JP2008032549A - 光学調整装置、光源装置、太陽電池の特性計測システム - Google Patents

光学調整装置、光源装置、太陽電池の特性計測システム Download PDF

Info

Publication number
JP2008032549A
JP2008032549A JP2006206629A JP2006206629A JP2008032549A JP 2008032549 A JP2008032549 A JP 2008032549A JP 2006206629 A JP2006206629 A JP 2006206629A JP 2006206629 A JP2006206629 A JP 2006206629A JP 2008032549 A JP2008032549 A JP 2008032549A
Authority
JP
Japan
Prior art keywords
irradiance
optical
lamp
light source
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006206629A
Other languages
English (en)
Inventor
Juichi Hasegawa
壽一 長谷川
Tadashi Kato
加藤  正
Mitsuhiro Minoda
光博 蓑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eko Instruments Trading Co Ltd
Original Assignee
Eko Instruments Trading Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eko Instruments Trading Co Ltd filed Critical Eko Instruments Trading Co Ltd
Priority to JP2006206629A priority Critical patent/JP2008032549A/ja
Publication of JP2008032549A publication Critical patent/JP2008032549A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】光源装置の光照射状態を把握し、調整する作業を容易し得る技術を提供すること。
【解決手段】光源装置(1)の光照射状態の調整に用いられる光学調整装置であって、前記光源装置の光照射面(20)上に配置される光学センサ(28)と、前記光学センサを、前記光照射面上で自在に移動させるセンサ移動機構(22)と、前記センサ移動機構に制御信号を供給することによって前記光学センサを予め設定される複数の位置に順次移動させ、当該複数の位置のそれぞれにおける前記光学センサの検出信号を取得する制御部(24)と、を含む。
【選択図】図1

Description

本発明は、例えば太陽電池の特性計測技術に用いられる光源装置やこの光源装置の特性評価等に用いられる装置、並びにこの光源装置等を含んで構成される太陽電池の特性計測システムに関する。
屋内での太陽電池の出力特性評価には人工光源装置(ソーラーシミュレータ)が用いられる(例えば、特許文献1参照)。太陽電池に人工光源装置から擬似太陽光を照射し、太陽電池に計測装置(IVカーブトレーサ)を接続し、太陽電池の電流−電圧特性を測定する。この場合、人工光源装置の照射光は太陽電池の受光面に均一な明るさ、規定の分光特性、かつこれらの時間変動が極めて少ない状態で照射されることが所望される。
上記のような人工光源装置(ソーラーシミュレータ)の光源の性能を確保するため、JIS(日本工業規格)では、放射照度の場所むらおよび放射照度時間変動率は、少なくとも毎月1回、分光放射照度は少なくとも6ヶ月に1回測定しなければならないと規定されている。特に放射照度の場所むらは、JISで17点以上の測定点が規定されており、作業に時間がかかり煩雑であった。また、人工光源装置は移動時や経時的な振動などで光源ランプの取り付け位置が微妙に移動すると、光軸調整が狂い、太陽電池セル面に均一な明るさでの照射ができなくなる、すなわち照射光に場所むらが生じることがあった。また電源電圧の変動や経時的な光源ランプの劣化により照射光量、および分光特性に変動を生じることがあった。このため、人工光源装置の光照射状態を把握し、調整する作業を容易し得る技術が望まれている。また、かかる要望は人工光源装置に限らず、他の用途の光源装置一般に共通するものでもある。
特開2003−31825号公報
そこで本発明は、光源装置の光照射状態を把握し、調整する作業を容易にし得る技術を提供することを目的とする。
(1)本発明の第1の態様に係る光源調整装置は、
光源装置の光照射面上に配置される光学センサと、
前記光学センサを、前記光照射面上で自在に移動させるセンサ移動機構と、
前記センサ移動機構に制御信号を供給することによって前記光学センサを予め設定される複数の位置のいずれかに順次移動させ、当該複数の位置のそれぞれにおける前記光学センサの検出信号を取得する制御部と、
を含み、光源装置の光照射状態の調整に用いられる。
(2)本発明の第2の態様に係る光源調整装置は、
光学装置の光照射面上の複数の位置にそれぞれ配置される複数の光学センサと、
前記複数の位置のそれぞれにおける前記光学センサの検出信号を取得する制御部と、
を含み、光源装置の光照射状態の調整に用いられる。
上記の各構成によれば、光学センサを順次走査し、あるいは複数の光学センサを用いて、光照射面上の複数箇所の光照射状態(例えば放射照度)を計測することが可能となる。それにより、光源装置の光照射状態を容易に把握することができる。また、計測結果を用いることにより、光照射状態の調整を容易に行うことができる。また、上記(1)の構成によれば、1つのセンサによって複数箇所における計測を行うので、複数のセンサを用いた場合に比べて、各センサの個体差による測定結果への影響を考慮する必要がなくなる利点がある。他方、上記(2)の構成によれば、複数のセンサを用いることにより、複数箇所における計測を一括して行うことが可能となり、計測に要する時間をより短縮できる利点がある。
(3)好ましくは、前記制御部は、前記複数の位置のそれぞれにおける前記光学センサの検出信号を時間経過に対応付けて複数回取得する。
それにより、光照射面上における光照射状態の時間変動特性を得ることができる。
(4)上記光学センサとしては、例えば放射照度センサ又は分光放射センサを用いることができる。
それにより、光照射状態として、放射照度又は分光放射照度を計測することができる。
(5)好ましくは、前記光学センサは、放射照度センサであり、前記光源装置は、ランプと、前記ランプの位置を互いに直交する三方向について調整する位置調整機構と、を含む。そして、前記制御部は、前記複数の位置のそれぞれに対応する前記検出信号を取得すること、前記検出信号に基づいて放射照度のばらつき値を算出すること、及び前記光源装置の前記位置調整機構に制御信号を供給することによって前記ランプの位置を変更させること、を複数回繰り返す。
それにより、ランプ位置と光照射状態との関係を示す情報(データ)を得ることができる。したがって、光源装置の光照射状態をより詳細に把握できる。
(6)好ましくは、前記制御部は、前記位置調整機構に制御信号を供給することにより前記放射照度のばらつき値が最小となるときの位置に前記ランプを配置させる。
それにより、ランプ位置を好適な位置へ自動的に調整することができる。
(7)好ましくは、前記光学センサは、放射照度センサであり、前記光源装置は、ランプと、前記ランプに電力を供給する電源部と、を含む。そして、前記制御部は、前記複数の位置の少なくとも1つに対応する前記検出信号を取得すること、前記検出信号に基づいて、放射照度が所定の基準値と一致するかを判断すること、及び前記放射照度が前記基準値と一致しない場合に、前記電源部に制御信号を供給することによって、前記ランプに供給される電力を増減すること、を複数回繰り返す。ここで、「基準値」とは、特定の値であってもよく、上限値と下限値によって規定される所定範囲を有するものであってもよい。後者の場合には、「放射照度が基準値と一致する」とは、放射照度の値が上限値と下限値の間に含まれることをいう。
それにより、ランプによる光照射面上における放射照度を自動的に所定の基準値に合わせることが可能となる。
(8)本発明の第3の態様は、上記(1)〜(7)のいずれかの光学調整装置を備える光源装置である。
具体的には、光源装置は、
上記の光学調整装置と、
集光ミラー(例えば、楕円集光ミラー)と、
前記集光ミラーの焦点近傍に配置されるランプと、
前記ランプの位置を互いに直交する三方向について調整する位置調整機構と、
