JP2008041711A - 半導体レーザ装置 - Google Patents
半導体レーザ装置 Download PDFInfo
- Publication number
- JP2008041711A JP2008041711A JP2006210109A JP2006210109A JP2008041711A JP 2008041711 A JP2008041711 A JP 2008041711A JP 2006210109 A JP2006210109 A JP 2006210109A JP 2006210109 A JP2006210109 A JP 2006210109A JP 2008041711 A JP2008041711 A JP 2008041711A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- laser device
- film
- semiconductor laser
- active layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Semiconductor Lasers (AREA)
Abstract
【課題】FFPが改善された屈折率導波型半導体レーザ装置を提供する。
【解決手段】基板と、前記基板の上に設けられた活性層と、前記活性層の上に設けられ、光共振器光軸方向に延在するリッジ部と前記リッジ部の両側に設けられた非リッジ部とを有する第1導電型のクラッド層と、前記リッジ部の上に設けられた第1導電型の半導体層と、前記リッジ部の側面及び前記非リッジ部の上に設けられた誘電体膜と、前記誘電体膜の上方または下方に隣接して設けられ、前記誘電体膜よりも大きい屈折率を有する光吸収膜と、を備え、前記活性層は、前記基板、前記半導体層及び前記光吸収膜のいずれよりも広いバンドギャップを有することを特徴とする半導体レーザ装置が提供される。
【選択図】図1
【解決手段】基板と、前記基板の上に設けられた活性層と、前記活性層の上に設けられ、光共振器光軸方向に延在するリッジ部と前記リッジ部の両側に設けられた非リッジ部とを有する第1導電型のクラッド層と、前記リッジ部の上に設けられた第1導電型の半導体層と、前記リッジ部の側面及び前記非リッジ部の上に設けられた誘電体膜と、前記誘電体膜の上方または下方に隣接して設けられ、前記誘電体膜よりも大きい屈折率を有する光吸収膜と、を備え、前記活性層は、前記基板、前記半導体層及び前記光吸収膜のいずれよりも広いバンドギャップを有することを特徴とする半導体レーザ装置が提供される。
【選択図】図1
Description
本発明は、半導体レーザ装置に関する。
DVD(Digital Versatile Disc)を含む光ディスクの書き換え、追記、再生においては、微細なピット列に対応できる乱れがない放射パターンを有し、動作電流の小さな半導体レーザ装置が必要である。また、信号処理速度を上げるほど、高光出力を有する半導体レーザ装置が必要になる。屈折率導波型構造の半導体レーザ装置のうち、共振器の光軸方向に延びたリッジ部の両脇にリッジ部を構成するクラッド層とは逆導電型の電流阻止層を設けた構造は、「複素屈折率導波型構造」などと呼ばれる。
この構造では、リッジ部及び非リッジ部の複素屈折率差及びリッジ部の幅をそれぞれ適正値に選択することにより高次横モードを抑制し、マイナス10乃至プラス70℃の温度範囲において安定な基本横モードが得られる。また、水平横方向のビーム広がり角の半値全幅θhを7乃至12度、垂直横方向のビーム広がり角の半値全幅θvを25乃至35度とできる。
しかしながら、クラッド層とは逆導電型を有する電流阻止層を構成する半導体が活性層より小さいバンドギャップエネルギを有する場合、活性層からしみ出たレーザ光が電流阻止層内で吸収される。この光吸収により特に高温において動作電流が増大し、75℃以上において10mW以上の光出力が得られにくくなる
この問題を解決するために、光吸収による損失の少ない誘電体膜により電流阻止層を形成する実屈折率導波型構造がある。しかし、θhがリッジ幅やp型クラッド層の厚みにより大きく変動し、かつ基板や電極からの反射光によるサブビームがメインビームと干渉し放射パターンが乱れるなどFFP(Far Field Pattern:遠視野像)に問題を生じる。FFPの乱れは信号読み取り、書き換えにおいて誤りを生じるため光ディスク用途においては好ましくない。
横方向の光閉じ込めを安定化するために、電流通路部の側面を覆うように、誘電体ブロック層と、その上に形成された半導体ブロック層とからなる電流ブロック層を有する窒化物系半導体発光素子に関する技術開示例がある(特許文献1)。
特開2003−60319号公報
本発明は、FFPが改善された屈折率導波型半導体レーザ装置を提供する。
本発明の一態様によれば、基板と、前記基板の上に設けられた活性層と、前記活性層の上に設けられ、光共振器光軸方向に延在するリッジ部と前記リッジ部の両側に設けられた非リッジ部とを有する第1導電型のクラッド層と、前記リッジ部の上に設けられた第1導電型の半導体層と、前記リッジ部の側面及び前記非リッジ部の上に設けられた誘電体膜と、前記誘電体膜の上方または下方に隣接して設けられ、前記誘電体膜よりも大きい屈折率を有する光吸収膜と、を備え、前記活性層は、前記基板、前記半導体層、前記光吸収膜のいずれよりも広いバンドギャップを有することを特徴とする半導体レーザ装置が提供される。
本発明により、FFPが改善された屈折導波型半導体レーザ装置が提供される。
以下、図面を参照しつつ本発明の実施の形態につき説明する。
図1は、本発明の第1具体例にかかる半導体レーザ装置の模式断面図である。
結晶基板22の上に、バッファ層24、n型クラッド層26、活性層28、p型第1クラッド層30、エッチングストップ層32、p型第2クラッド層34、通電容易層36、p型半導体層38がこの順に積層されている。この積層体は連続的な結晶成長により形成される。リッジ部50は光共振器の光軸方向に延びており、p型第2クラッド層34により構成され、その組成はp型第1クラッド層30と同じとすることができる。また、エッチングストップ層32は、必ずしも必要ではないが、リッジ部50の加工時に非リッジ部48を必要以上にエッチングすることを抑制できる。
図1は、本発明の第1具体例にかかる半導体レーザ装置の模式断面図である。
結晶基板22の上に、バッファ層24、n型クラッド層26、活性層28、p型第1クラッド層30、エッチングストップ層32、p型第2クラッド層34、通電容易層36、p型半導体層38がこの順に積層されている。この積層体は連続的な結晶成長により形成される。リッジ部50は光共振器の光軸方向に延びており、p型第2クラッド層34により構成され、その組成はp型第1クラッド層30と同じとすることができる。また、エッチングストップ層32は、必ずしも必要ではないが、リッジ部50の加工時に非リッジ部48を必要以上にエッチングすることを抑制できる。
リッジ部50の両側面及び非リッジ部48の上には絶縁物からなる誘電体膜40が形成され、その上には光吸収膜42がさらに設けられる。リッジ部50の上部に設けられたp型半導体層38はp側電極44と接続されており、基板22の裏面にはn側電極46が設けられている。
次に、発光波長が650nm帯であるDVD用のInGaAlP系半導体レーザ装置を例にして第1具体例をより詳細に説明する。
650nmを放射する活性層28は、バンドギャップエネルギが約1.9eVであるInGaP/InGaAlPから構成される。この場合、MQW(Multiple Quantum Well)構造を用いることもできる。結晶基板22として、例えば、n型GaAs材料とする。GaAsのバンドギャップエネルギは約1.4eVであるので活性層28からの放射光は結晶基板22に吸収される。結晶基板22の上にGaAsからなるバッファ層24を設けると、漏れてくるレーザ光をより吸収できる。ただし、バッファ層24は必ずしも必要ではない。なお、本明細書において、バッファ層24を備えた結晶基板22または結晶基板22をあわせて基板と呼ぶ。
650nmを放射する活性層28は、バンドギャップエネルギが約1.9eVであるInGaP/InGaAlPから構成される。この場合、MQW(Multiple Quantum Well)構造を用いることもできる。結晶基板22として、例えば、n型GaAs材料とする。GaAsのバンドギャップエネルギは約1.4eVであるので活性層28からの放射光は結晶基板22に吸収される。結晶基板22の上にGaAsからなるバッファ層24を設けると、漏れてくるレーザ光をより吸収できる。ただし、バッファ層24は必ずしも必要ではない。なお、本明細書において、バッファ層24を備えた結晶基板22または結晶基板22をあわせて基板と呼ぶ。
InGaAlP系半導体レーザ装置においては、基板の上に、InGaAlPからなるn型クラッド層26、活性層28、InGaAlPからなるp型第1クラッド層30、InGaPからなるエッチングストップ層32、InGaAlPからなるp型第2クラッド層34、p型InGaPからなる通電容易層36、GaAsからなるp型半導体層38が、この順序でMOCVD(Metal Organic Chemical Vapor Deposition)法などにより積層されている。通電容易層36は、p型半導体層38と、p型第2クラッド層34との中間のバンドギャップエネルギを有しているので、バンド間不連続による電圧降下を低減し、動作電圧を低減する効果がある。また、p型半導体層38の不純物濃度を1×1019cm−3以上とすることにより、p側電極44との接触抵抗を低減できる。この場合不純物としては、Zn、C、Mgなどを用いる。
誘電体膜40としては、窒化珪素(Si3N4:屈折率は1.9乃至2.0)、酸化ジルコニウム(ZrO2:屈折率は2.0)、酸化タンタル(Ta2O5:屈折率は2.2)、酸化チタン(TiO2:屈折率は2.5)などを用いることができる。光吸収膜42としては、例えばアモルファス膜を用いることができる。活性層28内を導波されたレーザ光は誘電体膜40を介して光吸収膜42であるアモルファス膜にしみ出し、言い換えると光学的に結合して吸収される。アモルファス膜が導電性である場合、p側電極44から注入された電流は横方向に広がりやすくなり、アモルファス膜の抵抗を低減できる。この結果、素子抵抗が低減された複素屈折率導波型構造が可能になる。
安定した電流阻止効果を得るためには、誘電体膜40の厚みは10nm以上であることが好ましい。また、活性層28内の導波光がアモルファス膜に効率的に光学結合がなされるためには、誘電体膜40の屈折率がリッジ部50の実効屈折率である3.3に近いほうが好ましい。すでに説明した誘電体膜40の材料の屈折率はいずれも1.8より大きいのでこれに適している。
さらに、レーザ光がアモルファス膜に光学的に結合するためには、アモルファス膜の屈折率が誘電体膜40のそれより大きい必要があり、かつ光吸収係数が100cm−1以上であることが好ましい。アモルファス膜としては、例えば、アモルファスシリコンがある。アモルファスシリコンは、波長600乃至800nmにおける屈折率は3.4乃至4.5であり、光吸収係数は10000cm−1以上である。また、成膜条件により導電性の制御が可能であるので光吸収膜として適している。なお、シリコン(Si)のバンドギャップは1.42eVである。
図2は、波長が650nm帯であるInGaAlP系材料と、Si3N4からなる誘電体膜40と、アモルファスシリコンからなる光吸収膜42とから構成された第1具体例にかかる半導体レーザ装置における導波路損失α(cm−1)のシミュレーション結果を表すグラフ図である。なお、活性層28は井戸層及びバリア層の厚みはいずれも5nmであるInGaP/InGaAlPからなるMQW構造、nクラッド層26、p型クラッド層30及び34のAl組成比はいずれも0.7、リッジ部50の幅はその底部において3μmとしている。縦軸は導波路損失α(cm−1)であり、横軸はSi3N4の膜厚(μm)である。Si3N4膜厚が0.1μmより大きい領域において、αはほぼ0.08cm−1と一定値となり損失が小さい。この結果、実屈折率導波型として動作する。
一方、Si3N4膜厚が0.01乃至0.1μmの領域において、膜厚の減少と共にαは0.08から1.05cm−1に向かって上昇する。この領域では、複素屈折率導波型として動作することを表している。なお、n型GaAsのαは10cm−1以上と大きい。これに対して、本第1具体例においては、Si3N4膜厚が0.01乃至0.1μmの領域において膜厚を変化することにより、αを0.08乃至10cm−1の間で制御できる。すなわち、n型GaAs層のような逆導電型電流阻止層よりも低損失である誘電体膜40からなる電流阻止層を有する複素屈折率導波型半導体レーザ装置が可能となる。
図3は、図2と同一の条件における水平横方向広がり角(半値全幅:θh)のシミュレーション結果を表すグラフ図である。縦軸は、水平方向広がり角θhであり、横軸はSi3N4膜厚である。
Si3N4膜厚が0.1μmより大きい領域ではθhは10.25度とほぼ一定値である。一方、Si3N4膜厚が0.01乃至0.1μmの領域において、膜厚の減少と共に10.25度から10.65度に向かって上昇しており、複素屈折率導波型として動作することを表している。この結果、リッジ部50の幅や高さが変化しても、Si3N4膜の厚みを0.01乃至0.1μmの範囲で適正に選択することによりθhの変動範囲を小さくでき、FFPの変動を低減できる。また、導波路損失の低減により、動作電流の低減が可能になり高温動作が容易になる。
Si3N4膜厚が0.1μmより大きい領域ではθhは10.25度とほぼ一定値である。一方、Si3N4膜厚が0.01乃至0.1μmの領域において、膜厚の減少と共に10.25度から10.65度に向かって上昇しており、複素屈折率導波型として動作することを表している。この結果、リッジ部50の幅や高さが変化しても、Si3N4膜の厚みを0.01乃至0.1μmの範囲で適正に選択することによりθhの変動範囲を小さくでき、FFPの変動を低減できる。また、導波路損失の低減により、動作電流の低減が可能になり高温動作が容易になる。
次に、本具体例によりDVD用光ディスク駆動装置にとって重要なFFPの乱れが抑制できることを説明する。
図4は、本具体例によりFFPの乱れが抑制できることを説明する図であり、同図(a)は半導体レーザ装置の模式断面図、同図(b)はFFPを表すグラフ図である。図4(a)のAA部は図1の一点鎖線AA’に沿った断面を、BB部は一点鎖線BB’に沿った断面をそれぞれ表す。活性層28内を導波され、光出射面に向かうレーザ光はn型クラッド層26からのしみ出しがあっても、バンドギャップエネルギが活性層28より小さいバッファ層24または基板22において吸収される。言い換えると、バンドギャップエネルギをEg(eV)とすると、バンドギャップ波長λg(μm)はλg=1.24/Egで表され、λgより短い波長光は半導体内で吸収される。
図4は、本具体例によりFFPの乱れが抑制できることを説明する図であり、同図(a)は半導体レーザ装置の模式断面図、同図(b)はFFPを表すグラフ図である。図4(a)のAA部は図1の一点鎖線AA’に沿った断面を、BB部は一点鎖線BB’に沿った断面をそれぞれ表す。活性層28内を導波され、光出射面に向かうレーザ光はn型クラッド層26からのしみ出しがあっても、バンドギャップエネルギが活性層28より小さいバッファ層24または基板22において吸収される。言い換えると、バンドギャップエネルギをEg(eV)とすると、バンドギャップ波長λg(μm)はλg=1.24/Egで表され、λgより短い波長光は半導体内で吸収される。
また、活性層28の上のp型第1クラッド層30及びp型第2クラッド層34からしみ出しがあっても、バンドギャップエネルギが活性層28より小さいp型半導体層38及び光吸収層42において吸収される。この結果、しみ出たレーザ光がp側電極44やn側電極46により反射されてメインビーム82を乱すことが無く図4(b)のようなガウス型のFFPを有した出射光80を得ることができる。
図5は、比較例におけるFFPの乱れを説明する図であり、同図(a)は模式断面図、同図(b)はFFPを表す。なお、図4と同様の構成要素には同一番号を付して詳細な説明を省略する。比較例の場合、結晶基板22及びバッファ層24は活性層28よりも大きいバンドギャップエネルギを有しているのでしみ出たサブビーム84は基板で吸収されずに、例えば、n側電極46で反射する。
また、上方へしみ出たサブビーム84は、光吸収層がなくp型コンタクト層37が活性層28より大きいバンドギャップエネルギを有しているためにp型コンタクト層では吸収されずに、サブビーム84はp側電極44により反射する。このようにしてサブビーム84は、p側電極44とn側電極46との境界などで多重反射しながら共振器光軸方向に伝播してメインビーム82と干渉した後、図5(b)のように乱れたFFPを有した出射光81となる。
FFPの乱れは、光ディスクの再生、書き換えのいずれにおいても信号誤りを生じるので好ましくない。例えば、InGaAlN系半導体レーザ装置においては、活性層28はInGaN/InGaNなる構造、p型コンタクト層37にはGaNが用いられる。また、結晶基板23にはGaNやサファイヤなどが用いられる。GaNやサファイヤは、活性層28より大きなバンドギャップエネルギを有するためにレーザ光は、結晶基板23及びp型コンタクト層37を通り抜ける。この結果、図5(b)のようなFFPの乱れを生じやすい。
これに対して、本具体例の650nm半導体レーザ装置においては、基板またはp型半導体層38を構成するGaAsが光を吸収し、また光吸収膜42をさらに設けることにより、FFPの乱れが改善できる。また、波長が780nmのCD用においても同様である。すなわち、780nm帯の半導体レーザ装置において活性層28はAlGaAsであり、そのバンドギャップエネルギは1.6eVであるのでサブビームを基板、p型半導体層38を構成するGaAs、及び光吸収膜42により吸収できる。
次に、本第1具体例にかかる半導体発光装置の製造方法について説明する。
図6は、その工程断面図である。
図6(a)は、結晶成長した積層体のn型クラッド層26より上部を表す。この結晶成長は1回で連続的になされる。積層体の上部にはフォトレジスト62がパターニングされる。続いて図6(b)のように、エッチングによりリッジ部34を形成し、エッチングストップ層32を除去する。
図6は、その工程断面図である。
図6(a)は、結晶成長した積層体のn型クラッド層26より上部を表す。この結晶成長は1回で連続的になされる。積層体の上部にはフォトレジスト62がパターニングされる。続いて図6(b)のように、エッチングによりリッジ部34を形成し、エッチングストップ層32を除去する。
続いて、図6(c)のように、誘電体膜40及び光吸収膜42をCVD法やスパッタリングにより形成し、同図(d)のように厚膜レジスト60を塗布する。続いて厚膜レジスト60を、RIE(Reactive Ion Etching)などによりリッジ部34の上部を露出し(図6(e))、さらに光吸収膜42及び誘電体膜40をRIEなどにより除去することによりリッジ部34の上部を開口する(同図(f))。続いて、図6(g)のようにp側電極44を形成して完成する。
この製造方法においては、結晶成長が1回で屈折率導波型構造ができる。これに対して、逆導電型電流阻止層による構造では電流阻止層と上部コンタクト層とのそれぞれの結晶成長を含めて最低3回の結晶成長が必要であり生産性において劣る。また、MOCVD装置や結晶成長ガス材料は高価であるので、結晶成長回数が多いと製造コストが上がる。本具体例の半導体発光装置は製造コスト低減が可能である。
図7は、第1具体例の変形例である半導体レーザ装置の模式断面図である。図1と同様の構成要素には、同一番号を付して詳細な説明を省略する。
第1具体例において、光吸収膜42は誘電体膜40の上方に形成された。しかし、誘電体膜40に隣接して下方に設けられても良い。このようにしても、活性層28からしみ出たサブビームを吸収することができ、p側電極44及びn側電極46における多重反射による伝播を抑制できる。この場合、光吸収膜42が活性層28に近いので光学的な結合が容易となる。
第1具体例において、光吸収膜42は誘電体膜40の上方に形成された。しかし、誘電体膜40に隣接して下方に設けられても良い。このようにしても、活性層28からしみ出たサブビームを吸収することができ、p側電極44及びn側電極46における多重反射による伝播を抑制できる。この場合、光吸収膜42が活性層28に近いので光学的な結合が容易となる。
次に、本発明の第2具体例にかかる半導体レーザ装置につき説明する。
図8は、第2具体例であるDVD及びCD用2波長半導体レーザ装置の模式断面図である。
GaAsなどからなる結晶基板220の上に、DVD用の650nm帯の半導体レーザ素子101と、CD用の780nm帯の半導体レーザ素子102とが集積されている。例えば、まず780nm帯レーザ素子102の結晶成長が行われる。n型GaAs基板220の上に、n型クラッド層262、活性層282、p型第1クラッド層302、エッチングストップ層322、p型第2クラッド層342、通電容易層362、GaAsからなるp型半導体層382を備えた積層体が形成されている。
図8は、第2具体例であるDVD及びCD用2波長半導体レーザ装置の模式断面図である。
GaAsなどからなる結晶基板220の上に、DVD用の650nm帯の半導体レーザ素子101と、CD用の780nm帯の半導体レーザ素子102とが集積されている。例えば、まず780nm帯レーザ素子102の結晶成長が行われる。n型GaAs基板220の上に、n型クラッド層262、活性層282、p型第1クラッド層302、エッチングストップ層322、p型第2クラッド層342、通電容易層362、GaAsからなるp型半導体層382を備えた積層体が形成されている。
次に、半導体素子102となる部分の積層体を残し、隣接して650nm帯レーザ素子101の結晶成長が行われる。n型GaAs基板220の上に、n型クラッド層261、活性層281、p型第1クラッド層301、エッチングストップ層321、p型第2クラッド層341、通電容易層361、GaAsからなるp型半導体層381を備えた積層体が形成されている。この場合、780nm帯レーザ素子102の活性層としては、例えば、バンドギャップエネルギが1.6eVであるAlGaAsとする。一方、650nm帯レーザ素子101の活性層としては、例えば、バンドギャップエネルギが1.9eVであるInGaP/InGaAlPからなるMQW層とする。
なお、780nm帯レーザ素子102において、活性層282をAlxGa1−xAs(0<x<1)からなるバルクとした場合、p型クラッド層302及び342、n型クラッド層262にAlyGa1−yAs(x<y<1)を用いることができる。また、これらクラッド層302、342、262を650nm帯レーザ素子101と同様にInGaAlPとすることもできる。積層体の他の各層の組成はほぼ共通とすることができる。
また、放熱性を良好にするためにアップサイドダウン構造が用いられる。この場合、650nm帯レーザ素子101及び780nm帯レーザ素子102の高さをほぼ同一とすることが好ましい。さらに、リッジ部を形成する工程以降はエッチングなどの加工時間を揃えるためにリッジ部高さもほぼ同一とすることが好ましい。リッジ部のエッチング、誘電体膜401及び402の形成、光吸収膜421及び422の形成、p側電極441及び442の形成工程は、共通にできる。なお、650nm帯のレーザ素子101と780nm帯のレーザ素子102との発光点間隔Dは、例えば、110μmとする。一般に二波長半導体レーザ装置は構造が複雑となるが、逆導電型電流阻止層及びその上のコンタクト層を省略できる本第2具体例により一層簡素な構造とできる。
本第2具体例において、基板220に用いるGaAs,p側電極441及び442との接触抵抗を低減するGaAsからなるp型半導体層381及び382、アモルファス膜からなる光吸収膜421及び422はいずれも650nm及び780nmの波長光を吸収できる。この結果、リッジ部の幅や高さが変化しても、光吸収膜421及び422の厚みを0.01乃至0.1μmの範囲で適正に選択することによりθhの変動範囲を小さくでき、FFPの変動を低減できる。
また、活性層281及び282からしみ出たサブビームがp側電極421及び422、n側電極460などで反射されてメインビームと干渉することを抑制できる。この結果、メインビームとサブビームとの干渉により生じるFFPの乱れを抑制できる。
さらに、光吸収膜421及び422の膜厚を適正に選択することにより、逆導電型半導体による電流阻止層と比較して導波路損失を低減できる。この結果、FFPを改善しつつ、動作電流の低減が可能となる。動作電流の低減により高温動作が、また光損失の低減により光出力の増大が可能となる。このようにして、二波長半導体レーザ装置を再生専用のみならず書き換え用などにも応用できる。二波長半導体レーザ装置は光ピックアップの小型化をより容易にする。
以上、図面を参照しつつ本発明の具体例につき説明した。しかし、本発明はこれら具体例に限定されない。例えば、半導体レーザ装置を構成する半導体積層体、リッジ部、非リッジ部、p側電極、n側電極、基板、誘電体膜、光吸収膜などのサイズ、材質、形状などに関して当業者が設計変更を行ったものであっても、本発明の主旨を逸脱しない限り、本発明の範囲に包含される。
22・・・結晶基板、24・・・バッファ層、28・・・活性層、38・・・p型半導体層、40・・・誘電体膜、42・・・光吸収膜、48・・・非リッジ部、50・・・リッジ部
Claims (5)
- 基板と、
前記基板の上に設けられた活性層と、
前記活性層の上に設けられ、光共振器光軸方向に延在するリッジ部と前記リッジ部の両側に設けられた非リッジ部とを有する第1導電型のクラッド層と、
前記リッジ部の上に設けられ た第1導電型の半導体層と、
前記リッジ部の側面及び前記非リッジ部の上に設けられた誘電体膜と、
前記誘電体膜の上方または下方に隣接して設けられ、前記誘電体膜よりも大きい屈折率を有する光吸収膜と、
を備え、
前記活性層は、前記基板、前記半導体層及び前記光吸収膜のいずれよりも広いバンドギャップを有することを特徴とする半導体レーザ装置。 - 前記基板は、バッファ層を含み、
前記活性層は、前記バッファ層より広いバンドギャップを有することを特徴とする請求項1記載の半導体レーザ装置。 - 前記光吸収膜は、アモルファス膜であることを特徴とする請求項1または2に記載の半導体レーザ装置。
- 前記光吸収膜は、前記非リッジ部と前記誘電体膜との間に設けられていることを特徴とする請求項1乃至3に記載の半導体レーザ装置。
- 前記誘電体膜は、窒化珪素、酸化ジルコニウム、酸化タンタル、酸化チタンの少なくともいずれかを含み、厚みが0.1μm以下であることを特徴とする請求項1〜4のいずれか1つに記載の半導体レーザ装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006210109A JP2008041711A (ja) | 2006-08-01 | 2006-08-01 | 半導体レーザ装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006210109A JP2008041711A (ja) | 2006-08-01 | 2006-08-01 | 半導体レーザ装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008041711A true JP2008041711A (ja) | 2008-02-21 |
Family
ID=39176438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006210109A Pending JP2008041711A (ja) | 2006-08-01 | 2006-08-01 | 半導体レーザ装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008041711A (ja) |
-
2006
- 2006-08-01 JP JP2006210109A patent/JP2008041711A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3862894B2 (ja) | 半導体レーザ装置 | |
JP2010267731A (ja) | 窒化物半導体レーザ装置 | |
JP2009038239A (ja) | 光半導体装置 | |
JP2007095758A (ja) | 半導体レーザ | |
US7098064B2 (en) | Semiconductor laser device and its manufacturing method, and optical disc reproducing and recording apparatus | |
JP2006294984A (ja) | 半導体レーザ素子とその製造方法およびそれを用いた光ピックアップ装置 | |
US20120114004A1 (en) | Nitride semiconductor laser device and method of manufacturing the same | |
US20060120424A1 (en) | Semiconductor laser device | |
JP2006080307A (ja) | 半導体レーザアレイ及びその製造方法、多波長半導体レーザ装置 | |
US7706423B2 (en) | Dual-wavelength semiconductor laser device and method for fabricating the same | |
JP2007005720A (ja) | 半導体レーザ装置 | |
JP2007142227A (ja) | 半導体レーザ装置 | |
JP2007012729A (ja) | 窒化ガリウム系半導体レーザ装置 | |
JP2008041711A (ja) | 半導体レーザ装置 | |
JP2006186090A (ja) | 半導体レーザ装置およびそれを用いた光ピックアップ装置 | |
JP4649942B2 (ja) | 半導体レーザおよび光ディスク装置 | |
JP2001298243A (ja) | 半導体レーザ素子、半導体レーザ装置および光学式情報再生装置 | |
JP2005039107A (ja) | 酸化物半導体レーザ素子 | |
JP2010056331A (ja) | 半導体レーザ装置およびその製造方法 | |
JP2012238660A (ja) | 窒化物半導体レーザ素子の製造方法 | |
JP2004296635A (ja) | 半導体レーザ装置およびその製造方法および光ディスク装置 | |
JP2011055009A (ja) | 半導体レーザ | |
JP2010153430A (ja) | 半導体レーザ、半導体レーザの製造方法、光ディスク装置および光ピックアップ | |
JP2010016118A (ja) | 半導体レーザ装置およびその製造方法 | |
JP2004296637A (ja) | 半導体レーザ装置および光ディスク装置 |