JP2008034722A - Manufacturing method of circuit board - Google Patents

Manufacturing method of circuit board Download PDF

Info

Publication number
JP2008034722A
JP2008034722A JP2006208456A JP2006208456A JP2008034722A JP 2008034722 A JP2008034722 A JP 2008034722A JP 2006208456 A JP2006208456 A JP 2006208456A JP 2006208456 A JP2006208456 A JP 2006208456A JP 2008034722 A JP2008034722 A JP 2008034722A
Authority
JP
Japan
Prior art keywords
insulating layer
conductive portion
conductive
conductor
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006208456A
Other languages
Japanese (ja)
Other versions
JP5072283B2 (en
Inventor
Mayumi Nakazato
真弓 中里
Hideki Mizuhara
秀樹 水原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006208456A priority Critical patent/JP5072283B2/en
Priority to US11/830,505 priority patent/US7851921B2/en
Priority to CN2007103077804A priority patent/CN101262739B/en
Publication of JP2008034722A publication Critical patent/JP2008034722A/en
Priority to US12/856,168 priority patent/US8183090B2/en
Application granted granted Critical
Publication of JP5072283B2 publication Critical patent/JP5072283B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a circuit board capable of reducing the failure of insulated breakdown voltage between adjoining wiring, while materializing the microfabrication of the processing size of wiring. <P>SOLUTION: An insulating layer 3 is formed on a board 1. Next, a conductor 4a and a conductor 4b adjoining the conductor 4a are formed on the surface of the insulating layer 3, and at least a side surface of the upper part of the conductor 4a and the conductor 4b is processed into a forward tapered shape profile. Then, by press fitting the conductor 4a and the conductor 4b into the insulating layer 3, the conductor 4a and the conductor 4b are arranged into the insulating layer 3 in a self-adjusting way. Consequently, the insulating layer 3 is formed between the conductor 4a and the conductor 4b having a convex shape 3a, and also a region 5 which does not come into contact with the insulating layer 3 is formed in the side of the conductor 4a (the side of the conductor 4b). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、回路基板の製造方法に関する。   The present invention relates to a circuit board manufacturing method.

携帯電話、PDA、DVC、及びDSCといったポータブルエレクトロニクス機器の高機能化が加速するなか、こうした製品が市場で受け入れられるためには小型・軽量化が必須となっており、その実現のために高集積のシステムLSIが求められている。一方、これらのエレクトロニクス機器に対しては、より使い易く便利なものが求められており、機器に使用されるLSIに対し、高機能化および高性能化が要求されている。このため、LSIチップの高集積化にともないそのI/O数が増大する一方でパッケージ自体の小型化要求も強く、これらを両立させるために、半導体部品の高密度な基板実装に適合した半導体パッケージの開発が強く求められている。こうした高密度化の要請に対応するために、LSIチップを搭載する回路基板側でも配線パターンの狭ピッチ対応(高密度化対応)とすることが求められている。   As portable electronic devices such as mobile phones, PDAs, DVCs, and DSCs are accelerating their functions, miniaturization and weight reduction are essential for their acceptance in the market. There is a need for a system LSI. On the other hand, these electronic devices are required to be more convenient and convenient, and higher functionality and higher performance are required for LSIs used in the devices. For this reason, as the number of I / Os increases with higher integration of LSI chips, there is a strong demand for miniaturization of the package itself. In order to achieve both of these, a semiconductor package suitable for high-density board mounting of semiconductor components Development is strongly demanded. In order to respond to such a demand for higher density, it is required that the circuit board on which the LSI chip is mounted be compatible with a narrow pitch (corresponding to higher density) of the wiring pattern.

図3は特許文献1に開示された従来の回路基板の構造を概略的に示した断面図である。従来の回路基板(プリント配線板)は、少なくとも外面が金属で形成された基板(基体)101と、この基板101の上面に形成された接着層(表面処理金属材料)108と、この接着層108の上に形成された絶縁層(樹脂層)104と、この絶縁層104の上に部分的にエッチングして形成された回路パターンを有する配線層(金属箔)106とを備える。回路基板の高密度化を実現するためには、この回路パターンを有する配線層106の加工寸法の微細化を行っていくことが効果的である。
特開2000−156550号公報
FIG. 3 is a cross-sectional view schematically showing the structure of a conventional circuit board disclosed in Patent Document 1. As shown in FIG. A conventional circuit board (printed wiring board) includes a substrate (base body) 101 having at least an outer surface made of metal, an adhesive layer (surface-treated metal material) 108 formed on the upper surface of the substrate 101, and the adhesive layer 108. An insulating layer (resin layer) 104 formed on the wiring layer, and a wiring layer (metal foil) 106 having a circuit pattern formed by partially etching the insulating layer 104. In order to realize a high density circuit board, it is effective to reduce the processing dimension of the wiring layer 106 having this circuit pattern.
JP 2000-156550 A

しかしながら、配線層106の加工寸法を微細化した場合には、それに応じて隣接する配線間の間隔(スペース)も短くなり、高電圧印加時において隣接する配線間の絶縁耐圧を十分に確保することが困難になるという問題点がある。これは、隣接する配線間に位置する絶縁層の表層に、エッチングによるダメージ層(または絶縁層の未結合末端など)などが存在しており、高電圧印加時にその表層部分を経由した絶縁破壊が生じやすいためである。この部分における絶縁耐圧が不良であると回路基板の信頼性が著しく低下することになる。したがって、従来の回路基板では、その微細化、すなわち、配線層の加工寸法の微細化にも一定の限界があった。   However, when the processing dimension of the wiring layer 106 is miniaturized, the interval (space) between adjacent wirings is shortened accordingly, and a sufficient withstand voltage between adjacent wirings is ensured when a high voltage is applied. There is a problem that it becomes difficult. This is because there is an etching damage layer (or unbonded end of the insulation layer, etc.) on the surface layer of the insulation layer located between adjacent wirings, and dielectric breakdown via the surface layer portion occurs when a high voltage is applied. This is because it is likely to occur. If the withstand voltage at this portion is defective, the reliability of the circuit board is significantly lowered. Therefore, the conventional circuit board has a certain limit in miniaturization, that is, miniaturization of the processing dimension of the wiring layer.

本発明はこうした状況に鑑みてなされたものであり、その目的は、配線の加工寸法の微細化を実現しつつ、隣接する配線間の絶縁耐圧不良を低減することを可能とした回路基板の製造技術を提供することにある。   The present invention has been made in view of such a situation, and an object of the present invention is to manufacture a circuit board capable of reducing a breakdown voltage defect between adjacent wirings while realizing miniaturization of a wiring processing dimension. To provide technology.

上記課題を解決するために、本発明に係る回路基板の製造方法は、基板の上に絶縁層を形成する第1の工程と、絶縁層の表面上に第1の導電部およびこの第1の導電部に隣接する第2の導電部を形成し、第1の導電部および第2の導電部の少なくとも側面上部を順テーパ形状に加工する第2の工程と、第1の導電部および第2の導電部を絶縁層内に圧入する第3の工程と、を備え、第3の工程では、第1の導電部および第2の導電部の側面と絶縁層との間に間隙を生じさせることを特徴とする。   In order to solve the above problems, a circuit board manufacturing method according to the present invention includes a first step of forming an insulating layer on a substrate, a first conductive portion on the surface of the insulating layer, and the first conductive portion. A second step of forming a second conductive part adjacent to the conductive part, and processing at least the upper side surfaces of the first conductive part and the second conductive part into a forward tapered shape; and the first conductive part and the second conductive part A third step of press-fitting the conductive portion into the insulating layer, and in the third step, a gap is formed between the side surfaces of the first conductive portion and the second conductive portion and the insulating layer. It is characterized by.

この発明によれば、各導電部(第1の導電部、第2の導電部)の側面と絶縁層との間に間隙(導電部の側面に絶縁層が接触していない領域)を設けた回路基板を、側面を順テーパ形状に加工した導電部を絶縁層に圧入することで形成するため、こうした回路基板を製造する工程が簡便となる。さらに製造コストを低減することもできる。   According to the present invention, a gap (a region where the insulating layer is not in contact with the side surface of the conductive portion) is provided between the side surface of each conductive portion (the first conductive portion and the second conductive portion) and the insulating layer. Since the circuit board is formed by press-fitting a conductive portion whose side surface is processed into a forward tapered shape into the insulating layer, the process of manufacturing such a circuit board becomes simple. Further, the manufacturing cost can be reduced.

上記構成において、第2の工程では、第1の導電部および第2の導電部の断面形状がいずれも台形状となるように加工していることが好ましい。このようにすることで、各導電部(第1の導電部、第2の導電部)の側面と絶縁層の接触部分が台形状の下底部分となる回路基板を容易に製造できる。したがって、第1の導電部から第2の導電部に至る絶縁層の表層部分の経路長が最大限に長くなり、絶縁破壊がより生じにくい回路基板が低コストで提供される。   In the above configuration, in the second step, it is preferable that the first conductive portion and the second conductive portion are processed so that the cross-sectional shapes thereof are trapezoidal. By doing so, it is possible to easily manufacture a circuit board in which the contact portion between the side surface of each conductive portion (the first conductive portion and the second conductive portion) and the insulating layer becomes a trapezoidal lower bottom portion. Therefore, the path length of the surface layer portion of the insulating layer from the first conductive portion to the second conductive portion is maximized, and a circuit board that is less prone to dielectric breakdown is provided at low cost.

上記構成において、第3の工程は、第1の導電部および第2の導電部を絶縁層が半硬化の状態で圧入するステップと、絶縁層を加熱して硬化するステップと、を含むことが好ましい。このようにすることで、各導電部(第1の導電部、第2の導電部)を自己整合的に、且つ、容易に絶縁層内に配置し、各導電部の側面と絶縁層との間に間隙を生じさせることが可能になる。このため、回路基板をさらに低コストで製造することができる。   In the above configuration, the third step includes a step of press-fitting the first conductive portion and the second conductive portion in a state where the insulating layer is semi-cured, and a step of heating and curing the insulating layer. preferable. By doing in this way, each conductive part (the first conductive part and the second conductive part) is arranged in the insulating layer in a self-aligned manner and easily, and the side surface of each conductive part and the insulating layer are arranged. It is possible to create a gap between them. For this reason, a circuit board can be manufactured further at low cost.

本発明によれば、隣接する配線間の絶縁耐圧不良を低減し、その信頼性を向上させた回路基板を容易に製造することができる。   According to the present invention, it is possible to easily manufacture a circuit board with reduced insulation breakdown voltage between adjacent wirings and improved reliability.

以下、本発明を具現化した実施形態について図面に基づいて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, embodiments of the invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.

図1は本発明の実施形態に係る回路基板の構成を示す概略断面図である。図1に基づいて本実施形態の回路基板について説明する。   FIG. 1 is a schematic sectional view showing a configuration of a circuit board according to an embodiment of the present invention. The circuit board of this embodiment will be described based on FIG.

本実施形態の回路基板は、基板1と、この基板1上に設けられた保護層2と、この保護層2上に設けられた絶縁層3と、この絶縁層3に埋設された複数の順テーパ形状を有する導電部4a〜4cと、絶縁層3および導電部4a〜4cを覆うように設けられた絶縁層6とを備える。ここで、絶縁層3は導電部4aとこれに隣接する導電部4bの間に凸状部分3aを有している。凸状部分3aとは絶縁層3の凹部内の底部(導電部4a〜4cの下面部)よりも上側に位置している部分の絶縁層を意味する。また、順テーパ形状とは、たとえば、台形のように、寸法幅が下辺から上辺に向かって徐々に細くなっている状態を意味し、この場合には、導電部4a〜4cの下面側から上面部に向かってその寸法幅が細くなっている状態を示す。さらに、この絶縁層3の凸状部分3aと導電部4aの側面(導電部4bの側面)との間には間隔(スペース)が生じ、その部分に絶縁層6が介在し、導電部4aの側面(導電部4bの側面)に絶縁層3と接触していない領域5が設けられている。なお、基板1は本発明の「基板」、絶縁層3は本発明の「絶縁層」、導電部4aは本発明の「第1の導電部」、及び導電部4bは本発明の「第2の導電部」の一例である。   The circuit board of this embodiment includes a substrate 1, a protective layer 2 provided on the substrate 1, an insulating layer 3 provided on the protective layer 2, and a plurality of orders embedded in the insulating layer 3. The conductive parts 4a-4c which have a taper shape, and the insulating layer 6 provided so that the insulating layer 3 and the conductive parts 4a-4c may be covered are provided. Here, the insulating layer 3 has a convex portion 3a between the conductive portion 4a and the conductive portion 4b adjacent thereto. The convex portion 3a means a portion of the insulating layer located above the bottom portion (the lower surface portion of the conductive portions 4a to 4c) in the concave portion of the insulating layer 3. In addition, the forward tapered shape means a state in which the dimensional width is gradually narrowed from the lower side to the upper side like a trapezoid, for example, and in this case, the conductive portions 4a to 4c are arranged from the lower surface side to the upper surface. The state where the dimension width is narrowing toward the part is shown. Further, a space (space) is generated between the convex portion 3a of the insulating layer 3 and the side surface of the conductive portion 4a (side surface of the conductive portion 4b), and the insulating layer 6 is interposed in that portion, and the conductive portion 4a A region 5 not in contact with the insulating layer 3 is provided on the side surface (side surface of the conductive portion 4b). The substrate 1 is the “substrate” of the present invention, the insulating layer 3 is the “insulating layer” of the present invention, the conductive portion 4a is the “first conductive portion” of the present invention, and the conductive portion 4b is the “second” of the present invention. Is an example.

具体的には、本実施形態による回路基板では、基板1には、たとえば、銅(Cu)からなる金属板が採用される。なお、基板1は、エポキシ系の絶縁材料からなる樹脂基板あるいは配線層と樹脂層とが交互に形成された配線基板であってもよい。   Specifically, in the circuit board according to the present embodiment, for example, a metal plate made of copper (Cu) is employed for the substrate 1. The substrate 1 may be a resin substrate made of an epoxy insulating material or a wiring substrate in which wiring layers and resin layers are alternately formed.

保護層2は、たとえば、エポキシ樹脂を主成分とする絶縁性樹脂からなり、基板1の上に約10μmの厚みで設けられている。この保護層2は、各導電部(導電部4a〜4c)に高電圧が印加された際の各導電部と基板1との間の絶縁耐圧を確保するための保護膜として機能する。なお、基板1として樹脂基板あるいは配線基板を採用した場合には、保護
層2として基板1を水分などから保護する機能を有する耐湿性保護膜が採用される。
The protective layer 2 is made of, for example, an insulating resin whose main component is an epoxy resin, and is provided on the substrate 1 with a thickness of about 10 μm. The protective layer 2 functions as a protective film for securing a dielectric strength between each conductive portion and the substrate 1 when a high voltage is applied to each conductive portion (conductive portions 4a to 4c). When a resin substrate or a wiring substrate is employed as the substrate 1, a moisture-resistant protective film having a function of protecting the substrate 1 from moisture or the like is employed as the protective layer 2.

絶縁層3は、たとえば、エポキシ樹脂を主成分とする熱硬化性樹脂からなり、保護層2の上に約100μmの厚みで設けられている。ここで、絶縁層3は、導電部4a〜4cに対応する位置に凹部が形成されているとともに、この凹部内に導電部4a〜4cがそれぞれ配置されている。すなわち、絶縁層3は、導電部4aとこれに隣接する導電部4bとの間に、この導電部4a,4bの上面と略同一面を構成する高さ(約30μm)の凸状部分3aを有する構造となっている。また、導電部4bとこれに隣接する導電部4cとの間も同様の構造となっている。なお、回路基板の放熱性向上の観点から、絶縁層3は高熱伝導性を有することが望ましい。このため、絶縁層3は、銀、ビスマス、銅、アルミニウム、マグネシウム、錫、亜鉛およびこれらの合金などやシリカ、アルミナ、窒化ケイ素、窒化アルミニウムなどを高熱伝導性フィラーとして含有することが好ましい。   The insulating layer 3 is made of, for example, a thermosetting resin whose main component is an epoxy resin, and is provided on the protective layer 2 with a thickness of about 100 μm. Here, as for the insulating layer 3, while the recessed part is formed in the position corresponding to the electroconductive parts 4a-4c, the electroconductive parts 4a-4c are each arrange | positioned in this recessed part. That is, the insulating layer 3 includes a convex portion 3a having a height (about 30 μm) that is substantially flush with the upper surface of the conductive portions 4a and 4b between the conductive portion 4a and the conductive portion 4b adjacent thereto. It has a structure. Also, the same structure is formed between the conductive portion 4b and the conductive portion 4c adjacent thereto. The insulating layer 3 desirably has high thermal conductivity from the viewpoint of improving the heat dissipation of the circuit board. For this reason, it is preferable that the insulating layer 3 contains silver, bismuth, copper, aluminum, magnesium, tin, zinc, and alloys thereof, silica, alumina, silicon nitride, aluminum nitride, or the like as a highly thermally conductive filler.

導電部4a〜4cは、たとえば、銅やアルミニウムなどの金属が採用され、その厚さは、たとえば、約30μmである。導電部4a〜4cの断面形状は台形状であり、導電部4a〜4cの側面はいずれも順テーパとなっている。導電部4a〜4cはライン/スペース(L/S)状に並べられた配線パターンの一部を構成し、その上面が絶縁層3の上面(凸状部分3aの上部)と略同一面となるように絶縁層3内に埋設されている。さらに、導電部4aの側面(導電部4bの側面)と絶縁層3の凸状部分3aとの間には、導電部4aの側面(導電部4bの側面)と絶縁層3とが接触していない領域5が設けられている。なお、順テーパの角度としては、導電部4a,4bの微細化と領域5の形成しやすさを両立させる観点から、たとえば、約45度が好ましい。   For example, a metal such as copper or aluminum is used for the conductive portions 4a to 4c, and the thickness thereof is, for example, about 30 μm. The cross-sectional shapes of the conductive portions 4a to 4c are trapezoidal, and the side surfaces of the conductive portions 4a to 4c are all forward tapered. The conductive portions 4a to 4c constitute part of a wiring pattern arranged in a line / space (L / S) shape, and the upper surface thereof is substantially flush with the upper surface of the insulating layer 3 (upper portion of the convex portion 3a). In this way, it is embedded in the insulating layer 3. Further, the side surface of the conductive portion 4a (side surface of the conductive portion 4b) and the insulating layer 3 are in contact between the side surface of the conductive portion 4a (side surface of the conductive portion 4b) and the convex portion 3a of the insulating layer 3. No area 5 is provided. The forward taper angle is preferably about 45 degrees, for example, from the viewpoint of achieving both the miniaturization of the conductive portions 4a and 4b and the ease of forming the region 5.

ここで、導電部4aと導電部4bとは互いに隣接して設けられている。本実施形態では、特に導電部4aと導電部4bとの間隔(スペース)がこれらの製造限界(製造時の許容最小スペース値)まで微細化された状態を想定している。   Here, the conductive portion 4a and the conductive portion 4b are provided adjacent to each other. In the present embodiment, it is assumed that the distance (space) between the conductive portion 4a and the conductive portion 4b is particularly miniaturized to the manufacturing limit (allowable minimum space value at the time of manufacturing).

絶縁層6は、たとえば、エポキシ樹脂を主成分とする絶縁性樹脂からなるフォトソルダーレジスト膜が採用され、絶縁層3および導電部4a〜4cを覆うように約50μmの厚みで設けられている。この際、導電部4aの側面(導電部4bの側面)と絶縁層3とが接触していない領域5にも絶縁層6が埋め込み形成されている。絶縁層6は、各導電部(導電部4a〜4c)を外部環境から保護する機能を有する。なお、絶縁層6中には熱伝導性を高めるためのフィラーが添加されていてもよい。
(製造方法)
図2は、図1に示した本発明の本実施形態に係る回路基板の製造プロセスを説明するための概略断面図である。
For example, a photo solder resist film made of an insulating resin containing an epoxy resin as a main component is employed as the insulating layer 6, and is provided with a thickness of about 50 μm so as to cover the insulating layer 3 and the conductive portions 4 a to 4 c. At this time, the insulating layer 6 is also embedded in the region 5 where the side surface of the conductive portion 4a (side surface of the conductive portion 4b) and the insulating layer 3 are not in contact with each other. The insulating layer 6 has a function of protecting each conductive portion (conductive portions 4a to 4c) from the external environment. In addition, a filler for increasing thermal conductivity may be added in the insulating layer 6.
(Production method)
FIG. 2 is a schematic cross-sectional view for explaining a manufacturing process of the circuit board according to the embodiment of the present invention shown in FIG.

まず、図2(A)に示すように、基板1として、たとえば、銅(Cu)からなる金属板を用意する。そして、ロールコート法によってこの基板1の上にエポキシ樹脂を主成分とする絶縁性樹脂からなる保護層2を成膜する。ここで、保護層2の厚さは、たとえば、約10μmとする。この保護層2は、各導電部(導電部4a〜4c)に高電圧が印加された際の各導電部と基板1との間の絶縁耐圧を確保するための保護膜として機能する。なお、基板1として樹脂基板あるいは配線基板を採用した場合には、保護層2として基板1を水分などから保護する機能を有する耐湿性保護膜が採用される。   First, as shown in FIG. 2A, a metal plate made of, for example, copper (Cu) is prepared as the substrate 1. And the protective layer 2 which consists of insulating resin which has an epoxy resin as a main component is formed into a film on this board | substrate 1 by the roll coat method. Here, the thickness of the protective layer 2 is about 10 μm, for example. The protective layer 2 functions as a protective film for securing a dielectric strength between each conductive portion and the substrate 1 when a high voltage is applied to each conductive portion (conductive portions 4a to 4c). When a resin substrate or a wiring substrate is employed as the substrate 1, a moisture-resistant protective film having a function of protecting the substrate 1 from moisture or the like is employed as the protective layer 2.

図2(B)に示すように、保護層2上に絶縁層3と銅箔(図示せず)からなる積層膜を真空下または減圧下で熱圧着することによって、約100μmの厚みを有し、エポキシ樹脂を主成分とする熱硬化性樹脂からなる絶縁層3および約3μmの厚みを有する銅箔(図示せず)を形成する。その後、無電解めっき法および電解めっき法を用いて銅箔の表面上に銅をめっきする。これにより、絶縁層3上に約30μmの厚みを有する銅からなる配線
層4が形成される。なお、この工程では、熱硬化性樹脂である絶縁層3は完全に熱硬化されず、半硬化の状態(流動しやすい状態)を維持するようにしている。
As shown in FIG. 2 (B), a laminated film made of an insulating layer 3 and a copper foil (not shown) on the protective layer 2 is thermocompression bonded under vacuum or reduced pressure to have a thickness of about 100 μm. Then, an insulating layer 3 made of a thermosetting resin mainly composed of an epoxy resin and a copper foil (not shown) having a thickness of about 3 μm are formed. Thereafter, copper is plated on the surface of the copper foil using an electroless plating method and an electrolytic plating method. Thereby, the wiring layer 4 made of copper having a thickness of about 30 μm is formed on the insulating layer 3. In this step, the insulating layer 3 which is a thermosetting resin is not completely thermoset, and maintains a semi-cured state (a state in which it easily flows).

図2(C)に示すように、フォトリソグラフィ技術およびエッチング技術を用いて、配線層4をパターニングする。これにより、絶縁層3上に配線パターンの一部を構成する導電部4a〜4cが形成される。このとき、エッチング条件を調整することにより、導電部4a〜4cの断面形状が台形状(導電部4a〜4cの側面が約45度の角度の順テーパを有する形状)になるようにしている。   As shown in FIG. 2C, the wiring layer 4 is patterned using a photolithography technique and an etching technique. As a result, conductive portions 4 a to 4 c constituting a part of the wiring pattern are formed on the insulating layer 3. At this time, by adjusting the etching conditions, the cross-sectional shapes of the conductive portions 4a to 4c are made trapezoidal (the side surfaces of the conductive portions 4a to 4c have a forward taper of about 45 degrees).

図2(D)に示すように、導電部4a〜4cが形成された基板1を上下から平板(図示せず)に挟み込むようにして導電部4a〜4cに対して均一に圧力(約10MPa)を加え、導電部4a〜4cを絶縁層3内に押し込む(圧入するステップ)。絶縁層3は半硬化の状態(流動しやすい状態)であるため、導電部4a〜4cは絶縁層3内に容易に埋設され、絶縁層3には導電部4a〜4cに対応する位置に凹部が形成されるとともに、導電部4aとこれに隣接する導電部4bとの間の絶縁層3には凸状部分3aが一体的に形成される。この際、導電部4a,4bの上面は絶縁層3の上面(凸状部分3aの上部)と略同一面となるまで埋設される。これと同時に、導電部4aの側面(導電部4bの側面)と絶縁層3の凸状部分3aとの間には間隔(スペース)が生じ、導電部4aの側面(導電部4bの側面)と絶縁層3とが接触していない領域5が設けられる。引き続き、絶縁層3に熱処理(150℃、30分)を加えることにより、絶縁層3を完全硬化する(硬化するステップ)。   As shown in FIG. 2D, the substrate 1 on which the conductive portions 4a to 4c are formed is uniformly pressed (about 10 MPa) against the conductive portions 4a to 4c so as to be sandwiched between flat plates (not shown) from above and below. Then, the conductive portions 4a to 4c are pushed into the insulating layer 3 (step of press-fitting). Since the insulating layer 3 is in a semi-cured state (easy to flow), the conductive portions 4a to 4c are easily embedded in the insulating layer 3, and the insulating layer 3 is recessed at a position corresponding to the conductive portions 4a to 4c. Is formed, and the convex portion 3a is integrally formed in the insulating layer 3 between the conductive portion 4a and the conductive portion 4b adjacent thereto. At this time, the upper surfaces of the conductive portions 4a and 4b are buried until they are substantially flush with the upper surface of the insulating layer 3 (the upper portion of the convex portion 3a). At the same time, an interval (space) is generated between the side surface of the conductive portion 4a (side surface of the conductive portion 4b) and the convex portion 3a of the insulating layer 3, and the side surface of the conductive portion 4a (side surface of the conductive portion 4b) A region 5 that is not in contact with the insulating layer 3 is provided. Subsequently, the insulating layer 3 is completely cured (step of curing) by applying heat treatment (150 ° C., 30 minutes) to the insulating layer 3.

最後に、図1に示したように、絶縁層6として、たとえば、エポキシ樹脂を主成分とする絶縁性樹脂からなるフォトソルダーレジスト膜を、絶縁層3および導電部4a〜4cを覆うように約50μmの厚みで形成する。この際、導電部4aの側面(導電部4bの側面)と絶縁層3とが接触していない領域5にも絶縁層6が埋め込み形成される。絶縁層6は、各導電部(導電部4a〜4c)を外部環境から保護する機能を有する。なお、絶縁層6中には熱伝導性を高めるためのフィラーが添加されていてもよい。   Finally, as shown in FIG. 1, as the insulating layer 6, for example, a photo solder resist film made of an insulating resin mainly composed of an epoxy resin is applied so as to cover the insulating layer 3 and the conductive portions 4 a to 4 c. It is formed with a thickness of 50 μm. At this time, the insulating layer 6 is also embedded in the region 5 where the side surface of the conductive portion 4a (side surface of the conductive portion 4b) and the insulating layer 3 are not in contact with each other. The insulating layer 6 has a function of protecting each conductive portion (conductive portions 4a to 4c) from the external environment. In addition, a filler for increasing thermal conductivity may be added in the insulating layer 6.

これらの工程により、本実施形態の回路基板が製造される。   Through these steps, the circuit board of this embodiment is manufactured.

以上説明した本実施形態の回路基板およびその製造方法によれば、以下のような効果を得ることができるようになる。
(1)各導電部(導電部4a,4b)の側面と絶縁層3(凸状部分3a)との間に間隙(導電部4a,4bの側面に絶縁層3が接触していない領域5)を設けた回路基板を、側面を順テーパ形状に加工した導電部4a,4bを絶縁層3に圧入することで形成するため、こうした回路基板を製造する工程が簡便となる。さらに製造コストを低減することもできる。
(2)導電部4a,4bの断面形状をその側面が順テーパである台形状となるように製造したことで、導電部4a,4bの側面と絶縁層3との接触部分が台形状の下底部分となる回路基板を容易に製造できる。したがって、導電部4aの端部Aから導電部4bの端部Bに至る絶縁層3(絶縁層3の凸状部分3a)の表層部分の経路長が最大限に長くなり、絶縁破壊がより生じにくい回路基板が低コストで提供される。
(3)側面上部が順テーパ形状に加工された導電部4a,4bを絶縁層3内に圧入することにより、絶縁層3に凹部をそれぞれ形成するとともに、この凹部内に導電部4a,4bを配置したことで、導電部4aとこれに隣接する導電部4bとの間に絶縁層3を設け、各導電部(導電部4a,4b)の側面と絶縁層3との間に間隔(導電部4a,4bの側面に絶縁層3が接触していない領域5)を生じさせることができる。このため、導電部4aと導電部4bとの間に位置する絶縁層3の表層部分の経路長(実効間隔)が従来に比べ増大され、絶縁層3の表層部分を介した絶縁破壊が生じにくい信頼性が向上した回路基板が提供される。
(4)導電部4a,4bの断面形状をその側面が順テーパである台形状となるようにしたことで、導電部4aの側面(導電部4bの側面)と絶縁層3の接触部分が台形状の下底部分のみとなり、導電部4aの端部Aから導電部4bの端部Bに至る絶縁層3(絶縁層3の凸状部分3a)の表層部分の経路長が最大限に長くなる。これにより、導電部4aとこれに隣接する導電部4bとの間の、絶縁層3の表層部分(絶縁層3と絶縁層6との界面)を経由した絶縁破壊がより生じにくくなり、回路基板の信頼性がさらに向上する。なお、導電部4aの側面(導電部4bの側面)の表面側(上面側)の一部に絶縁層3と接触していない領域5を設けた場合には、その部分のみが経路長の増大に寄与することになり、それに応じて絶縁破壊を抑制する効果を享受することができる。
(5)導電部4aとこれに隣接する導電部4bとの間の間隔(スペース)が従来と同じ寸法であっても、本構成によればその部分での絶縁破壊に対する実効間隔を増大させ、回路基板の信頼性劣化を抑制することができる。このため、導電部4aとこれに隣接する導電部4bとの間の間隔(スペース)をさらに狭めることができ、回路基板のさらなる微細化を実現できるようになる。
(6)台形状に加工した導電部4a,4b(側面を順テーパ形状に加工した導電部4a,4b)を絶縁層3内に圧力をかけて押し込むことで、絶縁層3内に自己整合的に埋設することができ、導電部4aの側面(導電部4bの側面)に絶縁層3と接触しない領域5を容易に設けることができるようになる。このため、回路基板の低コスト化を実現することができる。
According to the circuit board and the manufacturing method thereof of the present embodiment described above, the following effects can be obtained.
(1) A gap (a region 5 where the insulating layer 3 is not in contact with the side surfaces of the conductive portions 4a and 4b) between the side surfaces of the respective conductive portions (conductive portions 4a and 4b) and the insulating layer 3 (convex portions 3a). Is formed by press-fitting the conductive portions 4a and 4b whose side surfaces are processed into a forward tapered shape into the insulating layer 3, so that the process of manufacturing such a circuit board becomes simple. Further, the manufacturing cost can be reduced.
(2) By producing the cross-sectional shape of the conductive portions 4a and 4b so as to have a trapezoidal shape whose side surfaces are forward-tapered, the contact portion between the side surfaces of the conductive portions 4a and 4b and the insulating layer 3 has a trapezoidal shape. The circuit board which becomes the bottom portion can be easily manufactured. Therefore, the path length of the surface layer portion of the insulating layer 3 (the convex portion 3a of the insulating layer 3) from the end portion A of the conductive portion 4a to the end portion B of the conductive portion 4b is maximized, resulting in more dielectric breakdown. A difficult circuit board is provided at low cost.
(3) The conductive portions 4a and 4b whose upper side surfaces are processed into a forward tapered shape are press-fitted into the insulating layer 3, thereby forming recesses in the insulating layer 3, and the conductive portions 4a and 4b are formed in the recesses. By disposing, the insulating layer 3 is provided between the conductive portion 4a and the conductive portion 4b adjacent thereto, and a gap (conductive portion) is provided between the side surface of each conductive portion (conductive portions 4a and 4b) and the insulating layer 3. A region 5) where the insulating layer 3 is not in contact with the side surfaces of 4a and 4b can be generated. For this reason, the path length (effective distance) of the surface layer portion of the insulating layer 3 located between the conductive portion 4a and the conductive portion 4b is increased as compared with the prior art, and dielectric breakdown through the surface layer portion of the insulating layer 3 is unlikely to occur. A circuit board with improved reliability is provided.
(4) By making the cross-sectional shape of the conductive portions 4a and 4b into a trapezoidal shape whose side surface is a forward taper, the contact portion between the side surface of the conductive portion 4a (the side surface of the conductive portion 4b) and the insulating layer 3 becomes a base. Only the lower bottom part of the shape is formed, and the path length of the surface layer part of the insulating layer 3 (the convex part 3a of the insulating layer 3) extending from the end A of the conductive part 4a to the end B of the conductive part 4b is maximized. . As a result, the dielectric breakdown between the conductive portion 4a and the conductive portion 4b adjacent thereto via the surface layer portion of the insulating layer 3 (interface between the insulating layer 3 and the insulating layer 6) is less likely to occur, and the circuit board Reliability is further improved. In addition, when the area | region 5 which is not in contact with the insulating layer 3 is provided in a part of the surface side (upper surface side) of the side surface (side surface of the conductive portion 4b) of the conductive portion 4a, only that portion increases the path length. Therefore, the effect of suppressing the dielectric breakdown can be enjoyed accordingly.
(5) Even if the distance (space) between the conductive portion 4a and the conductive portion 4b adjacent to the conductive portion 4a is the same as the conventional size, according to the present configuration, the effective interval against dielectric breakdown at that portion is increased, Reliability degradation of the circuit board can be suppressed. For this reason, the space | interval (space) between the electroconductive part 4a and the electroconductive part 4b adjacent to this can further be narrowed, and the further refinement | miniaturization of a circuit board can be implement | achieved.
(6) The conductive portions 4a and 4b processed into a trapezoidal shape (the conductive portions 4a and 4b whose side surfaces are processed into a forward tapered shape) are pushed into the insulating layer 3 by applying pressure to the insulating layer 3 to be self-aligned. The region 5 that does not contact the insulating layer 3 can be easily provided on the side surface of the conductive portion 4a (side surface of the conductive portion 4b). For this reason, cost reduction of a circuit board is realizable.

なお、上記実施形態では、絶縁層3および各導電部(導電部4a〜4c)を覆うように絶縁層6を設けた回路基板およびその製造方法の例を示したが、本発明はこれに限らず、たとえば、絶縁層6を設けていない回路基板であってもよい。この場合にも上記効果を享受することができる。   In the above embodiment, the example of the circuit board provided with the insulating layer 6 so as to cover the insulating layer 3 and the respective conductive parts (conductive parts 4a to 4c) and the method for manufacturing the circuit board are shown, but the present invention is not limited thereto. For example, a circuit board without the insulating layer 6 may be used. Also in this case, the above effect can be enjoyed.

上記実施形態では、絶縁層6として各導電部(導電部4a〜4c)を保護する機能を有するフォトソルダーレジスト膜を採用した例を示したが、本発明はこれに限らず、たとえば、絶縁層6として絶縁層3と同じ材料を採用し、その上にさらに別の導電部を設けていてもよい。この場合、上記効果を享受することができるのに加え、さらに絶縁耐性の向上した回路基板を多層化することができる。   In the said embodiment, although the example which employ | adopted the photo solder resist film which has a function which protects each electroconductive part (electrically conductive part 4a-4c) as the insulating layer 6 was shown, this invention is not limited to this, For example, an insulating layer 6, the same material as that of the insulating layer 3 may be adopted, and another conductive portion may be provided thereon. In this case, in addition to enjoying the above effects, the circuit board having further improved insulation resistance can be multilayered.

上記実施形態では、導電部4a,4bの上面が絶縁層3の上面(凸状部分3aの上部)と略同一面となる例を示したが、本発明はこれに限らず、たとえば、導電部4a,4bの側面に絶縁層3と接触しない領域5が設けられるのであれば、絶縁層3の上面(凸状部分3aの上部)に対して導電部4a,4bの上面が突出していても凹んでいてもよい。この場合にも経路長の増大分に応じて絶縁破壊が生じにくくなる効果を享受できる。   In the above embodiment, the example in which the upper surfaces of the conductive portions 4a and 4b are substantially flush with the upper surface of the insulating layer 3 (the upper portion of the convex portion 3a) is shown. However, the present invention is not limited to this. If a region 5 that does not contact the insulating layer 3 is provided on the side surfaces of 4a and 4b, the upper surface of the insulating layer 3 (the upper portion of the convex portion 3a) is recessed even if the upper surfaces of the conductive portions 4a and 4b protrude. You may go out. Also in this case, it is possible to enjoy the effect that dielectric breakdown is less likely to occur according to the increase in the path length.

上記実施形態では、順テーパ形状を有する導電部4a(導電部4b)としてその断面形状が台形状である例を示したが、本発明はこれに限らず、たとえば、矩形の導電部の上端部に対して面取りを行い、上辺部のみを順テーパ形状としてもよい。また、同様に上端部にのみ丸みを帯びさせた状態であってもよい。この場合には、導電部4a(導電部4b)に設けられた順テーパ部分で、絶縁層3と接触していない領域5が設けられ、この部分が経路長の増大に寄与することになる。   In the said embodiment, although the example whose cross-sectional shape is trapezoid was shown as the electroconductive part 4a (conductive part 4b) which has a forward taper shape, this invention is not limited to this, For example, the upper end part of a rectangular electroconductive part It is good also as chamfering with respect to and making only an upper side part into a forward taper shape. Similarly, only the upper end portion may be rounded. In this case, a region 5 not in contact with the insulating layer 3 is provided in the forward tapered portion provided in the conductive portion 4a (conductive portion 4b), and this portion contributes to an increase in the path length.

本発明の実施形態に係る回路基板の概略断面図。1 is a schematic cross-sectional view of a circuit board according to an embodiment of the present invention. (A)〜(D)図1に示した実施形態による回路基板の製造プロセスを説明するための概略断面図。(A)-(D) The schematic sectional drawing for demonstrating the manufacturing process of the circuit board by embodiment shown in FIG. 従来の回路基板の概略断面図。The schematic sectional drawing of the conventional circuit board.

符号の説明Explanation of symbols

1・・・基板、2・・・保護層、3・・・絶縁層、3a・・・絶縁層3の凸状部分、4a・・・導電部、4b・・・導電部4aと隣接する導電部、5・・・導電部4a,4bの側面と絶縁層3とが接触していない領域、6・・・絶縁層。   DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 2 ... Protective layer, 3 ... Insulating layer, 3a ... Convex part of the insulating layer 3, 4a ... Conductive part, 4b ... Conductive adjacent to the conductive part 4a 5, regions where the side surfaces of the conductive portions 4 a and 4 b are not in contact with the insulating layer 3, 6.

Claims (3)

基板の上に絶縁層を形成する第1の工程と、
前記絶縁層の表面上に第1の導電部およびこの第1の導電部に隣接する第2の導電部を形成し、前記第1の導電部および前記第2の導電部の少なくとも側面上部を順テーパ形状に加工する第2の工程と、
前記第1の導電部および前記第2の導電部を前記絶縁層内に圧入する第3の工程と、
を備え、
前記第3の工程では、前記第1の導電部および前記第2の導電部の側面と前記絶縁層との間に間隙を生じさせることを特徴とした回路基板の製造方法。
A first step of forming an insulating layer on the substrate;
A first conductive portion and a second conductive portion adjacent to the first conductive portion are formed on the surface of the insulating layer, and at least the upper side surfaces of the first conductive portion and the second conductive portion are arranged in order. A second step of processing into a tapered shape;
A third step of press-fitting the first conductive portion and the second conductive portion into the insulating layer;
With
In the third step, a gap is generated between side surfaces of the first conductive portion and the second conductive portion and the insulating layer.
前記第2の工程では、前記第1の導電部および前記第2の導電部の断面形状がいずれも台形状となるように加工している、請求項1に記載の回路基板の製造方法。   The method for manufacturing a circuit board according to claim 1, wherein in the second step, the first conductive portion and the second conductive portion are processed so that the cross-sectional shapes thereof are trapezoidal. 前記第3の工程は、前記第1の導電部および前記第2の導電部を前記絶縁層が半硬化の状態で圧入するステップと、前記絶縁層を加熱して硬化するステップと、を含む、請求項1または2に記載の回路基板の製造方法。   The third step includes a step of press-fitting the first conductive portion and the second conductive portion in a state where the insulating layer is semi-cured, and a step of heating and curing the insulating layer. A method for manufacturing a circuit board according to claim 1.
JP2006208456A 2006-07-31 2006-07-31 Circuit board Expired - Fee Related JP5072283B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006208456A JP5072283B2 (en) 2006-07-31 2006-07-31 Circuit board
US11/830,505 US7851921B2 (en) 2006-07-31 2007-07-30 Device mounting board having multiple circuit substrates, and semiconductor module with the device mounting board
CN2007103077804A CN101262739B (en) 2006-07-31 2007-07-31 Substrate for carrying element, method for manufacturing the same, and semiconductor module
US12/856,168 US8183090B2 (en) 2006-07-31 2010-08-13 Methods for manufacturing device mounting board and circuit substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006208456A JP5072283B2 (en) 2006-07-31 2006-07-31 Circuit board

Publications (2)

Publication Number Publication Date
JP2008034722A true JP2008034722A (en) 2008-02-14
JP5072283B2 JP5072283B2 (en) 2012-11-14

Family

ID=39123818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006208456A Expired - Fee Related JP5072283B2 (en) 2006-07-31 2006-07-31 Circuit board

Country Status (2)

Country Link
JP (1) JP5072283B2 (en)
CN (1) CN101262739B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201606A (en) * 2014-04-10 2015-11-12 株式会社村田製作所 Method of manufacturing multilayer substrate, and multilayer substrate
JP2017037988A (en) * 2015-08-11 2017-02-16 日本メクトロン株式会社 Flexible printed board and manufacturing method of flexible printed board

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102021845B1 (en) * 2011-04-28 2019-09-18 가부시키가이샤 가네카 Flexible printed circuit integrated with reinforcing plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1174625A (en) * 1997-08-28 1999-03-16 Kyocera Corp Wiring board and method for manufacturing it
JP2000040868A (en) * 1998-07-22 2000-02-08 Ibiden Co Ltd Printed wiring board
JP2001177022A (en) * 1999-12-17 2001-06-29 Matsushita Electric Ind Co Ltd Heat conduction board and method of manufacturing the same
JP2003060355A (en) * 2001-08-10 2003-02-28 Nippon Zeon Co Ltd Manufacturing method of circuit board
JP2005033041A (en) * 2003-07-08 2005-02-03 Toyo Kohan Co Ltd Sedimentated wiring board and its manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6899815B2 (en) * 2002-03-29 2005-05-31 Intel Corporation Multi-layer integrated circuit package
JP4345598B2 (en) * 2004-07-15 2009-10-14 パナソニック株式会社 Circuit board connection structure and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1174625A (en) * 1997-08-28 1999-03-16 Kyocera Corp Wiring board and method for manufacturing it
JP2000040868A (en) * 1998-07-22 2000-02-08 Ibiden Co Ltd Printed wiring board
JP2001177022A (en) * 1999-12-17 2001-06-29 Matsushita Electric Ind Co Ltd Heat conduction board and method of manufacturing the same
JP2003060355A (en) * 2001-08-10 2003-02-28 Nippon Zeon Co Ltd Manufacturing method of circuit board
JP2005033041A (en) * 2003-07-08 2005-02-03 Toyo Kohan Co Ltd Sedimentated wiring board and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201606A (en) * 2014-04-10 2015-11-12 株式会社村田製作所 Method of manufacturing multilayer substrate, and multilayer substrate
JP2017037988A (en) * 2015-08-11 2017-02-16 日本メクトロン株式会社 Flexible printed board and manufacturing method of flexible printed board

Also Published As

Publication number Publication date
JP5072283B2 (en) 2012-11-14
CN101262739B (en) 2011-05-04
CN101262739A (en) 2008-09-10

Similar Documents

Publication Publication Date Title
KR101501627B1 (en) Electronic apparatus
JP6281016B2 (en) Circuit board and manufacturing method thereof
US20130027896A1 (en) Electronic component embedded printed circuit board and method of manufacturing the same
JP6745770B2 (en) Circuit board
JP2008085089A (en) Resin wiring board and semiconductor device
JP6107941B2 (en) Composite board
US7851921B2 (en) Device mounting board having multiple circuit substrates, and semiconductor module with the device mounting board
US20170135196A1 (en) Heat dissipation member and printed circuit board having the same
JP5173758B2 (en) Manufacturing method of semiconductor package
US9185792B2 (en) Package substrate and electronic assembly
US10483194B2 (en) Interposer substrate and method of fabricating the same
JP2019040902A (en) Circuit board
JP5072283B2 (en) Circuit board
JP2012064600A (en) Multilayer substrate and method of manufacturing the same
JP6105316B2 (en) Electronic equipment
JP2010272563A (en) Wiring board with built-in component and method of manufacturing the same
US9433108B2 (en) Method of fabricating a circuit board structure having an embedded electronic element
TWM568017U (en) Circuit board structure having caulking layer
WO2012165111A1 (en) Method for producing multi-layer substrate and multi-layer substrate
JP5369875B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP4942452B2 (en) Circuit equipment
KR101483874B1 (en) Printed Circuit Board
JP2008060548A (en) Substrate for mounting element, its manufacturing method, and semiconductor module
JP5601413B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP2006344631A (en) Component built-in substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120821

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees