JP2008043082A - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
JP2008043082A
JP2008043082A JP2006215305A JP2006215305A JP2008043082A JP 2008043082 A JP2008043082 A JP 2008043082A JP 2006215305 A JP2006215305 A JP 2006215305A JP 2006215305 A JP2006215305 A JP 2006215305A JP 2008043082 A JP2008043082 A JP 2008043082A
Authority
JP
Japan
Prior art keywords
voltage source
switching element
voltage
load
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006215305A
Other languages
English (en)
Other versions
JP2008043082A5 (ja
JP4923831B2 (ja
Inventor
Koji Yoshida
幸司 吉田
Hiroyuki Handa
浩之 半田
Mitsuhiro Matsuo
光洋 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006215305A priority Critical patent/JP4923831B2/ja
Priority to PCT/JP2007/064333 priority patent/WO2008018282A1/ja
Priority to US12/375,153 priority patent/US7816806B2/en
Priority to EP07791071A priority patent/EP2045902A4/en
Publication of JP2008043082A publication Critical patent/JP2008043082A/ja
Publication of JP2008043082A5 publication Critical patent/JP2008043082A5/ja
Application granted granted Critical
Publication of JP4923831B2 publication Critical patent/JP4923831B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】補助電圧源に必要な蓄電素子を減らすことができる小型の電源装置を提供することを目的とする。
【解決手段】直流電圧源1と直列に接続された補助電圧源3と、電力を消費する負荷5と、負荷5に一端が接続されたインダクタンス素子9と、インダクタンス素子9の他端と補助電圧源1の一端に接続された第1スイッチング素子11と、インダクタンス素子9の他端と補助電圧源3の他端に接続された第2スイッチング素子13と、第1スイッチング素子11と第2スイッチング素子13のオンオフ比を変化させて、負荷5に供給する電力を制御する制御回路15とからなり、直流電圧源1の電圧低下状態で第2スイッチング素子13がオンになると、電圧VBが双方向DC/DCコンバータ29に入力されるので、その分、補助電圧源3の蓄電素子数を減らすことができ、小型の電源装置を実現できる。
【選択図】図1

Description

本発明は直流電圧源の電圧変動を補償する電源装置に関するものである。
近年、地球環境保護のために、特に自動車においては燃費向上の観点から、アイドリングストップ、電動パワーステアリング、電動ターボ等のシステムが開発されてきている。これらのシステムは、それぞれスタータ、ステアリングモーター、およびタービン駆動モーターを動作させる場合に100アンペアオーダーの大電流を消費するので、バッテリからなる直流電圧源の電圧低下が発生する。この電圧低下が大きくなれば、直流電圧源から電力を受けている負荷の動作が十分に行えなくなる。
このような一時的な直流電圧源の電圧変動による負荷への影響を防止する方法として、例えば直流電圧源に直列に補助電圧源を接続し、電圧低下時にDC/DCコンバータを介して補助電圧源の電力を負荷に供給する電源装置が考案されている。このような電源装置の構成としては、例えば特許文献1に提案されているものを応用することができる。すなわち、特許文献1の回路構成は14V系負荷と42V系負荷の両方に電力を供給するために、直流電圧源と補助電圧源の2種類の電源を直列接続し、両者間の電力移行をDC/DCコンバータで行うものであるが、この回路構成を、上記したように一時的な直流電圧源の電圧変動による負荷への影響を防止する用途に適用すると、図4に示す回路構成となる。
図4において、バッテリからなる直流電圧源101には直列に補助電圧源103が接続されている。補助電圧源103は例えば大容量の電気二重層キャパシタや二次電池等の蓄電素子が適用できる。負荷105には直流電圧源101がダイオード107を介して接続されているが、補助電圧源103も双方向DC/DCコンバータ109を介して接続されている。なお、ダイオード107は双方向DC/DCコンバータ109の出力の直流電圧源101への逆流防止用である。
双方向コンバータ109の詳細構成は次の通りである。補助電圧源103の一端には第1スイッチング素子111と第2スイッチング素子113が直列に接続されている。第2スイッチング素子113の他端は直流電圧源101の負端子に接続されている。また、第1スイッチング素子111と第2スイッチング素子113の接続点にはインダクタンス素子115の一端が接続され、他端は負荷105に接続されている。
第1スイッチング素子111と第2スイッチング素子113は制御回路117によって交互にオンオフ制御されている。また、制御回路117は図示しない自動車の外部電子制御ユニット(以下、外部ECUという)からの信号に応じて補助電圧源103への充放電を切り替える切替器119も制御している。切替器119の放電側端子には負荷105の電圧と、負荷105に供給すべき既定電圧との誤差を出力する第1誤差増幅器121が接続されている。一方、切替器119の充電側端子には補助電圧源103の電圧と、補助電圧源103の充電すべき既定電圧との誤差を出力する第2誤差増幅器123が接続されている。
次に、このような電源装置の動作について説明する。
まず、自動車のイグニションスイッチ(図示せず)がオンになると、外部ECUは補助電圧源103を充電するために充電信号を制御回路117に送る。これを受け、制御回路117は切替器119を充電側に切り替える。その結果、双方向DC/DCコンバータ109は直流電圧源101の電力を補助電圧源103に充電開始する。やがて、充電とともに補助電圧源103の電圧VCが第2誤差増幅器123の既定電圧と等しくなれば充電電圧を維持するように動作する。
次に、前記した大電流を消費するシステムが動作したとする。この時、外部ECUから制御回路117に放電信号が送られてくるので、制御回路117は切替器119を放電側に切り替える。その結果、双方向DC/DCコンバータ109は第1誤差増幅器121の既定電圧になるように負荷105に電圧を出力する。これにより、大電流消費による直流電圧源101の電圧VBが通常電圧状態から電圧低下状態になっても、負荷105の電圧VLは通常電圧状態とほぼ同じ電圧が維持されるので、負荷105は正常に動作し続けられる。この時、VL>VBとなるので、ダイオード107により双方向DC/DCコンバータ109の電力が直流電圧源101に逆流することはない。
次に、大電流の消費が終了すると、直流電圧源101の電圧VBは通常電圧状態に戻る。この時、外部ECUは制御回路117に充電信号を送る。これにより、大電流消費期間中に補助電圧源103から負荷105に供給された電力を再度補助電圧源103に充電するために、制御回路117は切替器119を充電側に切り替える。これにより、補助電圧源103を満充電にする。
このような動作を繰り返すことで、大電流が消費されても負荷105には安定した電圧を供給することができ、負荷105の安定動作が可能となる。
特開2002−218667号公報
このような従来の電源装置は、確かに直流電圧源101の電圧が変動しても安定した電圧を負荷に供給できるのであるが、ここで問題となるのは直流電圧源101の電圧低下状態で負荷105に電力を供給し続けるためには、大容量の蓄電素子が多数必要になるという点である。これを図5により説明する。
図5は双方向DC/DCコンバータ109の第1スイッチング素子111と第2スイッチング素子113の接続点における電圧V1の経時変化図であり、横軸に時間tを、縦軸にV1をそれぞれ示す。図5でV1がVB+VCの時は第1スイッチング素子111がオンの時、V1が0の時は第2スイッチング素子113がオンの時にそれぞれ相当する。従って、双方向DC/DCコンバータ109の出力電圧VLは、オンオフ1周期の内の第1スイッチング素子111がオンの比率(以下、時比率という)をDとすると、
VL=D×(VB+VC)+(1−D)×0
=D×(VB+VC) (1)
となる。負荷105が必要とする電圧VLは一定値に決まっているので、直流電圧源101の電圧VBが低下したときに必要な電圧を得るためには時比率Dを大きくしなければならないことがわかる。その結果、補助電圧源103から負荷105に電力が供給される時間が長くなるので、その分、大容量の蓄電素子が多数必要になることになる。このことから、従来の構成では多数の蓄電素子により、電源装置が大型化してしまうという課題があった。
本発明は、前記従来の課題を解決するもので、補助電圧源に必要な蓄電素子を減らすことができる小型の電源装置を提供することを目的とする。
前記従来の課題を解決するために、本発明の電源装置は、第2スイッチング素子をインダクタンス素子と直流電圧源の正端子の間に接続したものである。これにより、第2スイッチング素子がオンの時に、第1スイッチング素子と第2スイッチング素子の接続点電圧V1が0ではなくVBとなるので、その分、時比率Dを小さくすることができ、補助電圧源の蓄電素子の必要数を減らすことが可能となる。その結果、前記目的を達成することができる。
本発明の電源装置によれば、直流電圧源の電圧低下状態で第2スイッチング素子がオンになると、電圧が下がっているが0ではない電圧VBが双方向DC/DCコンバータに入力されるので、それにより補助電圧源の蓄電素子数を減らすことができ、小型の電源装置を実現できる。
以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。なお、ここでは自動車のスタータ駆動等により直流電圧源の電圧が低下した場合に、直流電圧源と補助電圧源の電力を双方向DC/DCコンバータによって電圧変換し、負荷に供給する構成について述べる。
(実施の形態1)
図1は、本発明の実施の形態1における電源装置のブロック回路図である。図2は、本発明の実施の形態1における電源装置の電圧V1の経時変化図である。
図1において、バッテリからなる直流電圧源1には、直列に補助電圧源3が接続されている。補助電圧源3には、特に急速充放電特性に優れる大容量の電気二重層キャパシタからなる蓄電素子を用いた。直流電圧源1と補助電圧源3の接続点には電力を消費する負荷5がダイオード7を介して接続されている。負荷5の一端にはインダクタンス素子9が接続されている。インダクタンス素子9は負荷5へ供給する電力を平滑化する役割を有する。
インダクタンス素子9の他端と補助電圧源3の一端(図1の+側)には第1スイッチング素子11が接続されている。第1スイッチング素子11はオンオフ動作を繰り返すことで、直流電圧源1と補助電圧源3の電圧の合計電圧を断続的にインダクタンス素子9に印加する。一方、インダクタンス素子9の他端と補助電圧源3の他端(図1の−側)には、第2スイッチング素子13が後述する第1切替器17を介して接続されている。第2スイッチング素子13は第1スイッチング素子11と交互にオンオフを繰り返すことで、直流電圧源1の電圧を断続的にインダクタンス素子9に印加する。
第1スイッチング素子11と第2スイッチング素子13のオンオフ比、すなわち時比率Dは制御回路15によって制御される。これにより、負荷5に供給する電力を制御することができる。
また、第2スイッチング素子13の直流電圧源1への接続を、直流電圧源1の正端子、または負端子のいずれかに切り替える第1切替器17が接続されている。第1切替器17は制御回路15で切替制御が行われ、補助電圧源3の充電時には直流電圧源1の負端子側に、補助電圧源3からの放電時には正端子側にそれぞれ切り替えられる。
なお、制御回路15は図示しない外部ECUからの信号に応じて補助電圧源3への充放電を切り替える第2切替器19も制御している。第2切替器19の放電側端子には負荷5の電圧と、負荷5に供給すべき第1既定電圧21との誤差を出力する第1誤差増幅器23が接続されている。一方、第2切替器19の充電側端子には補助電圧源3の電圧と、補助電圧源3の充電すべき第2既定電圧25との誤差を出力する第2誤差増幅器27が接続されている。
このように、インダクタンス素子9、第1スイッチング素子11、第2スイッチング素子13、制御回路15、第2切替器19、第1誤差増幅器23、および第2誤差増幅器27から双方向DC/DCコンバータ29が構成されている。
次に、このような電源装置の動作について説明する。
まず、自動車のイグニションスイッチ(図示せず)がオンになると、外部ECUは補助電圧源3を充電するために充電信号を制御回路15に送る。これを受け、制御回路15は第1切替器17、および第2切替器19を充電側に切り替える。その結果、双方向DC/DCコンバータ29は直流電圧源1に直列に接続された補助電圧源3への充電を行うように、直流電圧源1の正端子を基準にして直流電圧源1の電圧VBを反転して充電する反転DC/DCコンバータの動作を行う。これにより、双方向DC/DCコンバータ29は直流電圧源1の電力により補助電圧源3への充電を開始する。やがて、充電とともに補助電圧源3の電圧VCが第2誤差増幅器27の第2既定電圧25と等しくなれば充電電圧を維持するように動作する。なお、ここまでの動作は従来と同じである。
次に、スタータ等の大電流を消費するシステムが動作したとする。この時、外部ECUから制御回路15に放電信号が送られてくるので、制御回路15は第1切替器17、および第2切替器19を放電側に切り替える。その結果、双方向DC/DCコンバータ29は第1誤差増幅器23の第2既定電圧21になるように負荷5に電圧を出力する。これにより、大電流消費による直流電圧源1の電圧VBが通常電圧状態から電圧低下状態になっても、負荷5の電圧VLは通常電圧状態とほぼ同じ電圧が維持されるので、負荷5は正常に動作し続けられる。この時、VL>VBとなるので、ダイオード7により双方向DC/DCコンバータ29の電力が直流電圧源1に逆流することはない。
この時の双方向DC/DCコンバータ29の第1スイッチング素子11と第2スイッチング素子13の接続点における電圧V1の経時変化図を図2に示す。横軸は時間t、縦軸はV1である。図2でV1がVB+VCの時は第1スイッチング素子11がオンの時、V1がVBの時は第2スイッチング素子13がオンの時にそれぞれ相当する。すなわち、従来では図4の回路図からも明らかなように第2スイッチング素子113は直流電圧源101の負端子に接続固定されていたので、第2スイッチング素子113がオンの時は、V1=0となっていた。しかし、本実施の形態1では放電時に第1切替器17により第2スイッチング素子13は直流電圧源1の正端子に接続されるので、V1=VBとなる。従って、双方向DC/DCコンバータ29の出力電圧VLは、時比率をD1とすると、
VL=D1×(VB+VC)+(1−D1)×VB
=VB+D1×VC (2)
となる。負荷5の必要電圧VLは一定値なので、それを得るための第1スイッチング素子11がオンになっている時間(図2の矩形波の幅)は、図5に示した従来の構成におけるオン時間に比べ短くなることが両図の比較でわかる。これを式で表すと以下のようになる。
(1)式より、従来のDは、
D=VL/(VB+VC) (3)
となる。一方、(2)式より本実施の形態1のD1は、
D1=(VL−VB)/VC (4)
となる。従って、(3)式から(4)式を引くと、
ΔD=VL/(VB+VC)−(VL−VB)/VC
=VB(VB+VC−VL)/(VC(VB+VC)) (5)
(5)式において、図2よりVB+VC>VLなので、(VB+VC−VL)>0となり、他の項も正であることから、ΔD=(D−D1)>0となる。従って、本実施の形態1の時比率D1の方が小さいことがわかる。時比率は直流電圧源1と補助電圧源3の合計電圧が出力される時間割合であるので、小さいほど補助電圧源3から出力される電力は少なくなる。従って、本実施の形態1の方が補助電圧源3に必要な蓄電素子の数を減らすことができ、従来の構成より小型化することが可能となる。具体的には、例えばVB=9V、VC=5V、VL=12Vであったとすると、(3)、(4)式より、D=0.875、D1=0.6となり、本実施の形態1の時比率D1は従来の時比率Dに対し約30%小さくなる。その結果、上記したように従来に比べ約30%の小型化が可能となることを確認した。
このように、第2スイッチング素子13がオンの時にも直流電圧源1から電力が供給されるので、その分、補助電圧源3の電力が少なくて済むことになる。その結果、蓄電素子の数を減らすことができ、電源装置の小型化が可能となる。
次に、大電流の消費が終了すると、直流電圧源1の電圧VBは通常電圧状態に戻る。この時、外部ECUは制御回路15に充電信号を送る。これにより、大電流消費期間中に補助電圧源3から負荷5に供給された電力を再度補助電圧源3に充電するために、制御回路15は第1切替器17、および第2切替器19を充電側に切り替える。これにより、補助電圧源3を満充電にする。
このように、直流電圧源1が断続的に通常電圧状態と電圧低下状態を繰り返す動作を行っても、上記充放電動作を繰り返すことで、負荷5には安定した電圧を供給することができ、負荷5の安定動作が可能となる。
これまでの動作をまとめると、まず、直流電圧源1が通常電圧状態では、直流電圧源1は負荷5に直接電力を供給しながら、同時に制御回路15は第1切替器17を直流電圧源1の負端子側に切り替えるとともに、第2切替器19を第2誤差増幅器27側に切り替えて、インダクタンス素子9と第1スイッチング素子11と第2スイッチング素子13により直流電圧源1の電力を補助電圧源3に充電する。次に、スタータ等の大電流消費による直流電圧源1の電圧低下状態では、制御回路15は第1切替器17を直流電圧源1の正端子側に切り替えて負荷5に電力を供給する。これにより、直流電圧源1が断続的に通常電圧状態と電圧低下状態を繰り返しても、負荷5を安定動作させ続けられる。
以上の構成、動作により、補助電圧源の蓄電素子数を少なくすることができるので、小型の電源装置を実現できた。
なお、本実施の形態1では補助電圧源3を充電するために双方向DC/DCコンバータ29を用いたが、補助電圧源3を他の手段で充電する構成であれば、双方向DC/DCコンバータ29より簡易な降圧DC/DCコンバータ構成とすればよい。具体的には図1において、第1切替器17、第2切替器19、および第2誤差増幅器27を廃するとともに、第2スイッチング素子13を第1スイッチング素子11と補助電圧源3の負極(図1の−側)との間に接続すればよい。この場合も第2スイッチング素子13がオンの時にV1=VBとなるので、時比率D1を小さくでき、蓄電素子数を削減できる結果、小型化が実現できる。なお、降圧DC/DCコンバータは単方向DC/DCコンバータであるので、第2スイッチング素子13は整流素子でもよい。
(実施の形態2)
図3は、本発明の実施の形態2における電源装置のブロック回路図である。図3において、図1と同じ構成については同じ番号を付し、詳細な説明を省略する。
すなわち、図3における図1との構成上の相違点は以下の通りである。
1)第2スイッチング素子13を整流素子(ダイオード)によって構成した。これにより、負荷5への供給電力は制御回路15による第1スイッチング素子11のオンオフ比を変化させることで制御する。
2)第1切替器17を廃し、替わりに第2スイッチング素子13に直列に接続され、負荷5へ電力を供給する時にオンになるスイッチ31を設けた。なお、スイッチ31のオンオフ制御は制御回路15によって行われる。
3)第1スイッチング素子11と直流電圧源1の負端子の間に接続され、第1スイッチング素子11と交互にオンオフを繰り返す第3スイッチング素子33を設けた。
上記以外の構成は実施の形態1と同様である。
次に、このような構成の電源装置の動作について説明する。
まず、自動車のイグニションスイッチ(図示せず)がオンになると、外部ECUは補助電圧源3を充電するために充電信号を制御回路15に送る。これを受け、制御回路15は第2切替器19を充電側に切り替えるとともに、スイッチ31をオフにする。その後、制御回路15は第1スイッチング素子11と第3スイッチング素子33を交互にオンオフ制御することで、実施の形態1と同様に双方向DC/DCコンバータ29は直流電圧源1の電力により補助電圧源3への充電を開始する。やがて、充電とともに補助電圧源3の電圧VCが第2誤差増幅器27の第2既定電圧25と等しくなれば充電電圧を維持するように動作する。
次に、スタータ等の大電流を消費するシステムが動作したとする。この時、外部ECUから制御回路15に放電信号が送られてくるので、制御回路15は第2切替器19を放電側に切り替えるとともに、スイッチ31をオンにする。さらに、第3スイッチング素子33を常時オフにする。その後、制御回路15は第1スイッチング素子11のみをオンオフ制御する。これにより、第1スイッチング素子11がオンの時は整流素子からなる第2スイッチング素子13がオフに、第1スイッチング素子11がオフの時は第2スイッチング素子13がオンにそれぞれ動作することになる。その結果、双方向DC/DCコンバータ29は第1誤差増幅器23の第2既定電圧21になるように負荷5に電圧を出力する。ゆえに、大電流消費による直流電圧源1の電圧VBが通常電圧状態から電圧低下状態になっても、負荷5の電圧VLは通常電圧状態とほぼ同じ電圧が維持されるので、負荷5は正常に動作し続けられる。この時、VL>VBとなるので、ダイオード7により双方向DC/DCコンバータ29の電力が直流電圧源1に逆流することはない。
この時の双方向DC/DCコンバータ29の第1スイッチング素子11と第2スイッチング素子13の接続点における電圧V1の経時変化は図2と全く同じである。従って、本実施の形態2における時比率D2の方が従来のDよりも小さいことになる。ゆえに、本実施の形態2でも補助電圧源3に必要な蓄電素子の数を減らすことができ、従来の構成より小型化することが可能となる。なお、本実施の形態2においても、従来に比べ約30%の小型化を確認した。
このように、本実施の形態2でも第2スイッチング素子13がオンの時に直流電圧源1から電力が供給されるので、その分、補助電圧源3の電力が少なくて済むことになる。その結果、蓄電素子の数を減らすことができ、電源装置の小型化が可能となる。
次に、大電流の消費が終了すると、直流電圧源1の電圧VBは通常電圧状態に戻る。この時、外部ECUは制御回路15に充電信号を送る。これにより、大電流消費期間中に補助電圧源3から負荷5に供給された電力を再度補助電圧源3に充電するために、制御回路15は第2切替器19を充電側に切り替えるとともに、スイッチ31をオフにする。これにより、補助電圧源3を満充電にする。
このように、直流電圧源1が断続的に通常電圧状態と電圧低下状態を繰り返す動作を行っても、上記充放電動作を繰り返すことで、負荷5には安定した電圧を供給することができ、負荷5の安定動作が可能となる。
これまでの動作をまとめると、まず、直流電圧源1が通常電圧状態では、直流電圧源1は負荷5に直接電力を供給しながら、同時に制御回路15はスイッチ31をオフにするとともに、第2切替器19を第2誤差増幅器27側に切り替えて、第1スイッチング素子11と第3スイッチング素子33を交互にオンオフすることで、直流電圧源1の電力を補助電圧源3に充電する。次に、スタータ等の大電流消費による直流電圧源1の電圧低下状態では、制御回路15はスイッチ31をオンにして、第3スイッチング素子33を常時オフにした状態で第1スイッチング素子11をオンオフすることで負荷5に電力を供給する。これにより、直流電圧源1が断続的に通常電圧状態と電圧低下状態を繰り返しても、負荷5を安定動作させ続けられる。
なお、本実施の形態2の構成とすることにより、実施の形態1に比べ、整流素子からなる第2スイッチング素子13とスイッチ31を加え、第1切替器17を廃した構成となるが、第1切替器17は外部から切替制御可能な3端子スイッチであるので、これを半導体の組み合わせで構成すると複雑になる。従って、第1切替器17が不要な分、本実施の形態2の方が、より簡易な構成で電源装置を実現できる。
以上の構成、動作により、補助電圧源の蓄電素子数を少なくすることができるので、小型の電源装置を実現できた。
なお、実施の形態1、2において、補助電圧源3の蓄電素子として電気二重層キャパシタを用いたが、これは電気化学キャパシタ等の大容量キャパシタや二次電池を用いてもよい。但し、急速充放電特性や信頼性の面で二次電池よりも大容量キャパシタを用いる方が好適である。
本発明にかかる電源装置は直流電圧源の電圧が低下しても補助電圧源に加え常に直流電圧源からの電圧を負荷に供給できるので、補助電圧源の蓄電素子が少なくても負荷を安定動作させ続けられる小型の電源装置等として有用である。
本発明の実施の形態1における電源装置のブロック回路図 本発明の実施の形態1における電源装置の動作を示すタイミングチャート 本発明の実施の形態2における電源装置のブロック回路図 従来の電源装置のブロック回路図 従来の電源装置の動作を示すタイミングチャート
符号の説明
1 直流電圧源
3 補助電圧源
5 負荷
9 インダクタンス素子
11 第1スイッチング素子
13 第2スイッチング素子
15 制御回路
17 第1切替器
31 スイッチ
33 第3スイッチング素子

Claims (4)

  1. 直流電圧源と、
    前記直流電圧源と直列に接続された補助電圧源と、
    電力を消費する負荷と、
    前記負荷に一端が接続され、前記負荷へ供給する電力を平滑化するインダクタンス素子と、
    前記インダクタンス素子の他端と前記補助電圧源の一端に接続され、前記直流電圧源と前記補助電圧源の電圧の合計電圧を断続的に印加するようにオンオフを繰り返す第1スイッチング素子と、
    前記インダクタンス素子の他端と前記補助電圧源の他端に接続され、前記直流電圧源の電圧を断続的に印加するように前記第1スイッチング素子と交互にオンオフを繰り返す第2スイッチング素子と、
    前記第1スイッチング素子と前記第2スイッチング素子のオンオフ比を変化させて、前記負荷に供給する電力を制御する制御回路を有する電源装置。
  2. 第2スイッチング素子が整流素子によって構成され、制御回路は第1スイッチング素子のオンオフ比を変化させて、負荷に供給する電力を制御する請求項1に記載の電源装置。
  3. 第2スイッチング素子の直流電圧源への接続を、前記直流電圧源の正端子、または負端子のいずれかに切り替える切替器を有し、
    前記直流電圧源は断続的に通常電圧状態と電圧低下状態を繰り返す動作を行い、前記通常電圧状態では、前記直流電圧源は負荷に直接電力を供給し、同時に制御回路は前記切替器を前記負端子に切り替えて、インダクタンス素子と第1スイッチング素子と前記第2スイッチング素子により前記直流電圧源の電力を補助電圧源に充電するとともに、
    前記電圧低下状態では、前記制御回路は前記切替器を前記正端子に切り替えて前記負荷に電力を供給する請求項1に記載の電源装置。
  4. 第2スイッチング素子に直列に接続され、負荷へ電力を供給する時にオンになるスイッチと、
    第1スイッチング素子と直流電圧源の負端子の間に接続され、前記第1スイッチング素子と交互にオンオフを繰り返す第3スイッチング素子とを有し、
    前記直流電圧源は断続的に通常電圧状態と電圧低下状態を繰り返す動作を行い、
    前記通常電圧状態では、前記直流電圧源は前記負荷に直接電力を供給し、同時に制御回路は前記スイッチをオフにして、前記第1スイッチング素子と前記第3スイッチング素子を交互にオンオフすることで、前記直流電圧源の電力を補助電圧源に充電するとともに、
    前記電圧低下状態では、前記制御回路は前記スイッチをオンにして、前記第3スイッチング素子を常時オフにした状態で前記第1スイッチング素子をオンオフすることで前記負荷に電力を供給する請求項2に記載の電源装置。
JP2006215305A 2006-08-08 2006-08-08 電源装置 Expired - Fee Related JP4923831B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006215305A JP4923831B2 (ja) 2006-08-08 2006-08-08 電源装置
PCT/JP2007/064333 WO2008018282A1 (fr) 2006-08-08 2007-07-20 Dispositif d'alimentation
US12/375,153 US7816806B2 (en) 2006-08-08 2007-07-20 Power supply device
EP07791071A EP2045902A4 (en) 2006-08-08 2007-07-20 FEEDING DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006215305A JP4923831B2 (ja) 2006-08-08 2006-08-08 電源装置

Publications (3)

Publication Number Publication Date
JP2008043082A true JP2008043082A (ja) 2008-02-21
JP2008043082A5 JP2008043082A5 (ja) 2009-08-06
JP4923831B2 JP4923831B2 (ja) 2012-04-25

Family

ID=39032816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006215305A Expired - Fee Related JP4923831B2 (ja) 2006-08-08 2006-08-08 電源装置

Country Status (4)

Country Link
US (1) US7816806B2 (ja)
EP (1) EP2045902A4 (ja)
JP (1) JP4923831B2 (ja)
WO (1) WO2008018282A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012210008B4 (de) * 2012-06-14 2023-05-04 Robert Bosch Gmbh Verfahren und Vorrichtung zur Entladung eines elektrischen Netzes
US10118575B2 (en) * 2014-11-13 2018-11-06 Panasonic Intellectual Property Management Co., Ltd. In-vehicle power supply device and vehicle having in-vehicle power supply device mounted therein
GB2538079A (en) * 2015-05-05 2016-11-09 Control Techniques Ltd Low capacitance drive with improved immunity
CN105356745B (zh) * 2015-12-03 2018-07-24 深圳市华杰电气技术有限公司 一种增量dc/dc变换器
CN109586364B (zh) * 2018-11-16 2021-04-13 恒大智慧充电科技有限公司 电力调控方法、计算机设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5093210A (ja) * 1973-12-22 1975-07-25
JP2001136735A (ja) * 1999-11-02 2001-05-18 Toyota Autom Loom Works Ltd 電力変換供給方法及び電力変換供給装置並びに車両

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431602Y2 (ja) * 1973-12-27 1979-10-03
JP4178755B2 (ja) * 2001-01-16 2008-11-12 三菱電機株式会社 自動車のバッテリー用電力回路
WO2004071814A1 (ja) * 2003-02-17 2004-08-26 Denso Corporation 車両用電源システム
DE102004043129A1 (de) * 2004-09-07 2006-03-09 Robert Bosch Gmbh Vorrichtung zur Spannungsversorgung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5093210A (ja) * 1973-12-22 1975-07-25
JP2001136735A (ja) * 1999-11-02 2001-05-18 Toyota Autom Loom Works Ltd 電力変換供給方法及び電力変換供給装置並びに車両

Also Published As

Publication number Publication date
US7816806B2 (en) 2010-10-19
EP2045902A1 (en) 2009-04-08
EP2045902A4 (en) 2011-11-16
US20090236915A1 (en) 2009-09-24
JP4923831B2 (ja) 2012-04-25
WO2008018282A1 (fr) 2008-02-14

Similar Documents

Publication Publication Date Title
EP2040362B1 (en) Power supply apparatus
US20100231178A1 (en) Power supply device
JP6665821B2 (ja) 双方向dc−dcコンバータ
US7839128B2 (en) Bidirectional power supply device
JP4862823B2 (ja) 電源安定化装置およびそれを用いた車両
JP4893368B2 (ja) 電源装置
JP5099012B2 (ja) Dc/dcコンバータ
US8629573B2 (en) On-board electrical system for a motor vehicle, motor vehicle and method for operating an on-board electrical system
JP2009171694A (ja) 充電装置
JP5182788B2 (ja) 電力供給装置およびそれを用いた電力供給システム
JP2008054363A (ja) 電源装置
JP4923831B2 (ja) 電源装置
JP4468708B2 (ja) 電源装置
JP2010220279A (ja) 電源制御装置及び方法
KR20020079366A (ko) 전압 변환 장치
JP4872554B2 (ja) 電源装置
JP2009077461A (ja) 電力供給システム
JP2009296747A (ja) 電源装置
JP2008166076A (ja) 電子機器システム、および電源制御方法
JPWO2018235485A1 (ja) 同期整流型dc−dcコンバータおよびスイッチング電源装置
JP2011188694A (ja) 同期整流型dc/dcコンバータ
JP2003348769A (ja) 車載システム用電源回路
JP4923891B2 (ja) 電源装置
JP2011167018A (ja) 電源回路及び電源システム
JP2006325330A (ja) 電源システム

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090623

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090623

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees