JP2008041707A - Semiconductor device and manufacturing method therefor - Google Patents

Semiconductor device and manufacturing method therefor Download PDF

Info

Publication number
JP2008041707A
JP2008041707A JP2006210092A JP2006210092A JP2008041707A JP 2008041707 A JP2008041707 A JP 2008041707A JP 2006210092 A JP2006210092 A JP 2006210092A JP 2006210092 A JP2006210092 A JP 2006210092A JP 2008041707 A JP2008041707 A JP 2008041707A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor device
bonding layer
semiconductor element
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006210092A
Other languages
Japanese (ja)
Other versions
JP5050440B2 (en
Inventor
Masanori Yamagiwa
正憲 山際
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006210092A priority Critical patent/JP5050440B2/en
Publication of JP2008041707A publication Critical patent/JP2008041707A/en
Application granted granted Critical
Publication of JP5050440B2 publication Critical patent/JP5050440B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • H01L2224/26152Auxiliary members for layer connectors, e.g. spacers being formed on an item to be connected not being a semiconductor or solid-state body
    • H01L2224/26175Flow barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prolong the lifetime of a semiconductor device where a semiconductor element is bonded to a substrate by a bonding layer. <P>SOLUTION: Materials for forming a bonding layer 3 and a substrate 1 are selected, such that the 0.2% yield strength of the bonding layer 3 is the same as or slightly higher than the 0.2% yield strength of the substrate 1 at the same temperature. Consequently, the displacement between a semiconductor element 2 and the substrate 1 is absorbed not by the bonding layer 3, but by the substrate 1 side. Since final breakdown phenomenon takes place on the substrate 1 side, exhibiting higher toughness and higher iteration fatigue strength for a predetermined strain, as compared with the bonding layer 3, the lifetime of the semiconductor device can be markedly prolonged. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体素子と基板の接合技術に関する。   The present invention relates to a bonding technique between a semiconductor element and a substrate.

一般に、半導体素子と金属基板を接合する際にははんだが用いられる。ところが、このはんだは、半導体素子と金属基板の熱膨張係数の差のために温度差によって発生する応力を自身が歪むことによって緩和するというメリットを有する反面、その繰り返しによってCoffin-Manson則(歪と疲労寿命の関係を示す法則)で示されるような劣化が発生するというデメリットを有する。   Generally, solder is used when joining a semiconductor element and a metal substrate. However, this solder has the merit of relaxing the stress generated by the temperature difference due to the difference in temperature due to the difference in the thermal expansion coefficient between the semiconductor element and the metal substrate, but on the other hand, the Coffin-Manson rule (strain and It has a demerit that deterioration occurs as shown by the law showing the relationship of fatigue life.

具体的には、実使用時、半導体素子の発熱によって半導体装置に温度変化が加わることによって熱膨張係数が異なる半導体素子と基板との間に変位が発生するために、半導体素子と基板間に存在するはんだには熱応力と熱歪が生じる。そして半導体素子の発熱が繰り返されることによってはんだの劣化が進み、遂には疲労寿命に達してクラックが発生する。この結果、半導体素子を冷却する放熱経路が遮断され、半導体素子が高温に晒されて破壊に至る。   Specifically, during actual use, a displacement occurs between a semiconductor element having a different coefficient of thermal expansion due to a temperature change applied to the semiconductor device due to heat generation of the semiconductor element. Thermal stress and thermal strain are generated in solder. Then, the heat generation of the semiconductor element is repeated, so that the deterioration of the solder progresses, and finally the fatigue life is reached and a crack is generated. As a result, the heat dissipation path for cooling the semiconductor element is blocked, and the semiconductor element is exposed to a high temperature to be destroyed.

このような背景から、近年、半導体素子の冷却能力を向上させて半導体素子と基板間の温度差を小さくすることにより半導体素子と基板間の変位を抑制する方法、半導体素子と基板間の熱膨張係数差を小さくすることにより半導体素子と基板間の変位を抑制する方法、半導体素子と基板間に変位が生じても接合部に熱応力や熱歪が集中しないように半導体素子や基板の形状を設計する方法等、はんだの寿命を延ばすための幾つかの方法が提案されている(特許文献1参照)。
特開2003−31732号公報
Against this background, in recent years, a method for suppressing the displacement between the semiconductor element and the substrate by improving the cooling capacity of the semiconductor element to reduce the temperature difference between the semiconductor element and the substrate, and the thermal expansion between the semiconductor element and the substrate A method of suppressing the displacement between the semiconductor element and the substrate by reducing the coefficient difference, and the shape of the semiconductor element and the substrate is prevented so that thermal stress and thermal strain are not concentrated on the joint even if the displacement occurs between the semiconductor element and the substrate. Several methods for extending the life of the solder, such as a designing method, have been proposed (see Patent Document 1).
JP 2003-31732 A

しかしながら、上記方法はいずれも、半導体素子と金属基板間の変位をその接合部であるはんだの歪により吸収しようとするものであり、その繰り返しによってはんだの劣化が進み遂には疲労寿命に達しクラックが発生するという初期の問題そのものを解決してはいない。即ち、接合部で応力緩和を行う従来の半導体装置構造によれば、多少の接合部の寿命改善ができたとしても、極端に温度差が大きくなったり、接合面積が増えたりした場合においては十分な改善策とは言えない。   However, all of the above methods attempt to absorb the displacement between the semiconductor element and the metal substrate by the distortion of the solder that is the joint, and the repeated deterioration of the solder eventually reaches the fatigue life and causes cracks. It does not solve the initial problem itself. That is, according to the conventional semiconductor device structure in which the stress is relaxed at the joint, even if the life of the joint can be improved to some extent, it is sufficient when the temperature difference becomes extremely large or the joint area increases. It cannot be said that it is a serious improvement measure.

本発明は、上記課題を解決するためになされたものであり、その目的は、寿命を飛躍的に向上可能な半導体装置及びその製造方法を提供することにある。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a semiconductor device and a method for manufacturing the same capable of dramatically improving the lifetime.

上述の課題を解決するために、本発明に係る半導体装置は、半導体素子と基板の接合材料の強度特性を指定することにより、半導体素子と基板間の変位を主に接合層ではなく基板側で吸収する。即ち、本発明に係る半導体装置は、接合層の0.2%耐力の大きさを同一温度において基板の0.2%耐力の大きさと同じ若しくはそれ以上とすることにより、半導体素子と基板間の変位を主に基板側で受け止めることが可能になる。   In order to solve the above-described problems, the semiconductor device according to the present invention specifies the strength characteristics of the bonding material between the semiconductor element and the substrate, thereby causing the displacement between the semiconductor element and the substrate mainly on the substrate side, not on the bonding layer. Absorb. That is, in the semiconductor device according to the present invention, the size of the 0.2% proof stress of the bonding layer is equal to or greater than the size of the 0.2% proof strength of the substrate at the same temperature. The displacement can be received mainly on the substrate side.

本発明に係る半導体装置及びその製造方法によれば、半導体素子と基板間の変位を接合層ではなく基板側で吸収するので、最終的な破壊現象は、接合層と比較して靱性が高く、ある一定の歪に対する繰り返し疲労強度が高い基板側において発生するようになり、半導体装置の寿命を飛躍的に向上させることができる。   According to the semiconductor device and the manufacturing method thereof according to the present invention, since the displacement between the semiconductor element and the substrate is absorbed on the substrate side instead of the bonding layer, the final breakdown phenomenon has high toughness compared to the bonding layer, It occurs on the substrate side where the repeated fatigue strength against a certain strain is high, and the life of the semiconductor device can be drastically improved.

以下、図面を参照して、本発明の実施形態となる半導体装置の構成について詳しく説明する。   Hereinafter, a configuration of a semiconductor device according to an embodiment of the present invention will be described in detail with reference to the drawings.

[半導体装置の構成]
〔第1の実施形態〕
本発明の第1の実施形態となる半導体装置は、図1に示すように、基板1と半導体素子2とを備え、基板1と半導体素子2は接合層3によって接合されている。基板1は金属材料又は有機物材料若しくは無機物材料と金属材料との複合材料により形成されている。接合層3は半導体材料は金属材料、又は有機物材料若しくは無機物と金属材料との複合材料により形成されている。
[Configuration of semiconductor device]
[First Embodiment]
As shown in FIG. 1, the semiconductor device according to the first embodiment of the present invention includes a substrate 1 and a semiconductor element 2, and the substrate 1 and the semiconductor element 2 are bonded by a bonding layer 3. The substrate 1 is formed of a metal material, an organic material, or a composite material of an inorganic material and a metal material. The bonding layer 3 is formed of a metal material or a composite material of an organic material or an inorganic material and a metal material as a semiconductor material.

この半導体装置では、図2に示すように、接合層3の0.2%耐力(若しくは降伏強度)σyが同一温度において基板1の0.2%耐力σyと同じ若しくはそれ以上になるように基板1と接合層3を形成する材料が選択されている。このような構造によれば、半導体装置に熱負荷が掛かり、半導体素子2と基板1の熱膨張差によって剪断方向に変位が生じた際、接合層3と比較して靱性が高く、ある一定の歪に対する繰り返し疲労強度が高い基板1が歪むことによって応力緩和されるので、半導体装置の寿命を向上させることができる。 In this semiconductor device, as shown in FIG. 2, the 0.2% yield strength (or yield strength) σy 2 of the bonding layer 3 is equal to or higher than the 0.2% yield strength σy 1 of the substrate 1 at the same temperature. A material for forming the substrate 1 and the bonding layer 3 is selected. According to such a structure, when a thermal load is applied to the semiconductor device and displacement occurs in the shearing direction due to a difference in thermal expansion between the semiconductor element 2 and the substrate 1, the toughness is higher than the bonding layer 3, and a certain level. Since the stress is relieved when the substrate 1 having high repeated fatigue strength against strain is distorted, the life of the semiconductor device can be improved.

なお、基板1をアルミニウム(Al)又はアルミニウム合金により形成した場合には、上述の0.2%耐力の関係を満たすために、接合層3はAl,銅(Cu),金(Au),銀(Ag)、鉄(Fe)、マグネシウム(Mg)、ニッケル(Ni)、パラジウム(Pd)、白金(Pt)、チタン(Ti)、亜鉛(Zn)のうちのいずれか又はこれら金属のうちのいずれかを含む合金により形成することが望ましい。   When the substrate 1 is formed of aluminum (Al) or an aluminum alloy, the bonding layer 3 is made of Al, copper (Cu), gold (Au), silver in order to satisfy the above-described 0.2% proof stress relationship. (Ag), iron (Fe), magnesium (Mg), nickel (Ni), palladium (Pd), platinum (Pt), titanium (Ti), zinc (Zn), or any of these metals It is desirable to form by the alloy containing these.

また、基板1を銅(Cu)又は銅合金により形成した場合には、上述の0.2%耐力の関係を満たすために、接合層3は、Cu、Fe、Tiのうちのいずれか又はこれら金属のうちのいずれかを含む合金により形成することが望ましい。   In addition, when the substrate 1 is formed of copper (Cu) or a copper alloy, the bonding layer 3 is either Cu, Fe, or Ti in order to satisfy the above-described 0.2% proof stress relationship. It is desirable to form with the alloy containing any of metals.

〔第2の実施形態〕
本発明の第2の実施形態となる半導体装置では、上記第1の実施形態となる半導体装置構造において、基板1の厚さt1が接合層3の厚さt2以上の大きさになっている(図1参照)。このような構造によれば、一定の発生変位に対して歪を分かち合う基板1の体積が増えことによって、応力や歪が基板1に局所的に集中しなくなり、基板1全体で応力や歪を吸収することができるようになるので、基板1や接合層3の疲労をさらに低減し、半導体装置の寿命をさらに向上させることができる。
[Second Embodiment]
In the semiconductor device according to the second embodiment of the present invention, in the semiconductor device structure according to the first embodiment, the thickness t1 of the substrate 1 is not less than the thickness t2 of the bonding layer 3 ( (See FIG. 1). According to such a structure, the volume of the substrate 1 that shares the strain with respect to a certain generated displacement increases, so that stress and strain are not concentrated locally on the substrate 1, and the stress and strain are reduced throughout the substrate 1. Since it can be absorbed, fatigue of the substrate 1 and the bonding layer 3 can be further reduced, and the life of the semiconductor device can be further improved.

〔第3の実施形態〕
本発明の第3の実施形態となる半導体装置では、上記第1又は第2の実施形態となる半導体装置構造において、図3に示すように、半導体素子2の引張破壊強度σtの大きさが同一温度において基板1の引張破壊強度の大きさσtと同じ若しくはそれ以上になるように基板1及び半導体素子2を形成する材料が選択されている。接合層を高強度に形成することによって基板1に発生する歪を極力低減するために、基板1を形成する材料として、極端に硬い金属材料を用いたり、歪の蓄積によって加工硬化することにより極端に硬くなる金属材料を用いた場合、半導体素子2自体が破壊する可能性がある。従ってこのような構造によれば、基板1に発生する応力によって半導体素子2が破壊されることを防止できるので、半導体装置の信頼性をさらに向上させることができる。
[Third Embodiment]
In the semiconductor device according to the third embodiment of the present invention, in the semiconductor device structure according to the first or second embodiment, the tensile fracture strength σt 2 of the semiconductor element 2 has a magnitude as shown in FIG. the material forming the substrate 1 and the semiconductor element 2 to be equal to or greater than the size .sigma.t 1 tensile breaking strength of the substrate 1 at the same temperature is selected. In order to reduce the distortion generated in the substrate 1 as much as possible by forming the bonding layer with high strength, an extremely hard metal material is used as the material for forming the substrate 1 or the work is hardened by accumulation of strain. When a hard metal material is used, the semiconductor element 2 itself may be destroyed. Therefore, according to such a structure, it is possible to prevent the semiconductor element 2 from being broken by the stress generated in the substrate 1, so that the reliability of the semiconductor device can be further improved.

〔第4の実施形態〕
本発明の第4の実施形態となる半導体装置では、上記第1乃至第3の実施形態となる半導体装置構造のいずれかにおいて、図4に示すように、少なくとも基板1と接合層3の界面に形成された薄膜4を有し、基板1に対する薄膜4の密着強度及び薄膜4自体の引張破壊強度の大きさが同一温度において基板1の0.2%耐力の大きさと同じ若しくはそれ以上になるように薄膜4が形成されている。このような構成によれば、薄膜4が基板1から剥離したり、薄膜4が破壊されることがないので、半導体装置の寿命をより確実に向上させることができる。
[Fourth Embodiment]
In the semiconductor device according to the fourth embodiment of the present invention, in any of the semiconductor device structures according to the first to third embodiments, at least at the interface between the substrate 1 and the bonding layer 3 as shown in FIG. The thin film 4 is formed and the adhesion strength of the thin film 4 to the substrate 1 and the tensile fracture strength of the thin film 4 itself are equal to or greater than the 0.2% proof stress of the substrate 1 at the same temperature. A thin film 4 is formed. According to such a configuration, since the thin film 4 is not peeled off from the substrate 1 or the thin film 4 is not destroyed, the life of the semiconductor device can be improved more reliably.

〔第5の実施形態〕
本発明の第5の実施形態となる半導体装置では、上記第1乃至第4の実施形態となる半導体装置構造のいずれかにおいて、図5〜図8に示すように基板1が突出面Aを有し、接合層3は突出面A上において基板1と接合している。このような構成によれば、基板1の剛性が上がることによって基板1自体の反りを抑制でき、反りによって半導体素子2,接合層3,及び基板1に新たに発生する応力を緩和することができるので、接合後の冷却によって生じる残留応力により基板1自体や半導体素子2側面や接合層3にクラックが発生することを防止できる。
[Fifth Embodiment]
In the semiconductor device according to the fifth embodiment of the present invention, in any one of the semiconductor device structures according to the first to fourth embodiments, the substrate 1 has the protruding surface A as shown in FIGS. The bonding layer 3 is bonded to the substrate 1 on the protruding surface A. According to such a configuration, warping of the substrate 1 itself can be suppressed by increasing the rigidity of the substrate 1, and stress newly generated in the semiconductor element 2, the bonding layer 3, and the substrate 1 can be relieved by the warping. Therefore, it is possible to prevent the occurrence of cracks in the substrate 1 itself, the side surface of the semiconductor element 2 and the bonding layer 3 due to residual stress generated by cooling after bonding.

なお、上記剛性とは材料に力を加えた場合にどの程度変形し難いかを示す。突出面Aを設けた場合、一定の発生変位に対して歪を分かち合う面積(又は体積)が増えるので、その分ミクロ的に歪も応力も小さくて済むと考えられる。また、接合後の熱負荷によって基板1に発生する歪が弾性歪である場合には、基板1に与えられる熱疲労は最小限に抑えられ、特に有効で画期的な寿命向上が可能になる。加えて、最終的に塑性歪が蓄積して基板1にクラックが入ったとしても、そのクラック方向が半導体装置としての電気・熱経路に大きく影響を与えない方向になるので、半導体装置の損傷を小さく抑えられ、結果的により一層の寿命向上が望める。   The rigidity indicates how hard the material is deformed when a force is applied to the material. When the projecting surface A is provided, the area (or volume) for sharing the strain with respect to a certain generated displacement increases, so it is considered that the strain and the stress can be reduced microscopically. In addition, when the strain generated in the substrate 1 due to the thermal load after bonding is an elastic strain, the thermal fatigue applied to the substrate 1 can be minimized, and a particularly effective and epoch-making life can be improved. . In addition, even if the plastic strain eventually accumulates and cracks occur in the substrate 1, the crack direction is in a direction that does not significantly affect the electrical / thermal path of the semiconductor device. As a result, the lifetime can be further improved.

〔第6の実施形態〕
本発明の第6の実施形態となる半導体装置では、上記第5の実施形態となる半導体装置構造において、図9や図10に示すように、突出面Aが突出面Aの側面部と半導体素子2の側面部との間の距離が半導体素子2の側面形状の角部において最短になるように形成されている。このような構成によれば、図11(a)に示すような応力集中領域R1を図11(b)に示す領域R2のように分散させることによって、半導体素子2の角部周辺に応力が集中することを防止できる。
[Sixth Embodiment]
In the semiconductor device according to the sixth embodiment of the present invention, in the semiconductor device structure according to the fifth embodiment, as shown in FIGS. 9 and 10, the protruding surface A is a side surface portion of the protruding surface A and the semiconductor element. The distance between the two side surfaces is formed to be the shortest at the corner of the side surface shape of the semiconductor element 2. According to such a configuration, stress is concentrated around the corner of the semiconductor element 2 by dispersing the stress concentration region R1 as shown in FIG. 11A like the region R2 shown in FIG. Can be prevented.

[半導体装置の製造方法]
次に、上記半導体装置の製造方法の幾つかの実施例について説明する。
[Method for Manufacturing Semiconductor Device]
Next, several embodiments of the semiconductor device manufacturing method will be described.

〔実施例1〕
実施例1では、始めに、Alとセラミックスから成るAlセラミックス絶縁基板により形成された基板1表面上にAlSi系ロウ材により形成された接合層3を配置し、接合層3表面上にSiにより形成された高耐熱半導体素子2を配置した。次に、半導体素子2表面上に重りを配置し、600[℃]程度の雰囲気の真空炉内で加熱することにより実施例1の半導体装置を得た。なお、接合層3を形成するAlSi系ロウ材の融点は約580[℃]であるので、基板1と半導体素子2を接合する際の接合雰囲気の温度は600[℃]程度とした。この実施例1における基板1と接合層3の0.2%耐力の大小関係、及び基板1と半導体素子2の引張破壊強度(引張強度)の大小関係を以下の表1に示す。この実施例1では、基板1はAlセラミックス絶縁基板により形成され、接合後の冷却時に生じるAlの収縮をセラミックスがある程度抑制するので、基板1の反りを抑え、製造時の残留応力を極力少なくすることができる。またこの結果、半導体素子2にクラックが入ったり、接合層3が剥離したりすることを防止できる。
[Example 1]
In Example 1, first, a bonding layer 3 formed of an AlSi brazing material is disposed on the surface of a substrate 1 formed of an Al ceramic insulating substrate made of Al and ceramics, and formed on the surface of the bonding layer 3 with Si. The high heat-resistant semiconductor element 2 was disposed. Next, a semiconductor device of Example 1 was obtained by placing a weight on the surface of the semiconductor element 2 and heating in a vacuum furnace in an atmosphere of about 600 [° C.]. Since the melting point of the AlSi brazing material forming the bonding layer 3 is about 580 [° C.], the temperature of the bonding atmosphere when bonding the substrate 1 and the semiconductor element 2 is about 600 [° C.]. Table 1 below shows the magnitude relationship between the 0.2% yield strength of the substrate 1 and the bonding layer 3 and the magnitude relationship between the tensile fracture strength (tensile strength) of the substrate 1 and the semiconductor element 2 in Example 1. In the first embodiment, the substrate 1 is formed of an Al ceramic insulating substrate, and the ceramic suppresses the Al shrinkage to some extent during cooling after bonding. Therefore, the warpage of the substrate 1 is suppressed, and the residual stress during manufacturing is minimized. be able to. As a result, it is possible to prevent the semiconductor element 2 from cracking and the bonding layer 3 from peeling off.

〔実施例2〕
実施例2では、始めに、図12(a)に示すように、Cuにより形成された基板1と半導体素子2の少なくとも一方の接合面に粒径10[nm]前後のCuナノ粒子粉末(又はCuナノ合金粒子粉末)5を吹き付けた。一般に、金属をナノレベルまで小さくすると、表面エネルギーが増加することによってバルク本来の融点以下の温度でも溶解するようになる。また、ナノ粒子の融点は粒径が小さい程低く、粒径が大きくなるにつれてバルク本来の融点に近づくことが知られている。このため、室温でCuナノ粒子を塗布し、図12(b)に示すように基板1と半導体素子2の接合面を重ねて300[℃]程度に加熱し、図12(c)に示すように基板1と半導体素子2を接合することで実施例2の半導体装置を得た。なお、この時、より安定した接合層3を形成するために加圧してもよい。この実施例2における基板1と接合層3の0.2%耐力の大小関係、及び基板1と半導体素子2の引張破壊強度(引張強度)の大小関係を以下の表1に示す。この実施例2では、接合層3の耐熱温度はバルクのCuと同様1000[℃]以上になるので、半導体素子2として高耐熱素子等を用いた場合であっても高い接合信頼性を得することができる。なお、この実施例2では、表1に示すように接合層3の0.2%耐力は同一温度において基板1の0.2%耐力と同じ大きさであるが、接合層3をCu合金ナノ粒子により形成することにより、接合層3の0.2%耐力は同一温度において基板1の0.2%耐力以上の大きさになるので、接合層3をCuにより形成した場合よりも接合層3に発生する歪を更に低減することができる。
[Example 2]
In Example 2, first, as shown in FIG. 12 (a), Cu nanoparticle powder having a particle size of around 10 [nm] on the bonding surface of at least one of the substrate 1 and the semiconductor element 2 formed of Cu (or Cu nanoalloy particle powder) 5 was sprayed. In general, when the metal is reduced to the nano level, the surface energy increases, so that the metal melts even at a temperature lower than the original melting point of the bulk. Further, it is known that the melting point of the nanoparticles is lower as the particle size is smaller, and approaches the original melting point of the bulk as the particle size increases. For this reason, Cu nanoparticles are applied at room temperature, and the bonding surfaces of the substrate 1 and the semiconductor element 2 are overlapped and heated to about 300 [° C.] as shown in FIG. 12B, as shown in FIG. The semiconductor device of Example 2 was obtained by bonding the substrate 1 and the semiconductor element 2 to each other. At this time, pressure may be applied to form a more stable bonding layer 3. Table 1 below shows the magnitude relationship between the 0.2% yield strength of the substrate 1 and the bonding layer 3 in Example 2 and the magnitude relationship between the tensile fracture strength (tensile strength) of the substrate 1 and the semiconductor element 2. In Example 2, since the heat resistance temperature of the bonding layer 3 is 1000 [° C.] or more like bulk Cu, high bonding reliability can be obtained even when a high heat resistance element or the like is used as the semiconductor element 2. Can do. In Example 2, as shown in Table 1, the 0.2% yield strength of the bonding layer 3 is the same as the 0.2% yield strength of the substrate 1 at the same temperature. By forming with the particles, the 0.2% proof stress of the bonding layer 3 is greater than the 0.2% proof stress of the substrate 1 at the same temperature. Therefore, the bonding layer 3 is more than the case where the bonding layer 3 is formed of Cu. Can be further reduced.

〔実施例3〕
実施例3では、始めに、Alにより形成された基板1の接合面にAgめっき処理を施した。なお、Agめっき界面の密着強度及びAgめっき自体の引張破壊強度は基板1(Al)の0.2%耐力よりも大きくする。Agめっき密着強度を向上させるためには、Agめっき前に基板1の接合面に表面処理を施す方法が有効である。例えば、脱脂やエッチング等によって基板1表面を洗浄したり、下地めっきを改善したりすることによって、Agめっきの密着性を格段に向上することができる。また、一般的に電解めっきは無電解めっきに比べて緻密で高強度であり且つ母材への密着性が高いと言われているので、併せて利用できる。また、めっきはAgに限らず、CuやAu等であってもよい。次に、接合層3としてペースト化したCuSn系ろう材をAgめっき処理が施された基板1に塗布した後、半導体素子2をAgめっき上に配置して250〜300[℃]程度の温度範囲で加熱接合することにより、実施例3の半導体装置を得た。この実施例3における基板1と接合層3の0.2%耐力の大小関係、基板1と半導体素子2の引張破壊強度(引張強度)の大小関係、及びAgめっきの密着強度を以下の表1に示す。この実施例3では、比較的柔らかく靭性の高く、ある一定の歪に対する繰り返し疲労強度が高い基板1側の純Alによる応力緩和が可能となり、接合層3の寿命が大幅に向上する。なお、基板1は純Alではなく、Al合金や純Cuであっても構わない。特に純Cuの基板でCuSn系ろう材を用いる場合はめっきは不要である。また、CuSnろう材とは、溶融したSnがCuへ拡散することで合金化し融点が上がることを応用したものである。また、Agめっきの強度は、Agめっきが形成された基板1と試験用の治具とをCuSn系ろう材で接合したもの、又はAgめっきが形成された基板1と半導体素子2とをCuSn系ろう材で接合し、その後改めてどちらか一方を試験用の治具と接合又は固定したものを用いて引張試験を行い、Agめっき中またはAgめっき界面に亀裂が入る前に基板1が変形し始めたらAgめっき自体の引張破壊強度及び密着強度は基板1の0.2%耐力より高いとすることにより、評価することができる。

Figure 2008041707
Example 3
In Example 3, first, Ag plating treatment was performed on the bonding surface of the substrate 1 formed of Al. The adhesion strength at the Ag plating interface and the tensile fracture strength of the Ag plating itself are made larger than the 0.2% proof stress of the substrate 1 (Al). In order to improve the Ag plating adhesion strength, it is effective to perform a surface treatment on the bonding surface of the substrate 1 before Ag plating. For example, the adhesion of Ag plating can be remarkably improved by cleaning the surface of the substrate 1 by degreasing, etching, or the like, or by improving the base plating. In general, it is said that electrolytic plating is denser and higher in strength than electroless plating and has high adhesion to a base material, and thus can be used together. Further, the plating is not limited to Ag, but may be Cu, Au, or the like. Next, after pasting the CuSn brazing material pasted as the bonding layer 3 onto the substrate 1 that has been subjected to the Ag plating treatment, the semiconductor element 2 is placed on the Ag plating and a temperature range of about 250 to 300 [° C.]. Thus, the semiconductor device of Example 3 was obtained. Table 1 below shows the magnitude relationship between the 0.2% yield strength of the substrate 1 and the bonding layer 3, the magnitude relationship between the tensile fracture strength (tensile strength) of the substrate 1 and the semiconductor element 2, and the adhesion strength of Ag plating. Shown in In Example 3, stress relaxation by the pure Al on the substrate 1 side that is relatively soft and high in toughness and has high repeated fatigue strength against a certain strain is possible, and the life of the bonding layer 3 is greatly improved. The substrate 1 may be Al alloy or pure Cu instead of pure Al. In particular, when a CuSn brazing material is used on a pure Cu substrate, plating is unnecessary. Further, the CuSn brazing material is an application of the fact that molten Sn diffuses into Cu to form an alloy and raise the melting point. In addition, the strength of Ag plating is such that a substrate 1 on which Ag plating is formed and a test jig are joined with a CuSn brazing material, or a substrate 1 on which Ag plating is formed and a semiconductor element 2 are CuSn based. A tensile test is conducted using a brazing material and either one of them is joined or fixed to a test jig, and the substrate 1 begins to deform during the Ag plating or before the Ag plating interface cracks. Then, the tensile fracture strength and adhesion strength of the Ag plating itself can be evaluated by making them higher than the 0.2% proof stress of the substrate 1.
Figure 2008041707

[シミュレーションによる検討]
最後に、本発明の効果を検証するために、接合層3がPbSnにより形成された従来の半導体装置構造と接合層3がAgにより形成された本願発明の半導体装置構造それぞれについて、接合層3及び基板1のMises応力,Max応力,及びMax歪をシミュレーションにより評価した結果を以下の表2,3に示す。なお、シミュレーションにおいては、半導体素子2のヤング率を400[GPa]に設定し、基板1としてAl基板を用いた。また、PbSn,Ag,及びAlには公知の材料特性を設定し、熱負荷として150[℃]から−50[℃]に冷却する負荷を半導体装置に与えた。

Figure 2008041707
Figure 2008041707
[Study by simulation]
Finally, in order to verify the effect of the present invention, the conventional semiconductor device structure in which the bonding layer 3 is formed of PbSn and the semiconductor device structure of the present invention in which the bonding layer 3 is formed of Ag, respectively, The results of evaluating the Mises stress, Max stress, and Max strain of the substrate 1 by simulation are shown in Tables 2 and 3 below. In the simulation, the Young's modulus of the semiconductor element 2 was set to 400 [GPa], and an Al substrate was used as the substrate 1. Also, known material characteristics were set for PbSn, Ag, and Al, and a load for cooling from 150 [° C.] to −50 [° C.] was given to the semiconductor device as a heat load.
Figure 2008041707
Figure 2008041707

表2,3に示すように、従来の半導体装置構造の場合、温度変化によって受ける損傷は接合層3のPbSnに集中し、1サイクルで9.4[%]の歪量が発生した。これに対して、本願発明の半導体装置構造の場合には、基板1のAlと接合層3のAgとが温度変化によって受ける損傷を分かち合い、1サイクルで発生した歪量はそれぞれ0.5[%]と0.6[%]であった。以上の結果と一定の歪に対する繰り返し疲労強度がPbSnに比べAlの方が高いことから、本願発明の半導体装置構造によれば、半導体装置の寿命を向上できることが証明される。   As shown in Tables 2 and 3, in the case of the conventional semiconductor device structure, the damage caused by the temperature change was concentrated on the PbSn of the bonding layer 3 and a strain amount of 9.4 [%] was generated in one cycle. On the other hand, in the case of the semiconductor device structure of the present invention, the damage of the Al of the substrate 1 and the Ag of the bonding layer 3 caused by temperature change is shared, and the amount of strain generated in one cycle is 0.5 [ %] And 0.6 [%]. From the above results and the fact that the repeated fatigue strength for a certain strain is higher in Al than in PbSn, it is proved that the life of the semiconductor device can be improved according to the semiconductor device structure of the present invention.

以上、本発明者によってなされた発明を適用した実施の形態について説明したが、この実施の形態による本発明の開示の一部をなす論述及び図面により本発明は限定されることはない。すなわち、この実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれることは勿論であることを付け加えておく。   As mentioned above, although the embodiment to which the invention made by the present inventor is applied has been described, the present invention is not limited by the description and the drawings that form part of the disclosure of the present invention according to this embodiment. That is, it should be added that other embodiments, examples, operation techniques, and the like made by those skilled in the art based on this embodiment are all included in the scope of the present invention.

本発明の第1の実施形態となる半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device used as the 1st Embodiment of this invention. 接合層の0.2%耐力と基板の0.2%耐力の関係を説明するための応力−歪曲線である。It is a stress-strain curve for demonstrating the relationship between the 0.2% yield strength of a joining layer, and the 0.2% yield strength of a board | substrate. 基板の引張破壊強度と半導体素子の引張破壊強度の関係を説明するための応力−歪曲線である。It is a stress-strain curve for demonstrating the relationship between the tensile fracture strength of a board | substrate and the tensile fracture strength of a semiconductor element. 本発明の第4の実施形態となる半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device used as the 4th Embodiment of this invention. 本発明の第5の実施形態となる半導体装置の一構成例を示す断面図である。It is sectional drawing which shows one structural example of the semiconductor device which becomes the 5th Embodiment of this invention. 本発明の第5の実施形態となる半導体装置の一構成例を示す断面図である。It is sectional drawing which shows one structural example of the semiconductor device which becomes the 5th Embodiment of this invention. 本発明の第5の実施形態となる半導体装置の一構成例を示す断面図である。It is sectional drawing which shows one structural example of the semiconductor device which becomes the 5th Embodiment of this invention. 本発明の第5の実施形態となる半導体装置の一構成例を示す断面図である。It is sectional drawing which shows one structural example of the semiconductor device which becomes the 5th Embodiment of this invention. 本発明の第6の実施形態となる半導体装置の一構成例を示す断面図である。It is sectional drawing which shows one structural example of the semiconductor device which becomes the 6th Embodiment of this invention. 本発明の第6の実施形態となる半導体装置の一構成例を示す断面図である。It is sectional drawing which shows one structural example of the semiconductor device which becomes the 6th Embodiment of this invention. 図9及び図10に示す半導体装置の構成による技術的効果を説明するための図である。It is a figure for demonstrating the technical effect by the structure of the semiconductor device shown in FIG.9 and FIG.10. 本発明の実施形態となる半導体装置の製造方法を示す断面工程図である。It is sectional process drawing which shows the manufacturing method of the semiconductor device used as embodiment of this invention.

符号の説明Explanation of symbols

1:基板
2:半導体素子
3:接合層
4:薄膜
5:Cuナノ粉末(又はCuナノ合金粉末)
1: Substrate 2: Semiconductor element 3: Bonding layer 4: Thin film 5: Cu nano powder (or Cu nano alloy powder)

Claims (10)

半導体素子と基板を有し、半導体素子と基板が接合層によって接合されている半導体装置において、前記接合層の0.2%耐力の大きさが同一温度において前記基板の0.2%耐力の大きさと同じ若しくはそれ以上であることを特徴とする半導体装置。   In a semiconductor device having a semiconductor element and a substrate, and the semiconductor element and the substrate are bonded together by a bonding layer, the bonding layer has a 0.2% proof stress of 0.2% proof strength of the substrate at the same temperature. A semiconductor device characterized by being equal to or higher than 請求項1に記載の半導体装置において、前記基板はアルミニウム又はアルミニウム合金により形成され、前記接合層はアルミニウム、銅、金、銀、鉄、マグネシウム、ニッケル、パラジウム、白金、チタン、亜鉛のうちのいずれか又はこれら金属のうちのいずれかを含む合金により形成されていることを特徴とする半導体装置。   2. The semiconductor device according to claim 1, wherein the substrate is formed of aluminum or an aluminum alloy, and the bonding layer is any one of aluminum, copper, gold, silver, iron, magnesium, nickel, palladium, platinum, titanium, and zinc. Or an alloy containing any of these metals. 請求項1に記載の半導体装置において、前記基板は銅又は銅合金により形成され、前記接合層は銅、鉄、チタンのうちのいずれか又はこれら金属のうちのいずれかを含む合金により形成されていることを特徴とする半導体装置。   2. The semiconductor device according to claim 1, wherein the substrate is made of copper or a copper alloy, and the bonding layer is made of copper, iron, titanium, or an alloy containing any of these metals. A semiconductor device characterized by comprising: 請求項1乃至請求項3のうち、いずれか1項に記載の半導体装置において、前記基板の厚さは前記接合層の厚さ以上の大きさであることを特徴とする半導体装置。   4. The semiconductor device according to claim 1, wherein a thickness of the substrate is greater than or equal to a thickness of the bonding layer. 5. 請求項1乃至請求項4のうち、いずれか1項に記載の半導体装置において、前記半導体素子の引張破壊強度の大きさが同一温度において前記基板の引張破壊強度の大きさと同じ若しくはそれ以上であることを特徴とする半導体装置。   5. The semiconductor device according to claim 1, wherein the tensile strength of the semiconductor element is equal to or greater than the tensile strength of the substrate at the same temperature. 6. A semiconductor device. 請求項1乃至請求項5のうち、いずれか1項に記載の半導体装置において、少なくとも前記基板と前記接合層の界面に形成された薄膜を有し、基板に対する薄膜の密着強度及び薄膜自体の引張破壊強度の大きさが同一温度において基板の0.2%耐力の大きさと同じ若しくはそれ以上であることを特徴とする半導体装置。   6. The semiconductor device according to claim 1, further comprising a thin film formed at least at an interface between the substrate and the bonding layer, the adhesion strength of the thin film to the substrate, and the tensile strength of the thin film itself. A semiconductor device characterized in that the magnitude of the breaking strength is equal to or greater than the magnitude of the 0.2% proof stress of the substrate at the same temperature. 請求項1乃至請求項6のうち、いずれか1項に記載の半導体装置において、前記基板は突出面を有し、前記接合層は突出面において基板と接合していることを特徴とする半導体装置。   7. The semiconductor device according to claim 1, wherein the substrate has a protruding surface, and the bonding layer is bonded to the substrate at the protruding surface. . 請求項7に記載の半導体装置において、前記突出面は突出面の側面部と前記半導体素子の側面部との間の距離が半導体素子の側面形状の角部において最短になるように形成されていることを特徴とする半導体装置。   8. The semiconductor device according to claim 7, wherein the protruding surface is formed such that the distance between the side surface portion of the protruding surface and the side surface portion of the semiconductor element is the shortest at the corner portion of the side surface shape of the semiconductor element. A semiconductor device. 請求項1乃至請求項8のうち、いずれか1項に記載の半導体装置において、前記接合層の融点は前記基板の融点よりも高いことを特徴とする半導体装置。   9. The semiconductor device according to claim 1, wherein a melting point of the bonding layer is higher than a melting point of the substrate. 請求項1乃至請求項9のうち、いずれか1項に記載の半導体装置の製造方法であって、前記半導体素子の接合面と前記基板の接合面の少なくとも一方に金属ナノ粒子を積層した後、半導体素子と基板の接合面を重ねて加熱接合する工程を有することを特徴とする半導体装置の製造方法。   The method for manufacturing a semiconductor device according to any one of claims 1 to 9, wherein metal nanoparticles are stacked on at least one of a bonding surface of the semiconductor element and a bonding surface of the substrate, A method for manufacturing a semiconductor device, comprising a step of heating and bonding a bonding surface between a semiconductor element and a substrate.
JP2006210092A 2006-08-01 2006-08-01 Semiconductor device and manufacturing method thereof Expired - Fee Related JP5050440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006210092A JP5050440B2 (en) 2006-08-01 2006-08-01 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006210092A JP5050440B2 (en) 2006-08-01 2006-08-01 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008041707A true JP2008041707A (en) 2008-02-21
JP5050440B2 JP5050440B2 (en) 2012-10-17

Family

ID=39176435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006210092A Expired - Fee Related JP5050440B2 (en) 2006-08-01 2006-08-01 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5050440B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153873A (en) * 2008-12-24 2010-07-08 Qinghua Univ Thermal interface material, electronic assembly, and method of using the thermal interface material
JP2015004121A (en) * 2013-05-22 2015-01-08 株式会社豊田中央研究所 Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same
JP2015095540A (en) * 2013-11-12 2015-05-18 三菱電機株式会社 Semiconductor device and manufacturing method of the same
JP2015170768A (en) * 2014-03-07 2015-09-28 イサハヤ電子株式会社 Semiconductor joint method
JP2016072605A (en) * 2014-09-30 2016-05-09 イサハヤ電子株式会社 Joint material for semiconductor device and method for producing the same
US9337113B2 (en) 2012-11-20 2016-05-10 Toyota Jidosha Kabushiki Kaisha Semiconductor device
DE112019007175T5 (en) 2019-04-09 2021-12-23 Mitsubishi Electric Corporation POWER SEMI-CONDUCTOR MODULE AND POWER CONVERTER DEVICE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11729945B2 (en) * 2018-10-25 2023-08-15 Mikros Technologies Llc Active device with heat sink and low mechanical stress

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784140A (en) * 1980-11-14 1982-05-26 Hitachi Ltd Semiconductor device
JPS57102031A (en) * 1980-12-17 1982-06-24 Mitsubishi Electric Corp Manufacutre of semiconductor element
JPS57183042A (en) * 1981-05-08 1982-11-11 Hitachi Ltd Semiconductor device
JPS5848928A (en) * 1981-09-18 1983-03-23 Meidensha Electric Mfg Co Ltd Preparation of semiconductor device
JPS61156824A (en) * 1984-12-28 1986-07-16 Toshiba Corp Semiconductor device
JPS62124083A (en) * 1985-11-20 1987-06-05 Hitachi Ltd Diffused junction method
JPS6471136A (en) * 1987-09-10 1989-03-16 Mitsubishi Electric Corp Semiconductor device
JPH07142518A (en) * 1993-11-17 1995-06-02 Hitachi Ltd Lead frame, semiconductor chip, and semiconductor device
JP2004319884A (en) * 2003-04-18 2004-11-11 Matsushita Electric Ind Co Ltd Semiconductor device, and manufacturing method thereof
JP2006059904A (en) * 2004-08-18 2006-03-02 Toshiba Corp Semiconductor device and its manufacturing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784140A (en) * 1980-11-14 1982-05-26 Hitachi Ltd Semiconductor device
JPS57102031A (en) * 1980-12-17 1982-06-24 Mitsubishi Electric Corp Manufacutre of semiconductor element
JPS57183042A (en) * 1981-05-08 1982-11-11 Hitachi Ltd Semiconductor device
JPS5848928A (en) * 1981-09-18 1983-03-23 Meidensha Electric Mfg Co Ltd Preparation of semiconductor device
JPS61156824A (en) * 1984-12-28 1986-07-16 Toshiba Corp Semiconductor device
JPS62124083A (en) * 1985-11-20 1987-06-05 Hitachi Ltd Diffused junction method
JPS6471136A (en) * 1987-09-10 1989-03-16 Mitsubishi Electric Corp Semiconductor device
JPH07142518A (en) * 1993-11-17 1995-06-02 Hitachi Ltd Lead frame, semiconductor chip, and semiconductor device
JP2004319884A (en) * 2003-04-18 2004-11-11 Matsushita Electric Ind Co Ltd Semiconductor device, and manufacturing method thereof
JP2006059904A (en) * 2004-08-18 2006-03-02 Toshiba Corp Semiconductor device and its manufacturing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153873A (en) * 2008-12-24 2010-07-08 Qinghua Univ Thermal interface material, electronic assembly, and method of using the thermal interface material
US8437136B2 (en) 2008-12-24 2013-05-07 Tsinghua University Thermal interface material and method of using the same and electronic assembly having the same
US9337113B2 (en) 2012-11-20 2016-05-10 Toyota Jidosha Kabushiki Kaisha Semiconductor device
JP2015004121A (en) * 2013-05-22 2015-01-08 株式会社豊田中央研究所 Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same
JP2015095540A (en) * 2013-11-12 2015-05-18 三菱電機株式会社 Semiconductor device and manufacturing method of the same
JP2015170768A (en) * 2014-03-07 2015-09-28 イサハヤ電子株式会社 Semiconductor joint method
JP2016072605A (en) * 2014-09-30 2016-05-09 イサハヤ電子株式会社 Joint material for semiconductor device and method for producing the same
DE112019007175T5 (en) 2019-04-09 2021-12-23 Mitsubishi Electric Corporation POWER SEMI-CONDUCTOR MODULE AND POWER CONVERTER DEVICE
US11908822B2 (en) 2019-04-09 2024-02-20 Mitsubishi Electric Corporation Power semiconductor module and power conversion apparatus
DE112019007175B4 (en) 2019-04-09 2024-06-13 Mitsubishi Electric Corporation POWER SEMICONDUCTOR MODULE AND POWER CONVERTER DEVICE

Also Published As

Publication number Publication date
JP5050440B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5050440B2 (en) Semiconductor device and manufacturing method thereof
WO2009148168A1 (en) Substrate for power module, power module, and method for producing substrate for power module
JP5367914B2 (en) Wiring substrate, manufacturing method thereof, and semiconductor device
JP5725060B2 (en) Bonded body, power module substrate, and power module substrate with heat sink
JP5698947B2 (en) Heat sink for electronic device and method for manufacturing the same
JP5720839B2 (en) Bonded body and power module substrate
TWI661516B (en) Bonded body, power module substrate with heat sink, heat sink, method of producing bonded body, method of producing power module substrate with heat sink and method of producing heat sink
WO2012049893A1 (en) RECTANGULAR-SHAPED SILVER (Ag) CLAD STEEL-RIBBON FOR HIGH TEMPERATURE SEMICONDUCTOR DEVICE
JP6621068B2 (en) Mounting structure
WO2006016479A1 (en) Heat sink member and method for manufacture thereof
JP2019081690A (en) Joint body and insulating circuit substrate
JP2009129983A (en) Junction structure and method of manufacturing the same, and power semiconductor module and method of manufacturing the same
JP6031784B2 (en) Power module substrate and manufacturing method thereof
JP5723225B2 (en) Bonding structure
JP2018111111A (en) Manufacturing method for metal junction body and semiconductor device
JP3917503B2 (en) Method of joining aluminum member and copper member and joining structure thereof
JP6020496B2 (en) Junction structure and manufacturing method thereof
JP4973055B2 (en) Semiconductor device and manufacturing method thereof
JP4592486B2 (en) Semiconductor module
JP4910789B2 (en) Power element mounting substrate, power element mounting substrate manufacturing method, and power module
WO2019082970A1 (en) Bonded body and insulated circuit board
Zhong et al. Multiple reflow study of ball grid array (BGA) solder joints on Au/Ni metallization
JP5359953B2 (en) Power module substrate, power module, and method of manufacturing power module substrate
JP5733466B2 (en) Manufacturing method of semiconductor device
WO2011158449A1 (en) Connection material, semiconductor device, and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees