JP2008037064A - Method for producing orientable ceramics - Google Patents

Method for producing orientable ceramics Download PDF

Info

Publication number
JP2008037064A
JP2008037064A JP2006217995A JP2006217995A JP2008037064A JP 2008037064 A JP2008037064 A JP 2008037064A JP 2006217995 A JP2006217995 A JP 2006217995A JP 2006217995 A JP2006217995 A JP 2006217995A JP 2008037064 A JP2008037064 A JP 2008037064A
Authority
JP
Japan
Prior art keywords
ceramic
mol
producing
metal ions
oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006217995A
Other languages
Japanese (ja)
Other versions
JP5008925B2 (en
Inventor
Masahiko Kimura
雅彦 木村
Kosuke Shiratsuyu
幸祐 白露
Tatsu Suzuki
達 鈴木
Yoshio Sakka
義雄 目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
National Institute for Materials Science
Original Assignee
Murata Manufacturing Co Ltd
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd, National Institute for Materials Science filed Critical Murata Manufacturing Co Ltd
Priority to JP2006217995A priority Critical patent/JP5008925B2/en
Publication of JP2008037064A publication Critical patent/JP2008037064A/en
Application granted granted Critical
Publication of JP5008925B2 publication Critical patent/JP5008925B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing orientable ceramics which can be produced by using polycrystalline ceramic powder having a perovskite type structure and is reduced in restrictive conditions in terms of composition. <P>SOLUTION: The method for producing the orientable ceramics includes a process for obtaining ceramic slurry containing the polycrystalline ceramic powder, a process for obtaining a ceramic molding by molding the ceramic slurry in a magnetic field, and a process for baking the ceramic molding. The polycrystalline ceramic powder contains a main component having the perovskite type structure and a subordinate component which is contained in a ratio of 5 mol or below (>0 mol) to 100 mol of the main component. The subordinate component is at least one selected from 3d transition metal ions the magnetic moments of which are not 0 or rare earth metal ions the magnetic moments of which are not zero. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ペロブスカイト型構造を有する配向性セラミックスの製造方法および配向性セラミックスを利用したセラミック電子部品の製造方法に関する。   The present invention relates to a method for producing an oriented ceramic having a perovskite structure and a method for producing a ceramic electronic component using the oriented ceramic.

従来から、誘電体材料や圧電体材料としてBaTiO3やPb(Zr,Ti)O3などのペロブスカイト型構造を有するセラミックスが使用されている。そして、これらのペロブスカイト型構造セラミックスにおいては結晶を配向させることによって諸特性が向上することが知られている。 Conventionally, ceramics having a perovskite structure such as BaTiO 3 and Pb (Zr, Ti) O 3 have been used as dielectric materials and piezoelectric materials. In these perovskite type structural ceramics, it is known that various properties are improved by orienting crystals.

特許文献1には、形状異方性を有するホスト材料と、少なくとも一つの結晶面が上記ホスト材料の少なくとも一つの結晶面と格子整合性を有し、かつ結晶異方性の小さいゲスト材料とを準備して混合し、上記ホスト材料を配向させてから加熱することにより、上記ゲスト材料と結晶系が等しい結晶配向材料を得ることが記載されている。そしてこの方法により、ペロブスカイト型構造を有するチタン酸ナトリウムビスマス(Bi0.5Na0.5TiO3)の配向性材料を得ることができることが記載されている。 Patent Document 1 discloses a host material having shape anisotropy, and a guest material in which at least one crystal plane has lattice matching with at least one crystal plane of the host material and has a small crystal anisotropy. It is described that a crystal alignment material having the same crystal system as that of the guest material is obtained by preparing, mixing, orienting the host material and then heating. It is described that this method can obtain an alignment material of sodium bismuth titanate (Bi 0.5 Na 0.5 TiO 3 ) having a perovskite structure.

一方、特許文献2には、セラミック原料としてビスマス層状化合物を含む粉末に溶媒を添加したスラリーを作製し、該スラリーに対して1T以上の磁場を印加して前記ビスマス層状化合物粉末をc面と垂直な結晶面に配向させつつ前記スラリーを固化した後、焼成するビスマス層状化合物焼結体の製造方法が記載されている。   On the other hand, in Patent Document 2, a slurry is prepared by adding a solvent to a powder containing a bismuth layered compound as a ceramic raw material, and a magnetic field of 1 T or more is applied to the slurry so that the bismuth layered compound powder is perpendicular to the c-plane. A manufacturing method of a bismuth layered compound sintered body is described in which the slurry is solidified while being oriented on a crystal plane and then fired.

また、非特許文献1には、ペロブスカイト型構造を有するチタン酸ビスマス(BiTiO3)、ジルコン酸鉛(PbZrO3)およびチタン酸バリウム(BaTiO3)粉末の配向と磁場との関係について記載されている。
特開平10−330184号公報 特開2002−121069号公報 増本博、淡路智、後藤孝「強誘電体の配向性に及ぼす磁場の影響」東北大学材料研究所強磁場超伝導材料研究センター年次報告2002年度、210〜211ページ
Non-Patent Document 1 describes the relationship between the orientation and magnetic field of bismuth titanate (BiTiO 3 ), lead zirconate (PbZrO 3 ) and barium titanate (BaTiO 3 ) powders having a perovskite structure. .
Japanese Patent Laid-Open No. 10-330184 JP 2002-121069 A Hiroshi Masumoto, Satoshi Awaji, Takashi Goto “Effect of Magnetic Field on Orientation of Ferroelectrics” Tohoku University Institute for Materials Research, Magnetic Field Superconducting Materials Research Center Annual 2002, pages 210-211

特許文献1に記載の方法によれば、配向性の高いペロブスカイト型構造セラミックスを得ることができるが、形状異方性を有するホスト材料をあらかじめ用意する必要がある。このため、工程が複雑化して製造コストが上昇するという問題がある。   According to the method described in Patent Document 1, a highly oriented perovskite structure ceramic can be obtained, but it is necessary to prepare a host material having shape anisotropy in advance. For this reason, there exists a problem that a process becomes complicated and manufacturing cost rises.

また、そもそも所望の配向性セラミックスの組成に適した形状異方性ホスト材料が存在していなければならないという問題がある。すなわち、所望の最終生成物の構成元素の中から選択される元素で構成される形状異方性ホスト材料をあらかじめ用意する必要がある。これは、ホスト材料の構成元素が最終生成物の中に取り込まれるため、所望の最終生成物の構成元素以外の元素を含む材料をホスト材料として使用すると、所望の組成の最終生成物を得ることができなくなるからである。そして、そのような条件を満たす形状異方性ホスト材料が常に存在しているわけではない。   In the first place, there is a problem that a shape anisotropic host material suitable for the composition of the desired oriented ceramics must exist. That is, it is necessary to prepare in advance a shape anisotropic host material composed of an element selected from the constituent elements of the desired final product. This is because the constituent elements of the host material are incorporated into the final product, so that when a material containing an element other than the constituent elements of the desired final product is used as the host material, a final product having a desired composition is obtained. It is because it becomes impossible. And there is not always a shape anisotropic host material that satisfies such conditions.

これに対して、特許文献2に記載されたように磁場を印加して結晶を配向させる方法であれば、原理的には磁化率に異方性を有する非磁性物質であればいずれの物質にも適用可能であると考えられており、特許文献1に記載された技術のような組成上の制約条件はないはずである。   On the other hand, as long as it is a method of orienting a crystal by applying a magnetic field as described in Patent Document 2, in principle, any substance can be used as long as it is a nonmagnetic substance having anisotropy in magnetic susceptibility. Is considered to be applicable, and there should be no compositional constraints as in the technique described in Patent Document 1.

しかしながら、実際にはペロブスカイト型構造を有するセラミックスを磁場によって配向させることは困難であった。非特許文献1には、多結晶チタン酸ビスマス粉末を用いて8Tの磁場を印加した場合に配向性材料を得ることができなかったことが記載されている。また、非特許文献1には、単結晶チタン酸バリウム粉末を用いた場合には配向度が磁場依存性を有することが記載されているが、単結晶粉末は多結晶粉末に比べてコストが高く、工業上実用的な方法ではない。   However, in practice, it was difficult to orient ceramics having a perovskite structure by a magnetic field. Non-Patent Document 1 describes that an oriented material could not be obtained when an 8 T magnetic field was applied using polycrystalline bismuth titanate powder. Non-Patent Document 1 describes that the orientation degree has a magnetic field dependency when single crystal barium titanate powder is used, but single crystal powder is higher in cost than polycrystalline powder. It is not an industrially practical method.

よって本発明は、ペロブスカイト型構造を有する多結晶セラミック粉末を用いて製造可能であり、組成上の制約条件の少ない配向性セラミックスの製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for producing oriented ceramics that can be produced using a polycrystalline ceramic powder having a perovskite structure and has few compositional constraints.

上記問題点を解決するために本発明に係る配向性セラミックスの製造方法は、多結晶セラミック粉末を含むセラミックスラリーを得る工程と、前記セラミックスラリーを磁場中で成形してセラミック成形体を得る工程と、前記セラミック成形体を焼成する工程と、を有する配向性セラミックスの製造方法であって、前記多結晶セラミック粉末は、ペロブスカイト構造を有する主成分と前記主成分100molに対して5mol以下(ただし0molを除く)の割合で含有される副成分とを含み、前記副成分は磁気モーメントが0ではない3d遷移金属イオンまたは磁気モーメントが0ではない希土類遷移金属イオンからなる群より選択される少なくとも1種であることを特徴とする。   In order to solve the above problems, a method for producing oriented ceramics according to the present invention includes a step of obtaining a ceramic slurry containing polycrystalline ceramic powder, and a step of forming the ceramic slurry in a magnetic field to obtain a ceramic compact. And firing the ceramic molded body, wherein the polycrystalline ceramic powder has a main component having a perovskite structure and 5 mol or less (provided that 0 mol is less than 100 mol). The subcomponent is at least one selected from the group consisting of 3d transition metal ions whose magnetic moment is not 0 or rare earth transition metal ions whose magnetic moment is not 0 It is characterized by being.

また、本発明に係る配向性セラミックスの製造方法においては、前記副成分はMn2+,Fe3+,Ce3+,Nd3+,Sm3+およびDy3+からなる群より選択される少なくとも1種であることが好ましい。これらは比較的安価であり、入手が容易だからである。 In the method for producing an oriented ceramic according to the present invention, the subcomponent is at least selected from the group consisting of Mn 2+ , Fe 3+ , Ce 3+ , Nd 3+ , Sm 3+ and Dy 3+. One type is preferable. This is because they are relatively inexpensive and readily available.

本発明の配向性セラミックスの製造方法によれば、ペロブスカイト構造を有する主成分に対して、磁気モーメントが0ではない3d遷移金属イオンまたは磁気モーメントが0ではない希土類遷移金属イオンからなる群より選択される少なくとも1種からなる副成分を所定量含有させた多結晶セラミック粉末を用いることにより、多結晶セラミック粉末を用いていても磁場中での配向が可能となり、コストの比較的低廉な多結晶セラミック粉末を用いて配向性セラミックスを得ることが可能となる。また、形状異方性ホスト材料を用意する必要がないので本発明の適用に当たっての組成上の制約条件が少ない。   According to the method for producing an oriented ceramic of the present invention, the main component having a perovskite structure is selected from the group consisting of 3d transition metal ions whose magnetic moment is not zero or rare earth transition metal ions whose magnetic moment is not zero. By using a polycrystalline ceramic powder containing a predetermined amount of at least one subcomponent, the polycrystalline ceramic powder can be oriented in a magnetic field even when the polycrystalline ceramic powder is used, and the cost is relatively low. It becomes possible to obtain oriented ceramics using powder. In addition, since it is not necessary to prepare a shape anisotropic host material, there are few restrictions on the composition in applying the present invention.

本発明に係る配向性セラミックスは一般式ABO3で表されるペロブスカイト構造を有する複合金属酸化物を主成分とする。具体的には、BaTiO3(チタン酸バリウム)、SrTiO3(チタン酸ストロンチウム)、PbTiO3(チタン酸鉛)、Pb(Zr,Ti)O3(チタン酸ジルコン酸鉛)、(K,Na,Li)(Nb,Ta)O3、(Na1/2Bi1/2)TiO3およびこれらの固溶体などを用いることができる。 The oriented ceramic according to the present invention is mainly composed of a composite metal oxide having a perovskite structure represented by the general formula ABO 3 . Specifically, BaTiO 3 (barium titanate), SrTiO 3 (strontium titanate), PbTiO 3 (lead titanate), Pb (Zr, Ti) O 3 (lead zirconate titanate), (K, Na, Li) (Nb, Ta) O 3 , (Na 1/2 Bi 1/2 ) TiO 3 and their solid solutions can be used.

そして、前記主成分100molに対して、磁気モーメントが0ではない遷移金属イオンおよび磁気モーメントが0ではない希土類遷移金属イオンからなる群から選択される少なくとも1種を5mol以下(0molを除く)含有する。磁気モーメントが0ではない遷移金属イオンとしては、Ti3+,V3+,V4+,Cr2+,Cr3+,Mn2+,Mn3+,Fe2+,Fe3+,Co2+,Ni2+,Cu2+などがある。また、磁気モーメントが0ではない希土類遷移金属イオンとしては、Ce3+,Pr3+,Pr4+,Nd3+,Sm2+,Sm3+,Eu2+,Eu3+,Gd3+,Tb3+,Tb4+,Dy3+,Ho3+,Er3+,Tm2+,Tm3+,Yb3+などがある。以下、本明細書において便宜上これらを総称して磁性金属イオンという。 Then, 5 mol or less (excluding 0 mol) of at least one selected from the group consisting of transition metal ions whose magnetic moment is not 0 and rare earth transition metal ions whose magnetic moment is not 0 is contained with respect to 100 mol of the main component. . Transition metal ions whose magnetic moment is not zero include Ti 3+ , V 3+ , V 4+ , Cr 2+ , Cr 3+ , Mn 2+ , Mn 3+ , Fe 2+ , Fe 3+ , Co 2. + , Ni 2+ , Cu 2+ and the like. The rare earth transition metal ions whose magnetic moment is not 0 are Ce 3+ , Pr 3+ , Pr 4+ , Nd 3+ , Sm 2+ , Sm 3+ , Eu 2+ , Eu 3+ , Gd 3+. , Tb 3+ , Tb 4+ , Dy 3+ , Ho 3+ , Er 3+ , Tm 2+ , Tm 3+ and Yb 3+ . Hereinafter, in the present specification, these are collectively referred to as magnetic metal ions for convenience.

これらの磁性金属イオンの少なくとも一部がペロブスカイト構造の結晶格子に取り込まれることによって結晶粒子の磁化率が向上し、磁場印加によって配向化するものと推定されるが、詳細なメカニズムは明らかではない。なお、結晶格子中に取り込まれた磁性金属イオンは価数やイオン半径によってAサイトまたはBサイトのいずれに配位するかが決定されると考えられ、AサイトおよびBサイトの両方に配位する磁性金属イオンも存在すると考えられる。しかし、結晶格子中のどの位置に配位しているかを実際に確認することは困難である。   Although it is presumed that the magnetic susceptibility of crystal grains is improved by incorporating at least a part of these magnetic metal ions into the crystal lattice having a perovskite structure, and the magnetic particles are oriented by applying a magnetic field, but the detailed mechanism is not clear. In addition, it is considered that the magnetic metal ions taken into the crystal lattice are coordinated to either the A site or the B site depending on the valence and the ion radius, and coordinate to both the A site and the B site. Magnetic metal ions are also thought to exist. However, it is difficult to actually confirm the position in the crystal lattice.

磁性金属イオンの含有率を主成分100molに対して5mol以下に限定したのは以下の理由による。すなわち、主成分100molに対して副成分である磁性金属イオンが10molを超えると配向度が低下するためである。これは、副成分が多すぎると主成分がペロブスカイト型構造の単相を得ることが困難になるためである。   The reason why the content of magnetic metal ions is limited to 5 mol or less with respect to 100 mol of the main component is as follows. That is, when the magnetic metal ion as a subcomponent exceeds 10 mol with respect to 100 mol of the main component, the degree of orientation decreases. This is because it is difficult to obtain a single phase having a perovskite structure as the main component if there are too many subcomponents.

また、より高い配高度を得る観点からは、副成分の含有量は主成分100molに対して0.1mol以上1.0mol以下とすることが好ましい。   Further, from the viewpoint of obtaining a higher altitude, the content of the subcomponent is preferably 0.1 mol or more and 1.0 mol or less with respect to 100 mol of the main component.

本発明では、上記主成分と上記磁性金属イオンとを含むセラミックスラリーを成形する際に磁場を印加することによって配向性セラミックスを得るが、印加する磁場は1T(テスラ)以上とすることが好ましい。   In the present invention, oriented ceramics are obtained by applying a magnetic field when forming a ceramic slurry containing the main component and the magnetic metal ions. The applied magnetic field is preferably 1 T (tesla) or more.

本発明に係る配向性セラミックスの製造方法は例えば以下の手順で実行される。   The method for producing an oriented ceramic according to the present invention is performed, for example, by the following procedure.

まず、素原料として主成分の構成元素および磁性金属イオンを含む酸化物、水酸化物または炭酸塩等を用意し、これらを所定の比率となるように秤量して混合する。得られた混合物をピーク温度1200℃から1400℃程度の適当な条件で仮焼し、セラミック仮焼粉(多結晶セラミック粉末)を得る。   First, oxides, hydroxides, carbonates or the like containing constituent elements of the main component and magnetic metal ions are prepared as raw materials, and these are weighed and mixed at a predetermined ratio. The obtained mixture is calcined under suitable conditions of a peak temperature of about 1200 to 1400 ° C. to obtain a calcined ceramic powder (polycrystalline ceramic powder).

セラミック仮焼粉を粉砕した後、適当な量の水と分散剤を加えて分散し、セラミックスラリーを得る。得られたセラミックスラリーを多孔質の型に流し込み、型に水分を吸収させて成形する。成形中、セラミックスラリーに対して磁場を印加する。これにより、セラミック成形体を得る。   After pulverizing the ceramic calcined powder, an appropriate amount of water and a dispersing agent are added and dispersed to obtain a ceramic slurry. The obtained ceramic slurry is poured into a porous mold, and the mold is formed by absorbing moisture. During molding, a magnetic field is applied to the ceramic slurry. Thereby, a ceramic molded body is obtained.

得られたセラミック成形体を十分に乾燥させた後に500℃程度に加熱して有機成分を除去する処理を行い、その後、1200℃から1400℃程度の適当な条件で焼成することにより、本発明の配向性セラミックスを得ることができる。   After sufficiently drying the obtained ceramic molded body, it is heated to about 500 ° C. to remove organic components, and then fired under appropriate conditions of about 1200 ° C. to 1400 ° C. Oriented ceramics can be obtained.

本発明によれば、磁気モーメントが0ではない3d遷移金属イオンまたは磁気モーメントが0ではない希土類遷移金属イオンからなる群より選択される少なくとも1種を副成分として含有しているので、成形中の磁場印加によって結晶が配向し、配向性セラミックスを得ることができる。かかる配向性セラミックスは、高い電気的特性が期待される。   According to the present invention, since at least one selected from the group consisting of 3d transition metal ions whose magnetic moment is not 0 or rare earth transition metal ions whose magnetic moment is not 0 is contained as a subcomponent, Crystals are oriented by applying a magnetic field, and oriented ceramics can be obtained. Such oriented ceramics are expected to have high electrical characteristics.

本発明の第1の実施例について説明する。第1の実施例は、チタン酸バリウム(BaTiO3)を主成分とする配向性セラミックスの製造方法に係るものである。 A first embodiment of the present invention will be described. The first embodiment relates to a method for producing an oriented ceramic mainly composed of barium titanate (BaTiO 3 ).

主成分の出発原料としてBaCO3,TiO2を、副成分の素原料としてMnCO3,Fe23,Nd23,Ce2(CO33,Sm23およびDy23用意し、これらを以下の一般式(A)を満足するような比率で秤量した。 BaCO 3 and TiO 2 are prepared as starting materials for main components, and MnCO 3 , Fe 2 O 3 , Nd 2 O 3 , Ce 2 (CO 3 ) 3 , Sm 2 O 3 and Dy 2 O 3 are prepared as subcomponents. These were weighed at a ratio satisfying the following general formula (A).

100BaTiO3+aM …(A)
(式中、Mは副成分であるMn2+,Fe3+,Nd3+,Ce3+,Sm3+およびDy3+のうち少なくとも一種を示す。)
秤量物をボールミルに投入し、水を加えて16時間湿式混合を行うことにより混合物を得た。得られた混合物を乾燥させた後、1250℃〜1350℃で2時間仮焼し、セラミック仮焼粉(多結晶セラミック粉末)を得た。このセラミック仮焼粉をカッター刃による回転式粉砕機に投入して60秒間粉砕し、さらにボールミルを用いて100時間の湿式粉砕を行った。
100BaTiO 3 + aM (A)
(In the formula, M represents at least one of the subcomponents Mn 2+ , Fe 3+ , Nd 3+ , Ce 3+ , Sm 3+ and Dy 3+ .)
The weighed product was put into a ball mill, water was added, and wet mixing was performed for 16 hours to obtain a mixture. The obtained mixture was dried and calcined at 1250 ° C. to 1350 ° C. for 2 hours to obtain a calcined ceramic powder (polycrystalline ceramic powder). This ceramic calcined powder was put into a rotary pulverizer using a cutter blade and pulverized for 60 seconds, and further wet pulverized for 100 hours using a ball mill.

粉砕後のセラミック仮焼粉100重量部に対して25重量部の水と1重量部の分散剤を加えて混合することにより、セラミックスラリーを得た。セラミックスラリーの粘性率を測定したところ、100mPa・sだった。さらに分散性を向上させるため、スターラで分散しながら5分間の超音波攪拌を行った。   A ceramic slurry was obtained by adding and mixing 25 parts by weight of water and 1 part by weight of a dispersant with respect to 100 parts by weight of the calcined ceramic calcined powder. The viscosity of the ceramic slurry was measured and found to be 100 mPa · s. In order to further improve dispersibility, ultrasonic stirring was performed for 5 minutes while dispersing with a stirrer.

セラミックスラリーを多孔質の型に流し込み、型に水分を吸収させて成形した。成形中、セラミックスラリーに対して所定の磁場を印加した。これにより、30mm×30mm×5mmのセラミック成形体を得た。   The ceramic slurry was poured into a porous mold, and the mold was formed by absorbing moisture. During molding, a predetermined magnetic field was applied to the ceramic slurry. Thereby, a ceramic molded body of 30 mm × 30 mm × 5 mm was obtained.

このセラミック成形体を十分に乾燥させた後、500℃で2時間の熱処理を行って有機成分を除去した。次いで、1300℃〜1400℃で2時間の焼成を大気中で行うことにより、焼結体(配向性セラミックス)を得た。   After sufficiently drying this ceramic molded body, heat treatment was performed at 500 ° C. for 2 hours to remove organic components. Subsequently, the sintered body (oriented ceramic) was obtained by performing baking for 2 hours at 1300-1400 degreeC in air | atmosphere.

この焼結体の表面をX線回折法(線源CuKα、40kV、200mA)によって分析し、各結晶面のピーク強度を測定した。さらに比較用に各試料を粉砕して粉末試料を作製し、該粉末試料についてもX線回折法によって各結晶面のピーク強度を測定した。そして、比較用の粉末試料を基準として、ロットゲーリング(Lotgering)法によって配向度を測定した。   The surface of this sintered body was analyzed by an X-ray diffraction method (ray source CuKα, 40 kV, 200 mA), and the peak intensity of each crystal plane was measured. Further, for comparison, each sample was pulverized to prepare a powder sample, and the peak intensity of each crystal plane was also measured for the powder sample by the X-ray diffraction method. Then, the degree of orientation was measured by the Lotgering method using a comparative powder sample as a reference.

ここで、一般式(A)を満たす配向性セラミックスは室温で正方晶を示すが、擬立方晶としてみた場合の{100}面、すなわち正方晶における{100}面および{001}面の配向度を求めた。擬立方晶とは、立方晶よりもわずかに歪んだ結晶格子を示している。   Here, the oriented ceramic satisfying the general formula (A) exhibits a tetragonal crystal at room temperature, but the orientation degree of {100} plane, that is, {100} plane and {001} plane in the tetragonal crystal when viewed as a pseudo-cubic crystal. Asked. Pseudocubic refers to a crystal lattice that is slightly distorted than cubic.

各試料の組成、印加磁界および配向度を表1に示す。なお、表1において試料番号に*が付されているものは本発明の範囲外の比較例である。   Table 1 shows the composition, applied magnetic field, and orientation of each sample. In Table 1, the sample numbers marked with * are comparative examples outside the scope of the present invention.

試料番号1および2は副成分であるMを含有していないため、配向度が低く実質的に無配向である。なお、試料番号2の配向度が4.1%であるため若干配向しているかのように見えるが、ロットゲーリング法では特に配向度が低い場合に精度が低下することが知られており、この程度では実質的に無配向であるとみなしてかまわない。   Since sample numbers 1 and 2 do not contain M, which is a subcomponent, the degree of orientation is low and substantially non-oriented. It should be noted that although the degree of orientation of Sample No. 2 is 4.1%, it seems to be slightly oriented, but it is known that the accuracy is lowered when the degree of orientation is particularly low in the Lotgering method. The degree may be regarded as substantially non-oriented.

副成分MとしてMn2+を含有する試料番号3,5,6,7,8では、それぞれ配向度が10.4〜60.1%の範囲にあり、副成分Mを添加することによって磁場配向が可能になったことがわかる。特に、主成分100molに対する副成分Mのモル比率aが0.1〜1.0の範囲にある試料番号3,5,6で49.6%以上の高い配向度が得られた。 In sample numbers 3, 5, 6, 7, and 8 containing Mn 2+ as the subcomponent M, the degree of orientation is in the range of 10.4 to 60.1%, respectively. It turns out that is now possible. In particular, a high degree of orientation of 49.6% or more was obtained with sample numbers 3, 5, and 6 in which the molar ratio a of the subcomponent M to 100 mol of the main component was in the range of 0.1 to 1.0.

試料番号9は副成分MとしてMn2+を含むものの、その含有比率aが15.0と本発明の範囲を超えているため、配向度が1.8%となり、実質的に無配向となった。これは、副成分Mを過剰に含むことによって主成分がペロブスカイト構造の単相を得にくくなったためと考えられる。 Sample No. 9 contains Mn 2+ as an accessory component M, but its content ratio a is 15.0, which exceeds the range of the present invention, so the degree of orientation is 1.8%, which is substantially non-oriented. It was. This is presumably because it became difficult to obtain a single phase having a perovskite structure as a main component by containing the subcomponent M excessively.

副成分MとしてFe3+,Nd3+,Ce3+,Sm3+またはDy3+を含有する試料番号10〜16においても10.8〜85.4%の配向度を得ることができた。特に、副成分MとしてDy3+を主成分100molに対して1.0mol含有する試料番号16では85.4%の高い配向度を得ることができた。 Even in sample numbers 10 to 16 containing Fe 3+ , Nd 3+ , Ce 3+ , Sm 3+ or Dy 3+ as subcomponent M, an orientation degree of 10.8 to 85.4% could be obtained. . In particular, Sample No. 16 containing 1.0 mol of Dy 3+ as the subcomponent M with respect to 100 mol of the main component was able to obtain a high degree of orientation of 85.4%.

次に本発明の第2の実施例に係る配向性セラミックスの製造方法について説明する。本実施例に係る配向性セラミックスは、チタン酸ジルコン酸鉛(Pb(Zr,Ti)O3を主成分とするものである。 Next, a method for producing an oriented ceramic according to the second embodiment of the present invention will be described. The oriented ceramic according to the present example is composed mainly of lead zirconate titanate (Pb (Zr, Ti) O 3 .

主成分の出発原料としてPb34,ZrO2およびTiO2を、副成分の素原料としてMnCO3を用意し、これらを以下の一般式(B)を満足するような比率で秤量した。 Pb 3 O 4 , ZrO 2 and TiO 2 were prepared as starting materials for the main component, and MnCO 3 was prepared as a raw material for the accessory component, and these were weighed at a ratio satisfying the following general formula (B).

100Pb(Zr0.5Ti0.5)O3+aM …(B)
(式中、Mは副成分であるMn2+を示す。)
この秤量物を用いて、実施例1と同様の製造方法によって焼結体(配向性セラミックス)を製造した。そして実施例1と同様の方法によって配向度を求めた。各試料の組成、印加磁界および配向度を表1に示す。なお、表2において試料番号に*が付されているものは本発明の範囲外の比較例である。
100Pb (Zr 0.5 Ti 0.5 ) O 3 + aM (B)
(In the formula, M represents an auxiliary component Mn 2+ .)
Using this weighed product, a sintered body (oriented ceramic) was produced by the same production method as in Example 1. The degree of orientation was determined by the same method as in Example 1. Table 1 shows the composition, applied magnetic field, and orientation of each sample. In Table 2, the sample numbers marked with * are comparative examples outside the scope of the present invention.

副成分Mを含まない試料番号17では12Tの磁場を印加しても実質的に無配向となったが、副成分Mを主成分100molに対してそれぞれ0.5molおよび1.0mol含有する試料番号18,19では15.4〜32.0%の配向度を得ることができた。   Sample No. 17 containing no subcomponent M was substantially non-oriented even when a 12T magnetic field was applied. However, sample numbers containing 0.5 mol and 1.0 mol of subcomponent M with respect to 100 mol of main component, respectively. In 18 and 19, an orientation degree of 15.4 to 32.0% could be obtained.

Claims (2)

多結晶セラミック粉末を含むセラミックスラリーを得る工程と、
前記セラミックスラリーを磁場中で成形してセラミック成形体を得る工程と、
前記セラミック成形体を焼成する工程と、を有する配向性セラミックスの製造方法であって、
前記多結晶セラミック粉末は、ペロブスカイト構造を有する主成分と前記主成分100molに対して5mol以下(ただし0molを除く)の割合で含有される副成分とを含み、
前記副成分は磁気モーメントが0ではない3d遷移金属イオンまたは磁気モーメントが0ではない希土類遷移金属イオンからなる群より選択される少なくとも1種であることを特徴とする配向性セラミックスの製造方法。
Obtaining a ceramic slurry comprising polycrystalline ceramic powder;
Forming the ceramic slurry in a magnetic field to obtain a ceramic molded body;
Firing the ceramic molded body, and a method for producing an oriented ceramics comprising:
The polycrystalline ceramic powder includes a main component having a perovskite structure and subcomponents contained at a ratio of 5 mol or less (excluding 0 mol) with respect to 100 mol of the main component,
The method for producing oriented ceramics characterized in that the subcomponent is at least one selected from the group consisting of 3d transition metal ions whose magnetic moment is not 0 or rare earth transition metal ions whose magnetic moment is not 0.
前記副成分はMn2+,Fe3+,Ce3+,Nd3+,Sm3+およびDy3+からなる群より選択される少なくとも1種であることを特徴とする請求項1に記載の配向性セラミックスの製造方法。 The subcomponent Mn 2+, Fe 3+, Ce 3+ , Nd 3+, according to claim 1, characterized in that at least one member selected from the group consisting of Sm 3+ and Dy 3+ A method for producing oriented ceramics.
JP2006217995A 2006-08-10 2006-08-10 Method for producing oriented ceramics Active JP5008925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006217995A JP5008925B2 (en) 2006-08-10 2006-08-10 Method for producing oriented ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006217995A JP5008925B2 (en) 2006-08-10 2006-08-10 Method for producing oriented ceramics

Publications (2)

Publication Number Publication Date
JP2008037064A true JP2008037064A (en) 2008-02-21
JP5008925B2 JP5008925B2 (en) 2012-08-22

Family

ID=39172623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006217995A Active JP5008925B2 (en) 2006-08-10 2006-08-10 Method for producing oriented ceramics

Country Status (1)

Country Link
JP (1) JP5008925B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018510A (en) * 2007-12-27 2010-01-28 Ngk Insulators Ltd Crystal-oriented ceramic
WO2010041645A1 (en) * 2008-10-10 2010-04-15 株式会社村田製作所 Method for producing perovskite-structure compound sintered compact
WO2010079843A1 (en) * 2009-01-07 2010-07-15 独立行政法人産業技術総合研究所 Nanocrystal aggregate and method for producing the same
WO2010114148A1 (en) 2009-03-31 2010-10-07 Canon Kabushiki Kaisha Ceramic, piezoelectric device, and production method thereof
US20110193451A1 (en) * 2010-02-10 2011-08-11 Canon Kabushiki Kaisha Manufacturing method for preferentially-oriented oxide ceramics, preferentially-oriented oxide ceramics, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removing device
WO2014181801A1 (en) * 2013-05-10 2014-11-13 株式会社村田製作所 Piezoelectric ceramic electronic component and method for manufacturing piezoelectric ceramic electronic component
JPWO2013088927A1 (en) * 2011-12-12 2015-04-27 株式会社村田製作所 Piezoelectric orientation ceramics and piezoelectric actuators
JP5710982B2 (en) * 2008-12-25 2015-04-30 大学共同利用機関法人自然科学研究機構 Translucent polycrystalline material and manufacturing method thereof
US9082976B2 (en) 2011-09-06 2015-07-14 Canon Kabushiki Kaisha Piezoelectric ceramics, manufacturing method for piezoelectric ceramics, piezoelectric element, liquid discharge head, liquid discharge apparatus, ultrasonic motor, optical apparatus, vibration generator, dust removing device, imaging apparatus, and electronic apparatus
WO2016006580A1 (en) * 2014-07-08 2016-01-14 株式会社村田製作所 Ceramic sintered body, method for producing ceramic sintered body, and piezoelectric ceramic electronic element
US9308553B2 (en) 2012-07-05 2016-04-12 Murata Manufacturing Co., Ltd. Method for producing orientational ceramic, orientational ceramic, and ceramic electronic component
JP2020055704A (en) * 2018-10-01 2020-04-09 Dowaエレクトロニクス株式会社 Composite oxide powder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10265271A (en) * 1997-03-26 1998-10-06 Toyota Central Res & Dev Lab Inc Production of crystal oriented ceramics
JP2002193672A (en) * 2000-10-18 2002-07-10 National Institute For Materials Science Oriented ceramic sintered compact and its manufacturing method
JP2003112974A (en) * 2000-10-18 2003-04-18 National Institute For Materials Science Grain-oriented ceramics sintered compact, and production method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10265271A (en) * 1997-03-26 1998-10-06 Toyota Central Res & Dev Lab Inc Production of crystal oriented ceramics
JP2002193672A (en) * 2000-10-18 2002-07-10 National Institute For Materials Science Oriented ceramic sintered compact and its manufacturing method
JP2003112974A (en) * 2000-10-18 2003-04-18 National Institute For Materials Science Grain-oriented ceramics sintered compact, and production method therefor

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018510A (en) * 2007-12-27 2010-01-28 Ngk Insulators Ltd Crystal-oriented ceramic
WO2010041645A1 (en) * 2008-10-10 2010-04-15 株式会社村田製作所 Method for producing perovskite-structure compound sintered compact
JP2010090021A (en) * 2008-10-10 2010-04-22 Murata Mfg Co Ltd Method for producing sintered compact of compound with perovskite structure
US9384888B2 (en) 2008-12-25 2016-07-05 Inter-University Research Institute Corporation, National Institutes Of Natural Sciences Transparent polycrystalline material and production process for the same
JP5710982B2 (en) * 2008-12-25 2015-04-30 大学共同利用機関法人自然科学研究機構 Translucent polycrystalline material and manufacturing method thereof
JP2010159177A (en) * 2009-01-07 2010-07-22 National Institute Of Advanced Industrial Science & Technology Nanocrystal aggregate and method for producing the same
WO2010079843A1 (en) * 2009-01-07 2010-07-15 独立行政法人産業技術総合研究所 Nanocrystal aggregate and method for producing the same
JP2010254560A (en) * 2009-03-31 2010-11-11 Canon Inc Ceramic, piezoelectric device, and method for producing the device
US8547001B2 (en) 2009-03-31 2013-10-01 Canon Kabushiki Kaisha Ceramic, piezoelectric device, and production method thereof
WO2010114148A1 (en) 2009-03-31 2010-10-07 Canon Kabushiki Kaisha Ceramic, piezoelectric device, and production method thereof
US20110193451A1 (en) * 2010-02-10 2011-08-11 Canon Kabushiki Kaisha Manufacturing method for preferentially-oriented oxide ceramics, preferentially-oriented oxide ceramics, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removing device
JP2011184289A (en) * 2010-02-10 2011-09-22 Canon Inc Method for producing oriented oxide ceramic, oriented oxide ceramic, piezoelectric element, liquid ejection head, ultrasonic motor and dust removing device
US8632723B2 (en) 2010-02-10 2014-01-21 Canon Kabushiki Kaisha Manufacturing method for preferentially-oriented oxide ceramics, preferentially-oriented oxide ceramics, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removing device
US8698380B2 (en) 2010-02-10 2014-04-15 Canon Kabushiki Kaisha Preferentially-oriented oxide ceramics, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removing device
US9082976B2 (en) 2011-09-06 2015-07-14 Canon Kabushiki Kaisha Piezoelectric ceramics, manufacturing method for piezoelectric ceramics, piezoelectric element, liquid discharge head, liquid discharge apparatus, ultrasonic motor, optical apparatus, vibration generator, dust removing device, imaging apparatus, and electronic apparatus
JPWO2013088927A1 (en) * 2011-12-12 2015-04-27 株式会社村田製作所 Piezoelectric orientation ceramics and piezoelectric actuators
US9308553B2 (en) 2012-07-05 2016-04-12 Murata Manufacturing Co., Ltd. Method for producing orientational ceramic, orientational ceramic, and ceramic electronic component
CN105164827A (en) * 2013-05-10 2015-12-16 株式会社村田制作所 Piezoelectric ceramic electronic component and method for manufacturing piezoelectric ceramic electronic component
WO2014181801A1 (en) * 2013-05-10 2014-11-13 株式会社村田製作所 Piezoelectric ceramic electronic component and method for manufacturing piezoelectric ceramic electronic component
JP6075702B2 (en) * 2013-05-10 2017-02-08 株式会社村田製作所 Piezoelectric ceramic electronic components
US10069060B2 (en) 2013-05-10 2018-09-04 Murata Manufacturing Co., Ltd. Piezoelectric ceramic electronic component and method for manufacturing the same
WO2016006580A1 (en) * 2014-07-08 2016-01-14 株式会社村田製作所 Ceramic sintered body, method for producing ceramic sintered body, and piezoelectric ceramic electronic element
JPWO2016006580A1 (en) * 2014-07-08 2017-04-27 株式会社村田製作所 Ceramic sintered body, method for producing ceramic sintered body, and piezoelectric ceramic electronic component
JP2020055704A (en) * 2018-10-01 2020-04-09 Dowaエレクトロニクス株式会社 Composite oxide powder
JP7194547B2 (en) 2018-10-01 2022-12-22 Dowaエレクトロニクス株式会社 composite oxide powder

Also Published As

Publication number Publication date
JP5008925B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5008925B2 (en) Method for producing oriented ceramics
JP5213135B2 (en) Piezoelectric ceramics and piezoelectric / dielectric / pyroelectric elements using the same
JP4529219B2 (en) Piezoelectric ceramics and manufacturing method thereof
JP5214373B2 (en) Piezoelectric ceramics, manufacturing method thereof, and piezoelectric device
JPWO2007094115A1 (en) Piezoelectric ceramic composition
JP5690404B2 (en) Ceramic material based on Bi0.5Na0.5Ti03 perovskite ceramics, piezoelectric actuator including the ceramic material, and method for producing the ceramic material
Lin et al. Structural, electric and magnetic properties of BiFeO 3-Pb (Mg 1/3 Nb 2/3) O 3-PbTiO 3 ternary ceramics
JP3379387B2 (en) Crystal oriented ceramics and method for producing the same
Ahn et al. Effects of barium substitution on perovskite formation, dielectric properties, and diffuseness characteristics of lead zinc niobate ceramics
JP2004300019A (en) Crystal-oriented ceramic and its manufacturing method
JP3666182B2 (en) Method for producing crystal-oriented ceramics
JP5273140B2 (en) Piezoelectric ceramic and piezoelectric ceramic composition
JP2009114037A (en) Method of manufacturing crystal oriented ceramic
JP4534531B2 (en) Method for producing anisotropic shaped powder
JP2010095404A (en) Non-lead piezoelectric ceramic and piezoelectric, dielectric and pyroelectric element using the same
CN109456058B (en) Barium zirconate titanate and barium niobate zincate composite capacitor ceramic material and preparation method thereof
JP2010163313A (en) Method of manufacturing crystal-orientated ceramic
Dumitru et al. Investigations on the doping effects on the properties of piezoelectric ceramics
JP3650872B2 (en) Crystalline oriented bismuth layered perovskite compound and method for producing the same
JP5423708B2 (en) Method for producing anisotropic shaped powder
Ramam et al. Effect of acceptor and donor dopants on ferroelectric and piezoelectric properties of lead zirconate titanate ceramics
JP3032761B1 (en) Piezoelectric ceramics
Pdungsap et al. Effects of Gd 3+ doping on structural and dielectric properties of PZT (Zr: Ti= 52: 48) piezoceramics
Santos et al. Synthesis and electrical characterization of tungsten doped Pb (Zr0. 53Ti0. 47) O3 ceramics obtained from a hybrid process
JP2000264727A (en) Piezoelectric ceramics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090224

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120530

R150 Certificate of patent or registration of utility model

Ref document number: 5008925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250