JP2008035140A - Wdmハイブリッドスプリッタモジュール - Google Patents

Wdmハイブリッドスプリッタモジュール Download PDF

Info

Publication number
JP2008035140A
JP2008035140A JP2006205516A JP2006205516A JP2008035140A JP 2008035140 A JP2008035140 A JP 2008035140A JP 2006205516 A JP2006205516 A JP 2006205516A JP 2006205516 A JP2006205516 A JP 2006205516A JP 2008035140 A JP2008035140 A JP 2008035140A
Authority
JP
Japan
Prior art keywords
wdm
pon
signal
unit
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006205516A
Other languages
English (en)
Inventor
Ryosuke Okuda
亮介 奥田
Noboru Uehara
昇 上原
Naoyuki Mekata
直之 女鹿田
Yasuhei Miyakoshi
泰平 宮腰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suntech Co
Original Assignee
Suntech Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suntech Co filed Critical Suntech Co
Priority to JP2006205516A priority Critical patent/JP2008035140A/ja
Publication of JP2008035140A publication Critical patent/JP2008035140A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】PONシステムにおいて、加入者側の装置に変更を加えることなしに下り信号をWDM−PONへのアップグレードあるいは併用できるようにすること。
【解決手段】OLT1からの下り信号及びWDM−PON信号を光フィルタ部11によって分離し、下り信号をパワースプリッタ部12で分岐する。又デマルチプレクサ部13ではWDM−PON信号を波長毎に分岐し、光フィルタ部14では下り信号といずれか1つの波長のWDM−PON信号とを各ONUに出力する。又ONUからの上り信号については、光フィルタ部14を介してパワースプリッタ部12に導き、光フィルタ部11を介してOLT1に出力する。これにより容易にアップグレードができるハイブリッドスプリッタモジュールが実現できる。
【選択図】図1

Description

本発明は通信システムにおいて用いられるWDMハイブリッドスプリッタモジュールに関するものである。
PON(パッシブオプティカルネットワーク)は光加入者網構築方式の1つであり、局側送受信機であるOLT(オプティカルラインターミナル)から複数のユーザ側のONU(オプティカルネットワークユニット)に接続できるように光を分配する方式である。このようなPON方式では基地局から光ファイバで伝送されてきた信号をスプリッタモジュールによって分割するので、OLTから各ONUまで1対1で光ファイバを付設する方式に比べてケーブル費用を節減することができる。しかるに光通信システムにおいて、端末側で使用できる光伝送帯域を拡大したいという要望がある。このような帯域拡大のために波長分割多重方式(WDM)が用いられる。既存のPON通信システムをWDMに置き換える場合には、中継となるスプリッタ部分だけでなく、各ONU端末のシステムを変更するために莫大な投資が必要となる。
一方、非特許文献1には、G−PONと1.65μm帯の8チャンネル(1chの帯域幅2.8nm)のWDM−PONのハイブリット構成のスプリッタが示されている。この装置では、石英系光導波路(PLC)技術を用いたMZI(マッハツェンダー光干渉計)型のWDMフィルタ、アレイ導波路グレーティング素子(以下、単にAWGという)、及び光スプリッタによって実現している。
Kazutaka Nara et al. "Monolithically Integrated Wideband Optical Splitter/Router on Silica-based Planar Lightwave Circuit" ECOC 2004 Proceedings Vol.2 Paper Tu1.4.2 PP140-142
この従来のスプリッタモジュールは、ONUを変更せずに実現しようとするものではない。またWDM信号の1chの帯域幅(1dB幅)が2.8nmではOLT側のWDM信号の送信器に温度調整が不要のDFB(分布帰還型)レーザーを用いることができないため安価なシステム構築が出来ないという問題点がある。更に上記の構成では、G−PONでの挿入損失が13.9dB(1.31μm)、12.9dB(1.49μm)、12.9dB(1.55μm)と、現状のG−PON8chの挿入損失に比べ、約2倍(3dB)大きいため、通信距離が半分になり、現状のシステムの置き換えは難しいという問題点があった。
本発明はPONシステムにおいて、加入者側の装置に変更を加えることなしに、下り信号をWDM−PONへアップグレードあるいは併用することにより、通信速度を向上させることが可能なハイブリッドスプリッタモジュールを低コストかつ低ロスで実現することを目的としている。
この課題を解決するために、本発明のWDMハイブリッドスプリッタモジュールは、PON信号帯域の光信号を送受信すると共に複数の波長帯域で構成されるWDM−PON波長帯域の光信号を送信する局側送受信機と、ユーザ端送受信機との間に接続される光通信システムのWDMハイブリッドスプリッタモジュールにおいて、前記局側送受信機に接続され、PON信号波長帯とWDM−PON信号波長帯とを分離する第1の光フィルタ部と、前記第1の光フィルタ部で分離されたPON信号波長帯の光信号を1:nに分岐すると共に、ユーザ端送受信機から得られる上りPON信号波長帯の光信号を結合するスプリッタ部と、前記第1の光フィルタ部で分離されたWDM−PON信号波長帯を波長に応じて各チャンネルに分岐するデマルチプレクサ部と、前記スプリッタ部で分岐したPON信号波長帯と前記デマルチプレクサ部で分離されたWDM−PON信号のいずれかの波長帯との信号を夫々結合してユーザ端送受信機に出力すると共に、ユーザ端送受信機より出力される上りPON信号波長帯の信号を前記スプリッタ部に出力するフィルタ群から成る第2の光フィルタ部とを具備するものである。
ここで前記WDMハイブリッドスプリッタモジュールは、次世代大容量通信方式であるWDM−PONにユーザ端送受信機の変更無しでの移行あるいは併用を可能とするようにしてもよい。
ここで前記第1,第2の光フィルタ部と、前記デマルチプレクサ部は、誘電体多層膜で構成されたフィルタとしてもよい。
ここで前記デマルチプレクサ部及び第2の光フィルタ部は、WDM−PON信号の各波長帯毎に設けられる1入力、1出力、2入出力の一体型の複数のWDMモジュールを含んで構成されるようにしてもよい。
ここで前記デマルチプレクサ部は、AWGによって構成するようにしてもよい。
ここで前記デマルチプレクサ部及び第2の光フィルタ部は、1入力、2n入出力(nは自然数)の一体型複合WDMモジュールにより構成されるようにしてもよい。
ここで前記WDM−PON信号波長帯は、その短波長側が1200nm以上であり、長波長側が1700nm以下の帯域としてもよい。
ここで前記WDMハイブリッドスプリッタモジュールは、G−PON、B−PON、GE−PON、あるいはE−PON用伝送システムに適応させるようにしてもよい。
このような特徴を有する本発明によれば、PON光アクセス伝送システムから伝送容量をアップグレードするために、ONUの機器を変更することなく、スプリッタを変更することによって、WDM−PONシステムへの移行が可能となる。このためONUへの設備投資が不要となり、容易に次世代の光アクセスネットワークにアップグレードあるいは併用することができるという効果が得られる。ONUの数は非常に多いため、ONUの変更が不要であることは大きなメリットがあり、低設備コストでPON方式の通信システムとWDM−PON方式の通信システムとを切り換える、あるいは併用することが可能となる。
(実施の形態1)
図1は本発明の実施の形態によるWDMハイブリッドスプリッタモジュールを示す構成図である。図1においてOLT1は光通信システムにおける局側の送受信機であって、シングルモード光ファイバ2を介してWDMハイブリッドスプリッタモジュール3に接続される。WDMハイブリッドスプリッタモジュール3はシングルモード光ファイバ4を介して多数の加入者側の装置ONU5−1〜5−nに接続されている。OLT1はPONの下り用の信号を送信し、上り用の光信号を受信すると共に、波長多重されたλ1〜λnのWDM−PON信号を下り信号として送出するものである。又ONU5−1〜5−nは、WDMハイブリッドスプリッタモジュール3から得られるPON波長帯域の下り信号又はWDM−PON信号のいずれかの波長の下り信号を受信すると共に、上り用の波長帯域の信号をハイブリッドスプリッタモジュール3側に出力するものである。
次にWDMハイブリッドスプリッタモジュール3について説明する。WDMハイブリッドスプリッタモジュール3は第1の光フィルタ部11,パワースプリッタ部12,デマルチプレクサ部13及び第2の光フィルタ部14を含んで構成されている。第1の光フィルタ部11は、図2に示すように、OLT1から送信されるPON信号帯域(λdown)とWDM−PON信号帯域(λ1〜λn)の光を分離するものである。ここでWDM信号はPON信号帯域以外の任意の波長帯域で構成され、その短波長側は例えば1200nmとし、長波長側は1700nmの範囲の任意の波長を選択することができる。またパワースプリッタ部12は光フィルタ部11で分岐されたPON信号帯域の光を1/nに分岐するものである。デマルチプレクサ部13はWDM−PON信号帯域を各波長λ1,λ2・・・毎に分波してn個の出力とするものである。第2の光フィルタ部14はPON信号帯域とデマルチプレクサ部13で分岐されたいずれか1つの波長λiの信号を夫々のONU5−i〜(i=1〜n)に出力すると共に、ONU5−iから出力される上り方向の波長λupの帯域の信号をパワースプリッタ部12に伝える。パワースプリッタ部12ではこれらの信号を統合して光フィルタ部11を介してOLT1に戻す。このような構成によれば、OLTからパワースプリッタ部のみでONUと接続していたモジュールを、WDM信号も扱えるWDMハイブリッドスプリッタモジュールに置き換えるだけで、加入者装置では通常のPON信号のみの送受信をすることができ、更にOLTから送出されるいずれか1つのWDM−PON信号帯域の波長帯の信号を受信することができる。
また、第1,第2の光フィルタ部、デマルチプレクサ部に誘電体多層膜フィルタを用いれば、従来のPLCベースの光フィルタでは使用が難しかった−40℃から85℃の環境温度での使用が可能となり、屋内外を問わず使用でき、挿入損失も抑えることが出来る。よって本発明のハイブリッドシステムを導入しても従来のPONシステムと同様の伝送距離が実現できる。また従来のMZI型ではWDM−PON信号帯域幅、チャンネル数等設計の自由度が低いという問題点があるが、誘電体多層膜フィルタを用いることで任意の信号帯域幅、チャンネル数が選択できるという利点がある。そして下りWDM−PONの各チャンネルの信号帯域を±7.5nm(従来のCWDMと同様)にすれば、OLT側の送信器に温度調整不要のDFBレーザーを用いることができ、システム構成が安価になるという効果も得られる。
(実施の形態2)
次に本発明のより具体的な実施の形態について以下に説明する。実施の形態2は1370nm〜1480nm帯、20nm間隔のWDM−PON信号を4チャンネルの下り信号として用いたWDMハイブリッドスプリッタモジュールである。本実施例はG−PONのスプリッタモジュールに置き換えて用いられ、ユーザからの要求に基づいて下り伝送帯域の広いWDM−PONの帯域を使用できるようにしたモジュールである。
図3はこの実施の形態2によるWDMハイブリッドスプリッタモジュールの構成図を示す。図3において、OLT101はWDMハイブリッドスプリッタモジュール102の第1の光フィルタ部103の入力ポートとシングルモード光ファイバで接続されている。光フィルタ部103は、赤外域で透明なガラス基板上に、例えば屈折率2.09のTaと屈折率1.48のSiOとを交互に計127層積層した総膜厚39.6μmの誘電体多層膜フィルタから構成される。このフィルタは図4Aに示す1370nm〜1470nmのWDM信号帯域202を透過し、1260nm〜1370nm(λup)の上り信号帯域201、1480nm〜1500nm(λdown)の下り信号帯域203、及び1550nm〜1560nm(λv)の映像信号帯域204を反射するバンドパスフィルタである。光フィルタ部103の反射ポートはパワースプリッタ部104に接続される。パワースプリッタ部104は入力光をそのまま4分岐するパワースプリッタであり、パワーは1/4となる。又光フィルタ部103の透過ポートにはデマルチプレクサ部105の入力ポートがシングルモード光ファイバ102で接続されている。デマルチプレクサ部105は、赤外域で透明なガラス基板上に、例えばTaとSiOとを交互に計168層積層した総膜厚48.7μmの誘電体多層膜フィルタから構成されるバンドパスフィルタ(BPF)150−1〜150−4を備えている。デマルチプレクサ部105は1370nm〜1480nmのWDM信号帯域202を20nm帯域毎にλ1〜λ4に、(より具体的には1390nm,1420nm,1430nm,1450nm)に4分割するものである。即ち図4Cに透過率を示すように、BPF105−1は波長λ1の光を透過しλ2〜λ4の光を反射するフィルタであり、BPF105−2はλ2の光を透過しλ3,λ4の光を反射するフィルタである。又BPF105−3はλ3の光を透過し、λ4の光を反射するフィルタであり、BPF105−4はλ4の光を透過するフィルタである。そしてこのデマルチプレクサ部105の出力ポート群は夫々光フィルタ部106の入力ポート群に接続される。
次に第2の光フィルタ部106は、誘電体多層膜から成る4つのグループフィルタ(GF)106−1〜106−4を備えている。これらのフィルタ106−1〜106−4はいずれも波長λ1,λ2,λ3,λ4のグループの信号光を透過し、その他の波長光を反射するフィルタであり、波長λ1〜λ4のWDM−PON信号を全て透過するので、グループフィルタという。光フィルタ部106の各グループフィルタの反射ポート群はパワースプリッタ部104の出力ポート群に、光フィルタ部106の透過ポート群はONU群に夫々シングルモード光ファイバで接続されている。
次に動作について説明する。まずG−PON上り信号201として図4Aに示すように1.31μm帯(λup)、下り信号203として1.49μm帯(λdown)、下り映像信号204として1.55μm帯(λv)を使用し、WDM−PON信号202として1370〜1480nmを使用する。この場合、OLT101から送信された下り信号203、204はまず第1の光フィルタ部103のフィルタにより反射され、パワースプリッタ部104に入り4分岐される。4分岐された下り信号は第2の光フィルタ部106の各グループフィルタにより反射され、各ONU107で受信される。逆にONU107から送信された上り信号201は、まず第2の光フィルタ部106の各フィルタにより反射され、パワースプリッタ部104に入り1本のシングルモード光ファイバに統合される。次に光フィルタ部103のフィルタにより反射され、OLT101で受信される。
次に上り信号201と、下りのWDM−PON信号202を使用する場合、OLT101からONU107−1〜107−4に向けて夫々WDM−PON信号、λ1〜λ4の光信号を送出する。下りWDM信号202はまず図4Bに示す特性の光フィルタ部103を透過し、デマルチプレクサ部105に入り、デマルチプレクサ部105によりλ1〜λ4の4チャンネルに分岐される。4分岐された下りWDM信号202は光フィルタ部106の各フィルタを夫々透過し、各ONU107―1〜107−4で受信される。各ONU107から送信される上り信号は上記と同様である。
こうすれば多数のユーザ側の端末であるONUを変更する必要がなく、G−PONとWDM−PONを切り換える、あるいは併用することができる。また分岐モジュールを屋外で使用する場合−40℃から85℃の使用温度範囲が要求されるが、本実施の形態2においては誘電体多層膜フィルタを備えた第1,第2の光フィルタ103,106、デマルチプレクサ部105を使用することにより、使用温度範囲内での動作信頼性を満たすことができる。そして下りWDM信号を20nm間隔にすることにより、局側送信機に温度調整不要のDFBレーザーを用いることができ、更なる低コスト化を実現することができる。上記の他にG−PON系とWDM−PON系を同時あるいは非同時併用することができる。各ONU共通の信号帯としてPON帯を、特定信号帯としてWDM信号を利用したり、災害や緊急時・バックアップ目的で使用分けを行うなど、柔軟に利用することが可能となる。
(実施の形態3)
実施の形態3はWDM信号202として1370nm〜1480nm帯、10nm間隔の下り信号8chを用いたWDMハイブリッドスプリッタモジュールである。図5に実施の形態3のWDMハイブリッドスプリッタモジュールの構成図を示す。実施の形態3では、1370nm〜1480nm帯で10nm間隔のλ1〜λ8の8チャンネルのWDM−PON信号を用いる。実施の形態3ではOLT121からの信号はWDMハイブリッドスプリッタモジュール122の第1の光フィルタ103に加わり、PON帯域の信号が分離されてパワースプリッタ部123に加わる。パワースプリッタ部123は入力された信号帯域の下り信号を1/8に分割するスプリッタであり、その各出力はWDMモジュール群124の各フィルタに入力される。WDMモジュール群124は前述したデマルチプレクサ部と第2の光フィルタ部を一体化したものであり、8つの1入力、1出力、2入出力のWDMモジュール124−1〜124−8から成り立っている。
図6に1入力、1出力、2入出力のWDMモジュール124−1の構成を示す。光ファイバ301、302は光ファイバ保持具307により保持されている。光ファイバ301は第1の光フィルタ部103に接続され、光ファイバ302は次の段のWDMモジュール124−2に接続される。光ファイバ301から出射した光はレンズ303を介してバンドパスフィルタ304に入射される。レンズ303は、GRINレンズ、球面レンズあるいは非球面レンズのいずれかにより構成することができる。又バンドパスフィルタ304は、赤外域で透明なガラス基板上に、例えばNbとSiOとを交互に計112層積層した総膜厚23.9μmの誘電体多層膜から構成される。バンドパスフィルタ304は図7Bに透過率を示すように、波長λ1の光を透過し、その他の波長の光を反射するものである。又グループフィルタ305は、赤外域で透明なガラス基板上に、例えばTaとSiOとを交互に計127層積層した総膜厚39.6μmの誘電体多層膜から構成される。グループフィルタ305は図7Cに特性を示すように、波長λ1〜λ8までのWDM−PONの下り信号帯域の光を透過し、他を反射するフィルタである。グループフィルタ305に隣接して、レンズ306及び光ファイバ保持部307が設けられる。レンズ306は、GRINレンズ、球面レンズあるいは非球面レンズのいずれかにより構成することができる。光ファイバ保持部307はパワースプリッタ部123に接続される光ファイバ308と、各ONU、この場合にはONU125−1に接続される光ファイバ309を保持するものである。グループフィルタ305は光ファイバ309から出射される上り信号を反射して光ファイバ308に出射させることができる。その他のWDMモジュール124−2〜124−8についても、バンドパスフィルタ304が夫々λ2〜λ8を透過させる点を除いて、WDMモジュール124−1と同様である。
次に動作について説明する。まずG−PON上り信号201として図7Aに示すように1.31μm帯(λup)、下り信号203として1.49μm帯(λdown)、下り映像信号204として1.55μm帯(λv)を使用し、WDM−PON信号202として1370〜1480nmを使用する。この場合、OLT121から送信された下り信号203、204はまず第1の光フィルタ部103の誘電体多層膜フィルタにより反射され、パワースプリッタ部123に入り8分岐される。8分岐された下り信号はWDMモジュール群124の各グループフィルタにより反射され、各ONU125で受信される。逆にONU125から送信された上り信号201は、まずWDMモジュール群124の各グループフィルタにより反射され、パワースプリッタ部123に入り1本のシングルモード光ファイバに統合される。次に第1の光フィルタ部103の誘電体多層膜フィルタにより反射され、OLT121で受信される。
次に上り信号201と下りWDM−PON信号202を使用する場合、OLT121からONU107−1〜107−8に向けて夫々WDM−PON信号として、夫々λ1〜λ8の光信号を送出する。下りWDM信号202はまず光フィルタ部103を透過し、WDMモジュール群124の各バンドパスフィルタによりλ1〜λ8の8チャンネルに分岐され、夫々の波長の光がグループフィルタ305を透過し、各ONU107―1〜107−8で受信される。各ONU107から送信される上り信号は上記と同様である。
上記のように、デマルチプレクサ部、第2の光フィルタ部を1入力、1出力、2入出力のWDMモジュール群で実現することで、そのコストを約半分に抑え、体積比でも最大50%の低減が可能で小型化することができる。実施の形態2においてデマルチプレクサ部、第2の光フィルタ部のコストが全体の8割を占めており、実施の形態3によれば全体のコストが約4割削減される。価格競争が激しいアクセス系光通信業界において、非常に価値の有る構成である。また誘電体多層膜フィルタを用いることで、上記構成の場合、上り信号、下り信号、下りWDM信号の挿入損失は夫々−10.8dB、−10.8dB、−3.6dBとなり、従来のMZI型の−13.9dB、−12.9dB、−8.0dBに比べ非常に低ロスで伝送距離が約2倍になる。言い換えればシステム構築のコストが2分の1で済むことになる。
次に、1入力、1出力、2入出力のWDMモジュール124−1〜124−8の変形例を図8に示す。このモジュールでは、石英のベース311にPLC312を設けて図示のように光ファイバ302と308とを連結し、更に光ファイバ301の端面からの光導波路313及び光ファイバ309からの光導波路314を図示のように導波路312に接続する。そしてその間に、ガラス基板あるいはポリイミド基板上に積層した前述のバンドパスフィルタ304と同一の特性を有する誘電体多層膜フィルタ315、及びグループフィルタ305と同一の特性を有するバンドパスフィルタ316を配置する。こうすればWDMモジュールを光導波路技術によって構成することができる。
(実施の形態4)
実施の形態4はWDM信号202として1500nm〜1570nm帯、0.8nm間隔の下り信号64chを用いたWDMハイブリッドスプリッタモジュールである。図9に本実施の形態4のWDMハイブリッドスプリッタモジュールの構成図を示す。実施の形態4では、図10Aに示すように1500nm〜1570nm帯で0.8nm間隔のλ1〜λ64の64チャンネルのWDM−PON信号212を用いる。実施の形態4ではOLT131からの信号はWDMハイブリッドスプリッタモジュール132の第1の光フィルタ部133に加わり、PON信号帯域がパワースプリッタ部134に加わる。パワースプリッタ部134は入力された信号帯域の下り信号を1/64に分割するスプリッタであり、その各出力は第2のフィルタ部137の各フィルタ137−1〜137−64に入力される。第1,第2の光フィルタ部の各フィルタは、赤外域で透明なガラス基板上に、例えばTa層とSiO層とを交互に計118層積層した総膜厚23.2μmの誘電体多層膜から構成される。これらのフィルタは図10Bに示すように、WDM−PON信号を透過させるハイパスフィルタである。
第1の光フィルタ部133を透過したWDM−PON信号はAWG136に導かれる。AWG136はレンズ形状の平面導波路を長さの異なるアレイによってつないだ構造であり、入射光を細かい波長まで分解することができる波長分波素子である。ここでは図10Cにその特性を示すように、入射された光をλ1〜λ64の波長毎に分波する。こうして分波した各波長の光信号を第2のフィルタ部137の各フィルタ137−1〜137−64に導く。その他の構成は前述した実施の形態2と同様である。AWGは−5℃から60℃までの動作が保証されているため、屋内での使用に限定されるが、WDM信号のチャンネルが増大しても挿入損失がチャンネル数に比例して大きくならないという利点がある。従って伝送距離を保ったままWDM信号チャンネル数を増やすことができ、ユーザ一人あたりの課金を抑え伝送レートを上げることができる。
尚この実施の形態4では64チャンネルのAWGを用いているが、任意のチャンネル数とすることができ、更に多数のチャンネルのWDM−PON信号を用いることができる。
(実施の形態5)
実施の形態5はデマルチプレクサ部、第2の光フィルタ部に複合化モジュールを用いたWDMハイブリッドスプリッタモジュールである。図11に本実施の形態5によるWDMハイブリッドスプリッタモジュールの構成図を示す。実施の形態5では、WDMハイブリッドスプリッタモジュール141はOLT101に接続される第1の光フィルタ部103及びパワースプリッタ部104を有している。そしてデマルチプレクサ部及び第2の光フィルタ部に複合化モジュールを用いる。実施の形態3ではデマルチプレクサ部、第2の光フィルタ部の各フィルタを波長毎に一体化したWDMモジュールを複数用いることでコストを低減しているが、本実施の形態5では複数のWDMモジュールを1つの複合化モジュール142に複合化し、更なるコスト低減を実現している。G−PON及びWDM−PONに使用する波長については実施の形態2と同様であり、同一の符号を付して詳細な説明を省略する。
図12にこの複合化モジュール142の構造を示す。光ファイバ401は光ファイバ保持具402により保持されている。光ファイバ401は第1の光フィルタ部103に接続される。光ファイバ401から出射した光はレンズ403を介してガラスブロック404上に設けられたバンドパスフィルタ405−1に入射される。レンズ403は、GRINレンズ、球面レンズあるいは非球面レンズのいずれかにより構成することができる。又バンドパスフィルタ405−1〜405−4は、赤外域で透明なガラス基板上に、例えばNbとSiOとを交互に計112層積層した総膜厚23.9μmの誘電体多層膜から構成される。バンドパスフィルタ405−1〜405−4は夫々波長λ1〜λ4を透過し、その他の波長を反射するバンドパスフィルタである。そしてこの各バンドパスフィルタで反射された光を再びガラスブロック404上の次段のバンドパスフィルタに入射するために、ガラスブロック404の端面に平行にミラー406が設けられる。ミラー406は金属又は誘電体多層膜によって構成される。そして光が各バンドパスフィルタを通過する位置には、夫々グループフィルタ407−1〜407−4がガラスブロック404の他方の端面に張り付けられる。グループフィルタ407−1〜407−4は、赤外域で透明なガラス基板上に、例えばTaとSiOとを交互に計127層積層した総膜厚39.6μmの誘電体多層膜から構成される。各グループフィルタ407−1〜407−4は波長λ1〜λ4までのWDM−PONの下り信号帯域の光を透過し、他を反射するフィルタである。グループフィルタ407−1〜407−4に隣接して、レンズ408−1〜408−4及び光ファイバ保持部409−1〜409−4が設けられる。各光ファイバ保持部は夫々2本の光ファイバを保持するものであり、各1本の光ファイバ410〜413は前述したパワースプリッタ部104に接続されている。又他の1本の光ファイバ414〜417は夫々ONU107−1〜107−4に接続される。
光ファイバ401から出射して集光レンズ403により集光された下りWDM−PON信号は、ガラスブロック404に接着されたバンドパスフィルタ405−1〜405−4とミラー406により各波長λ1〜λ4の光信号に分波される。分波された各チャンネルのWDM信号は、グループフィルタ407−1〜407−4を透過し、集光レンズ群408−1〜408−4を通り光ファイバ群414〜417に至る。下りの信号203,204についてはパワースプリッタ部104で分岐した後、光ファイバ410〜413に入射し、グループフィルタで反射されて出力用の光ファイバ414〜417より各ONUに送出される。又各ONUからの上り信号201は光ファイバ414〜417を通してグループフィルタ407−1〜407−4で反射され、光ファイバ410〜413よりパワースプリッタ部104に出力される。
図13はこの複合化モジュールの変形例を示す図である。前述した複合化モジュールと同一部分は同一符号を付して詳細な説明を省略する。この複合化モジュール143ではミラー406を用いることなく、図示の位置にバンドパスフィルタ405−1〜405−4やグループフィルタ407−1〜407−4を配置し、更に左右に夫々光ファイバを配置したものである。これによって更に低価格の複合化モジュールを構成することができる。
尚この実施の形態5ではWDM−PON信号として4チャンネルを用いているが、任意のチャンネル数が選択できることはいうまでもない。そして複合化モジュールとしては1入力、2n入出力の複合化モジュールを用いることができる。ここではnはWDM−PONのチャンネル数である。
尚上述した各実施の形態では本発明をG−PON光通信システムに適用した例を示しているが、G−PON方式に限らず、B−PON、GE−PONやE−PON用伝送システム等の種々のPON伝送システムに適用することができる。
本発明の実施の形態1による光通信システムとそのWDMハイブリッドスプリッタモジュールを示す図である。 この実施の形態1による波長のスペクトル図である。 本発明の実施の形態2によるWDMハイブリッドスプリッタモジュールを示す図である。 実施の形態2によるWDMハイブリッドスプリッタモジュールの光の使用例を示すスペクトル図である。 第1の光フィルタの透過特性を示すグラフである。 デマルチプレクサ部の各フィルタの透過特性を示す図である。 本発明の実施の形態3によるWDMハイブリッドスプリッタモジュールを示す図である。 実施の形態3に用いられる複合化モジュールの一例を示す図である。 実施の形態3によるWDMハイブリッドスプリッタモジュールの光の使用例を示すスペクトル図である。 バンドパスフィルタの透過特性を示すグラフである。 グループフィルタの透過特性を示す図である。 複合化モジュールの他の例を示す図である。 本発明の実施の形態4によるWDMハイブリッドスプリッタモジュールを示す図である。 実施の形態4によるWDMハイブリッドスプリッタモジュールの光の使用例を示すスペクトル図である。 第1,第2の光フィルタの透過特性を示すグラフである。 AWGの透過特性を示す図である。 本発明の実施の形態5によるWDMハイブリッドスプリッタモジュールを示す図である。 実施の形態5によるWDMハイブリッドスプリッタモジュールの複合化モジュールを示す図である。 実施の形態5による複合化モジュールの他の例を示す図である。
符号の説明
1,101,121,131 OLT
2,301,302,308,309,410〜417 光ファイバ
3,102,122,132,141 WDMハイブリッドスプリッタモジュール
11,103,133 第1の光フィルタ部
12,104,123,134 パワースプリッタ部
13,105 デマルチプレクサ部
14,106,137 第2の光フィルタ部
124 WDMモジュール群
136 AWG
142,143 複合化モジュール

Claims (8)

  1. PON信号帯域の光信号を送受信すると共に複数の波長帯域で構成されるWDM−PON波長帯域の光信号を送信する局側送受信機と、ユーザ端送受信機との間に接続される光通信システムのWDMハイブリッドスプリッタモジュールにおいて、
    前記局側送受信機に接続され、PON信号波長帯とWDM−PON信号波長帯とを分離する第1の光フィルタ部と、
    前記第1の光フィルタ部で分離されたPON信号波長帯の光信号を1:nに分岐すると共に、ユーザ端送受信機から得られる上りPON信号波長帯の光信号を結合するスプリッタ部と、
    前記第1の光フィルタ部で分離されたWDM−PON信号波長帯を波長に応じて各チャンネルに分岐するデマルチプレクサ部と、
    前記スプリッタ部で分岐したPON信号波長帯と前記デマルチプレクサ部で分離されたWDM−PON信号のいずれかの波長帯との信号を夫々結合してユーザ端送受信機に出力すると共に、ユーザ端送受信機より出力される上りPON信号波長帯の信号を前記スプリッタ部に出力するフィルタ群から成る第2の光フィルタ部と、を具備するWDMハイブリッドスプリッタモジュール。
  2. 前記WDMハイブリッドスプリッタモジュールは、
    次世代大容量通信方式であるWDM−PONにユーザ端送受信機の変更無しでの移行あるいは併用を可能とする請求項1記載のWDMハイブリッドスプリッタモジュール。
  3. 前記第1,第2の光フィルタ部と、前記デマルチプレクサ部は、
    誘電体多層膜で構成されたフィルタである請求項2記載のWDMハイブリッドスプリッタモジュール。
  4. 前記デマルチプレクサ部及び第2の光フィルタ部は、
    WDM−PON信号の各波長帯毎に設けられる1入力、1出力、2入出力の一体型の複数のWDMモジュールを含んで構成される請求項2記載のWDMハイブリッドスプリッタモジュール。
  5. 前記デマルチプレクサ部は、
    アレイ導波路グレーティング素子によって構成した請求項2記載のWDMハイブリッドスプリッタモジュール。
  6. 前記デマルチプレクサ部及び第2の光フィルタ部は、1入力、2n入出力(nは自然数)の一体型複合WDMモジュールにより構成される請求項2記載のWDMハイブリッドスプリッタモジュール。
  7. 前記WDM−PON信号波長帯は、
    その短波長側が1200nm以上であり、長波長側が1700nm以下の帯域である請求項2記載のWDMハイブリッドスプリッタモジュール。
  8. 前記WDMハイブリッドスプリッタモジュールは、
    G−PON(Gigabit−Passive Optical Network)、B−PON(Broadband−Passive Optical Network)、GE−PON(Gigabit Ethernet(登録商標)−Passive Optical Network)、あるいはE−PON(Ethernet(登録商標)−Passive Optical Network)用伝送システムに適応させるようにした請求項2記載のWDMハイブリッドスプリッタモジュール。
JP2006205516A 2006-07-28 2006-07-28 Wdmハイブリッドスプリッタモジュール Pending JP2008035140A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006205516A JP2008035140A (ja) 2006-07-28 2006-07-28 Wdmハイブリッドスプリッタモジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006205516A JP2008035140A (ja) 2006-07-28 2006-07-28 Wdmハイブリッドスプリッタモジュール

Publications (1)

Publication Number Publication Date
JP2008035140A true JP2008035140A (ja) 2008-02-14

Family

ID=39124110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006205516A Pending JP2008035140A (ja) 2006-07-28 2006-07-28 Wdmハイブリッドスプリッタモジュール

Country Status (1)

Country Link
JP (1) JP2008035140A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112615674A (zh) * 2015-08-20 2021-04-06 中兴通讯股份有限公司 Olt光收发一体模块、处理多种pon的方法及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112615674A (zh) * 2015-08-20 2021-04-06 中兴通讯股份有限公司 Olt光收发一体模块、处理多种pon的方法及系统

Similar Documents

Publication Publication Date Title
US10958339B2 (en) Methods and systems relating to optical networks
US20080031625A1 (en) WDM hybrid splitter module
JP5883507B2 (ja) 移行可能な波長分割多重化パッシブ光ネットワーク
US8285144B2 (en) Optical device for rearranging wavelength channels
WO2020125768A1 (zh) 路由合波器、路由合波方法、波分路由方法及网络系统
US20060239609A1 (en) Methods and apparatuses to increase wavelength channels in a wavelength-division-multiplexing passive-optical-network
JP5911592B2 (ja) 受動光ネットワークのための波長ルータ
JP2004112763A (ja) 波長分割多重方式手動型光加入者網システム(wavelengthdivisionmultiplexing−passiveopticalnetwork)
CN104137354A (zh) 用于提供一个选择的波长或多个波长的具有外部反射器的激光阵列复用器组件
WO2013087006A1 (zh) 无源光网络系统、光线路终端和光传输方法
Eržen et al. NG-PON1: technology presentation, implementation in practice and coexistence with the GPON system
JP4278628B2 (ja) 光伝送システム
US6327062B1 (en) Optical communication system
US7113662B2 (en) Optical filtering by using an add-drop node
JP2008035140A (ja) Wdmハイブリッドスプリッタモジュール
WO2000070380A1 (fr) Dispositif optique, appareil de station terminale et systeme de multiplexage par repartition en longueur d'onde
EP2613461B1 (en) Optical transmitter for WDM optical network
US6980355B2 (en) Wavelength-tunable amplified optical splitter
JP2005012278A (ja) 波長多重ponシステム
Aldridge 8 in Metropolitan CWDM
EP3158666B1 (en) Photonic integrated tunable multi -wavelength transmitter circuit
JP2004072690A (ja) 光通信システム
JP2003283463A (ja) 波長多重通信システム
CN103297872A (zh) 多波长无源光网络系统
JP2003289291A (ja) 波長多重通信システム