前記集光ミラーによって集光された前記ランプの放射光を均一化し、所定の光照射面上に導く光学機構と、
を含んで構成される。
かかる構成によれば、光照射状態を把握し、調整する作業の容易な光源装置が得られる。
(9)本発明の第4の態様は、上記(8)の光源装置とコンピュータ等を組み合わせて構成される太陽電池の特性評価システムである。
より詳細には、本発明にかかる太陽電池の特性評価システムは、
上記の光源装置と、
前記光照射面上に太陽電池が載置された際に当該太陽電池の電流−電圧特性を計測するI−Vカーブトレーサと、
前記光学調整装置の前記制御部および前記I−Vカーブトレーサの双方と通信可能に接続されるコンピュータと、
を含み、
前記コンピュータが、前記光学調整装置から前記光学センサの検出信号を示すデータ及び前記太陽電池の電流−電圧特性を示すデータを取得し、当該各データ又はこれらに基づくグラフを表示することを特徴とする。
かかる構成によれば、1台のコンピュータを使用してI−Vカーブトレーサを用いた電流−電圧特性の測定結果や、照射面の配光むら(場所むら)や時間変動の測定、および分光特性の配光むら(場所むら)や時間変動の測定結果を取得し、その内容を表示することができる。これらにより、光源装置の光照射状態を把握し、調整する作業が非常に容易となる。
以下、本発明の実施の形態について図面を参照しながら説明する。
図1は、本発明を適用した一実施形態の光源装置の構成を説明する模式図である。図1に示す光源装置1は、ランプ10、集光ミラー12、三軸駆動機構(位置調整機構)14、インテグレーターレンズ16、コリメーターレンズ18、ステージ20、センサ移動機構22、制御部24、電源部26、光学センサ28を含んで構成される。この光源装置1は、図示のように汎用のパーソナルコンピュータ2と接続可能に構成されている。
ランプ10は、例えばキセノンランプやメタルハライドランプなどの放電管によるものや、ハロゲンランプなどである。このランプ10は集光ミラー12の焦点近傍に配置されている。ランプ10から放射される光は、集光ミラー12によって集光され、インテグレーターレンズ16に入射する。そして、入射光はインテグレーターレンズ16によって照度分布が均一化され、コリメーターレンズ18に入射する。インテグレーターレンズ16によって照度分布が均一化された光は擬似的な太陽光として用いることができる。この光(擬似太陽光)は更にコリメーターレンズ18によって平行光線に変換されることにより、平行光であり、照度分布が均一な照射光となり、ステージ20の上面(光照射面)に入射する。ランプ10が振動や経時変化等に起因して位置ずれを起こした場合、光照射面における光照射状態(配光)が不均一になる。すなわち、配光に場所むらが生じる。なお、本例においては、インテグレーターレンズ16及びコリメーターレンズ18が本発明の「光学機構」に相当する。
三軸駆動機構14は、ランプ10の位置を互いに直交する三方向(X,Y,Zの各方向)について調整する。この三軸駆動機構14は、例えば以下のような構成を有する。ランプ10の上側電極がX軸およびY軸の各方向に駆動可能なステージで保持される。そして、このステージは更にZ軸方向に移動可能な駆動軸に固定される。ステージのX軸およびY軸の各方向への駆動はそれぞれパルスモータ(ステッピングモータ)によって実現される。同様に、Z軸方向への駆動はパルスモータによって実現される。各パルスモータは、制御部24から与えられる制御信号(パルス信号)によって制御される。
センサ移動機構22は、光学センサ28を光照射面21上において互いに直交する二方向(X軸、Y軸の各方向)に自在に移動させる。このセンサ移動機構22の構成例を図2に示す。図示のセンサ移動機構22は、光照射面21上に配置される光学センサ28をY軸方向へ自在に移動させるY方向移動機構30と、このY方向移動機構30の全体をX軸方向へ自在に移動させるX方向移動機構32と、を含んで構成される。Y方向移動機構30、X方向移動機構32のそれぞれに対して制御部24から駆動信号を適宜供給することにより、光学センサ28をX方向およびY方向の任意位置へ移動させることができる。
光学センサ28は、光照射面21上における光源装置1の光照射状態を計測するためのセンサである。本実施形態では、この光学センサ28として放射照度センサ(フォトダイオード等)または分光照度センサを用いる。放射照度センサを用いる場合には、図2に示すドライブシャフト30には受光部の部分が取り付けられる。この受光部に入射した光はその強度に応じた電気信号に変換される。この電気信号は図示しない配線を介してアナログ−デジタル変換器(後述の図3参照)に入力され、デジタル信号に変換される。このデジタル信号は制御部24に取り込まれる。分光照度センサを用いる場合には、図2に示すドライブシャフト30には分光ヘッドの部分が取り付けられる。この分光ヘッドに入射した光は、図示しない光ファイバ等の導光手段を介して分光器へ導かれ、分光器によって各波長ごとに分離された後に、複数のフォトダイオード等によって電気信号に変換される。この電気信号は図示しない配線を介してアナログ−デジタル変換器に入力され、デジタル信号に変換される。このデジタル信号は制御部24に取り込まれる。
制御部24は、センサ移動機構22に制御信号を供給することによって光学センサ28を所望の位置に配置させることや、光学センサ28の検出信号(上記のデジタル信号)を取り込んでデータ処理を行うこと、など光源装置1の全体動作を制御する。制御部24の制御内容の詳細については更に後述する。この制御部24は、図示のように通信手段を介してパーソナルコンピュータ2と接続可能である。
電源部26は、光源装置1の全体に電力を供給する。例えば、ランプ10を点灯させるための電力や、三軸駆動機構14を動作させるための電力が電源部26から供給される。電源部26の動作は制御部24によって制御される。
図3は、制御部24の構成例を示すブロック図である。制御部24は、演算部としてのCPU(central processing unit)51、記憶部としてのROM(read only memory)52、RAM(random access memory)53、アナログ−デジタル変換器(A/D)54、制御インタフェース(制御IF)55、操作部56、表示部57、通信インタフェース(通信IF)58、を含んで構成される。これらのCPU51等の相互間はデータバスを介して接続されている。この制御部24は、予めインストールされ、ROM52に記憶されている所定のプログラムがCPU51によって実行されることにより各種の動作を実現する。RAM53は、CPU51の演算処理に必要な各種データを記憶する。アナログ−デジタル変換器54は、光学センサ28から出力されるアナログ信号をデジタル信号に変換する。操作部56は、各種の操作キーあるいはタッチパネル等を含んで構成されており、光源装置1に対して指示を与えるために用いられる。表示部57は、例えば液晶表示装置からなり、光源装置1の動作状態に関する情報等を表示する。制御インタフェース55は、CPU51の命令に従って三軸駆動機構14や電源部26に対して制御信号を与えるものである。通信インタフェース58は、例えばUSB、IEEE1394、RS−232C等の通信規格に適応したものであり、パーソナルコンピュータ2(図1参照)との相互間における通信処理を行う。
本実施形態の光源装置1はこのような構成を有しており、次に光源装置1の各種の動作について更に詳細に説明する。
(1)放射照度の設定について
本実施形態のランプ10として用いられるキセノンランプやハロゲンランプ等は、印加電圧を変えることにより照射光の放射照度を変えることができる。よって、ランプ10への印加電圧を変えながら光照射面21上における放射照度と印加電圧の関係を測定し、所定の放射照度(例えばJISで規定された放射照度)となるようにランプ10への印加電圧を調整することにより、光照射面21で規定の放射照度を得ることができる。以下、この照射光の放射照度を規定値に設定する手順について、図4に示すフローチャートに沿って説明する。初期状態として、ランプ10に対して電源部26から適宜設定した電圧が印加されているものとする。また、この場合の光学センサ28としては放射照度センサが用いられる。
制御部24のCPU51は、制御インタフェース55を介してセンサ移動機構22に制御信号を供給する。それにより、光学センサ28が光照射面21上の所定位置(例えば光照射面21の中心位置)に配置される(ステップS10)。
次に、CPU51は、アナログ−デジタル変換器54を介して光学センサ28の検出信号を表すデジタル信号を取得する(ステップS11)。それにより、上記ステップ20において配置された位置における放射照度を表すデジタル信号が得られる。このデジタル信号は、例えばRAM53に一時的に格納される。
次に、CPU51は、上記ステップ11において取得したデジタル信号に基づき、現在の光照射面21上における放射照度が所定の基準値と一致しているか否かを判定する(ステップS12)。ここで、所定の基準値とは、例えばJIS規格においてソーラーシミュレータに求められている1000±50(W/m2)とすることができる。CPU51は、放射照度の計測値がこの基準値と一致しているかを判定する。具体的には、CPU51は、放射照度が950〜1050(W/m2)の範囲内に含まれない場合には否定判断(ステップS12:NO)を行い、次のステップに進む。なお、基準値の決め方は任意であり、上記のようにある程度の範囲を持たせてもよいし、ある特定の1つの値に決めてもよい。
放射照度が基準値と一致しない場合には、CPU51は、放射照度の判定処理を行った回数(処理回数)が所定数を超えたか否かを判定する(ステップS13)。この処理は、例えばランプ10に不具合が生じており、後述の印加電圧の増減によっても放射照度が上記の基準値へ近づかず、自動調整処理が無限に繰り返される状態(発振状態)となった場合を想定したものである。処理回数が所定数を超えていない場合には(ステップS13:NO)、CPU51は、電源部26を制御し、ランプ10へ供給する印加電圧を増減する(ステップS14)。具体的には、CPU51は、放射照度の計測値が所定の基準値よりも低い場合には、ランプ10への印加電圧を増加させるよう電源部26を制御する。また、CPU51は、放射照度の計測値が所定の基準値よりも高い場合には、ランプ10への印加電圧を減少させるよう電源部26を制御する。その後、上記ステップ11に戻り、以降の処理が繰り返される。そして、放射照度が基準値と一致すると(ステップS12:YES)、CPU51は一連の照射照度の設定処理を終了する。なお、放射照度が基準値に収束しないままに処理回数が所定数を超えた場合には(ステップS13:YES)、CPU51は、放射照度の設定処理を強制的に終了する。この場合には、CPU51は、強制終了をした旨の表示画面を表示部57にさせる。
以上の一連の処理により、光照射面21上における放射照度が規定値に自動的に設定される。この光源装置1の光照射面21上に太陽電池を配置することにより、太陽電池の特性評価を良好に行うことができる。なお、上記のステップS10〜ステップS11においては、複数の位置に光学センサ28を順次配置し、それぞれの位置における光学センサ28の検出信号を検出するように、CPU51による制御が行われてもよい。この場合に得られる複数点での放射照度については、それらの平均値または中央値(最大値と最小値の中央値)を求め、それを上記の基準値と比較すればよい。
(2)放射照度の配光むらの計測について
太陽電池の特性評価に関するJISによれば、ソーラーシミュレータの放射照度の配光むら(場所むら)については、少なくとも毎月1回測定しなければならない旨が規定されている。よりよい特性評価を行うには、更に高い頻度(例えば、毎回の計測の都度)で配光むらの計測を行うことが望ましい。以下、この照射光の放射照度の配光むらを計測する手順について、図5に示すフローチャートに沿って説明する。例えば、ランプ10に対して電源部26から適宜設定された電圧が印加され、放射照度が1000±50(W/m2)に設定されているものとする。また、光学センサ28としては放射照度センサが用いられる。
制御部24のCPU51は、制御インタフェース55を介してセンサ移動機構22に制御信号を供給する。それにより、光学センサ28が光照射面21上の所定の複数の位置のいずれかに配置される(ステップS20)。ここで、ステップS20における光学センサ28の配置について説明する。光学センサ28は、光照射面21上において複数の位置のそれぞれに順次配置される。この光学センサ28が配置されるべき複数の位置は、光照射面21の全体に分散するように適宜設定される。上記のようにJISの規格に従う場合には、最低限、図6又は図7に示すような17点の位置に設定される。図6は光照射面21が円形である場合の17点の計測位置を示し、図7は光照射面が角形である場合の17点の計測位置を示している。ステップS20では、ステージ20の形状に対応させて、例えば図6又は図7に示す各計測点のうちのいずれか1つに光学センサ28が配置される。
次に、CPU51は、アナログ−デジタル変換器54を介して光学センサ28の検出信号を表すデジタル信号を取得する(ステップS21)。それにより、上記ステップ20において配置された位置における放射照度を表すデジタル信号が得られる。このデジタル信号は、例えばRAM53に一時的に格納される。
次に、CPU51は、予め定められた複数の位置のいずれについても放射照度のデジタル信号が得られ、計測が終了したかを判断し(ステップS22)、まだ計測が終了していない場合には(ステップS22:NO)、センサ移動機構22に制御信号を供給することによって、光学センサ28を次の位置へ移動させる(ステップS23)。その後上記ステップ21に戻り、CPU51は、当該次の位置における光学センサ28の検出信号を表すデジタル信号を取得し、それ以降の処理を継続する。また、CPU51は、予め定められた複数の位置のいずれについても放射照度のデジタル信号が得られた場合には(ステップS22:YES)、CPU51は放射照度の配光むらを計測する一連の処理を終了する。
以上の一連の処理により、光照射面21上における複数の位置における放射照度が得られ、光照射面21上における放射照度の配光むらを把握することが可能となる。より具体的には、配光むらは、複数の位置の放射照度の最大値をEmax、最小値をEminとすると次式のように表される。この演算は、CPU51により行うことができる。
放射照度の配光むら(%)=±(Emax−Emin)/(Emax+Emin)×100
このように、自動計測によって容易に配光むらを計測できるので、高い頻度(例えば、毎回の計測の都度)で配光むらを把握し、より良好に太陽電池の評価を行うことができる。
(3)放射照度時間変動率について
太陽電池の特性評価に関するJISによれば、ソーラーシミュレータの放射照度の時間変動率についても、少なくとも毎月1回測定しなければならない旨が規定されている。これについては、CPU51の制御により、上記したステップ21〜ステップ23(図5参照)の一連の処理を時間経過に対応づけて複数回行えばよい。それにより、時間経過と放射照度の配光むらとの関係(例えば、横軸を時間、縦軸を配光むらとした計測データやグラフ)が得られる。
(4)分光放射照度の測定について
太陽電池の特性評価に関するJISによれば、ソーラーシミュレータの分光放射照度は少なくとも毎月6ヶ月に1回測定しなければならない旨が規定されている。これについては、光学センサ28として分光照度センサを用い、上記(2)の放射照度の配光むらの計測と同様の手順で計測を行う。それにより、光照射面21上の複数の位置における分光放射照度が得られる。また、光学センサ28として分光照度センサを用い、上記(3)の放射照度時間変動率の計測と同様の手順で計測を行うことにより、光照射面21上での分光放射照度の時間変動率も得られる。
(5)ランプ位置の自動補正について
次に、上記(2)の放射照度の配光むらの計測手法を利用して、ランプ10の取り付け位置を自動的に補正する手順について、図8に示すフローチャートに沿って説明する。光学センサ28としては放射照度センサが用いられる。
制御部24のCPU51は、各部を制御し、光照射面21上の複数の位置のそれぞれに対応する放射照度を示す検出信号を取得する(ステップS30)。本ステップの詳細については上記した通りである(図5参照)。
次に、CPU51は、ステップS30において取得した検出信号に基づいて、放射照度のばらつき値を算出する(ステップS31)。ここで、「ばらつき値」としては、例えば取得した放射照度の最大値Emaxと最小値Eminとの差(Emax−Emin)を用いることができる。また、「ばらつき値」としては、上記した放射照度の配光むらの計算式に倣い、(Emax−Emin)/(Emax+Emin)を用いることもできる。もちろん、これに100を乗じた値(すなわち、配光むら)を用いてもよい。更に「ばらつき値」としては、各放射照度の値を変量として分散又は標準偏差を求め、それらの値を用いることもできる。
次に、CPU51は、ランプ10の特定方向の全可動範囲(X、Y、Z方向のいずれか)に対して放射照度のばらつき値が得られ、計測が終了したかを判断し(ステップS32)、まだ計測が終了していない場合には(ステップS32:NO)、三軸駆動機構14に制御信号を供給することによって、ランプ10の位置を変更する(ステップS33)。ランプ10の移動は、例えば、まずZ方向に関して行われる。これは、Z方向のランプ位置が放射照度のばらつきに影響を与える度合いがより高い傾向にあることに起因する。その後上記ステップ30に戻り、CPU51は、ステップS30以降の処理を継続する。
また、CPU51は、ランプ10の特定方向の全可動範囲(例えばZ方向)に対して放射照度のばらつき値が得られ、計測が終了した場合には(ステップS32:YES)、三軸駆動機構14に制御信号を供給することにより、放射照度のばらつき値が最小となるときの位置(Z方向の位置)にランプ10を配置させる(ステップS34)。
次に、CPU51は、X、Y、Z方向の各軸(三軸)の全てについての調整が終了したか否かを判断し(ステップS35)、終了していない場合には(ステップS35:NO)、上記ステップS30に戻り、以降の処理を継続する。例えば、Z方向についてのランプ10の位置調整が済んでいる場合には、引き続き、X方向、Y方向のそれぞれについてのランプ10の位置調整が行われる。
なお、上記の各動作、すなわち、放射照度設定、配光むら計測、放射照度時間変動率の計測、分光放射照度の計測、ランプ位置の自動補正のそれぞれにより得られるデータを制御部24からパーソナルコンピュータ2(図1参照)へ送信し、パーソナルコンピュータ2の画面上に、放射照度の配光むら等の数値データやこれをグラフにしたものを表示させることができる。また、上記した制御部24による制御内容の一部又は全部をパーソナルコンピュータ2側で行わせることもできる。
(5)太陽電池の評価システムについて
次に、上述した光源装置1を用いた太陽電池の評価システムの構成例について図9を参照しながら説明する。本例の太陽電池の評価システムは、上記の光源装置1及びパーソナルコンピュータ2と、光照射面21上に太陽電池4が載置された際に当該太陽電池4の電流−電圧特性を計測するI−Vカーブトレーサ(電圧−電流特性計測装置)3と、を含んで構成されている。パーソナルコンピュータ2は、光源装置1の制御部24およびI−Vカーブトレーサ3の双方と通信可能に接続される。光照射面21上に設置された太陽電池4のセル(またはモジュール)にはI−Vカーブトレーサ3が接続され、電流−電圧特性が測定される。このI−Vカーブトレーサ3によって測定された電流−電圧特性の計測データはパーソナルコンピュータ2へ送信される。それにより、I−Vカーブトレーサ3によって計測された電流−電圧特性の生データやこれをグラフ化したものをパーソナルコンピュータ2の画面上に表示させることができる。また、上記の各動作、すなわち、放射照度設定、配光むら計測、放射照度時間変動率の計測、分光放射照度の計測、ランプ位置の自動補正のそれぞれにより得られるデータは、制御部24からパーソナルコンピュータ2に送信される。それにより、放射照度の設定状態、配光むら及びその時間変動率、分光放射照度、ランプの自動補正の結果、などの各種情報を1台のパーソナルコンピュータ2で管理し、その内容を画面上に表示し、或いは必要に応じて更にそれらの情報を用いた各種分析を行うことができる。
以上のように、本実施形態によれば、光源装置の光照射面の配光むら(場所むら)や時間変動を自動的に測定できる。また、光源装置の移動時や経時的な振動などでランプの取り付け位置が微妙に変動しても、光軸を自動的に調整し、太陽電池セル面に均一な明るさの照射ができる。また、1台のパーソナルコンピュータを使用してI−Vカーブトレーサを用いた電流−電圧特性の測定結果や、照射面の配光むら(場所むら)や時間変動の測定、および分光特性の配光むら(場所むら)や時間変動の測定結果を取得し、その内容を表示することができる。これらにより、光源装置の光照射状態を把握し、調整する作業が非常に容易となる。
なお、本発明は上述した実施形態の内容にのみ限定されるものではなく、本発明の要旨の範囲内において種々に変形して実施することが可能である。例えば、上述した実施形態において説明した光学センサ、センサ移動機構、制御部を含んで光源調整装置を構成することもできる。更に、三軸駆動機構を含めてもよい。このような光源調整装置は、ランプの自動調整機構を有しない従来の光源装置に組み込んで用いることができる。
また、上述した実施形態では、センサ移動機構を用いて1つの光学センサを光照射面上の複数の位置に適宜配置していたが、予め複数の位置のそれぞれに光学センサを配置しておいてもよい。複数の光学センサを配置する場合の一例を図10に示す。図10では、円形の光照射面21上に複数の光学センサ28を配置した場合の平面図が示されている。この例では、上記したJISの規格に対応した17箇所(図6参照)にそれぞれ光学センサ28を配置した場合を示しているが、光学センサ28の配置はこれに限定されるものではなく適宜設定することができる。各光学センサ28の検出信号を上記の制御部24に取り込むことにより、上記実施形態の場合と同様に配光むらの評価などを行うことができる。
一実施形態の光源装置の構成を説明する模式図である。 センサ移動機構の構成例を示す図である。 制御部の構成例を示すブロック図である。 照射光の放射照度を規定値に設定する手順を示すフローチャートである。 照射光の放射照度の配光むらを計測する手順を示すフローチャートである。 光学センサの光照射面上における配置例を説明する図である。 光学センサの光照射面上における配置例を説明する図である。 ランプの取り付け位置を自動的に補正する手順について示すフローチャートである。 太陽電池の評価システムの構成例について示す図である。 予め複数の位置のそれぞれに光学センサを配置しておく場合の配置例を示す図である。
符号の説明
1…光源装置
2…パーソナルコンピュータ
3…I−Vカーブトレーサ
4…太陽電池
10…ランプ
12…集光ミラー
14…三軸駆動機構
16…インテグレーターレンズ
18…コリメーターレンズ
20…ステージ
21…光照射面
22…センサ移動機構
24…制御部
26…電源部
28…光学センサ
30…Y方向移動機構
32…X方向移動機構
51…CPU
52…ROM
53…RAM
54…アナログ−デジタル変換器
55…制御インタフェース
56…操作部
57…表示部
58…通信インタフェース

Claims (9)

  1. 光源装置の光照射状態の調整に用いられる光学調整装置であって、
    前記光源装置の光照射面上に配置される光学センサと、
    前記光学センサを、前記光照射面上で自在に移動させるセンサ移動機構と、
    前記センサ移動機構に制御信号を供給することによって前記光学センサを予め設定される複数の位置のいずれかに順次移動させ、当該複数の位置のそれぞれにおける前記光学センサの検出信号を取得する制御部と、
    を含む、光学調整装置。
  2. 光源装置の光照射状態の調整に用いられる光学調整装置であって、
    前記光学装置の光照射面上の複数の位置にそれぞれ配置される複数の光学センサと、
    前記複数の位置のそれぞれにおける前記光学センサの検出信号を取得する制御部と、
    を含む、光学調整装置。
  3. 前記制御部は、前記複数の位置のそれぞれにおける前記光学センサの検出信号を時間経過に対応付けて複数回取得する、請求項1又は2に記載の光学調整装置。
  4. 前記光学センサは、放射照度センサ又は分光放射センサである、
    請求項1〜3のいずれか1項に記載の光学調整装置。
  5. 前記光学センサは、放射照度センサであり、
    前記光源装置は、ランプと、前記ランプの位置を互いに直交する三方向について調整する位置調整機構と、を含み、
    前記制御部は、
    前記複数の位置のそれぞれに対応する前記検出信号を取得すること、
    前記検出信号に基づいて放射照度のばらつき値を算出すること、
    及び
    前記光源装置の前記位置調整機構に制御信号を供給することによって前記ランプの位置を変更させること、
    を複数回繰り返す、
    請求項1又は2に記載の光学調整装置。
  6. 前記制御部は、前記位置調整機構に制御信号を供給することにより前記放射照度のばらつき値が最小となるときの位置に前記ランプを配置させる、
    請求項5に記載の光学調整装置。
  7. 前記光学センサは、放射照度センサであり、
    前記光源装置は、ランプと、前記ランプに電力を供給する電源部と、を含み、
    前記制御部は、
    前記複数の位置の少なくとも1つに対応する前記検出信号を取得すること、
    前記検出信号に基づいて、放射照度が所定の基準値と一致するかを判断すること、
    及び
    前記放射照度が前記基準値と一致しない場合に、前記電源部に制御信号を供給することによって、前記ランプに供給される電力を増減すること、
    を複数回繰り返す、
    請求項1又は2に記載の光学調整装置。
  8. 請求項1〜7のいずれか1項に記載の光学調整装置と、
    集光ミラーと、
    前記集光ミラーの焦点近傍に配置されるランプと、
    前記ランプの位置を互いに直交する三方向について調整する位置調整機構と、
    前記集光ミラーによって集光された前記ランプの放射光を均一化し、所定の光照射面上に導く光学機構と、
    を含む、光源装置。
  9. 請求項8に記載の光源装置と、
    前記光照射面上に太陽電池が載置された際に当該太陽電池の電流−電圧特性を計測するI−Vカーブトレーサと、
    前記光学調整装置の前記制御部および前記I−Vカーブトレーサの双方と通信可能に接続されるコンピュータと、
    を含み、
    前記コンピュータが、前記光学調整装置から前記光学センサの検出信号を示すデータ及び前記太陽電池の電流−電圧特性を示すデータを取得し、当該各データ又はこれらに基づくグラフを表示することを特徴とする、太陽電池の特性計測システム。
JP2006206629A 2006-07-28 2006-07-28 光学調整装置、光源装置、太陽電池の特性計測システム Pending JP2008032549A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006206629A JP2008032549A (ja) 2006-07-28 2006-07-28 光学調整装置、光源装置、太陽電池の特性計測システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006206629A JP2008032549A (ja) 2006-07-28 2006-07-28 光学調整装置、光源装置、太陽電池の特性計測システム

Publications (1)

Publication Number Publication Date
JP2008032549A true JP2008032549A (ja) 2008-02-14

Family

ID=39122131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006206629A Pending JP2008032549A (ja) 2006-07-28 2006-07-28 光学調整装置、光源装置、太陽電池の特性計測システム

Country Status (1)

Country Link
JP (1) JP2008032549A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056381A (ja) * 2008-08-29 2010-03-11 Npc Inc ソーラシミュレータの放射照度の場所むら評価方法および評価装置
WO2010123189A1 (ko) * 2009-04-20 2010-10-28 한국표준과학연구원 영상소자를 이용한 태양전지 양자효율 균질도 검사 장치 및 검사 방법
JP2010251387A (ja) * 2009-04-13 2010-11-04 Ji Engineering:Kk ソーラシミュレータ
JP2010271685A (ja) * 2009-04-25 2010-12-02 National Institute Of Advanced Industrial Science & Technology 高均一照度が得られる照明装置及び照明方法
JP2010278123A (ja) * 2009-05-27 2010-12-09 Lasertec Corp 太陽電池効率測定装置、太陽電池評価装置
KR101049450B1 (ko) 2010-04-14 2011-07-15 한국표준과학연구원 광학 장치 및 그 보정 방법
JP2012078333A (ja) * 2010-09-07 2012-04-19 Peccell Technologies Inc 環境試験装置
CN102748724A (zh) * 2012-06-15 2012-10-24 中国科学院长春光学精密机械与物理研究所 一种太阳模拟器的支撑调整装置
CN101806431B (zh) * 2009-02-17 2012-10-31 总装备部工程设计研究总院 太阳辐射模拟系统的灯具三维调整机构
JP2013164918A (ja) * 2012-02-09 2013-08-22 Mitsubishi Electric Corp ソーラシミュレータ
JP6411683B1 (ja) * 2017-10-16 2018-10-24 株式会社デンケン 太陽電池検査装置及びカメラ付きソーラーシミュレータ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429780A (en) * 1987-07-24 1989-01-31 Nec Corp Optical semiconductor measuring instrument
JPH0483142A (ja) * 1990-07-25 1992-03-17 Matsushita Electric Ind Co Ltd 光源ユニット用照明特性評価装置
JP2004134748A (ja) * 2002-07-26 2004-04-30 Canon Inc 光電変換素子の測定方法および装置、光電変換素子の製造方法及び製造装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429780A (en) * 1987-07-24 1989-01-31 Nec Corp Optical semiconductor measuring instrument
JPH0483142A (ja) * 1990-07-25 1992-03-17 Matsushita Electric Ind Co Ltd 光源ユニット用照明特性評価装置
JP2004134748A (ja) * 2002-07-26 2004-04-30 Canon Inc 光電変換素子の測定方法および装置、光電変換素子の製造方法及び製造装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056381A (ja) * 2008-08-29 2010-03-11 Npc Inc ソーラシミュレータの放射照度の場所むら評価方法および評価装置
CN101806431B (zh) * 2009-02-17 2012-10-31 总装备部工程设计研究总院 太阳辐射模拟系统的灯具三维调整机构
JP2010251387A (ja) * 2009-04-13 2010-11-04 Ji Engineering:Kk ソーラシミュレータ
KR101121451B1 (ko) 2009-04-20 2012-03-15 한국표준과학연구원 영상소자를 이용한 태양전지 양자효율 균질도 검사 장치 및 검사 방법
WO2010123189A1 (ko) * 2009-04-20 2010-10-28 한국표준과학연구원 영상소자를 이용한 태양전지 양자효율 균질도 검사 장치 및 검사 방법
US8390309B2 (en) 2009-04-20 2013-03-05 Korea Research Institute Of Standards And Science Apparatus and method for inspecting homogeneity of solar cell quantum efficiency using imaging device
JP2010271685A (ja) * 2009-04-25 2010-12-02 National Institute Of Advanced Industrial Science & Technology 高均一照度が得られる照明装置及び照明方法
JP2010278123A (ja) * 2009-05-27 2010-12-09 Lasertec Corp 太陽電池効率測定装置、太陽電池評価装置
KR101049450B1 (ko) 2010-04-14 2011-07-15 한국표준과학연구원 광학 장치 및 그 보정 방법
JP2012078333A (ja) * 2010-09-07 2012-04-19 Peccell Technologies Inc 環境試験装置
JP2013164918A (ja) * 2012-02-09 2013-08-22 Mitsubishi Electric Corp ソーラシミュレータ
CN102748724A (zh) * 2012-06-15 2012-10-24 中国科学院长春光学精密机械与物理研究所 一种太阳模拟器的支撑调整装置
JP6411683B1 (ja) * 2017-10-16 2018-10-24 株式会社デンケン 太陽電池検査装置及びカメラ付きソーラーシミュレータ
JP2019075971A (ja) * 2017-10-16 2019-05-16 株式会社デンケン 太陽電池検査装置及びカメラ付きソーラーシミュレータ

Similar Documents

Publication Publication Date Title
JP2008032549A (ja) 光学調整装置、光源装置、太陽電池の特性計測システム
US7411408B2 (en) Measurement method using solar simulator
CN1651900A (zh) 具有全谱定标、监测和控制的加速老化测试设备
US8239165B1 (en) Ultra-fast determination of quantum efficiency of a solar cell
KR101121451B1 (ko) 영상소자를 이용한 태양전지 양자효율 균질도 검사 장치 및 검사 방법
TWI481136B (zh) 控制雷射源能量之照明裝置及方法
US9638603B2 (en) Inspecting device, drawing device and inspecting method
JP6244104B2 (ja) 画像測定装置の照明設定方法、装置及びブライトネスツール用コンピュータソフトウェア
JP4713268B2 (ja) 光の照射強度分布の測定方法および測定装置
US20170141726A1 (en) Compensation Technique for Spatial Non-Uniformities in Solar Simulator Systems
JP5761343B2 (ja) 分光感度測定装置、および、分光感度測定方法
JP5738210B2 (ja) ソーラシミュレータ
KR101298974B1 (ko) 광원 제어 및 영상 보정을 통한 영상 처리 장치 및 방법
JP2015159190A (ja) 太陽光発電診断システム
JP2010073863A (ja) 分光器の感度調整方法及び分光器
KR101049450B1 (ko) 광학 장치 및 그 보정 방법
JP5798004B2 (ja) 擬似太陽光照射装置および擬似太陽光照射装置における光源出力の調整方法
RU2476958C2 (ru) Способ определения вольтамперных характеристик солнечных элементов на симуляторе солнечного излучения
KR101010515B1 (ko) 태양전지의 광학특성 측정오차 보정 방법 및 장치
CN1125321A (zh) 智能光栅单色仪的波长校正装置及其方法
Watjanatepin et al. Experiment analysis of non-uniformity measurement by array detector scanning system
CN117653920B (zh) 一种稳定性好的美容用光谱仪系统及稳定方法
CN113252317B (zh) 一种极短光脉冲光效测试系统及方法
JP5772972B2 (ja) 太陽電池評価装置、および太陽電池評価方法
CN111964779B (zh) 一种dmd基于pwm调制的光学调制方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308