JP2008046687A - 撮影環境校正方法及び情報処理装置 - Google Patents

撮影環境校正方法及び情報処理装置 Download PDF

Info

Publication number
JP2008046687A
JP2008046687A JP2006218975A JP2006218975A JP2008046687A JP 2008046687 A JP2008046687 A JP 2008046687A JP 2006218975 A JP2006218975 A JP 2006218975A JP 2006218975 A JP2006218975 A JP 2006218975A JP 2008046687 A JP2008046687 A JP 2008046687A
Authority
JP
Japan
Prior art keywords
imaging
orientation
image
calibration
real space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006218975A
Other languages
English (en)
Other versions
JP2008046687A5 (ja
JP4757142B2 (ja
Inventor
Kazuki Takemoto
和樹 武本
Shinji Uchiyama
晋二 内山
Takaaki Endo
隆明 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006218975A priority Critical patent/JP4757142B2/ja
Priority to US11/835,735 priority patent/US7974462B2/en
Publication of JP2008046687A publication Critical patent/JP2008046687A/ja
Publication of JP2008046687A5 publication Critical patent/JP2008046687A5/ja
Priority to US13/149,231 priority patent/US8472703B2/en
Application granted granted Critical
Publication of JP4757142B2 publication Critical patent/JP4757142B2/ja
Priority to US13/905,563 priority patent/US9325969B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/246Calibration of cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30204Marker
    • G06T2207/30208Marker matrix

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Processing Or Creating Images (AREA)
  • Image Processing (AREA)

Abstract

【課題】画像を用いてカメラパラメータや現実空間中の物体の形状、配置情報等を求める場合に、校正の精度低下を引き起こす画像データ入力のミスを減らし、校正精度の向上を図る。
【解決手段】現実空間を撮像する撮像部により現実空間を撮像することによって、撮像部固体情報もしくは現実空間に関わる幾何情報もしくは撮像部と現実空間との間の関係を校正するにおいて、撮像部を用いて現実空間を撮影し、現実空間の撮像画像から校正の基準となる指標を検出し、検出された指標から撮像部の位置姿勢を算出し、得られたデータを用いて撮像部固体情報もしくは現実空間に関わる幾何情報もしくは撮像部と現実空間との間の関係を校正する。このような校正のための撮像において、校正情報を取得するための撮像部の次の目標位置姿勢を指示する仮想的な3次元オブジェクトが提示される。
【選択図】図13

Description

撮像した画像に基づいて空間中の物体の形状や位置姿勢、又は、カメラ自身のパラメータ等を校正する方法に関するものである。
3次元空間中の座標値が既知の特徴点を含むマーカやパターンを撮像した画像を解析して、3次元空間中に配置された物体の形状や位置姿勢、又は、カメラ自身の内部パラメータや外部パラメータ等を求める方法がある。ここで、上記のマーカやパターンとしては、人工的に配置されたものだけでなく自然特徴も含まれる。
例えば、非特許文献1、特許文献1、特許文献2においては、カメラの内部パラメータもしくはカメラ外部パラメータ(2つを合わせてカメラパラメータと呼ぶ)を校正するカメラ校正アルゴリズムが開示されている。この種のカメラ校正アルゴリズムは、3次元空間座標内に置かれた座標値が既知の複数の教示点をカメラで撮像して教示点画像を生成し、各教示点の空間座標値と当該教示点の画像座標値を用いて、カメラパラメータを推定する。
又、非特許文献2では、複合現実感の位置合わせを行うための指標となるマーカを、様々な方向から複数回撮影することで、複数のマーカの3次元空間中における位置姿勢を校正している。
特開平06−137840号公報 特開2001−325069号公報 特開平05−274426号公報 特開2003−269913号公報 Roger Y.Tsai,"A Versatile Camera CalibrationTechnique for High-Accuracy 3D Machine Metrology Using Off-the Shelf TVCameras and Lenses",IIIE J.Roboticsand Automation,Vol.RA-3,No.4,pp.323-344,19 Gregory Baratoffら:"Interactive Multi-Marker Calibration for Augmented Reality Applications",roc.ISMAR2002, pp.107-116, 2002 A. Takagi, S. Yamazaki, Y. Saito, and N. Taniguchi: "Development of a stereo video see-through HMD for AR systems ",ISAR2000, pp.68-77, 2000. 加藤ら:"マーカ追跡に基づく拡張現実感システムとそのキャリブレーション",日本VR 学会論文誌,Vol.4,No.4,pp.607-616,1999
このように、画像から空間中の物体の形状や位置姿勢、又は、カメラパラメータを校正するために、3次元空間中に配置したマーカやパターンの画像を用いる手法では、入力となるパターンやマーカを撮影した画像が最終的な精度に影響する。
例えば、非特許文献1の方法では、正対する方向からパターンを撮影した場合は校正の精度が悪くなるという特性を持つ。又、複数のパターン画像を用いてカメラパラメータの推定精度を向上させる手法においては、パターンを同じような方向から撮像した画像のみを用いると精度の向上が望めないという特性を持つ。更に、非特許文献2の方法によるマーカキャリブレーションでは、利用される画像に写っていないマーカがある場合は、写らなかったマーカの位置姿勢を校正できない場合や、全体の校正精度が低下する場合がある。このように、校正の仕組みを知らないユーザがパターンやマーカを撮影すると、適切に校正できない可能性が高くなる。
本発明は、上記の課題に鑑みてなされたものであり、画像を用いてカメラパラメータや現実空間中の物体の形状、配置情報等を求める場合に、校正の精度低下を引き起こす画像データ入力のミスを減らし、校正精度の向上を図ることを目的とする。
上記の目的を達成するための本発明の一態様による撮影環境校正方法は、
現実空間を撮像する撮像部により現実空間を撮像することによって、撮像部固体情報もしくは現実空間に関わる幾何情報もしくは撮像部と現実空間との間の関係を校正する方法であって、
前記撮像部を用いて現実空間を撮影する撮像工程と、
現実空間の撮像画像から校正の基準となる指標を検出する検出工程と、
前記検出工程により得られた前記指標から前記撮像部の位置姿勢を算出する撮像位置姿勢算出工程と、
校正情報を取得するための前記撮像部の次の目標位置姿勢を指示する仮想的な3次元オブジェクトを提示する撮像位置姿勢指示工程と、
前記検出工程により得られたデータを用いて撮像部固体情報もしくは現実空間に関わる幾何情報もしくは撮像部と現実空間との間の関係を校正する校正工程とを備える。
又、上記課題を解決するための本発明の他の態様による情報処理装置は以下の構成を備える。即ち、
現実空間を撮像する撮像部により現実空間を撮像することによって、撮像部固体情報もしくは現実空間に関わる幾何情報もしくは撮像部と現実空間との間の関係を校正する情報処理装置であって、
現実空間を撮影する撮像手段と、
前記撮像手段で撮像された画像から指標となる対象物体を検出する検出手段と、
前記撮像手段の位置姿勢を計測する計測手段と、
前記撮像手段の目標位置姿勢を仮想的な3次元オブジェクトを用いて撮影者に提示する撮像位置姿勢指示手段と、
前記検出装置により得られたデータを用いて校正を実施する校正手段とを備える。
本発明によれば、撮像すべき位置姿勢が3次元空間上に3次元ガイドCGで教示されるので、校正の仕組みを知らず、画像データ入力時にミスを起こしやすい初心者であっても精度よく校正を行うことができる。
以下、添付の図面を参照して、本発明の好適な実施形態を説明する。尚、以下の実施形態では、ワークステーション用のディスプレイとカメラを用いて、カメラパラメータやマーカの位置姿勢を校正するための撮像位置姿勢を指示する場合を説明する。但し、本発明は、カメラパラメータやマーカの位置姿勢の校正に限定されるものではない。例えば、マーカの配置情報を用いたセンサ配置情報の校正等、基準となるマーカやパターンを撮像した撮像装置の位置姿勢に校正精度が依存するパラメータ校正手法すべてに適用可能なことは、以下の説明により明らかである。又、本発明は、カメラとワークステーション用のディスプレイに限定されるものではなく、ビデオシースルー型のHMDや、カメラを取り付けた光学シースルー型のHMDにも適用可能であることは、以下の説明により明らかである。
[第1実施形態]
図1は、第1実施形態における校正装置の機能構成を示すブロック図である。また図2は、第1実施形態による撮影環境校正方法の利用時の模式図である。尚、図1と図2とで同じ構成については同じ番号を付けている。
101は撮像部であり、本実施形態においてはカラーCCDカメラを用いる。但し、本発明において、撮像部101の種類はカラーCCDカメラに限定されるものではなく、現実空間を撮像することにより、ユーザがその画像を見て現実空間だと認識できる撮像画像を生成できるものであれば適用可能である。
本実施形態では、撮像部101により、現実空間の既知の位置に配置された図3に示すキャリブレーションパターン201が撮像される。キャリブレーションパターン201は、黒の円パターン203と黒白の同心円パターン204の2種類のパターンを含む。これらのパターンは、当該キャリブレーションパターン201を映す撮像部101自体の位置姿勢を推定するために設けられたものであり、7個の黒白の同心円パターン204は全体の方向性を示す為に設けられている。尚、キャリブレーションパターン201の円パターン203及び同心円パターン204は格子状に配置されている。又、このキャリブレーションパターン201の撮像画像からパターンの認識を行うためには、図3に示すようなL字型に配列された白黒の同心円パターン204を3つ以上撮像し、かつ、中心の同心円パターン202を撮像しなければならない。尚、ここで、キャリブレーションパターン201における座標系は次のように定義される。即ち、同心円パターンの中心点202を原点とし、6個の同心円パターン204が並ぶ方向をx軸方向、2個の同心円パターン204が並ぶ方向をy軸方向、キャリブレーションパターン201の法線方向をz軸方向と定義される。
図1に戻り、102は表示部であり、第1実施形態ではワークステーション用のディスプレイを用いる。尚、本発明は、このような表示装置に依存するものではない。例えば、HMDに内蔵されたLCDディスプレイ等、ユーザが現実空間を撮像した映像とそれに重畳されるオブジェクト200とから指示位置姿勢を確認可能な表示を行える表示装置ならば適用可能である。
103は撮像画像取得部であり、撮像部101において撮像された撮像画像を記憶部107に画像データとして保持する。104はパターン検出部であり、キャリブレーションパターン201を撮像画像取得部103で得た画像データから検出し、検出したキャリブレーションパターン201の各点の2次元画像位置を記憶部107に格納する。
105は初期カメラパラメータ推定部であり、パターン検出部104で検出したキャリブレーションパターン201上の点の2次元画像位置から、暫定的に撮像部101の外部パラメータと内部パラメータを含む初期カメラパラメータを推定する。尚、外部パラメータは撮像部101の3次元空間中での位置姿勢等を示す。また内部パラメータは、撮像部101の焦点距離、主点、レンズ歪み中心、レンズ歪み係数等を示す。初期カメラパラメータの推定処理については後述する。推定結果である初期カメラパラメータは記憶部107に格納される。
106はデータ解析部であり、カメラキャリブレーションのために取得した画像を解析し、次に撮影するべき画像を撮影するべき撮影位置姿勢を提示する。データ解析によって算出された撮影位置姿勢(以下では指示位置姿勢と呼ぶ)は、記憶部107に記憶される。このデータ解析の処理内容は後述する。
107は記憶部であり、本実施形態における撮影環境校正方法の処理に必要な情報を保持し、処理に応じて読み出しや書き込みを行う。尚、本実施形態における撮影環境校正方法の処理に必要な情報とは、例えば、
・カメラ初期パラメータのカメラ内部パラメータ及び校正後のカメラ内部パラメータ、
・保存した撮像画像、及び、保存した撮像画像に対応づけた撮影時の撮像位置姿勢、
・位置姿勢提示のために描画する仮想物体の頂点情報(基準座標系上で定義された3次元位置や各頂点の接続情報を含む仮想物体の描画に必要な情報、物体のマテリアル設定等を含む)、
・撮像画像から検出されたパターンの各頂点の2次元位置、
・撮像部の指示位置姿勢の履歴を格納する配列、
・ポインティングデバイスのボタン押下時の設定(例えば左ボタン押下:画像の取得・保存、右ボタン押下:カメラキャリブレーションの開始)等の情報である。
108は撮像画像描画部であり、撮像画像取得部103が出力する撮像画像の画像データを描画し、画像合成部110に送る。109は撮像位置姿勢指示部であり、指定された撮像位置姿勢を記憶部107から読み出した撮像部位置姿勢に応じて図2のカメラオブジェクト200や図10のOKマーク1001を描画する。尚、本発明は、オブジェクト200ようなビデオカメラの形状を持つオブジェクトを描画することに限定されるものではなく、ユーザ自身が撮像部101の位置姿勢を確認できる表示形態であればどのような形態のオブジェクトでもよい。
110は画像合成部であり、撮像画像描画部108によって描画される撮像画像を背景として、撮像位置姿勢指示部109の画像を合成し、合成された画像を表示部102に表示する。
111は指示部であり、カメラキャリブレーションに利用する画像を取得する際、又はカメラキャリブレーションを実際に計算する際にユーザが指示するための道具である。本実施形態では、左右に2つのボタンが配置された、手持ちのボタン付きのポインティングデバイスが指示部111として用いられる。上述したように、記憶部107の設定により、左クリックは撮像画像の取得・保存の指示と解釈され、右クリックはカメラキャリブレーションの開始指示と解釈される。
図2は、第1実施形態における撮影環境校正方法の利用時の模式図である。200はカメラオブジェクトであり、次に撮影するべき画像を撮影するための撮像部101の撮影位置姿勢(指示位置姿勢)を示す。撮像部101で撮像された撮像画像上にこのカメラオブジェクト200を重畳することにより、ユーザに指示位置姿勢を示している。又、カメラオブジェクト200はカメラの上部方向を示すベクトル200aの表示を含み、カメラオブジェクトの上下を判別できるようにしている。図2に示されるように、キャリブレーションパターン201が現実空間に配置され、撮像部101により撮影される。
次に、図1のブロック図で示される機能構成によって実現される撮影環境校正方法の概略の処理手順を図4に示すフローチャートを用いて説明する。
まず、ステップS400において、撮像画像取得部103は、撮像部101によって現実空間を撮像することによって得られた画像信号を入力し、画像データに変換する。次に、ステップS401において、パターン検出部104は、現実空間に配置されたキャリブレーションパターン201の認識・検出を行う。この検出処理においては、まず、キャリブレーションパターン201を含む撮像画像が2値化され、黒領域と白領域に分けられる。次に、黒領域と白領域の重心位置が近い白と黒の領域を白黒の同心円パターン204として認識し、白黒同心円パターンの画像上での並びに基づいてキャリブレーションパターン201として認識する。
ステップS402では、ステップS401における認識の可否を判断する。パターン検出部104がキャリブレーションパターン201の認識に成功した場合はステップS403に処理を移す。パターン検出部104による認識ができなかった場合は、ステップS400に処理を戻す。
ステップS403では、撮像位置姿勢を提示するための3次元ガイドCGの描画に必要な撮像部101のカメラ内部パラメータとカメラ外部パラメータを暫定的に導出する。導出には、現在撮像している画像(ステップS400で撮像された画像)を用いる。ここで暫定的に導出したカメラ内部パラメータとカメラ外部パラメータを初期カメラパラメータと呼ぶ。尚、初期カメラパラメータの導出には、例えば、特許文献1(特開平06−137840号公報)や特許文献3(特開平05−274426)等に示される方法を用いることができる。これらの特許文献には、2次元的に分布しているキャリブレーションパターン201の3次元位置が既知の複数の教示点を用いてカメラ外部パラメータとカメラ内部パラメータを求める手法が開示されている。
初期カメラパラメータのうち、カメラ内部パラメータの各パラメータが許容値内に入っている場合は、初期カメラパラメータを記憶部107に保存し、ステップS404に処理を移す。又、ステップS403では、処理の開始時に、初期カメラパラメータが記憶部107に保存されているかどうかを確認する。既に保存されている場合は、保存されているカメラ内部パラメータを記憶部107から読み込み、カメラ外部パラメータのみを導出する。その後、S404に処理を移す。
一方、初期カメラパラメータの計算において、カメラ内部パラメータの各パラメータが許容範囲から外れた場合は、求めた初期カメラパラメータを破棄し、ステップ408に処理を移す。尚、各パラメータの許容値は、あらかじめ、カメラの種類に応じてユーザが入力してもよいし、ユーザ以外の設定者が記憶部107に格納しておいてもよい。
ステップS404では、記憶部107に格納されている指示位置姿勢の履歴配列の最後に格納されている指示位置姿勢と現在の撮像部の位置と姿勢が閾値以内であるかどうかを検証する。閾値以内であればステップS407に処理を移し、図10に示すように画面右上にOKマーク1001を表示する。ステップS404において、指示位置姿勢と現在の撮像部の位置と姿勢が閾値外の場合、又は、記憶部107に指示位置姿勢が格納されていない場合は、ステップS405に処理を移す。
ステップS405では、記憶部107に格納されている指示位置姿勢の履歴を参照し、次にユーザに指定する指示位置姿勢を算出する。まず、ステップS403で求めた初期カメラパラメータのうち、キャリブレーションパターン201に対する相対位置姿勢を示すカメラ外部パラメータを参照する。更に、キャリブレーションパターン201の中心点を中心とし、キャリブレーションパターン201の平面を底面とする半球の極座標系に対する撮像部101の位置(x,y,z)から緯度π/2−θ、経度Φ、距離rを以下の式1で求める。
Figure 2008046687
次に、撮像部101の緯度を保ったまま、経度に例えば20度を加算した位置に指示位置姿勢を設定する。又、ここで、例えば経度の値が85度以上になった場合は、経度の値を20度に設定する。本例の場合、図3に示すようなキャリブレーションパターン201が用いられており、0度<Φ<90度の範囲で、20度間隔の撮影を行うことが望ましいからである。更に、極座標系から、以下の式2により直交座標系に変換する。
Figure 2008046687
次に、世界座標系からカメラ座標系に変換し、この指示位置姿勢に対して撮像部101の視軸方向に式3に示す90度の回転変換を加える。
Figure 2008046687
次に、図9に示すように、撮像部101の画像中心Oがキャリブレーションパターン201の中心点202を通過するような姿勢にするために、式4の回転変換を上記指示位置姿勢にかける。
Figure 2008046687
ここでn(nx,ny,nz)は、カメラ座標系においてパターン中心202の画像座標値Cを画像座標における原点へと回転させる回転軸ベクトル、gはこのときの回転角を表す。このように様々な方向から撮影させるように指示することにより、カメラキャリブレーションに最適な、様々な奥行き方向のバリエーションと消失点の方向を持ったキャリブレーションパターン画像を取得することができる。
最後に算出した指示位置姿勢を記憶部107内における指示位置姿勢の履歴配列の最後に格納する。
ステップS406では、ユーザに次にキャリブレーションパターンを撮影させる撮像部101の位置姿勢を示す3次元ガイドCGを表示する。まず、記憶部107から指示位置姿勢の履歴配列の最後に格納された指示位置姿勢を読み出し、さらに記憶部107内の仮想物体の形状情報を読み出して、上記指示位置姿勢の仮想物体を仮想空間画像として描画する。ステップS406のように処理することで、ユーザに対して適切な撮像位置姿勢をガイドすることができる。又、全ての適切なパターン画像が得られるまで、3次元ガイドCGは消えないため、適切なパターン画像の取得漏れが回避できる。尚、フローチャートには示されていないが、全ての適切なパターン画像が撮像された場合は、3次元ガイドCGは表示されないようにしてもよい。或は、全ての適切なパターン画像が撮像された旨を画面上で通知するようにしてもよい。尚、指示位置姿勢の履歴配列の数が所定数を超えた場合に、適切なパターン画像が撮像されたと判定することができる。
ステップS407では、現在の撮像部の位置姿勢で適切なパターン画像のうちの一枚が撮像できることをユーザに示すためのOKマーク1001を図10のように表示する。尚、図10のような表示形態に限定されるものではなく、ユーザが現在の位置姿勢でパターン201を撮像すればよいことが認識できる表示形態であれば適用可能である。
ステップS408では、画像合成部110が、撮像画像描画部108と撮像位置姿勢指示部109において生成された画像を合成して描画し、表示部102に提示させる。
ステップS409では、ユーザが持つ指示部111により画像保存を指示するイベント(手持ちマウスの左ボタン押下)が発生したか否かを判定する。画像保存を指示するイベントが発生した場合はステップS4013へ処理を移す。一方、イベントが発生していない場合は、ステップS410に処理を移す。
ステップS4013では、撮像しているパターンが写っている画像を記憶部107に保存し、ステップS400へ戻る。
ステップS410では、ユーザが持つ指示部1110によりカメラキャリブレーション開始を指示するイベント(手持ちマウスの右ボタン押下)が発生したか否かを判定する。カメラキャリブレーション開始を指示するイベントが発生した場合は、ステップS411へ処理を移す。イベントが発生していない場合は、ステップS400へ戻る。
ステップS411では、撮像部101の内部パラメータを精度よく求めるために、記憶部107に格納した複数のパターン画像に対して、それぞれ撮像部101の位置姿勢を求める。そして、求めた各位置姿勢を基準にしてキャリブレーションパターン201の点をパターン画像に投影する。そして、投影した点と、実際のパターン画像上の対応点における誤差の和が最小になるようなカメラ内部パラメータを求めることで、最適値を求める。尚、以上のキャリブレーション処理は、公知の推定処理を用いることができ、その詳細な説明は省略する。次に、ステップS412において、ステップS411で求めた内部パラメータを記憶部107に保存する。
このように、本実施形態によれば、複数の画像パターンから最適なカメラ内部パラメータを求める図4のステップS411の処理に適した画像パターンを得るための撮像位置姿勢が指示される。このため、カメラキャリブレーションの仕組みを理解していないユーザであっても、精度を落とさずカメラキャリブレーションを実施可能である。
[第2実施形態]
第1実施形態では、現在の撮像部101の位置姿勢を極座標系へ変換し、極座標系上で緯度方向の回転と撮像部の視軸を軸とする回転を加えることにより指示位置姿勢を算出した。しかしながら、本発明はこのような指示位置姿勢の算出方法に限定されるものではなく、様々な方向からパターンを撮像させるように指示位置姿勢を算出できる方法であればいずれの方法も本発明に適用可能である。例えば、記憶部107内に格納されている撮像された画像の消失点方向を解析し、その解析結果に基づいて指示位置姿勢を算出する方法であってもよい。第2実施形態では、この算出方法を本発明の撮影環境校正方法に適用した例を示す。尚、以下では、主として第1実施形態との相違点を説明する。
第2実施形態による校正装置の機能構成は第1実施形態(図1)と同様である。第1実施形態との違いは、記憶部107が格納する情報として、保存した撮像画像の消失点方向が追加されている点である。
次に、第2実施形態における撮影環境校正方法の処理手順を図4に示すフローチャートを用いて説明する。第2実施形態による処理と第1実施形態による処理との違いは、ステップS405にある。第2実施形態のステップS405では、記憶部107に格納されているパターン画像を参照し、パターン画像の消失点方向が算出される。以下、図5及び図6のフローチャートを用いて第2実施形態によるステップS405の処理について説明する。
図5は、図4のステップS405における処理の詳細を示すフローチャートである。図5における処理を、図7を参照しながら説明する。
ステップS500では、記憶部107に保存されているパターン画像を参照し、パターン画像すべてに対して処理を行ったかどうかを判定する。次に、ステップS501において、注目するパターン画像を読み込む。そして、ステップS502において、読み込んだパターン画像を用いて図7に示す画像座標703における消失点の位置を求める。消失点位置の算出は次のように行われる。まず、パターン画像上に写っているキャリブレーションパターン201における格子状の点を、パターン上の2次元平面における垂直方向、水平方向にそれぞれ直線で結ぶ。そして、複数の垂直方向の線が交わる点を1つの消失点位置とし、複数の水平方向の線が交わる点をもう1つの消失点位置とする。尚、図7では、作図上の理由で各方向の両端の線と、それらの交点である消失点701,702のみが図示されており、消失点を求めるすべての線は図示されていない。
ステップS503では、ステップS502で求めた消失点が2点か否かを判定する。2点でない場合(垂直方向の線、水平方向の線うち少なくとも1つの方向の線が互いに平行になり、交点を求められない状態)は、ステップS505に処理を移す。一方、消失点が2点算出された場合はステップS504に処理を移す。
ステップS504では、キャリブレーションパターン201を撮像したパターン画像704における中心点202から消失点701、702へのそれぞれのベクトルV1、V2を求める。更に、以下の式5により、このパターン画像における消失点方向Dを決定する。
Figure 2008046687
その後、ステップS507に進み、消失点方向Dをパターン画像に対応付けて記憶部107に格納し、ステップS500に戻る。
一方、ステップS505において、消失点が1点の場合は、ステップS506に処理を移し、消失点が求められなかった場合はそのままステップS500へ処理を戻す。
ステップS506では、以下の式6のようにパターン画像704におけるパターン中心点202の2次元座標値(ベクトルCとする)から消失点の2次元座標値(ベクトルVとする)への単位ベクトル方向を消失点方向Dと設定する。
Figure 2008046687
そして、ステップS507において、求めた消失点方向Dをパターン画像に対応付けて記憶部107に格納し、ステップS500に戻る。
このように、各パターン画像に対して、消失点方向Dを求め、全てのパターン画像について処理を終えたら、図4のステップS406に処理を移す。
図6は、図4のステップS406における処理の詳細を示すフローチャートである。図6における処理手順について図8、図9を参照しながら説明する。尚、図4のステップS405で算出できた複数の消失点方向のうち、最初に撮影したパターン画像によって求めた消失点方向をD1とし、各消失点方向を撮影した順にD2、D3と定義する。
まず、ステップS600では、消失点方向D1を画像座標系の原点を中心に90度回転させたベクトルM1を生成する。ステップS601では、ベクトルM1と、D1以外の消失点方向(図8においてはD2、D3)との角度差をそれぞれ求め、最小の角度差(最小角度差)を得る。そして、ステップS602において、M1と各消失点方向との最小角度差が閾値(図8の角度801)以内か否かを判定する。M1と各消失点方向との最小角度差が閾値以内であればステップS604へ、閾値外であればステップS603へ処理を移す。図8においては、M1とD3のなす角度が最小角度差になるが、このときの最小角度差は閾値801外であるため、ステップS603へ処理を移す。ここで、閾値801は、ユーザ自身がシステムの動作に応じて入力してもよいし、ユーザ以外のシステム設定者が設定してもよい。
ステップS603では、M1を消失点方向とするような撮像位置姿勢を求め、指示位置姿勢とする。詳細は後述する。
ステップS604では、更にM1を画像座標系の原点を中心に90度回転させ、ベクトルM2を生成する。ステップS605では、M2に対しても同様に、D1以外の消失点方向との角度差を求め、最小角度差を得る。詳細は後述する。そして、ステップS606において、M2と各消失点方向との最小角度差が閾値(図8の角度801)以内か否かを判定する。閾値801以上である場合は、ステップS607において、M2を消失点方向とするような撮像位置姿勢を求め、これを指示位置姿勢とする。又、閾値801以内である場合は、ステップS608へ進み、更にM2を90度回転させてM3を得る。そして、M3に対しても同様に、ステップS609において、D1以外の消失点方向との角度差を求め、最小角度差を得る。
ステップS610において最小角度差が閾値8010以上であると判定された場合は、ステップS611において、M3を消失点方向とするような撮像部101の位置姿勢を求め、これを指示位置姿勢とする。詳細は後述する。
又、ステップS610において最小角度差が閾値801以内であると判定された場合は処理を終了する。例えば、図8のようにM3とD2が得られた場合、両者のなす角度が最小角度差になるが、その最小角度差は角度801の閾値内であるため、M3に該当する画像パターンは既に記憶部107内に存在すると判定し、処理を終了する。
ステップS612では、ステップS603,S607,S611のいずれかで求められた指示位置姿勢に基づいて、パターンを撮像させるための3次元ガイドCGを描画する。本第2実施形態に示す方法により、次に撮像すべき撮像装置の位置姿勢を求めることが可能となるため、3次元ガイドCGにより指示位置姿勢をユーザに提示することが可能になる。
尚、本発明の本質は、ユーザに次に撮影すべき撮像装置の位置姿勢を3次元ガイドCGで提示することにあり、次に撮影すべき位置姿勢はどのような方法で求めてもよく、上記の例はその一例を示しているに過ぎない。従って、ここに示した方法以外の方法で、次の撮像位置姿勢を計算しても構わないことは言うまでもない。
上記のステップS603(S607,S611)において、消失点方向をM1(M2,M3)とするような撮像位置姿勢は、以下のように算出される。
まず、D1を消失点方向に持つ撮像画像を取得した撮像位置姿勢Tr1に対して、パターン中心C(202)が画像座標系703の原点Oになるように、画像座標系703の視点900を中心に撮像位置姿勢を回転させる(図9参照)。尚、撮像位置姿勢Tr1は、世界座標系における位置姿勢を示す4×4行列であり、記憶部107に格納されている撮像時の撮像位置姿勢である。そして、xy平面から画像中心を通る垂直な方向(画像座標系703のz軸方向、視点方向が正)を軸に−90度回転させ、撮像位置姿勢R1(世界座標系における位置姿勢を示す4×4行列)とする。この撮像位置姿勢R1は以下の式7のように求める。
Figure 2008046687
ここでn(nx,ny,nz)は、カメラ座標系においてパターン中心202の画像座標値Cを画像座標における原点に回転する場合の回転軸ベクトル、gはこのときの回転角を表す。このようにして求めた撮像位置姿勢R1は、記憶部107に記憶される。消失点方向がM2、M3となるような撮像位置姿勢も、M1と同様にして求める。このとき、M2の場合のR1は式8、M3の場合のR1は式9で求めることができる。
Figure 2008046687
Figure 2008046687
[第3実施形態]
第1実施形態では、図4のステップS403において撮像部101の初期カメラパラメータを導出したあとにのみ撮像位置姿勢を指示している。しかしながら、本発明は、初期カメラパラメータの導出等の校正手法、校正手順に限定されるものではない。例えば、同型の撮像装置で既にカメラキャリブレーションを済ませてあり、おおまかなキャリブレーション値が存在する場合等には、予め使用する撮像部101の内部パラメータに近い値が求められていることになる。この場合は、キャリブレーションパターンの認識ができた時点で、初期カメラパラメータを導出することなく、すぐにカメラ外部パラメータを導出するようにしてもよい。このように、予め取得されている大まかなカメラ内部パラメータを基にして、最終的なカメラ内部パラメータを校正する処理手順の詳細を図11のフローチャートを用いて説明する。
図11は第3実施形態による撮影環境校正方法の概略の処理手順を示すフローチャートである。図11に示される処理では、図4のフローチャートと比べて、ステップS403の分岐が排除され、代わりにステップS1103のカメラ位置姿勢推定処理が追加されている点が主な相違点である。
図11のステップS1103では、予め記憶部107に格納されているカメラ内部パラメータのおおまかな値を参照し、キャリブレーションパターン201の画像からカメラ外部パラメータを導出する。その他の処理(S1100〜S1102、S1104〜S1113)は、図4のフローチャート(S400〜S402、S404〜S413)と同様であるため説明を省略する。
[第4実施形態]
第1実施形態においては、カメラキャリブレーションにおいて、撮像部の位置姿勢を指示するための3次元ガイドCGを表示し、ユーザに指示した。しかしながら、本発明の適用はカメラキャリブレーションの実行時に限定されるものではない。例えば、撮像部101を用いて現実空間中に配置されたパターンやマーカを撮像し、その画像から空間中の物体の位置姿勢や、物体間の距離などを算出・校正する処理にも適用可能である。第4実施形態では、現実空間に配置したマーカの位置姿勢のキャリブレーション(校正)処理に本発明を適用した例を示す。又、本実施形態では、指示位置姿勢の提示装置としてHMDを用いた場合の例を説明する。
図12は、第2実施形態における機能構成を示すブロック図である。但し、図12において図1と同様の機能を有する構成には図1と同じ番号を付けている。
1200はHMDであり、撮像部101、表示部102を有する。撮像部101、表示部102は、夫々、HMD1200本体に固定されている。尚、第4実施形態においては、撮像部101と表示部102をHMD1200内にそれぞれ2基搭載しており、ステレオで現実空間の撮像と表示が可能になっている。ユーザはこのHMD1200を頭部に装着することで、表示部102に映るステレオの画像を見ることができる。このような形態のHMDは、例えば非特許文献3に記載されている。
HMD1200は、現実空間の画像にHMDの形状をした3次元ガイドCGを重畳表示し、ユーザに撮像位置姿勢を指示するためにも用いられる。以降は、撮像部101、表示部102と表現した場合は、左右の撮像部、表示部を同時に表すものとする。又、本発明は、ステレオの撮像と表示を行うことに限定されるものではなく、少なくとも1組以上の撮像部と表示部があれば適応可能であることは、以下の説明により明らかである。更に、本発明は、HMD1200を使用することに限定されるものではなく、ユーザが撮像部101を手に持ち、別な場所に配置された表示部103をユーザが観察可能な状態であれば適用可能であることは、以下の説明により明らかである。
撮像部101は、HMD1200に固定されるカラーCCDカメラである。但し、本発明は撮像部101の種類について何等限定を有するものではなく、ユーザがその画像を見て現実空間だと認識できるように現実空間を撮像可能なものであればよい。
表示部102は、HMD1200に固定されているLCDディスプレイである。LCDディスプレイが表示する画像は自由曲面プリズムを介してユーザに提示する。もちろん、本発明は、このような表示装置に依存するものではなく、ユーザが現実空間映像で指示位置姿勢を確認できる表示が可能な表示装置であればよい。
位置計測部1201は、HMD1200に取り付けられている撮像部101の位置姿勢を計測する。第4実施形態においては、磁気センサであるPolhemus社のFASTRAKを位置計測部1201として使用する。このFASTRAKは、トランスミッタ(不図示)から発せられる磁場をレシーバ(図13の103)で受信することにより、撮像部101の位置姿勢を出力する。もちろん、本発明は、このような磁気センサに限定されるものではなく、光学センサや、マーカから撮像部101の位置姿勢を求めるなど、撮像部101の位置姿勢が求められる手法であればいずれの手法も適用可能である。
マーカ検出部1202は、撮像画像取得部104から撮像された画像を受ける。更に、記憶部1204に予め保存されている図21に示すようなマーカデータを読み込み、図13の1301〜1304に示されるような矩形のマーカを検出する。検出処理の詳細は後述する。
撮像位置姿勢推定部1203は、位置姿勢計測部1201の計測値を用いて撮像部101の現在の位置姿勢を推定する。記憶部1204は、第4実施形態における撮影環境校正方法の処理に必要な情報を保持し、処理に応じて読み出しや書き込みを行う。第4実施形態における撮影環境校正方法の処理に必要な情報とは、例えば、
・マーカデータ、マーカ内部のパターン画像、校正後のマーカ位置姿勢、
・保存した撮像画像、
・位置姿勢提示のために描画する仮想物体(HMDの形状モデルや、ガイド用CG)の頂点情報(基準座標系上で定義された3次元位置、各頂点の接続情報を含む仮想物体の描画に必要な情報、物体のマテリアル設定等)、
・撮像画像からマーカの2次元位置、撮像部の指示位置姿勢を格納する指示位置姿勢配列、マウスボタン押下時の設定(左ボタン押下:画像の保存、右ボタン押下:マーカキャリブレーションの開始)、
・校正済みのカメラ内部パラメータ、等の情報である。
データ解析部1205は、記憶部1204内に格納されているマーカデータを参照し、マーカ位置姿勢を高精度に推定するために必要なマーカ画像を撮影するための撮像位置姿勢を算出する。処理の詳細については後述する。撮像位置姿勢指示部1206は、記憶部1204に格納されている指示位置姿勢に基づいて、3次元ガイドCGを描画する。
図13は、第4実施形態における撮影環境校正方法の利用状態を示す模式図である。尚、図12と図13とで同じ部分については同じ番号を付けている。
図13では、現実空間に配置されたテーブル1305と壁面1306に一辺が20cmの正方形のマーカ1301〜1304が貼り付けてある。ユーザは、これらの矩形マーカ1301〜1304のおおまかな位置姿勢を予め記憶部1204に図21に示すようなフォーマットでマーカデータとして登録しておく。第4実施形態では、各矩形マーカ1301〜1304を撮像した複数枚の画像から位置姿勢の校正を行う。第4実施形態において、これらの矩形マーカ1301〜1304には、「ARToolKit」と呼ばれるマーカを用いる。ARToolKitについては、例えば、非特許文献4(加藤ら:”マーカ追跡に基づく拡張現実感システムとそのキャリブレーション”,日本VR 学会論文誌,Vol.4,No.4,pp.607-616,1999)から情報を得ることができる。図13の2000A〜2000Cは、3次元ガイドCGの一部を示している。第4実施形態では、マーカキャリブレーション時に必要になるパターン画像を自動的に予測し、ユーザに対してそのパターン画像を撮像できる位置を示す3次元ガイドCGを提示する。
図12で示したブロック図で構成される撮影環境校正方法における処理手順を図14に示すフローチャートを用いて説明する。
ステップS1400において、撮像画像取得部103は、撮像部101にて撮像された画像信号を入力し、画像データに変換する。次に、ステップS1401において、上記非特許文献4に示された手法を用いて、マーカを検出し、各マーカのカメラにおける位置姿勢を求める。非特許文献4の場合、マーカの検出には、まず2値化処理を行い、白いラベル領域に対して直線あてはめを実行し、4本の線分より十分に近似できた領域をマーカ候補とする。更に、マーカ候補領域内部のパターン画像を正規化し、図21のマーカデータのPATTARNフィールドに記載されている記憶部1204内のパターン画像とテンプレートマッチングを行ってマーカを同定する。
ステップS1402では、位置姿勢計測部1201により出力された位置姿勢をそのまま撮像部101の位置姿勢に設定する。但し、本発明は、位置姿勢計測部1201の出力値をそのまま用いることに限定されるものではない。例えば、マーカが同定されている場合はマーカから撮像部101の位置姿勢を求め、マーカが同定されていない場合には、位置姿勢計測部1201の出力から撮像部101の位置姿勢を求めるなど、場合に応じて切り替える手法を用いることも可能である。
次に、ステップS1403において、ステップS1404による指示位置姿勢配列のデータ解析が完了しているかどうかを確認する。データ解析が完了していた場合はステップS1405に処理を移し、データ解析が完了していない場合はステップS1404に処理を移す。
ステップS1404では、記憶部1204に格納されているマーカデータ(図21)を参照し、ある1つの基準とするマーカとそのマーカ以外の2つのマーカを1枚の画像で撮像できるような撮像位置姿勢を求める。第4実施形態においては、マーカ1301を基準マーカとして、以下の3つの撮像部101の指示位置姿勢を求める。即ち、
(1)マーカ1301と1302と1303が含まれる画像を撮影可能な撮像位置、
(2)マーカ1301と1303と1304が含まれる画像を撮影可能な撮像位置、
(3)マーカ1301と1302と1304が含まれる画像を撮影可能な撮像位置である。
これらの指示位置姿勢を求めるには、まず、図21のマーカデータに記述されている3つのマーカの3次元位置を平均した位置と、3つのマーカの3次元位置の3点を含む平面の法線ベクトルを求める。次に、3点のうち、2点間の距離が最大となる長さをLとおく。更に、平均位置の点を通る法線ベクトル方向の直線上で、法線ベクトルが指す方向で、かつL+30/tanθの位置に指示位置姿勢を設定する。ここでθは撮像部101の内部パラメータから求めた画角である。更に、指示位置姿勢の撮像部101の視軸ベクトルを法線ベクトルの逆方向に設定する。このとき撮像部101の上方向を示すアップベクトルは、任意であるが、例えば、3点のうち、2点間の距離が最大となる線分に対して垂直な方向になるように設定すればよい。
ここで、3つのマーカがすべて同じ平面にある場合には、全てのマーカに対して正対する位置から撮影することになるため、マーカの検出精度が低下する。これを回避するために、3つのマーカの各法線ベクトル(各マーカの姿勢から求める)が同一の場合は、指示位置姿勢を法線方向に垂直なベクトルを軸に+20度回転させる。このような処理を、3組のマーカの組み合わせに対して行い、得られた3つの撮像部の位置姿勢を指示位置姿勢として記憶部1204内の指示位置姿勢配列に格納する。
尚、本発明は、上記のデータ解析方法に依存するものではなく、マーカキャリブレーション時に適切なマーカ画像を入力できる撮像部101の指示位置姿勢を生成できる手法であれば適用可能である。
次に、ステップS1405では、ステップS1404で求めた指示位置姿勢に基づいて、ユーザに対して指示位置姿勢を教示するための3次元ガイドCGを描画する。詳細な処理については後述する。
ステップS1406では、ユーザが持つ指示部111により画像保存の指示のイベント(手持ちマウスの左ボタン押下)が発生したか否かを判定する。画像保存指示のイベントが発生したと判定された場合はステップS1407へ処理を移す。画像保存指示のイベントが発生していない場合はステップS1408に処理を移す。
ステップS1407では、撮像しているマーカが写っている画像を記憶部107に保存する。処理完了時には、ステップS1400へ戻る。又、ステップS1408では、ユーザが持つ指示部111によりマーカ位置姿勢のキャリブレーション開始指示のイベント(手持ちマウスの右ボタン押下)が発生したか否かを判定する。キャリブレーション開始指示のイベントが発生したと判定された場合はステップS1409へ処理を移す。キャリブレーション開始指示のイベントが発生していない場合は、ステップS1400へ戻る。
ステップS1409では、非特許文献2で挙げた手法により、マーカの位置姿勢を校正する。非特許文献2の手法では、まず、マーカが撮像された複数の画像に対して、各画像に写る各マーカの相対位置姿勢を求める。次に、各画像で求めた相対位置姿勢を基準とするマーカ1301を中心とした位置姿勢に変換する。最後に、基準とするマーカ1301のマーカデータに記された規準座標系上での位置姿勢から、全てのマーカの基準座標系上での位置姿勢を求める。ステップS1410では、ステップS1409で校正されたマーカの位置姿勢を記憶部1204に格納する。
図15は、図14のステップS1405における処理手順の詳細を示すフローチャートである。図15における処理を、図16〜図18を参照しながら説明する。
ステップS1500では、指示位置姿勢配列に格納されている全ての指示位置姿勢に対して描画処理を行ったかどうかを確認する。描画処理が残っている場合はステップS1501へ進む。一方、全ての指示位置姿勢について描画処理が完了している場合は本処理を終了する。
ステップS1501では、記憶部1204内の現在処理している指示位置姿勢と現在の撮像位置姿勢を比較し、その差が閾値以上であるか否かを判定する。そして、閾値以上の場合はステップS1502へ、閾値内である場合はステップS1503へ処理を移す。尚、この処理における閾値は、ユーザ自身がシステムの動作に応じて入力してもよいし、ユーザ以外のシステム設定者が設定してもよい。
ステップS1502では、ノーマルモードと呼ばれるモードで、指示位置姿勢に基づく3次元ガイドCGをユーザに提示する。このノーマルモードでは、図16に示されるように、指示位置姿勢で定義された基準座標系上の3次元位置にHMDの形状を持つ3次元ガイドCG2000Aを配置し、撮像した画像上に重畳表示する。描画処理が完了すると、処理はステップS1500に戻る。
一方、ステップS1503では、調整モードと呼ばれるモードで指示位置姿勢に基づく3次元ガイドCGをユーザに提示する。上記ノーマルモードでは、HMDの形状を持つ3次元ガイドCGを描画し、指示位置姿勢の大まかな位置姿勢を提示する、ユーザ自身がノーマルモードで描画される3次元ガイドCGに近づくと視野のほとんどの領域が3次元ガイドCGで隠されてしまう。このため、ユーザ自身で最終的に写るマーカ画像を確認し、調整することが困難になる。よって、撮像部101の位置姿勢がHMD形状の3次元ガイドCGに近づいた場合には、マーカの画像を確認しながら撮像部101の位置姿勢を調整可能な3次元ガイドCGを描画する調整モードを用いることでこの問題を回避する。
本実施形態では、図17に示されるような、撮像部101の投影面をイメージさせる3次元ガイドCGを描画する。ユーザは、撮像部101の中心を中心表示1702に合わせるように撮像部101を動かす。又、画面の角を示す4つの矢印1703の先端に、実際の撮像部101の画面における角を合わせるように撮像部101を移動回転させる。このようにして、指示位置姿勢に合うように撮像位置姿勢を調整する。処理が完了した場合は、ステップS1500に戻る。
尚、調整モードによる描画形態は図17のような3次元ガイドCGに限定されるものではない。例えば、図18に示されるように、指示位置姿勢における撮像部101の視軸上に円の中心を持ち、視軸に沿って直径が変化する複数の円1801を、3次元ガイドCGとして、視軸に沿って等間隔に配置して描画するようにしてもよい。尚、複数の円1801は同じ直径の円であってもよい。このような描画によれば、ユーザは、指示位置姿勢の中心1702と、各円の中心が重なるように撮像部101を移動させることにより、撮像位置姿勢を調整することができる。このように、ユーザ自身が指示位置姿勢に対して正確に撮像部101の撮像位置姿勢を調整できる方法であれば、いかなる方法も適用可能である。
以上のように第4実施形態によれば、校正装置はマーカ位置姿勢のキャリブレーション時に必要になるパターン画像を自動的に予測し、ユーザに対してそのパターン画像を撮像できる位置を提示し、誘導する。このため、マーカ位置姿勢のキャリブレーションのアルゴリズムや仕組みを知らない初心者であっても、精度よくマーカ位置姿勢のキャリブレーションが実施可能になる。
[第5実施形態]
第4実施形態においては、3次元空間中に複合現実感を利用して3次元ガイドCGを重畳表示したが、本発明は、このような3次元ガイドCGの表示方法に限定されるものではない。例えば、図19に示すように撮像画像上の一部に空間を俯瞰するような視点から見た指示位置姿勢を示すHMDオブジェクト2000A、2000B、2000C(2000Cは不図示)を撮像画面上の一部の枠1900内に表示するようにしてもよい。このとき、枠1900内には、俯瞰視点に対応する仮想マーカ1901〜1904と、現在の撮像位置姿勢を示すHMDオブジェクト1905と、座標系を示す座標軸オブジェクト1906が表示される。尚、枠1900に俯瞰視点の画像を表示する場合は、撮像画像中のマーカも同時に視認できるようにするため、枠1900内のオブジェクトは半透明表示にすることが好ましい。
以下では、第4実施形態との主たる相違点について説明する。
第5実施形態による処理手順における第4実施形態との主たる相違点は、図14のステップS1405の処理である。第5実施形態におけるステップS1405の処理では、まず、座標系を示す座標軸オブジェクト1906を配置する。次に、指示位置姿勢配列に格納されている指示位置姿勢を基にHMDオブジェクト2000A、2000B、2000CのCGを配置する。次に、マーカデータから取得した位置姿勢データ、パターンデータを用いて仮想マーカ1901〜1904を配置する。次に、現在の撮像位置姿勢におけるHMDオブジェクト1905を配置する。更に、これらの配置情報を俯瞰視点における仮想カメラの投影面(枠1900)に投影し、投影した画像を撮像画面上の枠内に半透明表示する。又、上記のような俯瞰視点だけではなく、上面図や3面図等を表示するようにしてもよいことは明らかである。
[第6実施形態]
第4実施形態においては、実物のスケールで指示位置姿勢を現実空間中に表示していたが、図20に示すように指示位置姿勢を提示してもよい。即ち、実物のスケールで表示していた指示位置姿勢と、現在の撮像部101の位置姿勢を基に描画した仮想マーカ1901〜1904とを含む仮想オブジェクト群を縮小表示し、空間全体を俯瞰できるように指示位置姿勢を提示してもよい。
以下では、第5実施形態の主たる相違点を説明する。
処理の手順における第5実施形態との相違点は、ステップS1405の最後の表示である。第5実施形態では俯瞰視点の仮想カメラの投影面に対して投影したが、第6実施形態では、第4実施形態で用いた仮想オブジェクト群を基準座標系の不図示の原点を中心に例えば1/3にスケールダウンさせる。この基準座標系から図20に示す2001の座標系に変換するスケールダウンの座標変換行列を求め、各仮想オブジェクト群を縮小する。尚、仮想物体のスケール値は上記に限定されるものではなく、各マーカの配置を視野内に適度に収められるスケールであれば適用可能である。この変換した仮想物体を現在の撮像位置姿勢に基づいて描画することにより、ユーザに図20のようなミニチュア空間で指示位置姿勢を提示することが可能になる。
[第7実施形態]
第4実施形態では、データ解析部を利用して指示位置姿勢を求めたが、本発明は、このようにデータ解析部を利用して指示位置姿勢を求めることに限定されるものではない。例えば、ユーザ以外のシステム設定者が予め指示位置姿勢を記憶部1204に格納しておき、予め格納された指示位置姿勢を用いて3次元ガイドCGを提示するようにしてもよい。又、このとき、同時に記憶部1204に指示位置姿勢の優先順位を設定し、図22に示すように3次元ガイドCGの一部として撮像の優先順位や順番を示す番号やアルファベット等の記号を表示してもよい。
以下では、第7実施形態の構成と処理の詳細について、第4実施形態との主たる相違点を説明する。
第7実施形態における撮影環境校正方法の構成における第4実施形態との主たる相違点は、データ解析部の有無である。第7実施形態においては、撮像位置姿勢推定部1203の処理が終了した時点で、データ解析を行わずに撮像位置姿勢指定部1206で処理を行う。
又、第7実施形態における撮影環境校正方法の処理における第4実施形態との主たる相違点は、ステップS1403とステップS1404の処理の有無である。第7実施形態においては、ステップS1402の処理が完了したらステップS1405に処理を移し、記憶部1204内の指示位置姿勢配列に格納されている指示位置姿勢と優先順位を読み出す。そして、HMDオブジェクト2000A、2000B、2000Cと撮像の順番を示す番号2201、2202、2203を3次元ガイドCGとして描画する。
[第8実施形態]
第4実施形態では、指示部111を利用して画像を保存する指示をユーザから受けたが、現在の撮像位置姿勢が指示位置姿勢十分に近い値であれば自動的に撮像し、記憶部1204に保存してもよい。
第8実施形態における撮影環境校正方法の構成における第4実施形態との主たる相違点は、指示部111の有無である。又、第8実施形態における撮影環境校正方法の処理における第4実施形態との主たる相違点は、ステップS1406において、「保存指示あり」の判定を行う代わりに、「撮像位置姿勢と指示位置姿勢の値が近い」ことを判定する点である。第8実施形態にけるステップS1406では、現在の撮像位置姿勢と記憶部1204内の指示位置姿勢配列内の各指示位置姿勢を比較し、両者の差異が1つでも閾値内に入るものがあれば、ステップS1407に処理を移す。
[第9実施形態]
第4実施形態においては、マーカキャリブレーションにおいて、現実空間に配置されたマーカの相対位置姿勢を校正するために取得する画像を、撮像部101の位置姿勢を指示するための3次元ガイドCGを表示してユーザに指示した。しかしながら、本発明は、撮像画像上に撮像された対象の幾何情報を求めるマーカキャリブレーションの実行時に限定されるものではない。例えば、特許文献4(特開2003−269913号公報)では、撮像画像に映るランドマークを用いて撮像画像を基にしない別の方法で計測する位置姿勢センサの配置(幾何)情報を算出・校正する処理が開示されている。特許文献4では、撮像部101を用いて現実空間中に配置されたランドマークを撮像すると同時に撮像した時点における撮像部位置姿勢計測部の出力値を格納する。そして、その画像と位置姿勢計測部の情報から位置姿勢センサが独自に定義するセンサ座標系2601(図26)の基準座標系2602における位置姿勢や、撮像部101と位置姿勢センサの測点の位置姿勢などを算出・校正する。本発明は、このような位置姿勢センサの配置(幾何)情報を算出・校正にも適用可能である。
第9実施形態では、複合現実感提示装置の実現を目的として、現実空間に配置した磁気センサの位置姿勢の校正を行う処理において、本発明を適用した例を示す。
まず、複合現実感を実現するためには、基準座標系2602における撮像部101の位置を計測する必要がある。しかし、一般的な三次元位置姿勢センサが出力する出力値は、センサが独自に定義するセンサ座標系2601における測点(以後、計測受信部2303と呼ぶ)の位置姿勢であって、世界座標における撮像部の位置姿勢ではない。従って、センサ出力値をそのまま世界座標系における撮像部101の位置姿勢として利用することはできず、なんらかの校正を行う必要がある。この校正を実施する例として非特許文献1で開示されるセンサ校正方法が挙げられる。尚、このセンサ校正方法においても、高精度にセンサの配置情報の校正結果を求めるためには、現実空間に配置した各ランドマークを適切な位置姿勢から撮像したランドマーク画像を取得することが必要となる。
図26は、本実施形態で校正するべき配置情報である、撮像部101と受信計測部2303の配置情報MCSと、基準座標系における計測送信部2304の配置情報MTWとの関係を示す図である。尚、第9実施形態では、配置情報を位置姿勢を表す4×4の行列で表している。これらの2つの配置情報MCSとMTWはそれぞれ空間中で固定されている。又、MSTは磁気センサの計測値であるセンサ座標系2601における計測受信部2303の位置姿勢を示している。2つの配置情報MCSとMTWと、センサ計測値MSTを求めることができれば、基準座標系2602における撮像部101の位置姿勢MCWが求められる。
このときMCWは、以下の式10によって示すことができる。
Figure 2008046687
図24は位置姿勢センサを用いた一般的な複合現実感提示装置を実現するための機能構成を示すブロック図である。但し、図24において図12と同様の同じ機能を有する構成には同じ参照番号を付けている。
計測受信部2303は、HMD2300に固定されている磁気センサのレシーバを示している。第9実施形態では、位置姿勢センサとしてPolhemus社の磁気センサであるFASTRAKを用いている。この計測受信部2303は、受信した磁場の強度を計測制御部2305に送る。
計測送信部2304は、現実空間内に配置されている磁気センサFASTRAKのトランスミッタを示している。計測制御部2305は、計測受信部2303の受信結果を受け、計測対象である撮像部101に固定された計測受信部2303のセンサ座標系2601における位置姿勢MSTを計測する(図26参照)。第9実施形態ではこの計測制御部2305は、FASTRAKのコントローラを示している。
位置姿勢変換部2401は、計測制御部で得られたセンサ座標系2601における計測受信部2303の位置姿勢MSTと記憶部2403に格納されているセンサ校正情報MCSとMTWを読み出す。そして、式10によりMCSを求める。
仮想物体描画部2402では、求められたMCWをビューイング変換行列として用い、記憶部2403内に格納されている仮想物体の頂点情報を読み出して仮想空間画像を描画する。記憶部2403は、複合現実感提示装置を実現するために必要な情報を管理する。例えば、センサ校正情報MCSとMTW、重畳する仮想物体の頂点情報、撮像部101のカメラ内部パラメータ等である。
このようにして、撮像された画像の上に得られた仮想空間の画像を画像合成部110で重畳し、表示部102に表示することにより、ユーザに複合現実空間を提示することができる。
図24のような複合現実感提示装置を実現するためには、センサ校正情報MCSとMTWを校正し、予め記憶部2403内に格納しておく必要がある。
図23は、この校正情報を校正する校正装置に対して本発明を適用した、第9実施形態の校正装置における機能構成を示すブロック図である。尚、図23において、図24と同じ機能を持つ構成については同じ参照番号を付けている。
画像座標取得部2306は、撮像部101が撮像した画像を入力し、画像中に撮像されているランドマークの画像座標系での座標値及びその識別番号(識別子)を特定する。尚、第9実施形態では、このランドマークに第4実施形態でも用いたARToolKitの正方形マーカを使用する。正方形マーカの検出及び識別(同定)については、第4実施形態における処理と同一である。但し、本発明は、ランドマークとして正方形マーカを使用することに限定されるものではなく、センサキャリブレーションが可能な指標であれば適用可能であることは明らかである。
記憶部2307は、第9実施形態による撮影環境校正方法の処理に必要な情報を保持し、処理に応じて読み出しや書き込みを行う。撮影環境校正方法の処理に必要な情報とは、例えば、
・図21に示すマーカデータ、マーカ内部のパターン画像、
・校正情報MCSとMTW
・保存した撮像画像、保存したセンサ計測値、
・位置姿勢提示のために描画する仮想物体の頂点情報、
・撮像画像から検出した正方形マーカの画像座標系における各頂点の2次元位置、
・撮像部101の指示位置姿勢を格納する指示位置姿勢配列、
・指示部2309から入力されるデータ取得コマンドと校正情報算出コマンドとを判別するフラグ、
・正方形マーカの画像座標値と基準座標系における座標値を対応付けた対応リスト等の情報である。
データ解析部1205は、記憶部2307から得たマーカデータを参照し、センサの配置情報を高精度に推定するために必要なマーカ画像を撮影するための撮像位置姿勢を算出する。又、撮像位置姿勢指示部1206は、記憶部2307に格納された指示位置姿勢に基づいて3次元ガイドCGを描画する。
指示部2309は、データ取得コマンドがユーザから入力された場合には、「データ取得」のフラグを、校正情報算出コマンドがユーザから入力された場合には「校正情報算出」のフラグを記憶部2309に格納する。
校正情報算出部2310は、非特許文献1で開示されている手法を用いて、記憶部2307内に格納された撮像された画像から検出した正方形マーカの画像座標系における2次元座標値と保存したセンサ計測値を用いて校正情報を算出する。この補正情報算出部2310は、まず、記憶部2307に格納されたマーカデータの3次元位置姿勢を、正方形マーカの4頂点における3次元座標値に変換する。この変換は公知の手法であるため説明は省略する。次に、検出された各正方形マーカの各頂点位置をセンサ座標値と未知パラメータである校正情報MCSとMTWに初期値を設定して、求められた基準座標系26020における撮像部101の位置姿勢を求める。更に、求めた撮像部101の位置姿勢を基にして、撮像されている正方形マーカの各頂点に対応する3次元座標値をカメラ内部パラメータにより求めた射影変換により画像座標系における各頂点の理想値に変換する。ここで、撮像画像上で検出された正方形マーカの各頂点位置を記憶部2307から読み出し、記憶部2307内のリストに設定された情報を基に対応付ける。ここで対応付けられた各頂点の画像上での誤差を最小とするような補正値を誤差最小化の手法によって、求めるべき校正情報であるMCSとMTWを求める。詳細は、非特許文献1を参照のこと。このようにして得られた校正情報は、記憶部2307に格納される。
図23で示したブロック図で構成される撮影環境校正方法による処理手順を図25に示すフローチャートを用いて説明する。
図25のステップS1403〜S1405では、図14における処理と同様に記憶部2307に格納されているマーカデータを解析し、マーカデータの情報から最適な指示撮像位置姿勢を生成し、その解析結果に基づいて3次元ガイドCGを表示する。
ステップS2501では、記憶部2307内にデータ取得コマンドのフラグが設定されているか否かを判定し、設定されている場合はステップS2502に、設定されていない場合はステップS2506に処理を移す。
ステップS2502では、計測制御部2305から計測値を記憶部2307に入力する。そして、ステップS2503において、画像座標取得部2306によりランドマーク(正方形マーカ)の画像座標を算出し、ランドマークの識別IDとともに記憶部2306に入力する。ここで、識別IDとは、図21のマーカデータに記している1301、1302等の各ランドマークを識別するための固有のIDとする。次に、ステップS2504では、撮像画像から検出された正方形マーカの識別IDに対応する記憶部2307内のマーカデータの基準座標系における3次元位置姿勢が取得される。ステップS2505では、対応付けられた正方形マーカの画像座標値と基準座標系における座標値を記憶部2307内の対応リストに格納する。
ステップS2506では、現在までに取得された対応リストにセンサの配置情報を校正するに足るだけの情報を有しているかどうかの判定が行われる。条件を満たしている場合はステップS2507へ処理を移し、条件を満たしていない場合はステップS1403に戻る。センサの配置情報の校正実施の条件としては、例えば、1つ以上の正方形マーカが同定されていること、複数の視点位置においてデータが得られていること、及び、データ総数が6点以上であることを、条件とする。
ステップS2507では、記憶部2307内に校正情報算出コマンドのフラグが設定されているか否かを判定し、設定されている場合はステップS2508に処理を移し、設定されていない場合はステップS1403に処理を戻す。
ステップS2508では、校正情報算出部23100でセンサの校正情報を算出する。そして、ステップS2509では、ステップS2508で求めたセンサの校正情報を記憶部2307に格納する。
以上のように、第9実施形態においては、センサの配置情報のキャリブレーション時に必要になるパターン画像を自動的に予測し、ユーザに対してそのパターン画像を撮像できる位置を示し、誘導する。このため、センサ配置情報のキャリブレーションのアルゴリズムや仕組みを知らない初心者であっても精度よくマーカ位置姿勢のキャリブレーションが実施可能になる。
以上説明したように、上記各実施形態によれば、画像を用いてカメラパラメータや現実空間中の物体の形状、配置情報、位置姿勢センサの配置情報などを校正する場合に、撮像する位置姿勢が3次元空間上に3次元ガイドCGで教示される。このため、校正の仕組みを知らず、画像データ入力時にミスを起こしやすい初心者であっても精度よく校正を行うことができる。
以上、実施形態を詳述したが、本発明は、例えば、システム、装置、方法、プログラムもしくは記憶媒体等としての実施態様をとることが可能である。具体的には、複数の機器から構成されるシステムに適用しても良いし、又、一つの機器からなる装置に適用しても良い。
尚、本発明は、ソフトウェアのプログラムをシステム或いは装置に直接或いは遠隔から供給し、そのシステム或いは装置のコンピュータが該供給されたプログラムコードを読み出して実行することによって前述した実施形態の機能が達成される場合を含む。この場合、供給されるプログラムは実施形態で図に示したフローチャートに対応したプログラムである。
従って、本発明の機能処理をコンピュータで実現するために、該コンピュータにインストールされるプログラムコード自体も本発明を実現するものである。つまり、本発明は、本発明の機能処理を実現するためのコンピュータプログラム自体も含まれる。
その場合、プログラムの機能を有していれば、オブジェクトコード、インタプリタにより実行されるプログラム、OSに供給するスクリプトデータ等の形態であっても良い。
プログラムを供給するための記録媒体としては以下が挙げられる。例えば、フロッピー(登録商標)ディスク、ハードディスク、光ディスク、光磁気ディスク、MO、CD−ROM、CD−R、CD−RW、磁気テープ、不揮発性のメモリカード、ROM、DVD(DVD−ROM,DVD−R)などである。
その他、プログラムの供給方法としては、クライアントコンピュータのブラウザを用いてインターネットのホームページに接続し、該ホームページから本発明のコンピュータプログラムをハードディスク等の記録媒体にダウンロードすることが挙げられる。この場合、ダウンロードされるプログラムは、圧縮され自動インストール機能を含むファイルであってもよい。又、本発明のプログラムを構成するプログラムコードを複数のファイルに分割し、それぞれのファイルを異なるホームページからダウンロードすることによっても実現可能である。つまり、本発明の機能処理をコンピュータで実現するためのプログラムファイルを複数のユーザに対してダウンロードさせるWWWサーバも、本発明に含まれるものである。
又、本発明のプログラムを暗号化してCD−ROM等の記憶媒体に格納してユーザに配布するという形態をとることもできる。この場合、所定の条件をクリアしたユーザに、インターネットを介してホームページから暗号を解く鍵情報をダウンロードさせ、その鍵情報を使用して暗号化されたプログラムを実行し、プログラムをコンピュータにインストールさせるようにもできる。
又、コンピュータが、読み出したプログラムを実行することによって、前述した実施形態の機能が実現される他、そのプログラムの指示に基づき、コンピュータ上で稼動しているOSなどとの協働で実施形態の機能が実現されてもよい。この場合、OSなどが、実際の処理の一部または全部を行ない、その処理によって前述した実施形態の機能が実現される。
さらに、記録媒体から読み出されたプログラムが、コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに書き込まれて前述の実施形態の機能の一部或いは全てが実現されてもよい。この場合、機能拡張ボードや機能拡張ユニットにプログラムが書き込まれた後、そのプログラムの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPUなどが実際の処理の一部または全部を行なう。
第1実施形態の機能構成を示すブロック図である。 第1実施形態における撮影環境校正方法の利用時の模式図である。 第1実施形態におけるキャリブレーションパターンを示す図である。 第1実施形態における大まかな処理手順を示すフローチャートである。 第1実施形態におけるデータ解析の処理手順の詳細を示すフローチャートである。 変形例1における撮像位置姿勢指示の処理手順の詳細を示すフローチャートである。 変形例1における撮像されたキャリブレーションパターンの2つの消失点を示す模式図である。 変形例1における指示位置姿勢を決める各消失点方向の角度を示す模式図である。 第1実施形態における指示位置姿勢をキャリブレーションパターンの中心点と指示位置姿勢が示す撮像部の画像中心が一致するような回転を説明する模式図である。 第1実施形態における指示位置姿勢に対して現在の撮像位置姿勢が近い位置にあることを示すOKマーク10010の一例を示す模式図である。 変形例2の処理手順の詳細を示すフローチャートである。 第2実施形態の機能構成を示すブロック図である。 第2実施形態における撮影環境校正方法の利用時の模式図である。 第2実施形態における撮影環境校正方法の大まかな処理手順を示すフローチャートである。 第2実施形態における撮像位置姿勢指示の処理手順の詳細を示すフローチャートである。 第2実施形態における撮像位置姿勢指示の処理におけるノーマルモードの表示形態を説明する模式図である。 第2実施形態における撮像位置姿勢指示の処理における調整モードの表示形態を説明する模式図である。 第2実施形態における撮像位置姿勢指示の処理における調整モードの別の表示形態を説明する模式図である。 変形例3における撮影環境校正方法の利用時のユーザに提示される画像を示す模式図である。 変形例4における撮影環境校正方法の利用時のユーザに提示される画像を示す模式図である。 第2実施形態におけるマーカデータを示すリストである。 変形例5における撮影環境校正方法の利用時の模式図である。 第3実施形態の機能構成を示すブロック図である。 複合現実感提示装置の機能構成を示すブロック図である。 第3実施形態における撮影環境校正方法の大まかな処理手順を示すフローチャートである。 第3実施形態におけるセンサの配置情報、基準座標系、センサ座標系の関係を示す模式図である。

Claims (18)

  1. 現実空間を撮像する撮像部により現実空間を撮像することによって、撮像部固体情報もしくは現実空間に関わる幾何情報もしくは撮像部と現実空間との間の関係を校正する方法であって、
    前記撮像部を用いて現実空間を撮影する撮像工程と、
    現実空間の撮像画像から校正の基準となる指標を検出する検出工程と、
    前記検出工程により得られた前記指標から前記撮像部の位置姿勢を算出する撮像位置姿勢算出工程と、
    校正情報を取得するための前記撮像部の次の目標位置姿勢を指示する仮想的な3次元オブジェクトを提示する撮像位置姿勢指示工程と、
    前記検出工程により得られた指標を用いて撮像部固体情報もしくは現実空間に関わる幾何情報もしくは撮像部と現実空間との間の関係を校正する校正工程とを備えることを特徴とする撮影環境校正方法。
  2. 前記校正工程は、撮像部の内部パラメータ情報を校正することを特徴とする請求項1に記載の撮影環境校正方法。
  3. 前記校正工程は、現実空間に配置された指標の位置姿勢を校正することを特徴とする請求項1に記載の撮影環境校正方法。
  4. 前記撮像部は当該撮像部の現実空間内での位置または姿勢または位置姿勢を撮像画像を基にしない別の方法で計測する計測部を備え、
    前記校正工程は、前記計測部を校正することを特徴とする請求項1に記載の撮影環境校正方法。
  5. 前記撮像位置姿勢指示工程は、前記3次元オブジェクトを現実空間における前記目標位置姿勢に3次元表示して現実空間の画像に実物大で重畳して表示することを特徴とする請求項1乃至4のいずれかに記載の撮影環境校正方法。
  6. 前記撮像位置姿勢指示工程は、現実空間における前記指標と前記目標位置姿勢を示すオブジェクトと現在の撮像位置を示すオブジェクトとを俯瞰できる視点を基に構成された3次元画像を現実空間の画像に重畳して表示することを特徴とする請求項1乃至4のいずれかに記載の撮影環境校正方法。
  7. 前記撮像位置姿勢指示工程は、現実空間に配置された前記指標と前記目標位置姿勢を示すオブジェクトと現在の撮像位置を示すオブジェクトとをそれぞれの配置関係を保ったまま縮小し、現実空間上の予め定められた位置に3次元的に表示することを特徴とする請求項1乃至4のいずれかに記載の撮影環境校正方法。
  8. 前記撮像位置姿勢指示工程は、前記目標位置姿勢と前記撮像部の現在の位置姿勢とを比較し、両者が予め定められた範囲の外であれば前記目標位置姿勢を第1の表示形態で提示し、両者が予め定められた範囲内であれば前記目標位置姿勢を第2の表示形態で提示することを特徴とする請求項1乃至7のいずれかに記載の撮影環境校正方法。
  9. 前記第1の表示形態は、前記撮像部の外形を模倣した物体を表示することを特徴とする請求項8に記載の撮影環境校正方法。
  10. 前記第2の表示形態は、前記撮像部によって撮影されるべき画像範囲を示す長方形の枠を表示することを特徴とする請求項8に記載の撮影環境校正方法。
  11. 前記第2の表示形態は、前記長方形の枠の頂点位置を示す仮想物体を当該枠の内側に表示することを特徴とする請求項10に記載の撮影環境校正方法。
  12. 前記第2の表示形態は、前記目標位置姿勢における撮像位置姿勢の視軸を中心とし、複数の円形オブジェクトを前記視軸に沿って配置して表示することを特徴とする請求項10に記載の撮影環境校正方法。
  13. 前記撮像位置姿勢指示工程は、前記目標位置姿勢と前記撮像部の現在の位置姿勢とを比較し、両者の相違が予め定められた範囲内の場合は、ユーザに撮影を促すための表示を行うことを特徴とする請求項1乃至12のいずれかに記載の撮影環境校正方法。
  14. 前記撮像位置姿勢指示工程は、前記目標位置姿勢が複数ある場合に順次求められた結果を1つだけ表示し、表示された目標位置姿勢における画像が得られた場合は、次の目標位置姿勢に更新することを特徴とする請求項1乃至13のいずれかに記載の撮影環境校正方法。
  15. 前記撮像位置姿勢指示工程は、前記目標位置姿勢を示す複数のオブジェクト付近に、撮像の順番を示す記号を表示することを特徴とする請求項1乃至14のいずれかに記載の撮影環境校正方法。
  16. 現実空間を撮像する撮像部により現実空間を撮像することによって、撮像部固体情報もしくは現実空間に関わる幾何情報もしくは撮像部と現実空間との間の関係を校正する情報処理装置であって、
    現実空間を撮影する撮像手段と、
    前記撮像手段で撮像された画像から指標となる対象物体を検出する検出手段と、
    前記撮像手段の位置姿勢を計測する計測手段と、
    前記撮像手段の目標位置姿勢を仮想的な3次元オブジェクトを用いて撮影者に提示する撮像位置姿勢指示手段と、
    前記検出装置により得られた指標を用いて校正を実施する校正手段とを備えることを特徴とする情報処理装置。
  17. 請求項1乃至15のいずれかに記載の撮影環境校正方法をコンピュータに実行させるための制御プログラム。
  18. 請求項17に記載された制御プログラムを格納したことを特徴とするコンピュータ可読媒体。
JP2006218975A 2006-08-10 2006-08-10 撮影環境校正方法及び情報処理装置 Expired - Fee Related JP4757142B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006218975A JP4757142B2 (ja) 2006-08-10 2006-08-10 撮影環境校正方法及び情報処理装置
US11/835,735 US7974462B2 (en) 2006-08-10 2007-08-08 Image capture environment calibration method and information processing apparatus
US13/149,231 US8472703B2 (en) 2006-08-10 2011-05-31 Image capture environment calibration method and information processing apparatus
US13/905,563 US9325969B2 (en) 2006-08-10 2013-05-30 Image capture environment calibration method and information processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006218975A JP4757142B2 (ja) 2006-08-10 2006-08-10 撮影環境校正方法及び情報処理装置

Publications (3)

Publication Number Publication Date
JP2008046687A true JP2008046687A (ja) 2008-02-28
JP2008046687A5 JP2008046687A5 (ja) 2008-09-25
JP4757142B2 JP4757142B2 (ja) 2011-08-24

Family

ID=39180402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006218975A Expired - Fee Related JP4757142B2 (ja) 2006-08-10 2006-08-10 撮影環境校正方法及び情報処理装置

Country Status (2)

Country Link
US (3) US7974462B2 (ja)
JP (1) JP4757142B2 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102034242A (zh) * 2010-12-24 2011-04-27 清华大学 消逝点检测的平面图像立体转换深度生成方法和装置
JP2011209622A (ja) * 2010-03-30 2011-10-20 Ns Solutions Corp 情報提供装置、情報提供方法、及びプログラム
JP2012123546A (ja) * 2010-12-07 2012-06-28 Casio Comput Co Ltd 情報表示システム、情報表示装置、情報提供装置、および、プログラム
JP2012178064A (ja) * 2011-02-25 2012-09-13 Nintendo Co Ltd 画像処理システム、画像処理方法、画像処理装置、および画像処理用プログラム
JP2013077314A (ja) * 2012-12-25 2013-04-25 Casio Comput Co Ltd 情報表示システム、情報表示装置、情報提供装置、および、プログラム
WO2013069196A1 (en) * 2011-11-11 2013-05-16 Sony Corporation Information processing device, information processing method, and program
EP2600308A2 (en) 2011-11-30 2013-06-05 Canon Kabushiki Kaisha Information processing apparatus, information processing method, program and computer-readable storage medium
JP2013127783A (ja) * 2011-12-12 2013-06-27 Canon Inc 並列追跡及びマッピングのためのキーフレーム選択
JP2016527583A (ja) * 2013-05-02 2016-09-08 クアルコム,インコーポレイテッド コンピュータビジョンアプリケーション初期化を容易にするための方法
JP2016186658A (ja) * 2016-07-14 2016-10-27 セイコーエプソン株式会社 頭部装着型表示装置および方法
JP2016208331A (ja) * 2015-04-24 2016-12-08 三菱電機エンジニアリング株式会社 作業支援システム
JP2016225953A (ja) * 2015-06-03 2016-12-28 株式会社日立製作所 カメラのキャリブレーション装置、カメラシステム及び、カメラのキャリブレーション方法
JP2017513079A (ja) * 2014-11-04 2017-05-25 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd カメラ較正方法、デバイス及びシステム
US9710967B2 (en) 2011-08-31 2017-07-18 Nintendo Co., Ltd. Information processing program, information processing system, information processing apparatus, and information processing method, utilizing augmented reality technique
WO2017208699A1 (ja) * 2016-05-30 2017-12-07 ソニー株式会社 情報処理装置と情報処理方法とプログラムおよび撮像システム
CN107545592A (zh) * 2016-06-28 2018-01-05 达索系统公司 动态摄像机校准
JP2018007253A (ja) * 2016-06-28 2018-01-11 ダッソー システムズDassault Systemes カメラを較正するコンピュータ実装方法
JP2018198025A (ja) * 2017-05-25 2018-12-13 株式会社Five for 画像処理装置、画像処理装置の制御方法及びプログラム
JP2019053603A (ja) * 2017-09-15 2019-04-04 富士通株式会社 表示制御プログラム、装置、及び方法
CN109584263A (zh) * 2017-09-25 2019-04-05 京东方科技集团股份有限公司 可穿戴设备的测试方法及系统
KR20200005119A (ko) * 2018-07-05 2020-01-15 주식회사 한화 단일 장착면의 장착 오차를 산출하여 보정하는 장치 및 그 방법
JP7042380B1 (ja) 2021-09-15 2022-03-25 株式会社日立プラントコンストラクション 表示装置、プログラムおよび表示方法
JP7472738B2 (ja) 2020-09-24 2024-04-23 沖電気工業株式会社 設置調整システム

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650407B2 (ja) * 2006-12-12 2011-03-16 ソニー株式会社 無線処理システム、無線処理方法及び無線電子機器
US9530142B2 (en) * 2007-02-13 2016-12-27 Claudia Juliana Minsky Method and system for creating a multifunctional collage useable for client/server communication
JP5388932B2 (ja) * 2009-04-30 2014-01-15 キヤノン株式会社 情報処理装置およびその制御方法
JP5247590B2 (ja) * 2009-05-21 2013-07-24 キヤノン株式会社 情報処理装置及びキャリブレーション処理方法
US8310539B2 (en) * 2009-05-29 2012-11-13 Mori Seiki Co., Ltd Calibration method and calibration device
WO2011009108A2 (en) * 2009-07-17 2011-01-20 Universal Robotics, Inc. System and method for automatic calibration of stereo images
JP5538862B2 (ja) * 2009-12-18 2014-07-02 キヤノン株式会社 画像処理装置、画像処理システム、画像処理方法、及びプログラム
US8384770B2 (en) * 2010-06-02 2013-02-26 Nintendo Co., Ltd. Image display system, image display apparatus, and image display method
EP2395767B1 (en) 2010-06-11 2014-11-12 Nintendo Co., Ltd. Image display program, image display system, and image display method
JP5615055B2 (ja) * 2010-06-18 2014-10-29 キヤノン株式会社 情報処理装置及びその処理方法
JP5739674B2 (ja) 2010-09-27 2015-06-24 任天堂株式会社 情報処理プログラム、情報処理装置、情報処理システム、および、情報処理方法
JP5598232B2 (ja) 2010-10-04 2014-10-01 ソニー株式会社 情報処理装置、情報処理システムおよび情報処理方法
WO2012048252A1 (en) 2010-10-07 2012-04-12 Aria Glassworks, Inc. System and method for transitioning between interface modes in virtual and augmented reality applications
US9041743B2 (en) 2010-11-24 2015-05-26 Aria Glassworks, Inc. System and method for presenting virtual and augmented reality scenes to a user
US9070219B2 (en) 2010-11-24 2015-06-30 Aria Glassworks, Inc. System and method for presenting virtual and augmented reality scenes to a user
WO2012071466A2 (en) 2010-11-24 2012-05-31 Aria Glassworks, Inc. System and method for acquiring virtual and augmented reality scenes by a user
US8953022B2 (en) 2011-01-10 2015-02-10 Aria Glassworks, Inc. System and method for sharing virtual and augmented reality scenes between users and viewers
US9118970B2 (en) 2011-03-02 2015-08-25 Aria Glassworks, Inc. System and method for embedding and viewing media files within a virtual and augmented reality scene
US20120327214A1 (en) * 2011-06-21 2012-12-27 HNJ Solutions, Inc. System and method for image calibration
JP5791433B2 (ja) * 2011-08-31 2015-10-07 任天堂株式会社 情報処理プログラム、情報処理システム、情報処理装置および情報処理方法
KR101638173B1 (ko) * 2011-09-06 2016-07-12 한국전자통신연구원 캘리브레이션을 위한 자동 피처 탐지용 기구물 및 그 탐지 방법
US9311883B2 (en) 2011-11-11 2016-04-12 Microsoft Technology Licensing, Llc Recalibration of a flexible mixed reality device
GB2496591B (en) * 2011-11-11 2017-12-27 Sony Corp Camera Movement Correction
EP2615580B1 (en) * 2012-01-13 2016-08-17 Softkinetic Software Automatic scene calibration
US9338447B1 (en) * 2012-03-14 2016-05-10 Amazon Technologies, Inc. Calibrating devices by selecting images having a target having fiducial features
US9098885B2 (en) 2012-04-27 2015-08-04 Adobe Systems Incorporated Camera calibration and automatic adjustment of images
US9874636B2 (en) * 2012-06-08 2018-01-23 Intel Corporation Device, system and method of orientation estimation of a mobile device
US9626799B2 (en) 2012-10-02 2017-04-18 Aria Glassworks, Inc. System and method for dynamically displaying multiple virtual and augmented reality scenes on a single display
US9135705B2 (en) 2012-10-16 2015-09-15 Qualcomm Incorporated Sensor calibration and position estimation based on vanishing point determination
JP2014102685A (ja) * 2012-11-20 2014-06-05 Sony Corp 情報処理装置、情報処理方法及びプログラム
JP2014112055A (ja) * 2012-12-05 2014-06-19 Denso It Laboratory Inc カメラ姿勢の推定方法およびカメラ姿勢の推定システム
US10769852B2 (en) 2013-03-14 2020-09-08 Aria Glassworks, Inc. Method for simulating natural perception in virtual and augmented reality scenes
JP6138566B2 (ja) * 2013-04-24 2017-05-31 川崎重工業株式会社 部品取付作業支援システムおよび部品取付方法
KR102098277B1 (ko) * 2013-06-11 2020-04-07 삼성전자주식회사 시선 추적을 이용한 시인성 개선 방법, 저장 매체 및 전자 장치
TWI509346B (zh) * 2013-06-27 2015-11-21 Etron Technology Inc 應用於影像擷取系統的校正裝置和其相關的校正方法
JP6468741B2 (ja) * 2013-07-22 2019-02-13 キヤノン株式会社 ロボットシステム及びロボットシステムの校正方法
US9282326B2 (en) * 2013-10-28 2016-03-08 The Regents Of The University Of Michigan Interactive camera calibration tool
US9524580B2 (en) * 2014-01-06 2016-12-20 Oculus Vr, Llc Calibration of virtual reality systems
JP5815761B2 (ja) * 2014-01-23 2015-11-17 ファナック株式会社 視覚センサのデータ作成システム及び検出シミュレーションシステム
US10977864B2 (en) 2014-02-21 2021-04-13 Dropbox, Inc. Techniques for capturing and displaying partial motion in virtual or augmented reality scenes
DE102014102634B4 (de) * 2014-02-27 2019-02-21 Lavision Gmbh Verfahren zum Kalibrieren einer optischen Anordnung, Verfahren zum Darstellen eines periodischen Kalibriermusters und Computerprogrammprodukt
EP3116432B1 (en) * 2014-03-14 2020-07-22 Brainlab AG Improved overlay of anatomical information in a microscope image
US9641830B2 (en) * 2014-04-08 2017-05-02 Lucasfilm Entertainment Company Ltd. Automated camera calibration methods and systems
US10198865B2 (en) 2014-07-10 2019-02-05 Seiko Epson Corporation HMD calibration with direct geometric modeling
CN105793892B (zh) * 2014-12-09 2018-09-25 深圳市大疆创新科技有限公司 一种图像处理方法、装置及摄像设备
TWI577493B (zh) 2014-12-26 2017-04-11 財團法人工業技術研究院 校正方法與應用此方法的自動化設備
US20160232715A1 (en) * 2015-02-10 2016-08-11 Fangwei Lee Virtual reality and augmented reality control with mobile devices
US10413377B2 (en) * 2015-03-19 2019-09-17 Medtronic Navigation, Inc. Flexible skin based patient tracker for optical navigation
US10192133B2 (en) 2015-06-22 2019-01-29 Seiko Epson Corporation Marker, method of detecting position and pose of marker, and computer program
US10192361B2 (en) 2015-07-06 2019-01-29 Seiko Epson Corporation Head-mounted display device and computer program
CN105094434B (zh) * 2015-08-12 2018-05-18 江苏惠通集团有限责任公司 一种手势识别环境校准方法、系统及电子设备
US10347048B2 (en) 2015-12-02 2019-07-09 Seiko Epson Corporation Controlling a display of a head-mounted display device
US9807383B2 (en) * 2016-03-30 2017-10-31 Daqri, Llc Wearable video headset and method for calibration
JP6736414B2 (ja) * 2016-08-10 2020-08-05 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム
US10134192B2 (en) 2016-10-17 2018-11-20 Microsoft Technology Licensing, Llc Generating and displaying a computer generated image on a future pose of a real world object
US10692287B2 (en) * 2017-04-17 2020-06-23 Microsoft Technology Licensing, Llc Multi-step placement of virtual objects
JP6885179B2 (ja) * 2017-04-20 2021-06-09 富士通株式会社 撮影装置、撮影制御プログラム、及び撮影管理システム
JP6976733B2 (ja) * 2017-06-14 2021-12-08 キヤノン株式会社 画像処理装置、画像処理方法、およびプログラム
CN107341827B (zh) * 2017-07-27 2023-01-24 腾讯科技(深圳)有限公司 一种视频处理方法、装置和存储介质
WO2019032014A1 (en) * 2017-08-07 2019-02-14 Flatfrog Laboratories Ab TACTILE INTERACTION SYSTEM IN VIRTUAL REALITY
WO2019049331A1 (ja) * 2017-09-08 2019-03-14 株式会社ソニー・インタラクティブエンタテインメント キャリブレーション装置、キャリブレーションシステム、およびキャリブレーション方法
US11089288B2 (en) * 2017-09-11 2021-08-10 Tusimple, Inc. Corner point extraction system and method for image guided stereo camera optical axes alignment
US11158088B2 (en) 2017-09-11 2021-10-26 Tusimple, Inc. Vanishing point computation and online alignment system and method for image guided stereo camera optical axes alignment
TWI635462B (zh) * 2017-10-18 2018-09-11 大猩猩科技股份有限公司 一種評估影像品質之方法
US10964056B1 (en) * 2018-05-18 2021-03-30 Apple Inc. Dense-based object tracking using multiple reference images
GB201812446D0 (en) 2018-07-31 2018-09-12 Barco Nv Method and system for mapping the non-uniformity of an image sensor
US20200380725A1 (en) * 2019-05-28 2020-12-03 GM Global Technology Operations LLC Calibration for vehicle cameras
WO2021230884A1 (en) * 2020-05-15 2021-11-18 Zebra Technologies Corporation Calibration system and method for data capture system
CN112560704B (zh) * 2020-12-18 2023-07-18 温州大学乐清工业研究院 一种多特征融合的视觉识别方法及系统
US11429112B2 (en) * 2020-12-31 2022-08-30 Ubtech North America Research And Development Center Corp Mobile robot control method, computer-implemented storage medium and mobile robot
US11865724B2 (en) * 2021-04-26 2024-01-09 Ubkang (Qingdao) Technology Co., Ltd. Movement control method, mobile machine and non-transitory computer readable storage medium
CN113807192A (zh) * 2021-08-24 2021-12-17 同济大学建筑设计研究院(集团)有限公司 一种用于增强现实的多目标识别校准方法
CN116977449B (zh) * 2023-09-25 2024-03-15 安徽大学 一种基于闪烁棋盘格的复眼事件相机主动标定方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244521A (ja) * 2002-02-14 2003-08-29 Canon Inc 情報処理方法、装置および記録媒体
JP2004126869A (ja) * 2002-10-01 2004-04-22 Canon Inc 位置姿勢設定器具及び変換パラメータ設定方法並びに複合現実感システム
JP2004227332A (ja) * 2003-01-23 2004-08-12 Hitachi Ltd 情報表示方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2940736B2 (ja) 1992-03-26 1999-08-25 三洋電機株式会社 画像処理装置及びこの画像処理装置における歪み補正方法
JP3138080B2 (ja) 1992-10-22 2001-02-26 株式会社豊田中央研究所 視覚センサの自動キャリブレーション装置
US6009188A (en) * 1996-02-16 1999-12-28 Microsoft Corporation Method and system for digital plenoptic imaging
US20010010514A1 (en) 1999-09-07 2001-08-02 Yukinobu Ishino Position detector and attitude detector
JP2001325069A (ja) 2000-03-07 2001-11-22 Nikon Gijutsu Kobo:Kk 位置検出装置およびその方法
JP2002164066A (ja) * 2000-11-22 2002-06-07 Mitsubishi Heavy Ind Ltd 積層型熱交換器
EP1349114A3 (en) 2002-03-19 2011-06-15 Canon Kabushiki Kaisha Sensor calibration apparatus, sensor calibration method, program, storage medium, information processing method, and information processing apparatus
JP4346950B2 (ja) * 2003-05-02 2009-10-21 キヤノン株式会社 情報処理方法および装置
JP4976756B2 (ja) 2006-06-23 2012-07-18 キヤノン株式会社 情報処理方法および装置
JP4926817B2 (ja) * 2006-08-11 2012-05-09 キヤノン株式会社 指標配置情報計測装置および方法
JP4960754B2 (ja) * 2007-04-25 2012-06-27 キヤノン株式会社 情報処理装置、情報処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244521A (ja) * 2002-02-14 2003-08-29 Canon Inc 情報処理方法、装置および記録媒体
JP2004126869A (ja) * 2002-10-01 2004-04-22 Canon Inc 位置姿勢設定器具及び変換パラメータ設定方法並びに複合現実感システム
JP2004227332A (ja) * 2003-01-23 2004-08-12 Hitachi Ltd 情報表示方法

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209622A (ja) * 2010-03-30 2011-10-20 Ns Solutions Corp 情報提供装置、情報提供方法、及びプログラム
JP2012123546A (ja) * 2010-12-07 2012-06-28 Casio Comput Co Ltd 情報表示システム、情報表示装置、情報提供装置、および、プログラム
CN102034242A (zh) * 2010-12-24 2011-04-27 清华大学 消逝点检测的平面图像立体转换深度生成方法和装置
JP2012178064A (ja) * 2011-02-25 2012-09-13 Nintendo Co Ltd 画像処理システム、画像処理方法、画像処理装置、および画像処理用プログラム
US9030493B2 (en) 2011-02-25 2015-05-12 Nintendo Co., Ltd. Image processing system, method and apparatus, and computer-readable medium recording image processing program
US9710967B2 (en) 2011-08-31 2017-07-18 Nintendo Co., Ltd. Information processing program, information processing system, information processing apparatus, and information processing method, utilizing augmented reality technique
US9497389B2 (en) 2011-11-11 2016-11-15 Sony Corporation Information processing device, information processing method, and program for reduction of noise effects on a reference point
WO2013069196A1 (en) * 2011-11-11 2013-05-16 Sony Corporation Information processing device, information processing method, and program
JP2013105285A (ja) * 2011-11-11 2013-05-30 Sony Corp 情報処理装置、情報処理方法、及びプログラム
EP2600308A2 (en) 2011-11-30 2013-06-05 Canon Kabushiki Kaisha Information processing apparatus, information processing method, program and computer-readable storage medium
JP2013113805A (ja) * 2011-11-30 2013-06-10 Canon Inc 情報処理装置、情報処理装置の制御方法、およびプログラム
US9584768B2 (en) 2011-11-30 2017-02-28 Canon Kabushiki Kaisha Information processing apparatus, information processing method and computer-readable storage medium
JP2013127783A (ja) * 2011-12-12 2013-06-27 Canon Inc 並列追跡及びマッピングのためのキーフレーム選択
JP2013077314A (ja) * 2012-12-25 2013-04-25 Casio Comput Co Ltd 情報表示システム、情報表示装置、情報提供装置、および、プログラム
JP2016527583A (ja) * 2013-05-02 2016-09-08 クアルコム,インコーポレイテッド コンピュータビジョンアプリケーション初期化を容易にするための方法
US10475209B2 (en) 2014-11-04 2019-11-12 SZ DJI Technology Co., Ltd. Camera calibration
JP2017513079A (ja) * 2014-11-04 2017-05-25 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd カメラ較正方法、デバイス及びシステム
JP2016208331A (ja) * 2015-04-24 2016-12-08 三菱電機エンジニアリング株式会社 作業支援システム
JP2016225953A (ja) * 2015-06-03 2016-12-28 株式会社日立製作所 カメラのキャリブレーション装置、カメラシステム及び、カメラのキャリブレーション方法
WO2017208699A1 (ja) * 2016-05-30 2017-12-07 ソニー株式会社 情報処理装置と情報処理方法とプログラムおよび撮像システム
JP7195728B2 (ja) 2016-06-28 2022-12-26 ダッソー システムズ カメラを較正するコンピュータ実装方法
JP7292000B2 (ja) 2016-06-28 2023-06-16 ダッソー システムズ 動的なカメラ較正
JP2018007253A (ja) * 2016-06-28 2018-01-11 ダッソー システムズDassault Systemes カメラを較正するコンピュータ実装方法
CN107545592B (zh) * 2016-06-28 2024-01-02 达索系统公司 动态摄像机校准
JP2018007254A (ja) * 2016-06-28 2018-01-11 ダッソー システムズDassault Systemes 動的なカメラ較正
US11238613B2 (en) 2016-06-28 2022-02-01 Dassault Systemes Dynamical camera calibration
CN107545592A (zh) * 2016-06-28 2018-01-05 达索系统公司 动态摄像机校准
JP2016186658A (ja) * 2016-07-14 2016-10-27 セイコーエプソン株式会社 頭部装着型表示装置および方法
JP2018198025A (ja) * 2017-05-25 2018-12-13 株式会社Five for 画像処理装置、画像処理装置の制御方法及びプログラム
JP2019053603A (ja) * 2017-09-15 2019-04-04 富士通株式会社 表示制御プログラム、装置、及び方法
CN109584263A (zh) * 2017-09-25 2019-04-05 京东方科技集团股份有限公司 可穿戴设备的测试方法及系统
CN109584263B (zh) * 2017-09-25 2023-11-24 京东方科技集团股份有限公司 可穿戴设备的测试方法及系统
KR20200005119A (ko) * 2018-07-05 2020-01-15 주식회사 한화 단일 장착면의 장착 오차를 산출하여 보정하는 장치 및 그 방법
KR102079258B1 (ko) * 2018-07-05 2020-02-19 주식회사 한화 단일 장착면의 장착 오차를 산출하여 보정하는 장치 및 그 방법
JP7472738B2 (ja) 2020-09-24 2024-04-23 沖電気工業株式会社 設置調整システム
JP7042380B1 (ja) 2021-09-15 2022-03-25 株式会社日立プラントコンストラクション 表示装置、プログラムおよび表示方法
JP2023042981A (ja) * 2021-09-15 2023-03-28 株式会社日立プラントコンストラクション 表示装置、プログラムおよび表示方法

Also Published As

Publication number Publication date
US20110228103A1 (en) 2011-09-22
US20130265393A1 (en) 2013-10-10
US8472703B2 (en) 2013-06-25
US9325969B2 (en) 2016-04-26
US20080292131A1 (en) 2008-11-27
JP4757142B2 (ja) 2011-08-24
US7974462B2 (en) 2011-07-05

Similar Documents

Publication Publication Date Title
JP4757142B2 (ja) 撮影環境校正方法及び情報処理装置
US7529387B2 (en) Placement information estimating method and information processing device
JP5036260B2 (ja) 位置姿勢算出方法及び装置
JP4926817B2 (ja) 指標配置情報計測装置および方法
JP5538667B2 (ja) 位置姿勢計測装置及びその制御方法
JP4708752B2 (ja) 情報処理方法および装置
US20040176925A1 (en) Position/orientation measurement method, and position/orientation measurement apparatus
JP5196825B2 (ja) 画像処理装置、画像処理方法
EP1596329A2 (en) Marker placement information estimating method and information processing device
US20050256395A1 (en) Information processing method and device
EP1521213A2 (en) Index identification method and apparatus
JP2006285788A (ja) 複合現実感情報生成装置および方法
JP6441346B2 (ja) 光学追跡
JP2009053147A (ja) 3次元計測方法および3次元計測装置
JP2007064684A (ja) マーカ配置補助方法及び装置
JP2017129567A (ja) 情報処理装置、情報処理方法、プログラム
JP2009503711A (ja) 第2の対象物に対する第1対象物の相対位置を決定する方法及びシステム及び、対応するコンピュータプログラム及び対応するコンピュータ可読記録媒体
JP4095320B2 (ja) センサ較正装置、センサ較正方法、プログラム、記憶媒体
JP7414395B2 (ja) 情報投影システム、制御装置、及び情報投影制御方法
Muffert et al. The estimation of spatial positions by using an omnidirectional camera system
JP4810403B2 (ja) 情報処理装置、情報処理方法
JP2013120150A (ja) 人間位置検出システム及び人間位置検出方法
JP2008140047A (ja) 情報処理方法、情報処理装置
KR20190048738A (ko) 증강현실용 컨텐츠 제공 장치 및 방법
JP2014056496A (ja) 仮想カメラ画像生成装置、仮想カメラ画像生成システム、仮想カメラ画像生成方法、およびプログラム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080812

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110531

R150 Certificate of patent or registration of utility model

Ref document number: 4757142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees