JP2010159177A - Nanocrystal aggregate and method for producing the same - Google Patents

Nanocrystal aggregate and method for producing the same Download PDF

Info

Publication number
JP2010159177A
JP2010159177A JP2009001934A JP2009001934A JP2010159177A JP 2010159177 A JP2010159177 A JP 2010159177A JP 2009001934 A JP2009001934 A JP 2009001934A JP 2009001934 A JP2009001934 A JP 2009001934A JP 2010159177 A JP2010159177 A JP 2010159177A
Authority
JP
Japan
Prior art keywords
nanocrystal
producing
solution
nanocrystal aggregate
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009001934A
Other languages
Japanese (ja)
Other versions
JP5488957B2 (en
Inventor
Kazumi Kato
一実 加藤
Ho To
鋒 党
Makoto Kuwabara
誠 桑原
Hiroaki Imai
宏明 今井
Tomoshi Wada
智志 和田
Hajime Haneda
肇 羽田
Keisuke Kageyama
恵介 景山
Yukie Nakano
幸恵 中野
Toshimasa Suzuki
利昌 鈴木
Naohito Yamada
直仁 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Murata Manufacturing Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Taiyo Yuden Co Ltd
TDK Corp
Original Assignee
NGK Insulators Ltd
Murata Manufacturing Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Taiyo Yuden Co Ltd
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Murata Manufacturing Co Ltd, National Institute of Advanced Industrial Science and Technology AIST, Taiyo Yuden Co Ltd, TDK Corp filed Critical NGK Insulators Ltd
Priority to JP2009001934A priority Critical patent/JP5488957B2/en
Priority to PCT/JP2010/050365 priority patent/WO2010079843A1/en
Publication of JP2010159177A publication Critical patent/JP2010159177A/en
Application granted granted Critical
Publication of JP5488957B2 publication Critical patent/JP5488957B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/605Products containing multiple oriented crystallites, e.g. columnar crystallites
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/04Production of homogeneous polycrystalline material with defined structure from liquids
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/32Titanates; Germanates; Molybdates; Tungstates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/06Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using mechanical vibrations
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nanocrystal aggregate where nanocrystals are aggregated and a method for producing the same. <P>SOLUTION: The nanocrystal aggregate where the nanocrystals of single crystal particles having a particle diameter of 1-20 nm are aligned and gathered toward a specific crystal direction by irradiating a mixed solution containing one or more metal ions and a colloidal dispersion solution with ultrasonic waves and where the particle diameters of the aggregate are uniform in the range of 100 nm and 50 μm is produced. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ナノクリスタルが集合したナノクリスタル集合体、及びその製造方法に関するものである。   The present invention relates to a nanocrystal aggregate in which nanocrystals are assembled, and a method for producing the same.

セラミックス電子部品は小型化と高性能化が進められ、種々の材料が開発されている。また、環境負荷の小さな無害材料と低温製造技術が求められている。その様な背景の下で、低温で焼結が可能な小さな粒径で粒度分布の狭いセラミック粉末が電子部品の材料として注目されている。   Ceramic materials have been reduced in size and performance, and various materials have been developed. In addition, harmless materials with low environmental impact and low-temperature manufacturing technology are required. Under such circumstances, a ceramic powder having a small particle size and a narrow particle size distribution that can be sintered at a low temperature is attracting attention as a material for electronic components.

この小さな粒径で粒度分布の狭い粉末を誘電体材料として使用した場合は、積層コンデンサの高容量化を可能にすることができる。また、圧電材料として使用した場合は、ドメインや界面の利用により、巨大な圧電特性を導くことができる。   When a powder having such a small particle size and a narrow particle size distribution is used as the dielectric material, the capacity of the multilayer capacitor can be increased. In addition, when used as a piezoelectric material, huge piezoelectric characteristics can be derived by using domains and interfaces.

この小さな粒径で粒度分布の狭い粉末は、例えば、圧力下の水溶液反応(水熱反応)や、噴霧された液滴の熱分解反応によって合成することができる。   The powder having such a small particle size and a narrow particle size distribution can be synthesized by, for example, an aqueous solution reaction (hydrothermal reaction) under pressure or a thermal decomposition reaction of sprayed droplets.

特許文献1には、板状水酸化カルシウムの製造法、特許文献2には、コロイド粒子の沈殿・浮遊方法及びその方法を利用した処理装置、特許文献3には、セラミック原料粉末の製造方法が開示されている。   Patent Document 1 discloses a method for producing plate-like calcium hydroxide, Patent Document 2 discloses a colloidal particle precipitation / floating method and a processing apparatus using the method, and Patent Document 3 discloses a method for producing a ceramic raw material powder. It is disclosed.

特開2000−7329号公報JP 2000-7329 A 特開2008−229427号公報JP 2008-229427 A 特開2005−298278号公報JP 2005-298278 A

一般に、粒径がサブミクロン以下の小さな粒は、その体積に対する表面の比率が大きく、表面が活性であるため、凝集状態の制御が困難である。つまり、凝集粒を構成している微粒子の数や、結晶の向き、凝集体全体の大きさや形を調節することはできない。そのため、凝集粒の粒径やその形を任意に揃えることができない。結果として、ナノメーターオーダーの小さな粒径の粒子を合成することができても、その特徴を活かして低温で緻密なセラミックスを焼結することができない。   In general, a small particle having a particle size of submicron or less has a large surface ratio with respect to its volume, and the surface is active. Therefore, it is difficult to control the aggregation state. That is, the number of fine particles constituting the aggregated grains, the crystal orientation, and the size and shape of the entire aggregate cannot be adjusted. For this reason, the particle size and shape of the aggregated particles cannot be arbitrarily arranged. As a result, even if it is possible to synthesize particles having a small particle size on the order of nanometers, it is not possible to sinter dense ceramics at low temperatures by taking advantage of the characteristics.

これに対し、超音波を用いた化学反応の研究は、ソノケミストリーとして注目されている。超音波を液体に照射したときに、液体内に発生する気泡の生成と消滅が化学反応に関係し、液体中で超音波が伝搬するときの圧力の変化によって生じる空洞(cavitation)が破壊することにより微小領域で高温状態が出現し化学反応を進行させる。このときの反応場は、超高温反応場(約5000℃、100気圧)と考えられており、溶媒が水の場合は、過酸化水素やOHラジカルの出現も検知されている。超音波を用いた化学反応では、通常の化学反応のように温度上昇によって反応が加速されるのではなく、主に溶媒の性質に関係している。   On the other hand, research on chemical reactions using ultrasonic waves has attracted attention as sonochemistry. When a liquid is irradiated with ultrasonic waves, the generation and disappearance of bubbles generated in the liquid are related to the chemical reaction, and the cavitation caused by the change in pressure when ultrasonic waves propagate in the liquid is destroyed. As a result, a high-temperature state appears in a minute region and the chemical reaction proceeds. The reaction field at this time is considered to be an ultra-high temperature reaction field (about 5000 ° C., 100 atm). When the solvent is water, the appearance of hydrogen peroxide and OH radicals is also detected. In a chemical reaction using ultrasonic waves, the reaction is not accelerated by a temperature rise as in a normal chemical reaction, but is mainly related to the nature of the solvent.

本発明の課題は、ナノクリスタルが集合したナノクリスタル集合体、及びその製造方法を提供することにある。   An object of the present invention is to provide a nanocrystal aggregate in which nanocrystals are assembled, and a method for producing the same.

上記課題を解決するため、本発明者らは、金属イオンを含む混合溶液に超音波を照射することにより、ナノクリスタル集合体が得られることを見出した。すなわち、本発明によれば、以下のナノクリスタル集合体、及びその製造方法が提供される。   In order to solve the above problems, the present inventors have found that a nanocrystal aggregate can be obtained by irradiating a mixed solution containing metal ions with ultrasonic waves. That is, according to the present invention, the following nanocrystal aggregates and methods for producing the same are provided.

[1] 金属イオンを含む混合溶液に超音波を照射することにより、ナノクリスタルが集合したナノクリスタル集合体を製造するナノクリスタル集合体の製造方法。 [1] A method for producing a nanocrystal aggregate in which a nanocrystal aggregate in which nanocrystals are aggregated is produced by irradiating a mixed solution containing metal ions with ultrasonic waves.

[2] 前記混合溶液は、1種以上の金属イオンを含むコロイド分散溶液である前記[1]に記載のナノクリスタル集合体の製造方法。 [2] The method for producing a nanocrystal aggregate according to [1], wherein the mixed solution is a colloidal dispersion solution containing one or more metal ions.

[3] 前記金属イオンを含む前記混合溶液は、無機塩、有機酸、及び有機金属化合物のいずれかを、水、アルコール、及び有機溶媒のいずれかに溶解・分散したものである前記[1]または[2]に記載のナノクリスタル集合体の製造方法。 [3] The mixed solution containing the metal ions is obtained by dissolving or dispersing any one of an inorganic salt, an organic acid, and an organometallic compound in any of water, alcohol, and an organic solvent. Or the manufacturing method of the nanocrystal aggregate | assembly as described in [2].

[4] 前記超音波照射による反応工程における超音波の周波数を、10kHz〜1000kHzとする前記[1]〜[3]のいずれかに記載のナノクリスタル集合体の製造方法。 [4] The method for producing a nanocrystal aggregate according to any one of [1] to [3], wherein an ultrasonic frequency in the reaction step by the ultrasonic irradiation is 10 kHz to 1000 kHz.

[5] 生成する前記ナノクリスタルは、粒径が1ナノメートル〜20ナノメートルの単結晶粒子である前記[1]〜[4]のいずれかに記載のナノクリスタル集合体の製造方法。 [5] The method for producing a nanocrystal aggregate according to any one of [1] to [4], wherein the generated nanocrystal is a single crystal particle having a particle diameter of 1 nanometer to 20 nanometer.

[6] 前記ナノクリスタルが特定の結晶方位を向いて集合している前記[1]〜[5]のいずれかに記載のナノクリスタル集合体の製造方法。 [6] The method for producing a nanocrystal aggregate according to any one of [1] to [5], wherein the nanocrystals are assembled in a specific crystal orientation.

[7] 前記ナノクリスタルが特定の結晶方位を向いて整列している前記[1]〜[6]のいずれかに記載のナノクリスタル集合体の製造方法。 [7] The method for producing a nanocrystal aggregate according to any one of [1] to [6], wherein the nanocrystals are aligned in a specific crystal orientation.

[8] 当該ナノクリスタル集合体の粒径が、100ナノメートル〜50マイクロメートルである前記[1]〜[7]のいずれかに記載のナノクリスタル集合体の製造方法。 [8] The method for producing a nanocrystal aggregate according to any one of [1] to [7], wherein the nanocrystal aggregate has a particle size of 100 nanometers to 50 micrometers.

[9] 前記[1]〜[8]のいずれかに記載のナノクリスタル集合体の製造方法によって製造されたナノクリスタル集合体。 [9] A nanocrystal aggregate produced by the method for producing a nanocrystal aggregate according to any one of [1] to [8].

金属イオンを含む混合溶液に超音波を照射することにより、ナノクリスタル集合体を製造することができ、ナノクリスタルを得るための合成時間を短縮化することができる。また、1次粒子(ナノクリスタル)が結晶方位を揃えて配列した2次粒子(ナノクリスタル集合体)を合成することができる。さらに、粒径が揃った2次凝集粒子を合成することができる。   By irradiating the mixed solution containing metal ions with ultrasonic waves, a nanocrystal aggregate can be produced, and the synthesis time for obtaining the nanocrystal can be shortened. In addition, secondary particles (nanocrystal aggregates) in which primary particles (nanocrystals) are aligned in the same crystal orientation can be synthesized. Furthermore, secondary agglomerated particles having a uniform particle size can be synthesized.

プロセス1のチタン酸バリウムナノクリスタルの合成手順を示すフローチャートである。3 is a flowchart showing a procedure for synthesizing barium titanate nanocrystals in Process 1. プロセス2のチタン酸バリウムナノクリスタルの合成手順を示すフローチャートである。It is a flowchart which shows the synthetic | combination procedure of the barium titanate nanocrystal of the process 2. プロセス3のチタン酸バリウムナノクリスタルの合成手順を示すフローチャートである。4 is a flowchart showing a procedure for synthesizing barium titanate nanocrystals in Process 3. 超音波照射時間20分で合成した粉末のSEM写真である。It is a SEM photograph of the powder synthesize | combined in 20 minutes of ultrasonic irradiation time. 超音波照射時間40分で合成した粉末のTEM写真(プロセス1、溶液濃度0.1M)である。It is the TEM photograph (process 1, solution concentration 0.1M) of the powder synthesize | combined in ultrasonic irradiation time 40 minutes. 超音波照射時間40分で合成した粉末のTEM写真(プロセス1、溶液濃度0.05M)である。It is the TEM photograph (process 1, solution concentration 0.05M) of the powder synthesize | combined by ultrasonic irradiation time 40 minutes. 超音波照射時間40分で合成した粉末のTEM写真(プロセス2、溶液濃度0.1M)である。It is the TEM photograph (process 2, solution concentration 0.1M) of the powder synthesize | combined in ultrasonic irradiation time 40 minutes. 超音波照射時間40分で合成した粉末の電子線回折パターン(プロセス1、溶液濃度0.1M)であり、SAEDは、制限視野と電子線回折パターンを示す写真である。It is the electron diffraction pattern (process 1, solution concentration 0.1M) of the powder synthesize | combined by ultrasonic irradiation time 40 minutes, SAED is a photograph which shows a restriction | limiting visual field and an electron diffraction pattern. 超音波照射時間40分で合成した粉末の電子線回折パターン(プロセス1、溶液濃度0.1M)であり、1−6は、ナノビーム照射位置とナノビーム回折パターンを示す写真である。It is the electron beam diffraction pattern (process 1, solution concentration 0.1M) of the powder synthesize | combined by ultrasonic irradiation time 40 minutes, and 1-6 is a photograph which shows a nano beam irradiation position and a nano beam diffraction pattern. 超音波照射時間40分で合成した粉末の電子線回折パターン(プロセス1、溶液濃度0.05M)であり、SAEDは、制限視野と電子線回折パターンを示す写真である。It is the electron diffraction pattern (process 1, solution concentration 0.05M) of the powder synthesize | combined by ultrasonic irradiation time 40 minutes, SAED is a photograph which shows a restriction | limiting visual field and an electron diffraction pattern. 超音波照射時間40分で合成した粉末の電子線回折パターン(プロセス1、溶液濃度0.05M)であり、1−6は、ナノビーム照射位置とナノビーム回折パターンを示す写真である。It is the electron diffraction pattern (process 1, solution concentration 0.05M) of the powder synthesize | combined by ultrasonic irradiation time 40 minutes, 1-6 is a photograph which shows a nano beam irradiation position and a nano beam diffraction pattern. 超音波照射時間40分で合成した粉末の電子線回折パターン(プロセス2、溶液濃度0.1M)であり、SAEDは、制限視野と電子線回折パターンを示す写真である。It is the electron diffraction pattern (process 2, solution concentration 0.1M) of the powder synthesize | combined by ultrasonic irradiation time 40 minutes, SAED is a photograph which shows a restriction | limiting visual field and an electron diffraction pattern. 超音波照射時間40分で合成した粉末の電子線回折パターン(プロセス2、溶液濃度0.1M)であり、1−6は、ナノビーム照射位置とナノビーム回折パターンを示す写真である。It is the electron beam diffraction pattern (process 2, solution concentration 0.1M) of the powder synthesize | combined by ultrasonic irradiation time 40 minutes, and 1-6 is a photograph which shows a nano beam irradiation position and a nano beam diffraction pattern.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.

本発明のナノクリスタル集合体の製造方法は、金属イオンを含む混合溶液に超音波を照射することにより、ナノクリスタルが集合したナノクリスタル集合体を製造する方法である。   The method for producing a nanocrystal aggregate according to the present invention is a method for producing a nanocrystal aggregate in which nanocrystals are aggregated by irradiating a mixed solution containing metal ions with ultrasonic waves.

本発明のナノクリスタル集合体の製造法により製造されるナノクリスタル集合体(凝集体ということもある)は、ナノクリスタルが集合したものである。ナノクリスタルとは、粒径が数ナノメートルから数十ナノメートルの単結晶粒子である。また、ナノクリスタルが集合するとは、複数のナノクリスタルが集まり、それぞれが接している状態である。   The nanocrystal aggregate (sometimes referred to as an aggregate) produced by the method for producing a nanocrystal aggregate of the present invention is a collection of nanocrystals. A nanocrystal is a single crystal particle having a particle size of several nanometers to several tens of nanometers. In addition, the gathering of nanocrystals means a state in which a plurality of nanocrystals gather and are in contact with each other.

本発明のナノクリスタル集合体は、ナノクリスタルが特定の結晶方位を向いて集合している。特定の結晶方位を向いて集合しているとは、複数のナノクリスタルが同じ結晶方位を向いて集まり、それぞれが接している状態である。また、本発明のナノクリスタル集合体は、ナノクリスタルが特定の結晶方位を向いて整列している。特定の結晶方位を向いて整列しているとは、同じ結晶方位を向いて並んでいる状態である。   In the nanocrystal aggregate of the present invention, the nanocrystals are assembled in a specific crystal orientation. “Aggregating in a specific crystal orientation” means a state in which a plurality of nanocrystals are gathered in the same crystal orientation and are in contact with each other. In the nanocrystal aggregate of the present invention, the nanocrystals are aligned in a specific crystal orientation. “Aligned to a specific crystal orientation” means a state in which they are aligned in the same crystal orientation.

本発明のナノクリスタル集合体の製造法によって製造することのできるナノクリスタルとしては、例えば、チタン酸バリウムが挙げられる。   Examples of nanocrystals that can be produced by the method for producing a nanocrystal aggregate of the present invention include barium titanate.

また、本発明のナノクリスタル集合体の粒径は、100ナノメートル〜50マイクロメートルである。さらに、ナノクリスタル集合体の粒度分布は、粒径を中心として30ナノメートル以内である。   The particle size of the nanocrystal aggregate of the present invention is 100 nanometers to 50 micrometers. Furthermore, the particle size distribution of the nanocrystal aggregate is within 30 nanometers centering on the particle size.

次に本発明のナノクリスタル集合体の製造方法について説明する。超音波照射による特異な構造を有するナノクリスタル集合体の形態制御方法、例えば、チタン酸バリウム凝集体の形態制御法、すなわちバリウムイオンとチタンイオンの混合溶液に超音波を照射する方法についての報告は、これまでになく、新規な合成方法である。   Next, the manufacturing method of the nanocrystal aggregate of this invention is demonstrated. A report on the form control method of nanocrystal aggregates with a unique structure by ultrasonic irradiation, for example, the form control method of barium titanate aggregates, that is, the method of irradiating ultrasonic waves to a mixed solution of barium ions and titanium ions This is a novel synthesis method that has never been seen before.

金属イオンを含む混合溶液は、無機塩、有機酸、有機金属化合物を、水、アルコール、及び有機溶媒のいずれかに溶解・分散したものである。   The mixed solution containing metal ions is obtained by dissolving and dispersing an inorganic salt, an organic acid, and an organic metal compound in any of water, alcohol, and an organic solvent.

無機塩としては、塩化物、硝酸塩、硫酸塩などが挙げられる。有機酸としては、酢酸塩、ギ酸塩などが挙げられる。有機金属化合物としては、金属アルコキシドなどが挙げられる。   Inorganic salts include chlorides, nitrates, sulfates, and the like. Examples of the organic acid include acetate and formate. Examples of organometallic compounds include metal alkoxides.

混合溶液としては、1種以上の金属イオンを含むコロイド分散溶液を用いることもできる。コロイド分散溶液としては、チタン酸コロイドや水酸化チタンコロイドなどが挙げられる。   As the mixed solution, a colloidal dispersion solution containing one or more metal ions can also be used. Examples of the colloid dispersion solution include titanate colloid and titanium hydroxide colloid.

超音波照射による反応工程における超音波の周波数を、10kHz〜1000kHzとすることが好ましく、20kHz〜100kHzとすることがより好ましい。10kHz未満では、照射効果が得られにくい。また、1000kHzを超えると、発熱を伴うため適当でない。   The frequency of ultrasonic waves in the reaction step by ultrasonic irradiation is preferably 10 kHz to 1000 kHz, and more preferably 20 kHz to 100 kHz. If it is less than 10 kHz, it is difficult to obtain an irradiation effect. On the other hand, if it exceeds 1000 kHz, heat is generated, which is not appropriate.

ナノクリスタル集合体としてチタン酸バリウム凝集体を製造する場合についてさらに具体的に説明する。チタン酸バリウム凝集体を製造する場合には、金属イオンを含む混合溶液としては、塩化バリウム水溶液と塩化チタン水溶液からなる混合水溶液に水酸化ナトリウムを加えたアルカリ性溶液を使用することができるが、これら以外のイオンを含む混合溶液を排除するものではない。   The case where a barium titanate aggregate is produced as a nanocrystal aggregate will be described more specifically. In the case of producing barium titanate aggregates, an alkaline solution in which sodium hydroxide is added to a mixed aqueous solution consisting of an aqueous barium chloride solution and an aqueous titanium chloride solution can be used as the mixed solution containing metal ions. It does not exclude mixed solutions containing ions other than.

チタン酸バリウム凝集体を製造する場合には、コロイド分散溶液としては、チタンテトライソプロプロポキシドなどの金属アルコキシドの加水分解によって形成されたゾル溶液を使用することができるが、これら以外のコロイドを含む溶液を排除するものではない。   When producing a barium titanate aggregate, a sol solution formed by hydrolysis of a metal alkoxide such as titanium tetraisopropoxide can be used as the colloid dispersion solution, but other colloids are included. It does not exclude the solution.

また、超音波照射は80℃〜100℃で行うことが好ましい。反応温度が低すぎると、金属イオンの溶解度が下がり、偏析がおこるため、目的の結晶を合成することができない。   Moreover, it is preferable to perform ultrasonic irradiation at 80 to 100 degreeC. If the reaction temperature is too low, the solubility of metal ions is lowered and segregation occurs, so that the target crystal cannot be synthesized.

また、超音波照射はpH=13〜14付近で行うことが好ましい。溶液のpHが低すぎると、金属イオンの溶解度が下がり、偏析がおこるため、目的の結晶を合成することができない。また、溶液のpH調節によって、形成されたナノクリスタルの表面電位を制御することができる。   Moreover, it is preferable to perform ultrasonic irradiation at pH = 13-14 vicinity. If the pH of the solution is too low, the solubility of metal ions is lowered and segregation occurs, so that the target crystal cannot be synthesized. Moreover, the surface potential of the formed nanocrystal can be controlled by adjusting the pH of the solution.

次に、ナノクリスタル集合体を製造する場合の具体的なプロセスについて、図1A〜図1Bを参照しつつ、チタン酸バリウム凝集体を製造する場合を例として説明する。   Next, a specific process for producing a nanocrystal aggregate will be described with reference to FIGS. 1A to 1B, taking as an example the case of producing a barium titanate aggregate.

<プロセス1>
図1Aに示すように、蒸留水を用意し、空気中の炭酸ガスを除外するため、Arガスでバブリングする。それを用いて、室温にて、Baイオンを含むBaCl溶液を作製する。また、同様にして、Tiイオンを含むTiCl溶液を作製する。BaCl溶液に含まれるBaイオンと、TiCl溶液に含まれるTiイオンとが、同数となるように作製するとよい。
<Process 1>
As shown in FIG. 1A, distilled water is prepared and bubbled with Ar gas to exclude carbon dioxide in the air. Using this, a BaCl 2 solution containing Ba ions is prepared at room temperature. Similarly, a TiCl 4 solution containing Ti ions is prepared. It is preferable that the Ba ions contained in the BaCl 2 solution and the Ti ions contained in the TiCl 4 solution be produced in the same number.

これらの溶液と、NaOH水溶液等とを混合することにより、pHを調整する。pHは、13〜14とすることが好ましく、14がより好ましい。   The pH is adjusted by mixing these solutions with an aqueous NaOH solution or the like. The pH is preferably 13 to 14, and more preferably 14.

次に、超音波照射を50〜200W/cmにて行う。また、このとき、溶液の温度は、80〜100℃で行うことが好ましい。 Next, ultrasonic irradiation is performed at 50 to 200 W / cm 2 . At this time, the temperature of the solution is preferably 80 to 100 ° C.

生成した粉末は、遠心分離を行った後、イオン交換した蒸留水で洗浄し、真空乾燥機内で乾燥する。   The produced powder is centrifuged, washed with ion-exchanged distilled water, and dried in a vacuum dryer.

<プロセス2>
図1Bに示すように、蒸留水を用意し、Arガスでバブリングする。それを用いて、室温にて、Baイオンを含むBaCl溶液を作製する。また、Baイオンと同数のTiイオンが含まれるTiCl溶液を作製し、BaCl溶液に加える。さらに、この溶液に、NaOH水溶液等を加えて混合することによりpHを調整する。次に、超音波照射を50〜200W/cmにて行う。
<Process 2>
As shown in FIG. 1B, distilled water is prepared and bubbled with Ar gas. Using this, a BaCl 2 solution containing Ba ions is prepared at room temperature. Also, a TiCl 4 solution containing the same number of Ti ions as Ba ions is prepared and added to the BaCl 2 solution. Furthermore, pH is adjusted by adding NaOH aqueous solution etc. to this solution and mixing. Next, the ultrasonic wave irradiation at 50~200W / cm 2.

生成した粉末は、遠心分離を行った後、イオン交換した蒸留水で洗浄し、真空乾燥機内で乾燥する。   The produced powder is centrifuged, washed with ion-exchanged distilled water, and dried in a vacuum dryer.

<プロセス3>
図1Cに示すように、蒸留水を用意し、Arガスでバブリングする。それを用いて、室温にて、Baイオンを含むBaCl溶液を作製する。また、この溶液に、NaOH水溶液等を加えて混合することによりpHを調整する。さらに、Baイオンと同数のTiイオンが含まれるTiCl溶液を作製し、BaCl溶液に加える。次に、超音波照射を50〜200W/cmにて行う。
<Process 3>
As shown in FIG. 1C, distilled water is prepared and bubbled with Ar gas. Using this, a BaCl 2 solution containing Ba ions is prepared at room temperature. Moreover, pH is adjusted by adding NaOH aqueous solution etc. to this solution and mixing. Further, a TiCl 4 solution containing the same number of Ti ions as Ba ions is prepared and added to the BaCl 2 solution. Next, ultrasonic irradiation is performed at 50 to 200 W / cm 2 .

生成した粉末は、遠心分離を行った後、イオン交換した蒸留水で洗浄し、真空乾燥機内で乾燥する。   The produced powder is centrifuged, washed with ion-exchanged distilled water, and dried in a vacuum dryer.

以上のような作製方法により、ナノクリスタルが結晶方位を揃えて配列したナノクリスタル集合体を作製することができる。   By the production method as described above, a nanocrystal aggregate in which nanocrystals are aligned with the same crystal orientation can be produced.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.

(実験例1〜19)
塩化チタン(和光純薬製)、塩化バリウム(和光純薬製)、水酸化ナトリウムを用いた。
(Experimental Examples 1-19)
Titanium chloride (manufactured by Wako Pure Chemical Industries), barium chloride (manufactured by Wako Pure Chemical Industries), and sodium hydroxide were used.

ホーン型超音波照射装置(Branson社製、Sonifier D450型)を用い、周波数20kHz、出力150W/cmとした。 A horn type ultrasonic irradiation device (manufactured by Branson, Sonifier D450 type) was used, and the frequency was 20 kHz and the output was 150 W / cm 2 .

ナノ粒子の合成手順のプロセス1を図1A、プロセス2を図1B、及びプロセス3を図1Cに示した。塩化チタン水溶液と塩化バリウム水溶液の混合方法と混合時のpH変化を調節するために、プロセス1、プロセス2、プロセス3を適用した。   Process 1 of the nanoparticle synthesis procedure is shown in FIG. 1A, process 2 in FIG. 1B, and process 3 in FIG. 1C. Process 1, process 2, and process 3 were applied to adjust the mixing method of the titanium chloride aqueous solution and the barium chloride aqueous solution and the pH change during mixing.

<プロセス1>
図1Aに示すように、50mlの蒸留水を用意し、30分間Arガスでバブリングした。それを用いて、室温にて、0.1M(mol/L)、0.05MのBaイオンを含むBaCl溶液を作製した。また、同様にして、0.1M(mol/L)、0.05MのTiイオンを含むTiCl溶液を作製した。そして、これらの溶液と、NaOH水溶液(5N)とを混合し、室温にてpH14とした。次に、大気中で80℃にて、超音波照射を150W/cmにて行った。生成した粉末は、遠心分離を2回行った後、イオン交換した蒸留水で2回洗浄し、真空乾燥機内100℃で2時間乾燥した。
<Process 1>
As shown in FIG. 1A, 50 ml of distilled water was prepared and bubbled with Ar gas for 30 minutes. Therewith, at room temperature, 0.1M (mol / L), to prepare a BaCl 2 solution containing Ba ions 0.05 M. Similarly, a TiCl 4 solution containing 0.1 M (mol / L) and 0.05 M Ti ions was prepared. And these solutions and NaOH aqueous solution (5N) were mixed, and it was set to pH14 at room temperature. Next, ultrasonic irradiation was performed at 80 ° C. in air at 150 W / cm 2 . The produced powder was centrifuged twice, washed twice with ion-exchanged distilled water, and dried in a vacuum dryer at 100 ° C. for 2 hours.

<プロセス2>
図1Bに示すように、100mlの蒸留水を用意し、30分間Arガスでバブリングした。それを用いて、室温にて、0.1M(mol/L)、0.05MのBaイオンを含むBaCl溶液を作製した。また、Baイオンと同数のTiイオンが含まれるTiCl溶液を作製し、BaCl溶液に加えた。さらに、この溶液に、NaOH水溶液(5N)を加えて混合し、室温にてpH14とした。次に、大気中で80℃にて、超音波照射を150W/cmにて行った。生成した粉末は、遠心分離を2回行った後、イオン交換した蒸留水で2回洗浄し、真空乾燥機内100℃で2時間乾燥した。
<Process 2>
As shown in FIG. 1B, 100 ml of distilled water was prepared and bubbled with Ar gas for 30 minutes. Using this, a BaCl 2 solution containing 0.1 M (mol / L) and 0.05 M Ba ions was prepared at room temperature. Further, to prepare a TiCl 4 solution containing the Ba ions as many Ti ions, it was added to the BaCl 2 solution. Furthermore, NaOH aqueous solution (5N) was added and mixed with this solution, and it was set to pH14 at room temperature. Next, ultrasonic irradiation was performed at 80 ° C. in air at 150 W / cm 2 . The produced powder was centrifuged twice, washed twice with ion-exchanged distilled water, and dried in a vacuum dryer at 100 ° C. for 2 hours.

<プロセス3>
図1Cに示すように、100mlの蒸留水を用意し、30分間Arガスでバブリングした。それを用いて、室温にて、0.1M(mol/L)、0.05MのBaイオンを含むBaCl溶液を作製した。また、この溶液に、NaOH水溶液(5N)を加えて混合し、室温にてpH14とした。さらに、Baイオンと同数のTiイオンが含まれるTiCl溶液を作製し、BaCl溶液に加えた。次に、大気中で80℃にて、超音波照射を150W/cmにて行った。生成した粉末は、遠心分離を2回行った後、イオン交換した蒸留水で2回洗浄し、真空乾燥機内100℃で2時間乾燥した。
<Process 3>
As shown in FIG. 1C, 100 ml of distilled water was prepared and bubbled with Ar gas for 30 minutes. Using this, a BaCl 2 solution containing 0.1 M (mol / L) and 0.05 M Ba ions was prepared at room temperature. To this solution, an aqueous NaOH solution (5N) was added and mixed to adjust the pH to 14 at room temperature. Further, a TiCl 4 solution containing the same number of Ti ions as Ba ions was prepared and added to the BaCl 2 solution. Next, ultrasonic irradiation was performed at 80 ° C. in air at 150 W / cm 2 . The produced powder was centrifuged twice, washed twice with ion-exchanged distilled water, and dried in a vacuum dryer at 100 ° C. for 2 hours.

作製した試料のプロセス、溶液濃度(Baイオン、Tiイオンの濃度)、超音波照射時間を表1に示す。   Table 1 shows the process, solution concentration (concentration of Ba ion and Ti ion), and ultrasonic irradiation time of the prepared sample.

(評価)
次に、作製した試料の粒子の結晶相と結晶性について、X線粉末回折法(XRD、加速電圧40kV,電流20mA)を用いて評価した。また、微細構造を走査型電子顕微鏡(SEM、加速電圧10kV)、透過型電子顕微鏡(TEM、加速電圧300kV)を用いて観察した。個々の粒子の結晶性については、電子線回折法(制限視野法、ナノビーム回折法)により解析した。また、粒子と上澄み溶液の化学組成をICP発光分析法により評価した。
(Evaluation)
Next, the crystal phase and crystallinity of the particles of the prepared sample were evaluated using an X-ray powder diffraction method (XRD, acceleration voltage 40 kV, current 20 mA). The microstructure was observed using a scanning electron microscope (SEM, acceleration voltage 10 kV) and a transmission electron microscope (TEM, acceleration voltage 300 kV). The crystallinity of each particle was analyzed by electron diffraction (restricted field method, nanobeam diffraction). The chemical composition of the particles and the supernatant solution was evaluated by ICP emission analysis.

生成した粉末のXRDの結果から、結晶相と結晶性は反応温度、溶液濃度、超音波照射時間に依存して変化することが分かった。   From the XRD results of the produced powder, it was found that the crystal phase and crystallinity change depending on the reaction temperature, solution concentration, and ultrasonic irradiation time.

超音波照射の際に80℃未満の低温で合成した粉末は、溶液濃度や超音波照射時間によらず、BaCOが主相であった。 In the powder synthesized at a low temperature of less than 80 ° C. during the ultrasonic irradiation, BaCO 3 was the main phase regardless of the solution concentration and the ultrasonic irradiation time.

このことから、BaTiO単相の粒子を合成するためには、80℃以上の温度で反応を進める必要があると分かった。 From this, it was found that it is necessary to proceed the reaction at a temperature of 80 ° C. or higher in order to synthesize BaTiO 3 single phase particles.

そこで、合成温度80℃、混合時のpH=14として、混合方法(プロセス)、溶液濃度、超音波照射時間などの合成条件を変化したときの、生成粒子の結晶相、微細構造の変化を比較した。   Therefore, comparison is made of changes in the crystal phase and microstructure of the generated particles when the synthesis conditions such as the mixing method (process), solution concentration, and ultrasonic irradiation time are changed at a synthesis temperature of 80 ° C. and a pH of 14 at the time of mixing. did.

表1に示すように、溶液が低濃度(0.05M)の場合は、超音波照射時間が短いとゲルが残存し、結果としてBaCOが混在することが分かった。 As shown in Table 1, it was found that when the solution had a low concentration (0.05 M), the gel remained when the ultrasonic irradiation time was short, and as a result, BaCO 3 was mixed.

一方、高濃度(0.1M)溶液の場合は、超音波照射時間20分においてもBaTiO単相ナノ粒子が得られることが分かった。 On the other hand, in the case of a high-concentration (0.1M) solution, it was found that BaTiO 3 single-phase nanoparticles can be obtained even with an ultrasonic irradiation time of 20 minutes.

原料溶液の混合法(プロセス1,2,3)、溶液濃度(0.1M,0.05M)、超音波照射時間20分の各条件で合成した粒子の走査型顕微鏡写真を図2に示す。   FIG. 2 shows scanning micrographs of particles synthesized under the raw material solution mixing method (processes 1, 2, 3), solution concentration (0.1 M, 0.05 M), and ultrasonic irradiation time of 20 minutes.

既に表1で示したように、プロセス1で低濃度(0.05M)溶液から得られた生成物には、ゲルと凝集粒が混在し、反応が不十分であることが分かった。   As already shown in Table 1, the product obtained from the low-concentration (0.05M) solution in Process 1 was found to contain a mixture of gels and agglomerated particles and the reaction was insufficient.

一方、高濃度(0.1M)溶液から得られた生成物は、粒径が小さな1次粒子が凝集して、比較的粒径が揃った擬球状の2次粒子を形成していることが分かった。   On the other hand, the product obtained from the high-concentration (0.1 M) solution has aggregated primary particles having a small particle size to form pseudospherical secondary particles having a relatively uniform particle size. I understood.

中でも、プロセス2で低濃度(0.05M)溶液から得られた生成物は、角ばった形状の2次粒子が集合した特徴的な構造を有していた。   Among them, the product obtained from the low concentration (0.05M) solution in Process 2 had a characteristic structure in which square-shaped secondary particles were aggregated.

凝集粒子の粒径は溶液濃度が高いほど小さく、また、超音波処理時間を長くするほど、粒子全体の形状が丸くなることが分かった。   It was found that the particle size of the aggregated particles was smaller as the solution concentration was higher, and the longer the ultrasonic treatment time was, the more the shape of the particles became round.

次に、プロセス1、2について、高濃度(0.1M)溶液を用い、超音波照射時間40分の条件で合成したチタン酸バリウム粒子の透過電子顕微鏡写真を図3A,3B,3Cに示す。図3Aは、プロセス1、溶液濃度0.1M、図3Bは、プロセス1、溶液濃度0.05M、図3Cは、プロセス2、溶液濃度0.1Mである。   Next, transmission electron micrographs of the barium titanate particles synthesized for the processes 1 and 2 using a high-concentration (0.1M) solution under the condition of ultrasonic irradiation time of 40 minutes are shown in FIGS. 3A, 3B, and 3C. 3A shows process 1, solution concentration 0.1M, FIG. 3B shows process 1, solution concentration 0.05M, and FIG. 3C shows process 2, solution concentration 0.1M.

2次粒子(ナノクリスタル集合体)の粒径は250nm〜400nmであり、比較的整った擬球状の形をしていた。また、高分解能透過電子顕微鏡観察によると、1次粒子(ナノクリスタル)の粒径は5nm〜10nmで不定形をしていることが分かった。さらに、1次粒子には格子縞が観察されることから、チタン酸バリウムナノクリスタルであることが明らかになった。   The particle size of the secondary particles (nanocrystal aggregate) was 250 nm to 400 nm, and had a relatively quasi-spherical shape. Further, according to observation with a high-resolution transmission electron microscope, it was found that the primary particles (nanocrystals) had an irregular shape with a particle size of 5 nm to 10 nm. Furthermore, lattice fringes were observed in the primary particles, which revealed that they were barium titanate nanocrystals.

プロセス1、2について、高濃度(0.1M)溶液を用い、超音波照射時間40分の条件で合成したチタン酸バリウム粒子の電子線回折結果を図4A〜6Bに示す。図4A,4Bは、超音波照射時間40分で合成した粉末の電子線回折パターン(プロセス1、溶液濃度0.1M)であり、図4AのSAEDは、制限視野と電子線回折パターン、図4Bの1−6は、ナノビーム照射位置とナノビーム回折パターンである。図5A,5Bは、超音波照射時間40分で合成した粉末の電子線回折パターン(プロセス1、溶液濃度0.05M)であり、図5AのSAEDは、制限視野と電子線回折パターン、図5Bの1−6は、ナノビーム照射位置とナノビーム回折パターンである。図6A,6Bは、超音波照射時間40分で合成した粉末の電子線回折パターン(プロセス2、溶液濃度0.1M)であり、図6AのSAEDは、制限視野と電子線回折パターン、図6Bの1−6は、ナノビーム照射位置とナノビーム回折パターンである。   4A to 6B show the electron diffraction results of the barium titanate particles synthesized in the process 1 and 2 using a high-concentration (0.1M) solution under the condition of ultrasonic irradiation time of 40 minutes. 4A and 4B are electron diffraction patterns (process 1, solution concentration 0.1 M) of powder synthesized with an ultrasonic irradiation time of 40 minutes, and SAED in FIG. 4A is a limited field of view and electron diffraction pattern, FIG. 1-6 are the nanobeam irradiation position and the nanobeam diffraction pattern. FIGS. 5A and 5B are electron diffraction patterns (process 1, solution concentration 0.05 M) of powder synthesized with an ultrasonic irradiation time of 40 minutes. SAED in FIG. 5A is a limited field of view and electron diffraction pattern, FIG. 1-6 are the nanobeam irradiation position and the nanobeam diffraction pattern. 6A and 6B are electron diffraction patterns (process 2, solution concentration 0.1 M) of the powder synthesized with an ultrasonic irradiation time of 40 minutes. SAED in FIG. 6A is a limited field of view and electron diffraction pattern, FIG. 1-6 are the nanobeam irradiation position and the nanobeam diffraction pattern.

一つの2次粒子に制限視野絞り(Φ150nm)を合わせて獲得した電子線回折パターン(図4A〜6BのSAED)から、合成した2次粒子(チタン酸バリウムナノクリスタル1次粒子の凝集体)はどれも、晶帯軸に応じてチタン酸バリウム単結晶と同様のパターンを示すことが分かった。この結果から、超音波照射により合成した2次粒子は結晶性が高く、それを構成している1次粒子(チタン酸バリウムナノクリスタル)が方位を揃えて配列していることが示唆された。   Secondary particles (aggregates of barium titanate nanocrystal primary particles) synthesized from an electron diffraction pattern (SAED in FIGS. 4A to 6B) obtained by combining a single secondary particle with a limited field stop (Φ150 nm) are: It turned out that all show the pattern similar to a barium titanate single crystal according to a zone axis. From this result, it was suggested that the secondary particles synthesized by ultrasonic irradiation had high crystallinity, and the primary particles (barium titanate nanocrystals) constituting the secondary particles were aligned in the same direction.

さらに、2次粒子の電子線回折パターンと、その2次粒子を構成している1次粒子のナノビーム回折パターン(ナノビーム径1nm)(図4B,5B,6Bの1−6)を比較することにより、1次粒子が同一の結晶方位を有していること、その方位が2次粒子全体の結晶方位と一致していることが明らかになった。   Further, by comparing the electron beam diffraction pattern of the secondary particles with the nanobeam diffraction pattern (nanobeam diameter 1 nm) of the primary particles constituting the secondary particles (1-6 in FIGS. 4B, 5B, and 6B). It was clarified that the primary particles have the same crystal orientation and that the orientation coincides with the crystal orientation of the entire secondary particles.

(比較例1)
超音波照射の効果を明らかにするため、同一原料、プロセス2、合成温度(80℃)の下で、通常の機械攪拌(超音波照射しない)によるチタン酸バリウム粒子の生成過程を比較検討した。その結果、高濃度(0.1M)溶液の場合、攪拌時間40分では、生成物はゲル状で、X線回折結果からは炭酸バリウムが生成していることが分かった。
(Comparative Example 1)
In order to clarify the effect of ultrasonic irradiation, the production process of barium titanate particles by normal mechanical stirring (no ultrasonic irradiation) was compared under the same raw material, process 2, and synthesis temperature (80 ° C.). As a result, in the case of a high-concentration (0.1M) solution, it was found that the product was in a gel form at a stirring time of 40 minutes, and barium carbonate was produced from the X-ray diffraction results.

(比較例2)
機械攪拌8h後には、生成物はキューブ状粒子とゲルの混合物になり、チタン酸バリウムと炭酸バリウムからなる混合相であることが分かった。また、生成粒子を遠心分離した後の残液(上澄み液)にはBa2+イオンが比較的多く残存していた。
(Comparative Example 2)
After 8 hours of mechanical stirring, the product became a mixture of cube-like particles and gel, and was found to be a mixed phase consisting of barium titanate and barium carbonate. Further, a relatively large amount of Ba 2+ ions remained in the residual liquid (supernatant liquid) after the generated particles were centrifuged.

本発明は、結晶方位の揃ったナノクリスタル集合体を製造方法する方法として利用することができる。本発明のナノクリスタル集合体は、誘電体材料、圧電材料等に利用することができる。   The present invention can be used as a method for producing a nanocrystal aggregate having a uniform crystal orientation. The nanocrystal aggregate of the present invention can be used for dielectric materials, piezoelectric materials, and the like.

Claims (9)

金属イオンを含む混合溶液に超音波を照射することにより、ナノクリスタルが集合したナノクリスタル集合体を製造するナノクリスタル集合体の製造方法。   A method for producing a nanocrystal aggregate, wherein a nanocrystal aggregate in which nanocrystals are aggregated is produced by irradiating a mixed solution containing metal ions with ultrasonic waves. 前記混合溶液は、1種以上の金属イオンを含むコロイド分散溶液である請求項1に記載のナノクリスタル集合体の製造方法。   The method for producing a nanocrystal aggregate according to claim 1, wherein the mixed solution is a colloidal dispersion solution containing one or more metal ions. 前記金属イオンを含む前記混合溶液は、無機塩、有機酸、及び有機金属化合物のいずれかを、水、アルコール、及び有機溶媒のいずれかに溶解・分散したものである請求項1または2に記載のナノクリスタル集合体の製造方法。   The mixed solution containing the metal ions is obtained by dissolving or dispersing any one of an inorganic salt, an organic acid, and an organometallic compound in water, alcohol, or an organic solvent. Method for producing a nanocrystal aggregate. 前記超音波照射による反応工程における超音波の周波数を、10kHz〜1000kHzとする請求項1〜3のいずれか1項に記載のナノクリスタル集合体の製造方法。   The manufacturing method of the nanocrystal aggregate | assembly of any one of Claims 1-3 which sets the frequency of the ultrasonic wave in the reaction process by the said ultrasonic irradiation to 10 kHz-1000 kHz. 生成する前記ナノクリスタルは、粒径が1ナノメートル〜20ナノメートルの単結晶粒子である請求項1〜4のいずれか1項に記載のナノクリスタル集合体の製造方法。   The method for producing a nanocrystal aggregate according to any one of claims 1 to 4, wherein the generated nanocrystal is a single crystal particle having a particle diameter of 1 nanometer to 20 nanometer. 前記ナノクリスタルが特定の結晶方位を向いて集合している請求項1〜5のいずれか1項に記載のナノクリスタル集合体の製造方法。   The method for producing a nanocrystal aggregate according to any one of claims 1 to 5, wherein the nanocrystals are assembled in a specific crystal orientation. 前記ナノクリスタルが特定の結晶方位を向いて整列している請求項1〜6のいずれか1項に記載のナノクリスタル集合体の製造方法。   The method for producing a nanocrystal aggregate according to any one of claims 1 to 6, wherein the nanocrystals are aligned in a specific crystal orientation. 当該ナノクリスタル集合体の粒径が、100ナノメートル〜50マイクロメートルである請求項1〜7のいずれか1項に記載のナノクリスタル集合体の製造方法。   The method for producing a nanocrystal aggregate according to any one of claims 1 to 7, wherein the nanocrystal aggregate has a particle size of 100 nanometers to 50 micrometers. 請求項1〜8のいずれか1項に記載のナノクリスタル集合体の製造方法によって製造されたナノクリスタル集合体。   The nanocrystal aggregate manufactured by the manufacturing method of the nanocrystal aggregate of any one of Claims 1-8.
JP2009001934A 2009-01-07 2009-01-07 Nanocrystal aggregate and method for producing the same Expired - Fee Related JP5488957B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009001934A JP5488957B2 (en) 2009-01-07 2009-01-07 Nanocrystal aggregate and method for producing the same
PCT/JP2010/050365 WO2010079843A1 (en) 2009-01-07 2010-01-07 Nanocrystal aggregate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009001934A JP5488957B2 (en) 2009-01-07 2009-01-07 Nanocrystal aggregate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010159177A true JP2010159177A (en) 2010-07-22
JP5488957B2 JP5488957B2 (en) 2014-05-14

Family

ID=42316605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009001934A Expired - Fee Related JP5488957B2 (en) 2009-01-07 2009-01-07 Nanocrystal aggregate and method for producing the same

Country Status (2)

Country Link
JP (1) JP5488957B2 (en)
WO (1) WO2010079843A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5618087B2 (en) * 2011-03-14 2014-11-05 独立行政法人産業技術総合研究所 Nanocrystal array method, nanocrystal film manufacturing method, nanocrystal film-coated substrate, and manufacturing method thereof
CN103958744B (en) * 2011-07-14 2016-08-31 科瓦里斯股份有限公司 For using focusing sound to prepare the system and method for nanocrystal compositions
KR101906219B1 (en) * 2014-10-17 2018-10-10 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Method for aligning nanocrystals, method for producing nanocrystal structure, nanocrystal structure forming substrate, and method for manufacturing nanocrystal structure forming substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152213A (en) * 1999-11-24 2001-06-05 Japan Science & Technology Corp Metallic hyperfine particle and its producing method
KR20030012222A (en) * 2001-07-31 2003-02-12 삼성정밀화학 주식회사 A method of preparing Barium Titanate
JP2007031799A (en) * 2005-07-28 2007-02-08 Toda Kogyo Corp Method for producing metal nanoparticle
JP2008037064A (en) * 2006-08-10 2008-02-21 Murata Mfg Co Ltd Method for producing orientable ceramics
JP2008133162A (en) * 2006-11-29 2008-06-12 Kyocera Corp Barium titanate powder, its producing method and dielectric porcelain

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152213A (en) * 1999-11-24 2001-06-05 Japan Science & Technology Corp Metallic hyperfine particle and its producing method
KR20030012222A (en) * 2001-07-31 2003-02-12 삼성정밀화학 주식회사 A method of preparing Barium Titanate
JP2007031799A (en) * 2005-07-28 2007-02-08 Toda Kogyo Corp Method for producing metal nanoparticle
JP2008037064A (en) * 2006-08-10 2008-02-21 Murata Mfg Co Ltd Method for producing orientable ceramics
JP2008133162A (en) * 2006-11-29 2008-06-12 Kyocera Corp Barium titanate powder, its producing method and dielectric porcelain

Also Published As

Publication number Publication date
WO2010079843A1 (en) 2010-07-15
JP5488957B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
Lambert et al. Synthesis and characterization of titania− graphene nanocomposites
Farrukh et al. Surfactant-controlled aqueous synthesis of SnO_2 nanoparticles via the hydrothermal and conventional heating methods
Balducci et al. Recent progress in the synthesis of nanostructured magnesium hydroxide
Tamilselvi et al. Synthesis of hierarchical structured MgO by sol-gel method
Osman et al. Synthesis and characterization of zinc oxide nanoparticles using zinc acetate dihydrate and sodium hydroxide
Jahangirian et al. Synthesis and characterization of zeolite/Fe3O4 nanocomposite by green quick precipitation method
Wang et al. Self-assembled growth of PbTiO3 nanoparticles into microspheres and bur-like structures
Wang et al. Synthesis of flower-like BaTiO 3/Fe 3 O 4 hierarchically structured particles and their electrorheological and magnetic properties
Ashiri et al. Carbonate-free strontium titanium oxide nanosized crystals with tailored morphology: facile synthesis, characterization, and formation mechanism
Sundharam et al. Effect of ultrasonication on the synthesis of barium oxide nanoparticles
JP5488957B2 (en) Nanocrystal aggregate and method for producing the same
JP5637389B2 (en) Method for producing barium titanate nanocrystals
Ashiri Obtaining a novel crystalline/amorphous core/shell structure in barium titanate nanocrystals by an innovative one-step approach
Pinjari et al. Ultrasound assisted green synthesis of zinc oxide nanorods at room temperature
Ba et al. 3D rod-like copper oxide with nanowire hierarchical structure: Ultrasound assisted synthesis from Cu2 (OH) 3NO3 precursor, optical properties and formation mechanism
JP2009161425A (en) Manufacturing method of dysprosium oxide nanoparticles and manufacturing method of dysprosium oxide nanosole
Sasirekha et al. Hydrothermal synthesis of barium titanate: Effect of titania precursor and calcination temperature on phase transition
Chen et al. Formation of flower-like magnesium hydroxide microstructure via a solvothermal process
Ashiri et al. Processing and characterization of carbonate-free BaTiO 3 nanoscale particles obtained by a rapid ultrasound-assisted wet chemical approach
Dang et al. Oriented aggregation of BaTiO 3 nanocrystals and large particles in the ultrasonic-assistant synthesis
Cho et al. Formation of nanotubule, nanorod and polycrystalline nanoparticles TiO2 by alkaline hydrothermal transformation of anatase TiO2
JP2015067519A (en) Barium titanate fine particle, barium titanate fine particle powder, and production method thereof
JP4320448B2 (en) Metal ultrafine particle dispersed composite and method for producing the same
Byrappa Novel hydrothermal solution routes of advanced high melting nanomaterials processing
Yustanti et al. EXPLORING THE EFFECT OF PARTICLE CONCENTRATION AND IRRADIATION TIME IN THE SYNTHESIS OF BARIUM STRONTIUM TITANATE (BST) Ba (1-X) Sr X TiO 3 (X: 0-1) NANOPARTICLES BY HIGH POWER ULTRASONIC IRRADIATION.

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140213

R150 Certificate of patent or registration of utility model

Ref document number: 5488957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees