JP2008048464A - 電気慣性制御装置およびその制御方法 - Google Patents

電気慣性制御装置およびその制御方法 Download PDF

Info

Publication number
JP2008048464A
JP2008048464A JP2006218620A JP2006218620A JP2008048464A JP 2008048464 A JP2008048464 A JP 2008048464A JP 2006218620 A JP2006218620 A JP 2006218620A JP 2006218620 A JP2006218620 A JP 2006218620A JP 2008048464 A JP2008048464 A JP 2008048464A
Authority
JP
Japan
Prior art keywords
signal
torque
speed
acceleration
generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006218620A
Other languages
English (en)
Inventor
Takeshi Higashiyama
勇志 東山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP2006218620A priority Critical patent/JP2008048464A/ja
Publication of JP2008048464A publication Critical patent/JP2008048464A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】原動機の回転数による速度信号からトルク指令信号を生成するトルク制御処理を行うことにより、安定した慣性処理を実現することができる。
【解決手段】電気慣性制御装置10は、トルク計11、速度検出器12、モータ制御回路13、速度偏差信号生成部14、速度制御アンプ15(トルク速度信号生成手段)、軸トルク補正後信号生成部16、トルク指令信号生成部17および補正信号生成部21を具備する。そして、補正信号生成部21は、走行抵抗演算部22、加速分トルク生成部23、加速度補正前信号生成部24、加速度信号生成部25、積分器26、トルク補正信号生成部27を備える。速度制御アンプ15では、速度偏差信号V3からASR出力トルク信号T3が生成される。
【選択図】図1

Description

本発明は、例えば、自動車等の駆動系(電動機+供試手段)に対する実車等価試験に用いて好適な電気慣性制御装置およびその制御方法に関する。
昨今、省エネルギーと二酸化炭素等の排ガスの環境問題を改善するため、電気自動車(EV)やハイブリッド自動種(HEV)が実用化されてきている。このハイブリッド自動車は、ガソリンや軽油を燃料とする内燃機関と、バッテリーから供給される電力によって駆動される電動機との組み合わせによって駆動系としている。この電動機は、内燃機関に代わって自動車の駆動源となるため、小型、高出力、広い可変速運転範囲、および高効率という要素が必要となる。また、電動機の制御方法は、内燃機関と同様な感覚で操るために、アクセルペダルの踏み込み量に比例したトルク指令によってモータを駆動するトルク制御となる。
また、駆動系は、車両に搭載される前に、試験機によって実車等価試験(以下、ベンチテストという)が実行される。このベンチテストに利用される装置が電気慣性制御装置である。
この電気慣性制御装置としては、駆動側原動機にトルク指令装置とトルク制御装置と操作アクチュエータとを直列に接続し、走行抵抗相当トルクと駆動トルクとの差を求める加算器に、トルクピックアップにより検出された駆動トルクに代えて、前記トルク指令装置から出力されるトルク指令値を印加することにより、駆動トルクの検出を吸収側電動機の制御系とは切り離して単独で行い、吸収側電動機の制御系を単純化することで、吸収側電動機の制御系の安定性を向上させ、かつ調整を容易にした装置がある(特許文献1)。
また、他の電気慣性制御装置としては、車輌のトランスミッションなどの動力伝達系からなる供試体を備え、この供試体の入力軸には、エンジン相当の入力モータと、入力側回転検出器と、入力側トルクメータを備えると共に、上記入力モータには、上記入力側トルクメータによる検出トルクに基づいて上記供試体に入力するトルクt1を制御する入力トルク制御装置を備え、上記供試体の出力軸には、出力側回転検出器と、吸収モータと、出力側トルクメータを備えると共に、上記吸収モータには、上記出力側トルクメータによる上記供試体の出力トルクt2と、上記出力側回転検出器による上記吸収モータの回転パルスをF/V変換器で変換した回転信号に基いて発生する走行抵抗相当トルクTRおよび車輌等価慣性量icとから慣性抵抗相当トルクtaを求め、該慣性抵抗相当トルクtaを上記吸収モータに与える出力側トルク装置を備え、前記入力側トルク制御装置および前記出力側トルク制御装置に接続すると共に、前記供試体の出力トルクt2と、前記吸収モータの走行抵抗相当トルクtrとの差分トルクをΔtとし、該差分トルクΔtを前記供試体の出力軸に換算したときの該供試体の慣性をimとしたとき、前記慣性抵抗相当トルクtaがta=Δt(1−im/ic)にて求められるようにした電気慣性制御手段を備えている装置がある(特許文献2)。
特許第2647576号公報 特開平5−26773号公報
しかし、前述した特許文献1,2では、駆動側原動機に対して負荷となる吸収側電動機側の情報を取得し、この情報に基づいて駆動側原動機への駆動信号を生成するようにしているため、部品点数が増加してしまう。
この課題を解決するために、吸収側原動機側の情報を取得せずに、ベンチテストを行う装置もある。この種の装置について、図2を参照しつつ説明する。
この電気慣性制御装置0で試験される対象は、モータ101に供試品102(モータ101の回転軸(図示せず)に接続されたトランスミッション等)となり、所謂駆動系となる。
そして、電気慣性制御装置0は、モータ制御回路1、速度検出器2、微分器3、慣性相当トルク算出器4、インバータ5とを具備している。
モータ制御回路1は、インバータ5から出力されるトルク指令信号T0を受けて駆動信号DAを生成し、この駆動信号DAをモータ101の駆動回路部(図示せず)に供給する。速度検出器2は、モータ101の回転軸に設けられ、回転軸の角速度を計測して速度信号VAを出力する。微分器3は、速度検出器2から出力される速度信号VAを微分して加速度信号αAを算出する。慣性相当トルク算出器4は、微分器4で算出された加速度信号αAと、実機械慣性Jmおよび模擬慣性JcからTA=α(Jc−Jm)による演算を実行し、慣性相当トルクTAを算出する。インバータ5は、慣性相当トルクTAの符号を反転させてトルク指令信号TA´をモータ制御回路1に供給する。
なお、実機械慣性Jmは、駆動系の総慣性であり、模擬慣性Jcは供試品102が搭載される実車相当の慣性に当たる。
ここで、ベンチテストにおいては、駆動系において種々の車両によるデータを計測するため、模擬慣性Jcの変化幅を大きく確保することが必要となる。
ここで、電気慣性制御装置0において、慣性相当トルク算出器4に入力される模擬慣性Jcと実機械慣性Jmとの関係をJc=2×Jmとする。
この場合、Jc−Jm=2Jm−Jm=Jmとなる。一般的に、モータの慣性をJ、加速度をα、加速トルクをTとした場合、T=α×Jという関係が成り立つ。
そこで、モータ101の加速度αmとした場合、モータ制御回路1に供給されるトルク指令TmはTm=−αm×Jmとなる。このトルク指令Tmは、モータ101を加速度αmで加速するのに必要なトルクのことである。モータ101が加速度αmで加速するということは、外部からトルクTmが加わっているのと同じ状態となり、トルク指令Tmを加算すると、モータ101に加わるトルクは0になる。すると、今度はモータ101の加速度が0になるため、トルク指令Tmも0になる。つまり、モータ101の回転は、加速→速度一定(トルク0)→加速→速度一定(トルク0)…という動きを繰り返す格好ことになる。
次に、Jc>2×Jmの関係にある場合、トルク指令Tm<−αm×Jmとなり、モータ101に加わるトルクはマイナスになる。すると、加速度がマイナスとなり、トルク指令Tmがプラスに極性反転する。つまり、モータ101の回転は、加速→減速(トルクマイナス)→大きく加速(トルク指令Tmがプラスの為)…とハンチングを起こし、発散するような動作となる。
従って、図2のように構成された電気慣性制御装置0では、模擬慣性Jcの値は、実機械慣性値Jmの2倍未満が設定が可能な範囲となる。
さらに、微分器3によって速度信号VAから加速度信号αAを算出するようにしているが、速度から加速度を算出する場合には、実際には、所定時間を隔てて速度を2回計測し、この速度差を所定時間で割るようにしている。このため、加速度を検出するのに時間を費やしてしまい、迅速な制御処理を行うことが出来ない。
本発明は上述した課題に鑑みてなされたものであり、広範囲における慣性補償と、迅速な制御処理を行うことのできる電気慣性制御装置および制御方法を提供することを目的としている。
上述の目的を達成するため、本発明が採用する電気慣性制御装置の構成は、駆動信号を電動機に供給する電気慣性制御装置であって、前記電動機の回転軸に加わる軸トルクを計測し、軸トルク信号を出力するトルク計測手段と、前記回転軸の回転速度を計測し、軸速度信号を出力する速度計測手段と、トルク指令信号に基づいて前記電動機に供給する駆動信号を生成する駆動信号生成手段と、前記軸速度信号、模擬慣性、実機械慣性および軸トルク補正後信号に基づいてトルク補正信号および目標速度信号を生成する補正信号生成手段と、前記軸速度信号と前記目標速度信号とを加減算して速度偏差信号を生成する速度偏差信号生成手段と、前記速度偏差信号に基づいてトルク速度信号を生成するトルク速度信号生成手段と、前記トルク速度信号と前記軸トルク信号とを加減算して軸トルク補正後信号を生成する軸トルク補正後信号生成手段と、前記軸トルク補正後信号と前記トルク補正信号とを加減算して前記トルク指令信号を生成するトルク指令信号生成手段と、を具備することをことを特徴としている。
このような構成により、トルク速度信号生成手段が軸速度信号に基づいてトルク速度信号を生成し、軸トルク補正後信号生成手段でこのトルク速度信号と軸トルク信号を加減算して軸トルク補正後信号を生成し、トルク指令信号生成部がこの軸トルク補正後信号とトルク補正信号とを加減算してトルク指令信号を生成するようにしている。このため、電動機を一定トルクで回転させるのではなく、軸速度信号によって制御すると共に、微分器を使用していないため、電動機の回転制御を迅速・確実に行うことができる。また、軸トルク信号および速度信号によるフィードバック制御によって駆動信号を生成しており、模擬慣性および実機械慣性は、補正信号生成手段でトルク補正信号および目標速度信号を生成するパラメータになるため、実機械慣性には規制がなくなり、広範囲における慣性補償を可能にする。
上記構成において、前記補正信号生成手段は、前記軸速度信号に基づいて走行抵抗トルク信号を生成する走行抵抗トルク信号生成手段と、前記走行抵抗トルク信号と前記軸トルク補正後信号とを加減算して加速分トルク信号を生成する加速分トルク信号生成手段と、前記加速分トルク信号を模擬慣性で除算して加速度補正前信号を生成する加速度補正前信号生成手段と、前記走行補正加速度と加速度補正信号とを加減算して加速度信号を生成する加速度信号生成手段と、前記加速度信号を積分することにより目標速度信号を生成する目標速度信号生成手段と、前記加速度信号を実機械慣性で積算してトルク補正信号を生成するトルク補正信号生成手段と、を具備することが好ましい。
上述の目的を達成するため、本発明が採用する電気慣性制御装置の制御方法は、模擬慣性に基づいた駆動信号を前記電動機に供給する電気慣性制御装置の制御方法であって、前記回転軸に加わる軸トルクを計測し、軸トルク信号を出力するトルク計測段階と、前記回転軸の回転速度を計測し、軸速度信号を出力する速度計測段階と、トルク指令信号に基づき前記電動機に供給する駆動信号を生成する駆動信号生成段階と、前記軸速度信号、模擬慣性、実機械慣性および軸トルク補正後信号に基づいてトルク補正信号および目標速度信号を生成する補正信号生成段階と、前記軸速度信号と前記目標速度信号とを加減算して速度偏差信号を生成する速度偏差信号生成段階と、前記速度偏差信号に基づきトルク速度信号を生成するトルク速度信号生成段階と、前記トルク速度信号と前記軸トルク信号とを加減算して軸トルク補正後信号を生成する軸トルク補正後信号生成段階と、前記軸トルク補正後信号と前記トルク補正信号とを加減算して前記トルク指令信号を生成するトルク指令信号生成段階と、を備え、
前記補正信号生成段階は、前記軸速度信号に基づき走行抵抗トルク信号を生成する走行抵抗トルク信号生成段階と、前記走行抵抗トルク信号と前記軸トルク補正後信号とを加減算して加速分トルク信号を生成する加速分トルク信号生成段階と、前記加速分トルク信号を模擬慣性で除算して加速度補正前信号を生成する加速度補正前信号生成段階と、前記加速度補正前信号と加速度補正信号とを加減算して加速度信号を生成する加速度信号生成段階と、前記加速度信号を積分することにより目標速度信号を生成する目標速度信号生成段階と、前記加速度信号を実機械慣性で積算してトルク補正信号を生成するトルク補正信号生成段階と、を備えたことを特徴としている。
以下、本発明の実施形態に係る電気慣性制御装置について、図面を参照して説明する。
<実施形態>
ここで、図1を参照しつつ、電気慣性制御装置10の構成について説明する。なお、前述した従来技術と同一の構成要素には同一の符号を付し、その説明を省略する。
電気慣性制御装置10は、トルク計11、速度検出器12、モータ制御回路13、速度偏差信号生成部14、速度制御アンプ15(トルク速度信号生成手段)、軸トルク補正後信号生成部16、トルク指令信号生成部17および補正信号生成部21を具備している。
トルク計11は、モータ101と供試品102とを接続する回転軸に設けられ、軸トルク信号T1を軸トルク補正後信号生成部16に出力する。このトルク計11は、例えば歪みゲージ式、位相差検出式、磁気式の他、ロードセルを利用した計器等からなる。
速度検出器12は、モータ101の回転軸の角速度を計測して軸速度信号V1を出力する。この速度検出器12は、エンコーダ、慣性センサ、表面弾性波センサ、ジャイロセンサ、レゾルバ等がある。
モータ制御回路13は、後述する処理によって生成されたトルク指令信号T0を受けて駆動信号D0を生成するもので、サイリスタレオナードやトランジスタ(IGBT)インバータ等からなる。速度偏差信号生成部14は、軸速度信号V1と目標速度信号V2とを加減算して速度偏差信号V3を生成する。
速度制御アンプ15は、速度偏差信号V3に基づいてASR出力トルク信号T3を生成する。この速度制御アンプ15は、比例アンプ(Pアンプ)、比例積分アンプ(PIアンプ)、比例積分微分アンプ(PIDアンプ)等から構成される。
軸トルク補正後信号生成部16は、ASR出力トルク信号T3と軸トルク信号T1とを加減算して軸トルク補正後信号T4を生成する。トルク指令信号生成部17は、軸トルク補正後信号T4とトルク補正信号T2とを加減算して前記トルク指令信号T0を生成する。
また、補正信号生成部21は、軸速度信号V1、模擬慣性Jc、実機械慣性Jmおよび軸トルク補正後信号T4に基づいてトルク補正信号T2および目標速度信号V2を生成する。この補正信号生成部21は、走行抵抗演算部22、加速分トルク生成部23、加速度補正前信号生成部24、加速度信号生成部25、積分器26、トルク補正信号生成部27を具備している。
走行抵抗演算部22は、軸速度信号V1に基づいて走行抵抗トルク信号T5を生成する。具体的には、軸速度信号V1から走行抵抗トルク信号T5を生成するため、種々の軸速度信号V1に対する走行抵抗トルク信号T5がテーブルとして予め記憶されており、入力された軸速度信号V1を受けて前記テーブルを参照することによって、走行抵抗トルク信号T5が設定されるようになっている。
また、走行抵抗トルク信号T5は、記憶されたテーブルから設定されるだけでなく、演算式によって設定されるようにしてもよい。
加速分トルク生成部23は、走行抵抗トルク信号T5と軸トルク補正後信号T4とを加減算して加速分トルク信号T6を生成する。加速度補正前信号生成部24は、異なる値の模擬慣性Jcを設定する模擬慣性設定部24Aを備え、この模擬慣性設定部24Aにて設定された模擬慣性Jcで加速分トルク信号T6を除算して加速度補正前信号α1を生成する。
加速度信号生成部25は、電気慣性制御装置10の外部から必要に応じて加速度補正信号α0を設定できる外部補正部25Aを備え、この外部補正部25Aから前記条件に応じて出力される加速度補正信号α0と加速度補正前信号α1とを加減算して加速度信号α2を生成する。積分器26は、加速度信号α2を積分して目標速度信号V2を生成し、この目標速度信号V2を速度偏差信号生成部14に出力する。
トルク補正信号生成部27は、駆動系の機械要素であるモータ101、トルク計11等の慣性の和である実機械慣性Jmが記憶された実機械慣性設定部27Aを備え、この実機械慣性設定部27Aで設定された実機械慣性Jmと加速度信号α2とを乗算してトルク補正信号T2を生成する。
このように、電気慣性制御装置10では、入力される速度偏差信号V3からASR出力トルク信号T3を生成する速度制御アンプ15により、主に駆動信号D0を生成するためのトルク指令信号T0を生成するように構成されており、当該電気慣性制御装置10は、速度制御によって制御処理される。これにより、当該電気慣性制御装置10は、従来技術で述べたトルク制御によって発生していたモータ101の暴走等の不具合を解消して、安定した慣性制御処理を実現することができる。
しかも、補正信号生成部21において、パラメータとなる模擬慣性Jcと実機械慣性Jmとは互いに異なった処理として用いられる。また、模擬慣性Jcを大きくした場合、加速度補正前信号α1が小さくなり、加速度信号α2も小さくなる。この結果、目標速度信号V2の変化も小さくなり、制御系の安定度は高くなる。これにより、本実施形態による電気慣性制御装置10は、従来技術のように、模擬慣性Jcの設定範囲がJc<2×Jmとなる限定はなくなり、模擬慣性Jcを広範囲における慣性補償が可能になる。
さらに、電気慣性制御装置10では、軸トルク信号T1をASR出力トルク信号T3に加減算してモータ101の回転軸に発生する実際のトルクを加味したトルク指令信号T0を生成している。また、補正信号生成部21では、加速分トルク信号T6を模擬慣性Jcで除算することによって加速度信号α2を生成するようにしている。これにより、装置内に微分器を廃止でき、従来技術の装置に比べて応答速度を格段速めることができ、当該電気慣性制御装置10の信頼性を高めることができる。
本発明の実施形態による電気慣性制御装置を含む構成図である。 従来技術による電気慣性制御装置を含む構成図である。
符号の説明
10…電気慣性制御装置、11…トルク計、12…速度検出器、13…モータ制御回路、14…速度偏差信号生成部、15…速度制御アンプ(トルク速度信号生成手段)、16…軸トルク補正後信号生成部、17…トルク指令信号生成部、21…補正信号生成部、22…走行抵抗演算部、23…加速分トルク生成部、24…加速度補正前信号生成部、25…加速度信号生成部、26…積分器(目標速度信号生成手段)、27…トルク補正信号生成部。

Claims (3)

  1. 駆動信号を電動機に供給する電気慣性制御装置であって、
    前記電動機の回転軸に加わる軸トルクを計測し、軸トルク信号を出力するトルク計測手段と、
    前記回転軸の回転速度を計測し、軸速度信号を出力する速度計測手段と、
    トルク指令信号に基づいて前記電動機に供給する駆動信号を生成する駆動信号生成手段と、
    前記軸速度信号、模擬慣性、実機械慣性および軸トルク補正後信号に基づいてトルク補正信号および目標速度信号を生成する補正信号生成手段と、
    前記軸速度信号と前記目標速度信号とを加減算して速度偏差信号を生成する速度偏差信号生成手段と、
    前記速度偏差信号に基づいてトルク速度信号を生成するトルク速度信号生成手段と、
    前記トルク速度信号と前記軸トルク信号とを加減算して軸トルク補正後信号を生成する軸トルク補正後信号生成手段と、
    前記軸トルク補正後信号と前記トルク補正信号とを加減算して前記トルク指令信号を生成するトルク指令信号生成手段と、を具備する
    ことを特徴とする電気慣性制御装置。
  2. 請求項1記載の電気慣性制御装置において、
    前記補正信号生成手段は、前記軸速度信号に基づいて走行抵抗トルク信号を生成する走行抵抗トルク信号生成手段と、
    前記走行抵抗トルク信号と前記軸トルク補正後信号とを加減算して加速分トルク信号を生成する加速分トルク信号生成手段と、
    前記加速分トルク信号を模擬慣性で除算して加速度補正前信号を生成する加速度補正前信号生成手段と、
    前記加速度補正前信号と加速度補正信号とを加減算して加速度信号を生成する加速度信号生成手段と、
    前記加速度信号を積分することにより目標速度信号を生成する目標速度信号生成手段と、
    前記加速度信号を実機械慣性で積算してトルク補正信号を生成するトルク補正信号生成手段と、を具備した
    ことを特徴とする電気慣性制御装置。
  3. 模擬慣性に基づいた駆動信号を前記電動機に供給する電気慣性制御装置の制御方法であって、
    前記回転軸に加わる軸トルクを計測し、軸トルク信号を出力するトルク計測段階と、
    前記回転軸の回転速度を計測し、軸速度信号を出力する速度計測段階と、
    トルク指令信号に基づき前記電動機に供給する駆動信号を生成する駆動信号生成段階と、
    前記軸速度信号、模擬慣性、実機械慣性および軸トルク補正後信号に基づいてトルク補正信号および目標速度信号を生成する補正信号生成段階と、
    前記軸速度信号と前記目標速度信号とを加減算して速度偏差信号を生成する速度偏差信号生成段階と、
    前記速度偏差信号に基づきトルク速度信号を生成するトルク速度信号生成段階と、
    前記トルク速度信号と前記軸トルク信号とを加減算して軸トルク補正後信号を生成する軸トルク補正後信号生成段階と、
    前記軸トルク補正後信号と前記トルク補正信号とを加減算して前記トルク指令信号を生成するトルク指令信号生成段階と、を備え、
    前記補正信号生成段階は、前記軸速度信号に基づき走行抵抗トルク信号を生成する走行抵抗トルク信号生成段階と、
    前記走行抵抗トルク信号と前記軸トルク補正後信号とを加減算して加速分トルク信号を生成する加速分トルク信号生成段階と、
    前記加速分トルク信号を模擬慣性で除算して加速度補正前信号を生成する加速度補正前信号生成段階と、
    前記加速度補正前信号と加速度補正信号とを加減算して加速度信号を生成する加速度信号生成段階と、
    前記加速度信号を積分することにより目標速度信号を生成する目標速度信号生成段階と、
    前記加速度信号を実機械慣性で積算してトルク補正信号を生成するトルク補正信号生成段階と、を備えた
    ことを特徴とする電気慣性制御装置の制御方法。
JP2006218620A 2006-08-10 2006-08-10 電気慣性制御装置およびその制御方法 Pending JP2008048464A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006218620A JP2008048464A (ja) 2006-08-10 2006-08-10 電気慣性制御装置およびその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006218620A JP2008048464A (ja) 2006-08-10 2006-08-10 電気慣性制御装置およびその制御方法

Publications (1)

Publication Number Publication Date
JP2008048464A true JP2008048464A (ja) 2008-02-28

Family

ID=39181666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006218620A Pending JP2008048464A (ja) 2006-08-10 2006-08-10 電気慣性制御装置およびその制御方法

Country Status (1)

Country Link
JP (1) JP2008048464A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286614A (ja) * 2007-05-17 2008-11-27 Meidensha Corp 電気慣性制御方法
JP2008304233A (ja) * 2007-06-06 2008-12-18 Meidensha Corp 電気慣性制御方法
WO2009142130A1 (ja) * 2008-05-19 2009-11-26 株式会社明電舎 車両挙動試験装置
JP2009300129A (ja) * 2008-06-11 2009-12-24 Meidensha Corp 動力計システムの駆動力制御方法とその装置
JP2010002294A (ja) * 2008-06-20 2010-01-07 Honda Motor Co Ltd シャシーダイナモメータの制御装置
JP2010043940A (ja) * 2008-08-12 2010-02-25 Sinfonia Technology Co Ltd 動力伝達系の試験装置およびその制御方法
JP2010071772A (ja) * 2008-09-18 2010-04-02 Meidensha Corp エンジンベンチシステムの制御方式
JP2010223861A (ja) * 2009-03-25 2010-10-07 Sinfonia Technology Co Ltd 動力系の試験装置及びその制御方法
CN110291716A (zh) * 2017-03-06 2019-09-27 欧姆龙株式会社 马达控制装置、马达控制系统、失控状态检测方法以及程序

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286614A (ja) * 2007-05-17 2008-11-27 Meidensha Corp 電気慣性制御方法
JP2008304233A (ja) * 2007-06-06 2008-12-18 Meidensha Corp 電気慣性制御方法
WO2009142130A1 (ja) * 2008-05-19 2009-11-26 株式会社明電舎 車両挙動試験装置
JP2009300129A (ja) * 2008-06-11 2009-12-24 Meidensha Corp 動力計システムの駆動力制御方法とその装置
JP2010002294A (ja) * 2008-06-20 2010-01-07 Honda Motor Co Ltd シャシーダイナモメータの制御装置
JP2010043940A (ja) * 2008-08-12 2010-02-25 Sinfonia Technology Co Ltd 動力伝達系の試験装置およびその制御方法
JP2010071772A (ja) * 2008-09-18 2010-04-02 Meidensha Corp エンジンベンチシステムの制御方式
JP2010223861A (ja) * 2009-03-25 2010-10-07 Sinfonia Technology Co Ltd 動力系の試験装置及びその制御方法
CN110291716A (zh) * 2017-03-06 2019-09-27 欧姆龙株式会社 马达控制装置、马达控制系统、失控状态检测方法以及程序
CN110291716B (zh) * 2017-03-06 2022-12-06 欧姆龙株式会社 马达控制装置、系统、失控状态检测方法及存储介质

Similar Documents

Publication Publication Date Title
JP2008048464A (ja) 電気慣性制御装置およびその制御方法
JP5316151B2 (ja) 動力系の試験装置及びその制御方法
EP3214422A1 (en) Electric-vehicle testing device and method
JP5146102B2 (ja) 車両挙動試験装置
JP2017090195A (ja) ダイナモメータシステムのダイナモ制御装置及びそのエンジン始動方法
JP4655677B2 (ja) 動力伝達系の試験装置とその制御方法
JP5790339B2 (ja) 動力伝達系の試験装置
US8857272B2 (en) Method for determining the torque of an electric motor
JP2010112902A (ja) 車両挙動試験装置
JP4546752B2 (ja) 駆動モータを搭載した車両の走行状態模擬装置およびその方法
JP5493927B2 (ja) 動力系の試験装置及びその制御方法
JP5024127B2 (ja) ノイズ測定装置およびノイズ測定方法
JP6026921B2 (ja) 内燃機関の制御装置
JP2013053978A (ja) エンジンベンチシステムの制御装置
JP5239757B2 (ja) 車両挙動試験装置
JP5294314B2 (ja) シャシーダイナモメータの拘束装置と車両剛性の特性同定方法
JP2004309290A (ja) シャシーダイナモメータの慣性負荷の検証方式
JP2010043940A (ja) 動力伝達系の試験装置およびその制御方法
JP3049887B2 (ja) ダイナモメータの駆動装置
JP5414662B2 (ja) ダイナモメータの特性マップ作成方法及びダイナモメータ
JP2002372573A (ja) モータ試験装置
SE533770C2 (sv) Metod för att bestämma moment i samband med ett motorfordons drivlina och ett motorfordon
JP2017134009A (ja) 車両の試験装置
WO2024004640A1 (ja) 試験システム
JP2008286613A (ja) 電気慣性制御応答の評価方法