としてアミン系及びイミダゾール系のうちの少なくとも一方を配合して成ることを特徴とするものである。
【0013】
また、本発明の請求項4に係るアンダーフィル用樹脂組成物は、請求項1乃至3のいずれかに加えて、無機充填材として最大粒径が3〜30μmのものを用いると共に無機充填材を全量に対して48〜65質量%配合して成ることを特徴とするものである。
【0014】
本発明の請求項5に係る半導体装置は、請求項1乃至4のいずれかに記載のアンダーフィル用樹脂組成物により封止されて成ることを特徴とするものである。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
【0016】
本発明ではエポキシ樹脂として、1分子内に3官能以上の反応性のエポキシ基を有する多官能型エポキシ樹脂と、多官能型エポキシ樹脂でないその他のエポキシ樹脂(1分子内に2官能の反応性のエポキシ基を有するもの)とを必須化合物とする。尚、多官能型エポキシ樹脂の1分子内における反応性のエポキシ基の数の上限は4程度であるが、官能基数は3もしくは4が、粘度や硬化性の面で好ましい。
【0017】
多官能型エポキシ樹脂としては、例えば、ジシクロペンタジエン骨格を有するジシクロペンタジエン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、トリグリシジルイソシアヌレート、ビフェニル型エポキシ樹脂、ナフタレン環含有エポキシ樹脂、脂環型エポキシ樹脂、アミン型エポキシ樹脂などの中の3、4官能タイプのもの及び以下の化学式(1)〜(6)で示すものを、1種又は2種以上を選んで用いることができる。尚、化学式中のGはグリシジル基を示す。
【0018】
【化1】
【0019】
【化2】
【0020】
また、多官能型でないエポキシ樹脂として、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ジシクロペンタジエン骨格を有するジシクロペンタジエン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、トリグリシジルイソシアヌレート、ビフェニル型エポキシ樹脂、ナフタレン環含有エポキシ樹脂、脂環式エポキシ樹脂、脂肪族系エポキシ樹脂などの中の2官能タイプのものから1種又は2種以上を選んで用いることができる。上記の中でも、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン環含有エポキシ樹脂、脂環式エポキシ樹脂は、本発明のアンダーフィル用樹脂組成物の粘度及び硬化物物性の点から特に好ましい。
【0021】
そして、本発明では多官能型エポキシ樹脂を配合するので、硬化時に三次元網目構造を形成することができ、耐熱性を高くすることができるものである。
【0022】
本発明において上記の多官能型エポキシ樹脂の含有量は、配合されるエポキシ樹脂の全量(全エポキシ樹脂の合計量)に対して5〜20質量%にする。多官能型エポキシ樹脂の含有量が5質量%未満であれば、耐熱性の向上という本発明の目的を達成することができず、また、多官能型エポキシ樹脂の含有量が20質量%を超えると、本発明のアンダーフィル用樹脂組成物の粘度が高くなり過ぎてアンダーフィル性(充填性)が損なわれる恐れがある。
【0023】
本発明では硬化剤としてフェノール系化合物と酸無水物の両方を用い、その他必要に応じて他の硬化剤を用いることができる。具体的には、ジアミノジフェニルメタン、メタフェニレンジアミン等のアミン系硬化剤、無水フタル酸、無水ピロメリット酸等の酸無水物硬化剤、フェノールノボラックなどのフェノール系硬化剤などが挙げられる。
【0024】
また、本発明では硬化剤の一部として多官能型の硬化剤を用いることができる。多官能型の硬化剤が酸無水物の場合は上記エポキシ樹脂のエポキシと反応可能な官能基を1分子中に2、3個有するものであり、多官能型の硬化剤がフェノール系化合物の場合は上記エポキシ樹脂のエポキシと反応可能な官能基を1分子中に3、4個有するものである。多官能型のフェノール系化合物の硬化剤としては下記化学式(7)で示すものを、多官能型の酸無水物の硬化剤としては下記の化学式(8)〜(12)で示すものを用いることができる。尚、酸無水物硬化剤の多官能型は2官能型のものが低粘度、低融点で好ましい。
【0025】
【化3】
【0026】
【化4】
【0027】
本発明において、多官能型の硬化剤は硬化剤の全量に対して0.5〜5質量%配合するのが好ましい。そして、多官能型の硬化剤を用いることによって、硬化剤によって硬化時に3次元網目構造を形成することができ、硬化物の耐熱性を向上させることができるものである。
【0028】
本発明では、配合されるエポキシ樹脂に対する硬化剤の化学量論上の当量比は、0.6〜1.4の範囲が好適である。この当量比が0.6未満であると、本発明のアンダーフィル用樹脂組成物が硬化しにくくなったり、硬化物の耐熱性や強度が低下したりするので好ましくない。また、上記の当量比が1.4よりも大きくなると、本発明のアンダーフィル用樹脂組成物の硬化物の耐熱性が低下したり硬化後の接着強度(密着性)が低下したり、硬化物の吸湿率が高くなったりするなどの問題が発現してくるので好ましくない。特に好ましいエポキシ樹脂に対する硬化剤の当量比は0.75〜1.00の範囲である。また、半導体装置の動作信頼性などの点からNaイオンやClイオン、Brイオンなどの不純物ができるだけ少ないエポキシ樹脂及び硬化剤を使用するのが好ましい。
【0029】
本発明で用いられる硬化促進剤としては、イミダゾール骨格を持ったイミダゾール系のものもしくはアミン系のもの(アミン類化合物)のうちの少なくとも一方を用いるのが好ましく、これにより、一液型の本発明のアンダーフィル用樹脂組成物の保存性及び硬化性を良好に確保することができる。硬化促進剤としては、例えば、1〜3級のアミン類もしくはその塩、トリアゾール類もしくはその塩、イミダゾール類もしくはその塩、ジアザビシクロウンデンセン(DUB)などのジアザビシクロアルケン類もしくはその塩、トリフェニレンホスフィン(例えば、北興化学のTTP)などの公知のものを単独又は2種類以上併用することができる。さらに、上記のような単一の化学構造を持つもの以外に、イミダゾール骨格を有する化合物からなる核の周りに熱硬化性樹脂の被膜を配した微細球(いわゆるマイクロカプセル)またはアミンアダクトの粒子などが硬化促進剤として好適に用いられる。硬化促進剤は本発明のアンダーフィル用樹脂組成物の全量に対して2〜4質量%の割合で配合することが好ましい。
【0030】
本発明で用いられる無機充填材としては特に限定されるものではないが、例えば、結晶シリカ、溶融シリカ、アルミナ、微粉シリカ、マグネシア、窒化珪素等を用いるのが好ましい。また、これらの無機充填材は本発明のアンダーフィル用樹脂組成物の全量に対して48〜65質量%の割合で配合することが好ましい。無機充填材の配合量が48質量%未満であると、本発明のアンダーフィル用樹脂組成物の硬化物の線膨張係数を低減することが難しく、ヒートサイクル性の低下などのように耐熱性が向上しにくくなる恐れがある。一方、無機充填材の配合量が65質量%を超えると、本発明のアンダーフィル用樹脂組成物の粘度が高くなり、流動性が損なわれてアンダーフィル性が低下して使用することが困難になる恐れがある。
【0031】
また、本発明がフリップチップ用のアンダーフィルに使用することを考慮すると、無機充填材の粒径は細かくなる必要があるが、細かくしすぎると本発明の粘度上昇や硬化時の沈降などが生じる恐れがある。そこで、無機充填材の最大粒径は3〜30μmであることが好ましい。無機充填材の最大粒径が3μm未満であると、本発明のアンダーフィル用樹脂組成物の粘度が高くなり過ぎて流動性が損なわれ、アンダーフィル性が低下して使用することが困難になる恐れがある。一方、無機充填材の最大粒径が30μmより大きくなると、チップと基板の隙間が狭いギャップ場合に本発明のアンダーフィル用樹脂組成物を充填しにくくなる恐れがある。
【0032】
本発明では必要に応じて、他の樹脂や顔料、希釈剤、カップリング剤、消泡剤等を用いても問題はない。カップリング剤としてはシランカップリング剤が好ましく、その種類はエポキシ系、アミノ系、ビニル系、メタクリル系、チタネート系などのエポキシ樹脂の改質、基板等の密着性を向上させる等の目的で用いられるものが好ましい。
【0033】
本発明のアンダーフィル用樹脂組成物は以下のようにして調製することができる。まず、上記のエポキシ樹脂、硬化剤、硬化促進剤、及び無機充填材以外の成分を一緒にまたは別々に配合し、必要に応じて加熱冷蔵処理を行いながら攪拌、溶解、混合、分散を行う。次に、この混合物に無機充填材を加えて、必要に応じて加熱冷蔵処理を行いながら攪拌、溶解、混合、分散を行う。このようにして液状のエポキシ樹脂組成物を本発明のアンダーフィル用樹脂組成物として得ることができる。尚、攪拌、溶解、混合、分散等の工程でディスパーやプラネタリーミキサー、ボールミル、3本ロール等を効果的に組み合わせて使用しても良い。
【0034】
本発明の半導体装置は、半導体チップのバンプ電極を基板の表面の電極と接合した後、半導体チップと基板との間に形成される隙間に上記のアンダーフィル用樹脂組成物を充填し、このアンダーフィル用樹脂組成物を硬化させて上記の隙間を封止することによって形成することができる。
【0035】
【実施例】
以下本発明を実施例によって具体的に説明する。但し、本発明はこれに限定されるものではない。
【0036】
(実施例1〜19及び比較例1〜5)
表1〜3に示す配合量でエポキシ樹脂、硬化剤、硬化促進剤、無機充填材及びその他の成分を配合し、上記の方法により攪拌、溶解、混合、分散を行ってアンダーフィル用樹脂組成物を調製した。尚、各材料としては以下のものを用いた。
【0037】
ビスフェノールA型エポキシ樹脂:ジャパンエポキシレジン(油化シェル(株))のエピコート828、エポキシ当量189
3官能型のエポキシ樹脂:日産化学のTEPIC−S、エポキシ当量99、化学式(3)のもの
4官能型のエポキシ樹脂:大日本インキ化学工業のEXA4701、エポキシ当量169、化学式(1)のもの
多官能型でない酸無水物:メチルテトラヒドロ無水フタル酸、新日本理化(株)のMH−700、酸無水物当量166
多官能型の酸無水物A:大日本インキ化学工業のB4400、化学式(9)のもの、酸無水物当量140
多官能型の酸無水物B:ダイセル化学又はジャパンエポキシレジンのPMDA、化学式(12)のもの、酸無水物当量218
多官能型でないフェノール系化合物:アリル化フェノール、明和化成のMEH8000−4L、水酸基当量141
多官能型のフェノール系化合物:ジャパンエポキシレジンのYLH903、化学式(7)のもの、水酸基当量170
硬化促進剤(マイクロカプセル化イミダゾール):イミダゾール系マイクロカプセル型潜在性触媒、旭化成エポキシ(株)のHX3941HP
硬化促進剤(アミン類):アミン変性触媒、旭電化工業のEH3849S
硬化促進剤(リン系):日本化薬EPCAT−P
カップリング剤:エポキシシランカップリング剤、日本ユニカーのA−187
無機充填材A:溶融シリカ、アドマテックスのSO−E2、最大粒径3μm
無機充填材B:溶融シリカ、三菱レーヨンのQS−4、最大粒径14μm
無機充填材C:溶融シリカ、三菱レーヨンのQS−9、最大粒径35μm
無機充填材D:溶融シリカ、三菱レーヨンのQS−8、最大粒径30μm
無機充填材E:溶融シリカ、住友化学のAA04、最大粒径2μm
そして、実施例1〜19及び比較例1〜5のアンダーフィル用樹脂組成物及びその成形体(硬化物)について以下の物性評価を行った。
【0038】
(1)アンダーフィル浸入性試験
この試験に用いた半導体装置の部品は、FR5グレードの回路基板と、チップサイズ0.4mm厚、10mm角のCMOSゲートレイ素子とで形成されるものであって、回路基板上の電極とチップ周辺部の電極が70μmの高さの半田バンプにより接合されたものを用いた。そして、上記チップの一辺の端部に実施例1〜19及び比較例1〜5の樹脂組成物をディスペンサーで塗布し、この後直ぐにチップを搭載した基板を80℃のホットプレート上に置いてから、塗布した樹脂組成物が塗布した辺と反対側の辺に達するまでの時間を測定した。
【0039】
この結果、30秒以下のものに◎を、60秒以下のものに○を、2分以内ものに△を、2分を超えるものに×をそれぞれ付した。
【0040】
(2)TC試験
上記(1)と同様にして実施例1〜19及び比較例1〜5の樹脂組成物を浸入させた半導体装置の部品を150℃の温度で2時間加熱することにより樹脂組成物を硬化させ、樹脂組成物の硬化物で封止された半導体装置を得た。次に、半導体装置の電気的動作確認結果が良品であったものについて、−55℃で30分、室温5分、150℃で30分、室温5分を1サイクルとする気相の温度サイクル試験にかけ、2000サイクル後の素子の動作確認を行い、良否を判断した。各実施例及び比較例について10個の半導体装置を供試サンプルとし、供試サンプル中の不良数が0〜3個を○、4〜6個を△、7〜10個を×とした。
【0041】
また、上記の2000サイクル後、供試サンプルの外観検査を行い、樹脂フィレット部にクラックが発生しているか否かの確認を行った。クラックが発生している供試サンプルの個数が0〜3個を○、4〜6個を△、7〜10個を×とした。
【0042】
(3)PCT試験
上記(2)と同様に半導体装置の電気的動作確認結果が良品であったものについて、0.2MPa(2気圧)で121℃のプレッシャークッカー試験(PCT)にかけ、1000時間後の素子の動作確認を行い、良否を判断した。各実施例及び比較例について10個の半導体装置を供試サンプルとし、供試サンプル中の不良数が0〜3個を○、4〜6個を△、7〜10個を×とした。
【0043】
上記(1)〜(3)の試験結果を表1〜3に示す
【0044】
【表1】
【0045】
【表2】
【0046】
【表3】
【0047】
表1〜3から明らかなように、比較例1〜5ではTC試験によりクラックが多数発生したが、実施例1〜19ではクラックが無いか少ないものであり、耐熱性が向上したものである。
【0048】
【発明の効果】
上記のように本発明の請求項1の発明は、エポキシ樹脂、硬化剤、硬化促進剤、無機充填材を含有するアンダーフィル用樹脂組成物において、エポキシ樹脂の全量に対して多官能型エポキシ樹脂を5〜20質量%配合し、硬化剤としてフェノール系化合物及び酸無水物を用いると共に硬化剤の全量に対してフェノール系化合物を3〜20質量%配合するので、多官能型エポキシ樹脂により硬化時に3次元網目構造を形成することができ、硬化物の耐熱性を向上させることができるものである。また、硬化剤としてフェノール系化合物を3〜20質量%配合するので、他の硬化剤を用いるよりも硬化物の密着性を向上させたり吸湿率を低下させたりすることができるものである。
【0049】
本発明の請求項2の発明は、硬化剤として用いるフェノール系化合物及び酸無水物のうち少なくとも一方が多官能型であるので、硬化剤によっても硬化時に3次元網目構造を形成することができ、硬化物の耐熱性をさらに向上させることができるものである。
【0050】
本発明の請求項3の発明は、硬化促進剤としてアミン系及びイミダゾール系のうちの少なくとも一方を配合するので、保存時に硬化が進みすぎたり使用時に硬化しにくかったりすることがなく、保存性及び硬化性を良好に確保することができるものである。
【0051】
本発明の請求項4の発明は、無機充填材として最大粒径が3〜30μmのものを用いると共に無機充填材を全量に対して48〜65質量%配合するので、粘度上昇や硬化物の線膨張係数の上昇を抑えることができ、アンダーフィル性や耐熱性の低下を少なくすることができるものである。
【0052】
本発明の請求項5の発明は、請求項1乃至4のいずれかに記載のアンダーフィル用樹脂組成物により封止されるので、封止材の耐熱性を向上させることができると共に封止材の密着性を向上させたり吸湿率を低下させたりすることができるものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an underfill resin composition having excellent heat resistance and a semiconductor device using the same.
[0002]
[Prior art]
In recent years, resin-encapsulated semiconductor devices (semiconductor packages) have tended to have higher device densities, higher integration, and higher operation speeds, and have been even more developed than conventional packages (QFPs (quad flat packages), etc.). There is a demand for a semiconductor device package that can be reduced in size and thickness.
[0003]
To meet these demands, there are packages that can be mounted at high density such as BGA (ball grid array), CSP (chip size package), and bare chip mounting. One of the bare chip mounting is flip chip mounting. Flip-chip mounting means that dozens to thousands of bump electrodes of about 10 to 150 μm are attached to the wiring surface of the chip, and these bump electrodes are bonded to the electrodes of the board with solder, metal bonding, conductive paste, etc. This is a method of mounting a chip on a chip.
[0004]
In the mounting method and the semiconductor device as described above, the gap between the chip and the substrate is filled with an underfill (for example, see Patent Document 1). The underfill is a liquid resin encapsulant that can enhance the temperature cycle performance of a semiconductor device (chip mounted product) by reinforcing a metal bump electrode with a cured underfill. That is, the unfilled product due to the underfill easily breaks the bump in the temperature cycle test, whereas the sealed product due to the underfill can reduce the occurrence of the bump breakage in the temperature cycle test. .
[0005]
Appliances using such semiconductor devices include digital cameras, video cameras, notebook computers, mobile phones, and the like. In the future, as the products themselves become smaller, thinner, and more complex, they will have higher impact resistance and higher performance. Reliability is required, and similar properties are required for substrates and electronic components inside the product. In addition, since lead contained in general solder (Sn-Pb-based) cannot be used due to environmental regulations, it is necessary to use a substitute (SnAgCu-based, SnAgCuBi-based, SnZnBi-based, SnCu-based). Since these alternatives have a high melting point, the surrounding substrates and sealing materials are also required to have heat resistance that can withstand them.
[0006]
Then, in order to increase the heat resistance of the sealing material, it is necessary to reduce the linear expansion and the moisture absorption by increasing the amount of the inorganic filler.
[0007]
[Patent Document 1]
JP-A-11-67981 (Claims, etc.)
[0008]
[Problems to be solved by the invention]
However, when the inorganic filler is highly filled in the liquid underfill resin composition, the viscosity increases, the fluidity is impaired, and it becomes difficult to use the resin composition as a sealing material for flip chip mounting. there were. In addition, the resin composition for underfill highly filled with an inorganic filler tends to have reduced adhesion and thermal shock resistance of the cured product.
[0009]
The present invention has been made in view of the above points, and has as its object to provide an underfill resin composition capable of improving heat resistance during curing and a semiconductor device using the same. .
[0010]
[Means for Solving the Problems]
The resin composition for underfill according to claim 1 of the present invention is a resin composition for underfill containing an epoxy resin, a curing agent, a curing accelerator, and an inorganic filler. Characterized by comprising 5 to 20% by mass of an epoxy resin, a phenolic compound and an acid anhydride as a curing agent, and 3 to 20% by mass of a phenolic compound based on the total amount of the curing agent. It is.
[0011]
The resin composition for underfill according to claim 2 of the present invention is characterized in that, in addition to claim 1, at least a part of a phenolic compound and an acid anhydride used as a curing agent is a polyfunctional type. It is assumed that.
[0012]
Further, the resin composition for underfill according to claim 3 of the present invention is characterized in that, in addition to claim 1 or 2, at least one of an amine type and an imidazole type is blended as a curing accelerator. To do.
[0013]
In addition, the resin composition for underfill according to claim 4 of the present invention uses the inorganic filler having a maximum particle size of 3 to 30 μm as an inorganic filler in addition to any one of claims 1 to 3. It is characterized in that it is incorporated in an amount of 48 to 65% by mass based on the total amount.
[0014]
A semiconductor device according to a fifth aspect of the present invention is characterized by being sealed with the underfill resin composition according to any one of the first to fourth aspects.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0016]
In the present invention, as the epoxy resin, a polyfunctional epoxy resin having three or more reactive epoxy groups in one molecule and another epoxy resin which is not a polyfunctional epoxy resin (bifunctional reactive resin in one molecule) And a compound having an epoxy group). The upper limit of the number of reactive epoxy groups in one molecule of the polyfunctional epoxy resin is about 4, but the number of functional groups is preferably 3 or 4 in terms of viscosity and curability.
[0017]
As the polyfunctional epoxy resin, for example, dicyclopentadiene type epoxy resin having a dicyclopentadiene skeleton, phenol novolak type epoxy resin, cresol novolak type epoxy resin, triphenylmethane type epoxy resin, triglycidyl isocyanurate, biphenyl type epoxy resin Resins, naphthalene ring-containing epoxy resins, alicyclic epoxy resins, amine epoxy resins, etc., one or two types of tri- and tetrafunctional types and those represented by the following chemical formulas (1) to (6) The above can be selected and used. G in the chemical formula represents a glycidyl group.
[0018]
Embedded image
[0019]
Embedded image
[0020]
Examples of non-functional epoxy resins include bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, dicyclopentadiene epoxy resin having a dicyclopentadiene skeleton, phenol novolak epoxy resin, and cresol. Novolak type epoxy resin, triphenylmethane type epoxy resin, triglycidyl isocyanurate, biphenyl type epoxy resin, naphthalene ring-containing epoxy resin, alicyclic epoxy resin, aliphatic epoxy resin, etc. A species or two or more species can be selected and used. Among the above, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, naphthalene ring-containing epoxy resin, alicyclic epoxy resin are the viscosity and cured physical properties of the underfill resin composition of the present invention. Particularly preferred from the point of view.
[0021]
In the present invention, since a polyfunctional epoxy resin is blended, a three-dimensional network structure can be formed at the time of curing, and heat resistance can be increased.
[0022]
In the present invention, the content of the polyfunctional epoxy resin is set to 5 to 20% by mass based on the total amount of the epoxy resin to be blended (the total amount of all epoxy resins). If the content of the polyfunctional epoxy resin is less than 5% by mass, the object of the present invention of improving heat resistance cannot be achieved, and the content of the polyfunctional epoxy resin exceeds 20% by mass. Then, the viscosity of the resin composition for underfill of the present invention becomes too high, and the underfill property (filling property) may be impaired.
[0023]
In the present invention, both a phenolic compound and an acid anhydride are used as a curing agent, and other curing agents can be used as needed. Specific examples include amine curing agents such as diaminodiphenylmethane and metaphenylenediamine, acid anhydride curing agents such as phthalic anhydride and pyromellitic anhydride, and phenol curing agents such as phenol novolak.
[0024]
In the present invention, a polyfunctional curing agent can be used as a part of the curing agent. When the polyfunctional curing agent is an acid anhydride, it has two or three functional groups in one molecule capable of reacting with the epoxy of the epoxy resin, and when the polyfunctional curing agent is a phenol compound. Has three or four functional groups in one molecule which can react with the epoxy of the epoxy resin. As the curing agent for the polyfunctional phenolic compound, one represented by the following chemical formula (7) is used. As the curing agent for the polyfunctional acid anhydride, one represented by the following chemical formulas (8) to (12) is used. Can be. The polyfunctional acid anhydride curing agent is preferably a bifunctional type because of its low viscosity and low melting point.
[0025]
Embedded image
[0026]
Embedded image
[0027]
In the present invention, the polyfunctional curing agent is preferably added in an amount of 0.5 to 5% by mass based on the total amount of the curing agent. By using a polyfunctional curing agent, a three-dimensional network structure can be formed by the curing agent during curing, and the heat resistance of the cured product can be improved.
[0028]
In the present invention, the stoichiometric equivalent ratio of the curing agent to the epoxy resin to be blended is preferably in the range of 0.6 to 1.4. If the equivalent ratio is less than 0.6, the resin composition for underfill of the present invention is not easily cured, or the heat resistance and strength of the cured product are undesirably reduced. When the above equivalent ratio is greater than 1.4, the heat resistance of the cured product of the resin composition for underfill of the present invention is reduced, the adhesive strength (adhesion) after curing is reduced, or the cured product is reduced. However, it is not preferable because problems such as an increase in the moisture absorption rate appear. A particularly preferred equivalent ratio of the curing agent to the epoxy resin is in the range of 0.75 to 1.00. In addition, it is preferable to use an epoxy resin and a curing agent containing as few impurities as possible, such as Na ions, Cl ions, and Br ions, from the viewpoint of operation reliability of the semiconductor device.
[0029]
As the curing accelerator used in the present invention, it is preferable to use at least one of an imidazole-based one having an imidazole skeleton and an amine-based one (an amine compound). Satisfactorily the preservability and curability of the resin composition for underfill can be ensured. As the curing accelerator, for example, primary to tertiary amines or salts thereof, triazoles or salts thereof, imidazoles or salts thereof, diazabicycloalkenes such as diazabicycloundenecene (DUB) or salts thereof, Known materials such as triphenylenephosphine (for example, TTP of Hokuko Chemical) can be used alone or in combination of two or more. Furthermore, in addition to those having a single chemical structure as described above, fine spheres (so-called microcapsules) having a thermosetting resin coating around a core made of a compound having an imidazole skeleton, or particles of an amine adduct, etc. Is suitably used as a curing accelerator. The curing accelerator is preferably blended at a ratio of 2 to 4% by mass based on the total amount of the resin composition for underfill of the present invention.
[0030]
Although the inorganic filler used in the present invention is not particularly limited, it is preferable to use, for example, crystalline silica, fused silica, alumina, finely divided silica, magnesia, silicon nitride, and the like. Moreover, it is preferable to mix these inorganic fillers in a ratio of 48 to 65% by mass with respect to the total amount of the resin composition for underfill of the present invention. When the blending amount of the inorganic filler is less than 48% by mass, it is difficult to reduce the linear expansion coefficient of the cured product of the resin composition for underfill of the present invention, and heat resistance such as decrease in heat cycle property is difficult. There is a possibility that it will be difficult to improve. On the other hand, when the compounding amount of the inorganic filler exceeds 65% by mass, the viscosity of the resin composition for underfill of the present invention becomes high, the fluidity is impaired, and the underfill property is reduced, making it difficult to use. There is a risk of becoming.
[0031]
In addition, considering that the present invention is used for an underfill for a flip chip, the particle size of the inorganic filler needs to be fine, but if it is too fine, a rise in viscosity or sedimentation during curing of the present invention occurs. There is fear. Therefore, the maximum particle size of the inorganic filler is preferably 3 to 30 μm. When the maximum particle size of the inorganic filler is less than 3 μm, the viscosity of the resin composition for underfill of the present invention becomes too high, the fluidity is impaired, and the underfill property is reduced, making it difficult to use. There is fear. On the other hand, if the maximum particle size of the inorganic filler is larger than 30 μm, it may be difficult to fill the underfill resin composition of the present invention when the gap between the chip and the substrate is small.
[0032]
In the present invention, there is no problem even if other resins, pigments, diluents, coupling agents, defoamers and the like are used as required. As the coupling agent, a silane coupling agent is preferable, and the type of the coupling agent is used for the purpose of modifying an epoxy resin such as an epoxy, amino, vinyl, methacryl, or titanate resin, or improving the adhesion of a substrate or the like. Are preferred.
[0033]
The underfill resin composition of the present invention can be prepared as follows. First, components other than the epoxy resin, the curing agent, the curing accelerator, and the inorganic filler are combined together or separately, and the mixture is stirred, dissolved, mixed, and dispersed while being subjected to heating and refrigeration as necessary. Next, an inorganic filler is added to the mixture, and stirring, dissolution, mixing, and dispersion are performed while heating and refrigeration is performed as necessary. Thus, a liquid epoxy resin composition can be obtained as the resin composition for underfill of the present invention. In addition, a disperser, a planetary mixer, a ball mill, a three-roll mill, or the like may be used in an effective combination in the steps of stirring, dissolving, mixing, and dispersing.
[0034]
In the semiconductor device of the present invention, after bonding the bump electrode of the semiconductor chip to the electrode on the surface of the substrate, the gap formed between the semiconductor chip and the substrate is filled with the underfill resin composition described above. It can be formed by curing the filling resin composition and sealing the above gap.
[0035]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples. However, the present invention is not limited to this.
[0036]
(Examples 1 to 19 and Comparative Examples 1 to 5)
An epoxy resin, a curing agent, a curing accelerator, an inorganic filler and other components are blended in the blending amounts shown in Tables 1 to 3, and the mixture is stirred, dissolved, mixed, and dispersed by the above-described method to form a resin composition for underfill. Was prepared. The following materials were used as each material.
[0037]
Bisphenol A type epoxy resin: Epicoat 828 from Japan Epoxy Resin (Yuka Kasushi Co., Ltd.), epoxy equivalent 189
Trifunctional epoxy resin: TEPIC-S of Nissan Chemical, epoxy equivalent: 99, chemical formula (3) Tetrafunctional epoxy resin: EXA4701, manufactured by Dainippon Ink and Chemicals, epoxy equivalent: 169, many of chemical formula (1) Non-functional acid anhydride: methyltetrahydrophthalic anhydride, MH-700 manufactured by Shin Nippon Rika Co., Ltd., acid anhydride equivalent 166
Multifunctional acid anhydride A: B4400 from Dainippon Ink and Chemicals, chemical formula (9), acid anhydride equivalent 140
Multifunctional acid anhydride B: PMDA of Daicel Chemical or Japan Epoxy Resin, one of chemical formula (12), acid anhydride equivalent 218
Non-polyfunctional phenolic compound: allylated phenol, MEH8000-4L from Meiwa Kasei, hydroxyl equivalent 141
Polyfunctional phenolic compound: YLH903 of Japan Epoxy Resin, one of chemical formula (7), hydroxyl equivalent 170
Curing accelerator (microencapsulated imidazole): imidazole-based microencapsulated latent catalyst, HX3941HP of Asahi Kasei Epoxy Co., Ltd.
Curing accelerator (amines): amine modified catalyst, Asahi Denka Kogyo EH3849S
Curing accelerator (phosphorus): Nippon Kayaku EPCAT-P
Coupling agent: Epoxysilane coupling agent, Nippon Unicar's A-187
Inorganic filler A: fused silica, Admatex SO-E2, maximum particle size 3 μm
Inorganic filler B: fused silica, Mitsubishi Rayon QS-4, maximum particle size 14 μm
Inorganic filler C: fused silica, Mitsubishi Rayon QS-9, maximum particle size 35 μm
Inorganic filler D: fused silica, Mitsubishi Rayon QS-8, maximum particle size 30 μm
Inorganic filler E: fused silica, AA04 from Sumitomo Chemical, maximum particle size 2 μm
Then, the following physical properties were evaluated for the resin compositions for underfill of Examples 1 to 19 and Comparative Examples 1 to 5 and the molded products (cured products) thereof.
[0038]
(1) Underfill Penetration Test The components of the semiconductor device used in this test are formed of an FR5 grade circuit board and a CMOS gate lay element having a chip size of 0.4 mm thick and 10 mm square, and a circuit An electrode in which the electrode on the substrate and the electrode on the periphery of the chip were joined by a solder bump having a height of 70 μm was used. Then, the resin compositions of Examples 1 to 19 and Comparative Examples 1 to 5 were applied to the end of one side of the chip with a dispenser, and immediately after this, the substrate on which the chip was mounted was placed on a hot plate at 80 ° C. The time required for the applied resin composition to reach the side opposite to the applied side was measured.
[0039]
As a result, ◎ was given for 30 seconds or less, ○ was given for 60 seconds or less, Δ was given for 2 minutes or less, and × was given for more than 2 minutes.
[0040]
(2) TC test In the same manner as in (1) above, the resin composition was obtained by heating the parts of the semiconductor device in which the resin compositions of Examples 1 to 19 and Comparative Examples 1 to 5 were infiltrated at a temperature of 150 ° C. for 2 hours. The product was cured to obtain a semiconductor device sealed with a cured product of the resin composition. Next, for a semiconductor device whose electrical operation check result was a non-defective product, a gas phase temperature cycle test in which one cycle includes −55 ° C. for 30 minutes, room temperature for 5 minutes, 150 ° C. for 30 minutes, and room temperature for 5 minutes. , The operation of the device after 2,000 cycles was confirmed, and the quality was determined. In each of the examples and comparative examples, 10 semiconductor devices were used as test samples, and 0 to 3 defective samples in the test samples were evaluated as ○, 4 to 6 as Δ, and 7 to 10 as ×.
[0041]
After the above 2000 cycles, the appearance of the test sample was inspected to confirm whether or not cracks occurred in the resin fillet portion. The number of test samples in which cracks occurred was 0 to 3; ○, 4 to 6; and 7 to 10;
[0042]
(3) PCT test Similar to the above (2), a semiconductor device having a good electrical operation confirmation result was subjected to a pressure cooker test (PCT) at 121 ° C. and 0.2 MPa (2 atm), and after 1000 hours. The operation of the device was confirmed, and the quality was determined. In each of the examples and comparative examples, 10 semiconductor devices were used as test samples, and 0 to 3 defective samples in the test samples were evaluated as ○, 4 to 6 as Δ, and 7 to 10 as ×.
[0043]
The test results of the above (1) to (3) are shown in Tables 1 to 3.
[Table 1]
[0045]
[Table 2]
[0046]
[Table 3]
[0047]
As is clear from Tables 1 to 3, in Comparative Examples 1 to 5, many cracks were generated by the TC test, but in Examples 1 to 19, there were no or few cracks, and the heat resistance was improved.
[0048]
【The invention's effect】
As described above, the invention of claim 1 of the present invention relates to a resin composition for underfill containing an epoxy resin, a curing agent, a curing accelerator, and an inorganic filler. And a phenolic compound and an acid anhydride are used as a curing agent, and a phenolic compound is blended in an amount of 3 to 20% by mass with respect to the total amount of the curing agent. A three-dimensional network structure can be formed, and the heat resistance of the cured product can be improved. Further, since a phenolic compound is blended in an amount of 3 to 20% by mass as a curing agent, the adhesion of the cured product can be improved and the moisture absorption can be reduced as compared with the case where another curing agent is used.
[0049]
According to the invention of claim 2 of the present invention, since at least one of the phenolic compound and the acid anhydride used as the curing agent is a polyfunctional type, the curing agent can also form a three-dimensional network structure during curing, The heat resistance of the cured product can be further improved.
[0050]
In the invention of claim 3 of the present invention, since at least one of an amine-based compound and an imidazole-based compound is blended as a curing accelerator, curing does not proceed excessively during storage or hardly hardens during use. It can ensure good curability.
[0051]
The invention of claim 4 of the present invention uses an inorganic filler having a maximum particle size of 3 to 30 μm and mixes the inorganic filler in an amount of 48 to 65% by mass with respect to the total amount, so that the viscosity increase and the line of the cured product are increased. An increase in expansion coefficient can be suppressed, and a decrease in underfill property and heat resistance can be reduced.
[0052]
According to a fifth aspect of the present invention, since the underfill resin composition according to any one of the first to fourth aspects is used for sealing, the heat resistance of the sealing material can be improved and the sealing material can be improved. Can improve the adhesion and reduce the moisture absorption.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003048328A JP3818267B2 (en) | 2003-02-25 | 2003-02-25 | Resin composition for underfill and semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003048328A JP3818267B2 (en) | 2003-02-25 | 2003-02-25 | Resin composition for underfill and semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004256646A true JP2004256646A (en) | 2004-09-16 |
JP3818267B2 JP3818267B2 (en) | 2006-09-06 |
Family
ID=33114311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003048328A Expired - Fee Related JP3818267B2 (en) | 2003-02-25 | 2003-02-25 | Resin composition for underfill and semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3818267B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006206827A (en) * | 2005-01-31 | 2006-08-10 | Matsushita Electric Works Ltd | Liquid sealing epoxy resin composition and semiconductor device |
JP2008050544A (en) * | 2006-08-28 | 2008-03-06 | Matsushita Electric Works Ltd | Epoxy resin composition, semiconductor device and manufacturing process of semiconductor device |
JP2008509241A (en) * | 2004-08-05 | 2008-03-27 | フライズ・メタルズ・インコーポレイテッド | Low porosity non-flowing fluxing underfill for electronic devices |
JP2010143949A (en) * | 2008-12-16 | 2010-07-01 | Shin-Etsu Chemical Co Ltd | Underfill material and semiconductor device using the same |
WO2012018684A1 (en) | 2010-08-04 | 2012-02-09 | 3M Innovative Properties Company | Encapsulating resin composition |
JP2012077214A (en) * | 2010-10-01 | 2012-04-19 | Namics Corp | Epoxy resin composition and semiconductor device using the same |
KR20210013072A (en) | 2018-05-25 | 2021-02-03 | 쇼와덴코머티리얼즈가부시끼가이샤 | Underfill material, semiconductor package and manufacturing method of semiconductor package |
-
2003
- 2003-02-25 JP JP2003048328A patent/JP3818267B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008509241A (en) * | 2004-08-05 | 2008-03-27 | フライズ・メタルズ・インコーポレイテッド | Low porosity non-flowing fluxing underfill for electronic devices |
JP2006206827A (en) * | 2005-01-31 | 2006-08-10 | Matsushita Electric Works Ltd | Liquid sealing epoxy resin composition and semiconductor device |
JP2008050544A (en) * | 2006-08-28 | 2008-03-06 | Matsushita Electric Works Ltd | Epoxy resin composition, semiconductor device and manufacturing process of semiconductor device |
JP2010143949A (en) * | 2008-12-16 | 2010-07-01 | Shin-Etsu Chemical Co Ltd | Underfill material and semiconductor device using the same |
WO2012018684A1 (en) | 2010-08-04 | 2012-02-09 | 3M Innovative Properties Company | Encapsulating resin composition |
JP2012077214A (en) * | 2010-10-01 | 2012-04-19 | Namics Corp | Epoxy resin composition and semiconductor device using the same |
KR20210013072A (en) | 2018-05-25 | 2021-02-03 | 쇼와덴코머티리얼즈가부시끼가이샤 | Underfill material, semiconductor package and manufacturing method of semiconductor package |
Also Published As
Publication number | Publication date |
---|---|
JP3818267B2 (en) | 2006-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI480326B (en) | Curable resin compositions useful as underfill sealants for low-k dielectric-containing semiconductor devices | |
JP4887850B2 (en) | Liquid resin composition for underfill, semiconductor device manufacturing method using the same, and semiconductor device | |
WO2011013326A1 (en) | Liquid resin composition and semiconductor device formed using same | |
JP4931079B2 (en) | Liquid thermosetting resin composition for underfill and semiconductor device using the same | |
JPH10231351A (en) | Liquid injection sealing underfilling material | |
JP5862176B2 (en) | Selection method and manufacturing method of liquid epoxy resin composition, and manufacturing method of electronic component device | |
JP3818267B2 (en) | Resin composition for underfill and semiconductor device | |
JP2006206827A (en) | Liquid sealing epoxy resin composition and semiconductor device | |
JP2006169395A (en) | Underfill resin composition | |
JP5070789B2 (en) | Liquid resin composition for underfill and semiconductor device | |
JPH1129624A (en) | Semiconductor sealing liquid epoxy resin composition | |
JP2009057575A (en) | Liquid epoxy resin composition and electronic component device | |
JP4966123B2 (en) | Liquid epoxy resin composition for sealing and semiconductor device | |
JP2008106181A (en) | Epoxy resin composition and semiconductor device | |
JP2005097448A (en) | Liquid epoxy resin composition for sealing semiconductor and semiconductor apparatus | |
WO2005080502A1 (en) | Liquid epoxy resin composition for underfill and semiconductor device encapsulated with the composition | |
JP2006188573A (en) | Liquid epoxy resin composition, electronic component device using the composition and method for producing the same | |
JP2007314702A (en) | Epoxy resin composition and semiconductor device sealed with resin | |
JP6332488B2 (en) | Selection method and manufacturing method of liquid epoxy resin composition, electronic component device and manufacturing method thereof | |
JP2010144144A (en) | Liquid epoxy resin composition for underfill, and semiconductor device | |
JP4729873B2 (en) | Assembling method of semiconductor element | |
JP2013107993A (en) | Liquid resin composition for semiconductor sealing and semiconductor device using the same | |
JP4858431B2 (en) | Manufacturing method of semiconductor device | |
JP2000336246A (en) | Epoxy resin composition for sealing semiconductor and semiconductor device | |
JP5963131B2 (en) | Liquid epoxy resin composition and semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060519 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060523 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060605 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3818267 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090623 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090623 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100623 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100623 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110623 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120623 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120623 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130623 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |