JP2008030092A - Laser beam machining apparatus and detection method of workpiece position - Google Patents

Laser beam machining apparatus and detection method of workpiece position Download PDF

Info

Publication number
JP2008030092A
JP2008030092A JP2006206067A JP2006206067A JP2008030092A JP 2008030092 A JP2008030092 A JP 2008030092A JP 2006206067 A JP2006206067 A JP 2006206067A JP 2006206067 A JP2006206067 A JP 2006206067A JP 2008030092 A JP2008030092 A JP 2008030092A
Authority
JP
Japan
Prior art keywords
laser beam
measurement
workpiece
processing
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006206067A
Other languages
Japanese (ja)
Other versions
JP5019507B2 (en
Inventor
Tsuneo Kurita
恒雄 栗田
Eikichi Kasashima
永吉 笠島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006206067A priority Critical patent/JP5019507B2/en
Publication of JP2008030092A publication Critical patent/JP2008030092A/en
Application granted granted Critical
Publication of JP5019507B2 publication Critical patent/JP5019507B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser beam machining apparatus capable of accurately aligning the focus of a machining laser beam with a workpiece, in a direction orthogonal to the optical axis of the machining laser beam. <P>SOLUTION: The laser beam machining apparatus 1 includes: a laser light source 3 that emits a machining laser beam for machining a workpiece 2 and a measuring laser beam which has a smaller output than the machining laser beam while emitting to the workpiece 2; a reflector plate 9 that is arranged at a position away from the focus F of the measuring laser beam in the Z direction relative to the laser light source 3 and that reflects the measuring laser beam; a transfer mechanism 10 that holds the workpiece 2 between the laser light source 3 and the reflector plate 9; and an imaging element 7 that receives the measuring laser beam reflected by the reflector plate 9. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、レーザ加工装置、および、レーザ加工装置における加工対象物の位置検出方法に関する。   The present invention relates to a laser processing apparatus and a method for detecting a position of a processing object in the laser processing apparatus.

従来から、加工対象物(ワーク)に対して加工用レーザ光で除去加工等の微細なレーザ加工を行うレーザ加工装置が利用されている。この種のレーザ加工装置として、加工用レーザ光を出射する加工用レーザ光源に加え、加工用レーザ光の焦点とワークとの位置合せを行うため、加工用レーザ光と波長の異なる計測用レーザ光を出射する計測用レーザ光源を有するレーザ加工装置が知られている(たとえば、特許文献1参照)。   Conventionally, a laser processing apparatus that performs fine laser processing such as removal processing with a processing laser beam on a processing target (workpiece) has been used. As this type of laser processing equipment, in addition to the processing laser light source that emits processing laser light, the processing laser light has a wavelength different from that of the processing laser light in order to align the focus of the processing laser light and the workpiece. A laser processing apparatus having a measurement laser light source that emits light is known (for example, see Patent Document 1).

特許文献1に記載のレーザ加工装置では、計測用レーザ光源から出射されワークで反射された計測用レーザ光は、CCDカメラに入射する。そして、CCDカメラでの撮影結果に基づいて、計測用レーザ光の焦点とワークとの位置合せが行われる。   In the laser processing apparatus described in Patent Document 1, measurement laser light emitted from a measurement laser light source and reflected by a workpiece is incident on a CCD camera. Based on the result of photographing with the CCD camera, the focus of the laser beam for measurement and the work are aligned.

特開2005−161387号公報Japanese Patent Laid-Open No. 2005-161387

しかしながら、特許文献1に記載のレーザ加工装置では、加工用レーザ光と計測用レーザ光とがそれぞれ異なる光源から出射されているため、ワークに照射されるレーザ光の光軸に直交する方向で、加工用レーザ光の焦点位置と計測用レーザ光の焦点位置とを一致させることは困難である。そのため、レーザ光の光軸に直交する方向において、計測用レーザ光の焦点の位置とワークとの位置合せが精度良く行われたとしても、加工用レーザ光の焦点と加工対象物との位置合せの精度が低下する。   However, in the laser processing apparatus described in Patent Document 1, since the processing laser light and the measurement laser light are emitted from different light sources, respectively, in a direction orthogonal to the optical axis of the laser light irradiated on the workpiece, It is difficult to make the focal position of the processing laser beam coincide with the focal position of the measurement laser beam. Therefore, even if the position of the focus of the laser beam for measurement and the workpiece is accurately aligned in the direction perpendicular to the optical axis of the laser beam, the position of the focus of the laser beam for processing and the workpiece is aligned. The accuracy of is reduced.

そこで、本発明の課題は、加工用レーザ光の光軸に直交する方向において、加工用レーザ光の焦点と加工対象物との位置合せを高精度で行うことが可能なレーザ加工装置を提供することにある。また、本発明の課題は、加工用レーザ光の光軸に直交する方向において、加工用レーザ光の焦点と加工対象物との位置合せを高精度で行うことが可能となる加工対象物の位置検出方法を提供することにある。   Accordingly, an object of the present invention is to provide a laser processing apparatus capable of highly accurately aligning the focal point of a processing laser beam and a processing object in a direction orthogonal to the optical axis of the processing laser beam. There is. In addition, an object of the present invention is to provide a position of a processing target that enables high-precision alignment of the focal point of the processing laser beam and the processing target in a direction orthogonal to the optical axis of the processing laser beam. It is to provide a detection method.

上記の課題を解決するため、本発明のレーザ加工装置は、加工対象物の加工を行うための加工用レーザ光と加工対象物へ照射されるとともに加工用レーザ光よりも出力の小さな計測用レーザ光とを出射するレーザ光出射手段と、レーザ光出射手段に対して、計測用レーザ光の光軸方向で計測用レーザ光の焦点よりも離れた位置に配置され、計測用レーザ光を反射する反射手段と、レーザ光出射手段と反射手段との間で加工対象物を保持する保持手段と、反射手段で反射された計測用レーザ光を受光する撮像手段とを備えることを特徴とする。   In order to solve the above-described problems, a laser processing apparatus according to the present invention includes a processing laser beam for processing a processing target and a measurement laser that irradiates the processing target and has a smaller output than the processing laser beam. The laser beam emitting means for emitting light, and the laser beam emitting means are arranged at positions away from the focal point of the measurement laser beam in the optical axis direction of the measurement laser beam, and reflect the measurement laser beam It is characterized by comprising a reflecting means, a holding means for holding the object to be processed between the laser light emitting means and the reflecting means, and an imaging means for receiving the measurement laser light reflected by the reflecting means.

本発明のレーザ加工装置は、レーザ光出射手段と反射手段との間で加工対象物を保持する保持手段と、計測用レーザ光を反射する反射手段で反射された計測用レーザ光を受光する撮像手段とを備えている。そのため、反射手段で反射された計測用レーザ光を用いて、計測用レーザ光の光軸に直交する方向(光軸直交方向)の加工対象物の端部を検出できる。したがって、光軸直交方向において、計測用レーザ光を用いて検出される計測用レーザ光の焦点の位置と、加工対象物の端部との距離の算出が可能になる。また、本発明のレーザ加工装置では、加工用レーザ光と計測用レーザ光とが共通のレーザ光出射手段から出射されている。そのため、加工用レーザ光の光軸に直交する方向(すなわち、光軸直交方向)において、加工用レーザ光の焦点の位置と計測用レーザ光の焦点の位置とを一致させることができる。したがって、算出された計測用レーザ光の焦点と加工対象物の端部との距離から、加工用レーザ光の焦点と加工対象物の端部との距離を精度良く求めることができる。その結果、光軸直交方向において、加工用レーザ光の焦点と加工対象物との位置合せを高精度で行うことが可能になる。   The laser processing apparatus of the present invention receives imaging laser light reflected by a holding means for holding a workpiece between a laser light emitting means and a reflecting means and a reflecting means for reflecting the measuring laser light. Means. Therefore, the measurement laser beam reflected by the reflecting means can be used to detect the end of the workpiece in the direction perpendicular to the optical axis of the measurement laser beam (optical axis orthogonal direction). Therefore, in the direction orthogonal to the optical axis, it is possible to calculate the distance between the position of the focus of the measurement laser beam detected using the measurement laser beam and the end of the workpiece. In the laser processing apparatus of the present invention, the processing laser light and the measurement laser light are emitted from a common laser light emitting means. Therefore, in the direction orthogonal to the optical axis of the processing laser light (that is, the direction orthogonal to the optical axis), the position of the focus of the processing laser light and the position of the focus of the measurement laser light can be matched. Therefore, the distance between the focal point of the processing laser beam and the end of the object to be processed can be accurately obtained from the calculated distance between the focal point of the measuring laser beam and the end of the object to be processed. As a result, in the direction orthogonal to the optical axis, it is possible to accurately align the focal point of the processing laser beam and the processing object.

ここで、加工対象物で反射された計測用レーザ光を用いて、光軸直交方向の加工対象物の端部を検出することも可能である。しかしながら、この場合には、光軸直交方向における加工対象物の端部と計測用レーザ光との位置合せが難しく、また、検出精度が低下する。本発明では、反射手段で反射された計測用レーザ光を用いて、光軸直交方向の加工対象物の端部を検出するため、容易にかつ精度良く加工対象物の端部を検出できる。   Here, it is also possible to detect the end of the workpiece in the direction orthogonal to the optical axis by using the measurement laser beam reflected by the workpiece. However, in this case, it is difficult to align the end of the workpiece and the measurement laser beam in the direction orthogonal to the optical axis, and the detection accuracy is reduced. In the present invention, since the end of the workpiece in the direction orthogonal to the optical axis is detected using the measurement laser beam reflected by the reflecting means, the end of the workpiece can be detected easily and accurately.

本発明において、反射手段は、計測用レーザ光を乱反射させる乱反射面を備えることが好ましい。このように構成すると、計測用レーザ光の光軸に対する反射手段の傾きを精度良く調整しなくても、撮像手段で加工対象物の端部を検出することが可能になる。そのため、加工対象物の端部の検出が容易になる。   In this invention, it is preferable that a reflection means is provided with the irregular reflection surface which irregularly reflects the measurement laser beam. If comprised in this way, it will become possible to detect the edge part of a process target object with an imaging means, without adjusting the inclination of a reflection means with respect to the optical axis of the laser beam for measurement accurately. Therefore, it becomes easy to detect the end of the workpiece.

また、上記の課題を解決するため、本発明は、加工用レーザ光を用いて加工対象物に加工を行うレーザ加工装置での加工対象物の位置検出方法において、加工用レーザ光および加工用レーザ光よりも出力の小さな計測用レーザ光を出射するレーザ光出射手段と、レーザ光出射手段に対して、計測用レーザ光の光軸方向で計測用レーザ光の焦点よりも離れた位置に配置され、計測用レーザ光を反射する反射手段との間に、かつ、光軸方向に直交する方向で焦点から外れた位置に加工対象物を配置する配置ステップと、計測用レーザ光を出射する出射ステップと、反射手段で反射された計測用レーザ光を受光して、加工対象物の光軸方向に直交する方向の端部を検出する端部検出ステップと、焦点と端部との距離を算出して、加工対象物の位置を検出する距離算出ステップとを備えることを特徴とする。   In order to solve the above problems, the present invention provides a processing laser beam and a processing laser in a method for detecting a position of a processing object in a laser processing apparatus that processes the processing object using the processing laser light. Laser light emitting means for emitting measurement laser light having a smaller output than the light, and the laser light emitting means are arranged at a position away from the focus of the measurement laser light in the optical axis direction of the measurement laser light. An arrangement step of disposing the processing object at a position out of focus in a direction orthogonal to the optical axis direction between the reflecting means for reflecting the measurement laser beam and an emission step of emitting the measurement laser beam And an end detection step for receiving the measurement laser beam reflected by the reflecting means and detecting an end in a direction orthogonal to the optical axis direction of the workpiece, and calculating a distance between the focus and the end. Position of the workpiece Characterized in that it comprises a distance calculation step of leaving.

本発明の加工対象物の位置検出方法では、端部検出ステップで、反射手段で反射された計測用レーザ光を受光して、加工対象物の光軸直交方向の端部を検出している。また、距離算出ステップで、計測用レーザ光の焦点と端部との距離を算出して、加工対象物の位置を検出している。また、本発明では、出射ステップで、加工用レーザ光を共通のレーザ光出射手段から計測用レーザ光を出射している。そのため、光軸直交方向において、加工用レーザ光の焦点の位置と計測用レーザ光の焦点の位置とを一致させることができる。したがって、計測用レーザ光の焦点と加工対象物の端部との距離から、加工用レーザ光の焦点と加工対象物の端部との距離を精度良く求めることができ、光軸直交方向において、加工用レーザ光の焦点と加工対象物との位置合せを高精度で行うことが可能になる。   In the processing object position detection method of the present invention, in the edge detection step, the measurement laser beam reflected by the reflecting means is received and the edge of the machining object in the direction perpendicular to the optical axis is detected. In the distance calculation step, the distance between the focal point of the measurement laser beam and the end is calculated to detect the position of the workpiece. In the present invention, the processing laser beam is emitted from the common laser beam emitting means in the emission step. Therefore, in the direction orthogonal to the optical axis, the position of the focus of the processing laser light and the position of the focus of the measurement laser light can be matched. Therefore, from the distance between the focus of the laser beam for measurement and the end of the workpiece, the distance between the focus of the laser beam for processing and the end of the workpiece can be accurately obtained. It becomes possible to align the focal point of the processing laser beam and the processing object with high accuracy.

本発明において、配置ステップの前に、光軸方向における焦点の位置と、加工対象物の位置との位置合せを行う位置合せステップを備えることが好ましい。このように構成すると、受光ステップにおいて、撮像手段によって、加工対象物の端部より鮮明に撮影できる。そのため、端部検出ステップにおいて、加工対象物の端部をより精度良く検出できる。   In the present invention, it is preferable that an alignment step of aligning the position of the focal point in the optical axis direction and the position of the workpiece is provided before the arrangement step. If comprised in this way, it can image | photograph clearly from the edge part of a process target object by an imaging means in a light reception step. Therefore, in the edge detection step, the edge of the workpiece can be detected with higher accuracy.

以上説明したように、本発明のレーザ加工装置では、加工用レーザ光の光軸に直交する方向において、加工用レーザ光の焦点と加工対象物との位置合せを高精度で行うことが可能になる。また、本発明の加工対象物の位置検出方法を用いると、加工用レーザ光の光軸に直交する方向において、加工用レーザ光の焦点と加工対象物との位置合せを高精度で行うことが可能になる。   As described above, with the laser processing apparatus of the present invention, it is possible to accurately align the focal point of the processing laser beam and the processing target in the direction orthogonal to the optical axis of the processing laser beam. Become. Further, by using the processing object position detection method of the present invention, it is possible to accurately align the processing laser beam with the processing object in the direction orthogonal to the optical axis of the processing laser light. It becomes possible.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(レーザ加工装置の概略構成)
図1は、本発明の実施の形態にかかるレーザ加工装置1の概略構成を模式的に示す図である。図2は、図1に示すワーク2がX方向で計測用レーザ光の焦点Fから外れた位置にあるときの状態を示す図である。
(Schematic configuration of laser processing equipment)
FIG. 1 is a diagram schematically showing a schematic configuration of a laser processing apparatus 1 according to an embodiment of the present invention. FIG. 2 is a diagram illustrating a state when the workpiece 2 illustrated in FIG. 1 is in a position deviated from the focus F of the measurement laser beam in the X direction.

本形態のレーザ加工装置1は、所定の加工対象物(ワーク)2に対して除去加工や接合加工等の微細なレーザ加工を行うレーザ微細加工装置である。特に、本形態のレーザ加工装置1は、卓上への設置が可能な軽量かつ小型の加工装置である。このレーザ加工装置1は、図1に示すように、ワーク2の加工を行うための加工用レーザ光および加工用レーザ光の焦点とワーク2との位置合せ等を行うための計測用レーザ光を出射するレーザ光出射手段としてのレーザ光源3と、レーザ光源3から出射された計測用レーザ光の出射光量を測定するための出射光量測定手段としての第1受光素子4と、ワーク2で反射された計測用レーザ光の反射光量を測定するための反射光量測定手段としての第2受光素子5および遮蔽部材6と、計測用レーザ光の反射光を用いてワーク2を撮影可能な撮像手段としての撮像素子7と、レーザ光源3から出射された加工用レーザ光や計測用レーザ光の光路を形成するための光学系8とを備えている。また、レーザ加工装置1は、加工用レーザ光および計測用レーザ光の光軸方向で、レーザ光源3に対して、ワーク2よりも離れた位置に配置され、計測用レーザ光を反射する反射手段としての反射板9と、ワーク2を移動可能に保持する保持手段としての移動機構10と、レーザ加工装置1の各種の制御を行う制御部11とを備えている。   The laser processing apparatus 1 of this embodiment is a laser micromachining apparatus that performs microscopic laser processing such as removal processing and bonding processing on a predetermined processing target (workpiece) 2. In particular, the laser processing apparatus 1 of the present embodiment is a lightweight and small processing apparatus that can be installed on a desktop. As shown in FIG. 1, the laser processing apparatus 1 includes a processing laser beam for processing the workpiece 2 and a measurement laser beam for aligning the focal point of the processing laser beam with the workpiece 2. A laser light source 3 serving as a laser beam emitting unit that emits light, a first light receiving element 4 serving as an emitted light amount measuring unit for measuring the amount of emitted laser light emitted from the laser light source 3, and the workpiece 2 are reflected. The second light receiving element 5 and the shielding member 6 as the reflected light amount measuring means for measuring the reflected light amount of the measurement laser light and the imaging means capable of photographing the workpiece 2 using the reflected light of the measurement laser light. An imaging device 7 and an optical system 8 for forming an optical path of processing laser light and measurement laser light emitted from the laser light source 3 are provided. Further, the laser processing apparatus 1 is disposed at a position away from the work 2 with respect to the laser light source 3 in the optical axis direction of the processing laser light and the measurement laser light, and reflects the measurement laser light. And a moving mechanism 10 as a holding means for movably holding the workpiece 2, and a control unit 11 that performs various controls of the laser processing apparatus 1.

なお、以下では、加工用レーザ光および計測用レーザ光をまとめて表す場合には「レーザ光」と表記する。また、以下では、図1の左右方向をX方向、紙面垂直方向をY方向、上下方向(すなわち、ワーク2に照射されるレーザ光の光軸方向)をZ方向と表記する。   Hereinafter, the processing laser beam and the measurement laser beam are collectively expressed as “laser beam”. In the following description, the left-right direction in FIG. 1 is referred to as the X direction, the vertical direction on the paper is referred to as the Y direction, and the up-down direction (that is, the optical axis direction of the laser light irradiated onto the workpiece 2).

光学系8は、凹レンズ14および凸レンズ15を有するビームエキスパンダー16と、凹レンズ14と凸レンズ15との間に配置された第1ビームサンプラー17と、撮像素子7と第1ビームサンプラー17との間に配置された第2ビームサンプラー18と、ワーク2の配置位置とビームエキスパンダー16との間に配置された対物レンズ19とを備えている。   The optical system 8 is disposed between a beam expander 16 having a concave lens 14 and a convex lens 15, a first beam sampler 17 disposed between the concave lens 14 and the convex lens 15, and an image sensor 7 and the first beam sampler 17. The second beam sampler 18 and an objective lens 19 disposed between the position where the workpiece 2 is disposed and the beam expander 16 are provided.

ビームエキスパンダー16では、凹レンズ14がレーザ光源3側に配置され、凸レンズ15が対物レンズ19側に配置されている。このビームエキスパンダー16は、レーザ光源3から出射されるレーザ光の径を拡大する。第1ビームサンプラー17は、レーザ光源3から出射され、凹レンズ14を透過したレーザ光の大半を凸レンズ15に向かって透過させるとともに、その一部を第1受光素子4に向かって反射する。また、第1ビームサンプラー17は、ワーク2や反射板9で反射された計測用レーザ光の一部を撮像素子7に向かって反射する。第2ビームサンプラー18は、第1ビームサンプラー17で反射され撮像素子7へ向かう計測用レーザ光の一部を第2受光素子5に向かって反射する。対物レンズ19は、凸レンズ15を透過したレーザ光をワーク2に集光する。   In the beam expander 16, the concave lens 14 is disposed on the laser light source 3 side, and the convex lens 15 is disposed on the objective lens 19 side. The beam expander 16 expands the diameter of the laser light emitted from the laser light source 3. The first beam sampler 17 transmits most of the laser light emitted from the laser light source 3 and transmitted through the concave lens 14 toward the convex lens 15 and reflects a part thereof toward the first light receiving element 4. The first beam sampler 17 reflects part of the measurement laser light reflected by the workpiece 2 and the reflection plate 9 toward the image sensor 7. The second beam sampler 18 reflects a part of the measurement laser light reflected by the first beam sampler 17 and directed toward the image sensor 7 toward the second light receiving element 5. The objective lens 19 condenses the laser light that has passed through the convex lens 15 on the workpiece 2.

レーザ光源3は、たとえばファイバーレーザであり、上述のように、加工用レーザ光と計測用レーザ光とを出力する。計測用レーザ光の出力は、加工用レーザ光の出力よりも非常に小さくなっている。また、本形態のレーザ光源3は、ワーク2の適切な加工を行うため、出力の安定した加工用レーザ光を出射する。その一方で、レーザ光源3の特性上、加工用レーザ光よりも出力の非常に小さな計測用レーザ光のレーザ光源3からの出力は安定せず、計測用レーザ光の出力は、経時的に変動する。なお、本形態では、加工用レーザ光の波長と計測用レーザ光の波長とがほぼ等しくなっており、加工用レーザ光の焦点位置と計測用レーザ光の焦点位置とはほぼ一致する。   The laser light source 3 is, for example, a fiber laser, and outputs the processing laser light and the measurement laser light as described above. The output of the measurement laser beam is much smaller than the output of the processing laser beam. Further, the laser light source 3 of the present embodiment emits a processing laser beam having a stable output in order to perform appropriate processing of the workpiece 2. On the other hand, due to the characteristics of the laser light source 3, the output from the laser light source 3 of the measurement laser light whose output is much smaller than that of the processing laser light is not stable, and the output of the measurement laser light varies with time. To do. In this embodiment, the wavelength of the processing laser light and the wavelength of the measurement laser light are substantially equal, and the focal position of the processing laser light and the focal position of the measurement laser light are substantially the same.

第1受光素子4および第2受光素子5は、フォトダイオードやフォトトランジスタ等の素子で構成されている。第1受光素子4は、その受光量を電気量に変換することで、レーザ光源3から出射された計測用レーザ光の出射光量を測定する。また、第2受光素子5は、その受光量を電気量に変換することで、ワーク2で反射された計測用レーザ光の反射光量を測定する。   The 1st light receiving element 4 and the 2nd light receiving element 5 are comprised by elements, such as a photodiode and a phototransistor. The first light receiving element 4 measures the amount of light emitted from the laser light for measurement emitted from the laser light source 3 by converting the amount of received light into an electric quantity. Further, the second light receiving element 5 measures the reflected light amount of the measurement laser light reflected by the work 2 by converting the received light amount into an electric amount.

遮蔽部材6には、第2ビームサンプラー18で反射された計測用レーザ光が通過する微小孔6aが形成されている。本形態では、ワーク2(具体的には、たとえば、図1のおけるワーク2の上面2a)が計測用レーザ光の焦点Fの位置にあるときに、ワーク2の反射光が結像する位置(合焦位置)が微小孔6aの形成位置となるように、遮蔽部材6が配置されている。すなわち、本形態の第2受光素子5は、出力が安定しにくい焦点外の余分な反射光を除去する共焦点効果を利用して、ワーク2で反射された計測用レーザ光の反射光量を測定する。   The shielding member 6 is formed with a minute hole 6a through which the measurement laser light reflected by the second beam sampler 18 passes. In this embodiment, when the workpiece 2 (specifically, for example, the upper surface 2a of the workpiece 2 in FIG. 1) is at the position of the focal point F of the measurement laser beam, the position at which the reflected light of the workpiece 2 forms an image ( The shielding member 6 is arranged so that the in-focus position becomes the formation position of the minute hole 6a. That is, the second light receiving element 5 of the present embodiment measures the amount of reflected light of the measurement laser light reflected by the workpiece 2 using a confocal effect that removes extra reflected light that is out of focus whose output is not stable. To do.

撮像素子7は、CCDやCMOS等のイメージセンサである。この撮像素子7は、ワーク2が計測用レーザ光の焦点Fの位置にあるときに、ワーク2の反射光が結像する位置が撮像素子7の受光面となるように配置されている。   The image sensor 7 is an image sensor such as a CCD or a CMOS. The image sensor 7 is arranged so that the position where the reflected light of the work 2 forms an image becomes the light receiving surface of the image sensor 7 when the work 2 is at the position of the focus F of the laser beam for measurement.

上述のように、反射板9は、レーザ光源3に対して、Z方向でワーク2よりも離れた位置に配置されている。すなわち、反射板9は、レーザ光源3に対して、Z方向で計測用レーザ光の焦点Fよりも離れた位置に配置される。また、反射板9は、図2に示すように、ワーク2が、Z方向に直交する方向で計測用レーザ光の焦点Fから外れた位置にあるときに、計測用レーザ光を反射する。この反射板9は、後述のように、ワーク2のX、Y方向(Z方向に直交する方向)の端部を検出するために用いられる。本形態の反射板9は、セラミック部材や金属部材で形成されている。また、反射板9の反射面(図1の上面)9aは、入射された計測用レーザ光を乱反射させる乱反射面(粗面)となっている。すなわち、反射面9aには、粗面加工が施されている。   As described above, the reflecting plate 9 is disposed at a position away from the workpiece 2 in the Z direction with respect to the laser light source 3. That is, the reflecting plate 9 is disposed at a position away from the focal point F of the measuring laser beam in the Z direction with respect to the laser light source 3. Further, as shown in FIG. 2, the reflector 9 reflects the measurement laser light when the workpiece 2 is at a position deviated from the focus F of the measurement laser light in a direction orthogonal to the Z direction. As will be described later, the reflecting plate 9 is used to detect the end of the work 2 in the X and Y directions (directions orthogonal to the Z direction). The reflection plate 9 of this embodiment is formed of a ceramic member or a metal member. Further, the reflection surface (upper surface in FIG. 1) 9a of the reflection plate 9 is an irregular reflection surface (rough surface) for irregularly reflecting incident measurement laser light. That is, the reflective surface 9a is roughened.

移動機構10は、ワーク2を保持する保持部21と、保持部21を駆動する駆動部22とを備え、Z方向における対物レンズ19と反射板9との間でワーク2を移動可能に保持している。駆動部22は、保持部21をX、Y、Z方向の3軸方向へ駆動する。   The moving mechanism 10 includes a holding unit 21 that holds the workpiece 2 and a drive unit 22 that drives the holding unit 21, and holds the workpiece 2 movably between the objective lens 19 and the reflection plate 9 in the Z direction. ing. The drive unit 22 drives the holding unit 21 in the three axial directions of the X, Y, and Z directions.

制御部11には、レーザ光源3と第1受光素子4と第2受光素子5と撮像素子7と移動機構10とが接続されている。制御部11は、上述のように、レーザ加工装置1の各種の制御を行う。たとえば、制御部11は、後述のように、第1受光素子4で測定された出射光量と第2受光素子5で測定された反射光量とに基づいて、計測用レーザ光の焦点FのZ方向位置を特定し、移動機構10を駆動させて焦点Fの位置までワーク2を移動する。   The control unit 11 is connected to the laser light source 3, the first light receiving element 4, the second light receiving element 5, the imaging element 7, and the moving mechanism 10. The control unit 11 performs various controls of the laser processing apparatus 1 as described above. For example, as will be described later, the control unit 11 performs the Z direction of the focal point F of the measurement laser beam based on the emitted light amount measured by the first light receiving element 4 and the reflected light amount measured by the second light receiving element 5. The position is specified, and the moving mechanism 10 is driven to move the work 2 to the position of the focal point F.

(計測用レーザ光の焦点のZ方向位置の検出原理)
図3は、図1に示すワーク2のZ方向の位置と、第2受光素子5で測定される反射光量との関係を示すグラフである。
(Principle of detection of Z direction position of focus of laser beam for measurement)
FIG. 3 is a graph showing the relationship between the position in the Z direction of the workpiece 2 shown in FIG. 1 and the amount of reflected light measured by the second light receiving element 5.

本形態では、第1受光素子4で測定された計測用レーザ光の出射光量と、第2受光素子5で測定された計測用レーザ光の反射光量とに基づいて、計測用レーザ光の焦点FのZ方向位置が検出される。以下、本形態の計測用レーザ光の焦点のZ方向位置の検出原理を説明する。   In this embodiment, the focal point F of the measurement laser light is based on the emitted light amount of the measurement laser light measured by the first light receiving element 4 and the reflected light amount of the measurement laser light measured by the second light receiving element 5. The position in the Z direction is detected. Hereinafter, the detection principle of the Z direction position of the focus of the measurement laser beam of this embodiment will be described.

レーザ光源3から出射される計測用レーザ光の出力が一定である場合には、第2受光素子5で測定される計測用レーザ光の反射光量と、ワーク2のZ方向位置との関係は、図3の実線で示すグラフGのように略正規分布状になる。すなわち、Z方向で、ワーク2が計測用レーザ光の焦点Fの位置にあるときには、第2受光素子5で測定される反射光量は極大値Lとなり、ワーク2が焦点Fから対物レンズ19側または反射板9側に向かって離れるにしたがって、第2受光素子5で測定される反射光量は小さくなる。   When the output of the measurement laser light emitted from the laser light source 3 is constant, the relationship between the reflected light amount of the measurement laser light measured by the second light receiving element 5 and the Z-direction position of the workpiece 2 is As shown by a graph G shown by a solid line in FIG. That is, when the workpiece 2 is in the position of the focus F of the measurement laser beam in the Z direction, the amount of reflected light measured by the second light receiving element 5 becomes the maximum value L, and the workpiece 2 moves from the focus F to the objective lens 19 side or As the distance from the reflecting plate 9 increases, the amount of reflected light measured by the second light receiving element 5 decreases.

したがって、計測用レーザ光の出力が一定である場合には、移動機構10でZ方向にワーク2を移動させながら、第2受光素子5で計測用レーザ光の反射光量を測定して、極大点Mを特定し、極大点Mに対応するワーク2のZ方向位置を測定することで、計測用レーザ光の焦点FのZ方向位置が検出される。   Therefore, when the output of the measurement laser beam is constant, the reflected light amount of the measurement laser beam is measured by the second light receiving element 5 while moving the workpiece 2 in the Z direction by the moving mechanism 10, and the maximum point is obtained. By specifying M and measuring the Z-direction position of the workpiece 2 corresponding to the maximum point M, the Z-direction position of the focal point F of the measurement laser beam is detected.

しかしながら、上述のように、本形態のレーザ光源3から出射される計測用レーザ光の出力は、経時的に変動する。そのため、第2受光素子5で測定される反射光量とワーク2のZ方向位置との関係は略正規分布状にはならず、たとえば、図3の二点鎖線で示すグラフG10のように変動する。したがって、第2受光素子5で測定される反射光量をそのまま用いて、計測用レーザ光の焦点FのZ方向位置を検出すると、計測用レーザ光の焦点FのZ方向位置の検出精度が低下する。   However, as described above, the output of the measurement laser light emitted from the laser light source 3 of this embodiment varies with time. Therefore, the relationship between the amount of reflected light measured by the second light receiving element 5 and the position of the workpiece 2 in the Z direction does not have a substantially normal distribution, and varies, for example, as shown by a graph G10 indicated by a two-dot chain line in FIG. . Therefore, if the Z-direction position of the focus F of the measurement laser beam is detected using the reflected light amount measured by the second light receiving element 5 as it is, the detection accuracy of the Z-direction position of the focus F of the measurement laser beam is lowered. .

そこで、本形態では、第1受光素子4で測定された計測用レーザ光の出射光量に基づいて、第2受光素子5で測定された反射光量を補正した補正光量が算出される。すなわち、第1受光素子4によって、計測用レーザ光の現状の出力を把握し、第2受光素子5で測定された反射光量から出力の変動分をキャンセルした補正光量が算出される。そして、この補正光量に基づいて計測用レーザ光の焦点FのZ方向位置が検出される。   Therefore, in the present embodiment, a corrected light amount obtained by correcting the reflected light amount measured by the second light receiving element 5 is calculated based on the emitted light amount of the measurement laser light measured by the first light receiving element 4. That is, the first light receiving element 4 grasps the current output of the measurement laser beam, and calculates a corrected light quantity that cancels the output variation from the reflected light quantity measured by the second light receiving element 5. Then, the Z direction position of the focal point F of the measurement laser beam is detected based on the correction light quantity.

具体的には、第1受光素子4で測定される出射光量と計測用レーザ光の出力との関係(第1受光素子4の特性)、および、第2受光素子5で測定される反射光量と計測用レーザ光の出力との関係(第2受光素子5の特性)を予め求め、これらの関係から計測用レーザ光の出力の変動分をキャンセルした補正光量が算出される。そして、ワーク2のZ方向位置との関係で、この補正光量が極大となる点を特定し、この極大点に対応するワーク2のZ方向位置を測定することで、計測用レーザ光の焦点FのZ方向位置が検出される。なお、本形態では、補正光量の算出は制御部11で行われる。また、計測用レーザ光の焦点Fの位置の検出も制御部11で行われている。   Specifically, the relationship between the emitted light amount measured by the first light receiving element 4 and the output of the measurement laser beam (characteristics of the first light receiving element 4), and the reflected light amount measured by the second light receiving element 5 A relationship with the output of the measurement laser beam (characteristics of the second light receiving element 5) is obtained in advance, and a corrected light amount that cancels the variation in the output of the measurement laser beam is calculated from these relationships. Then, a point at which the correction light quantity is maximized is specified in relation to the Z direction position of the work 2, and the position of the work 2 in the Z direction corresponding to the maximum point is measured. The position in the Z direction is detected. In the present embodiment, the correction light amount is calculated by the control unit 11. The control unit 11 also detects the position of the focal point F of the measurement laser beam.

(ワークのX、Y方向端部の検出原理)
図4は、図1に示す反射板9で計測用レーザ光が反射されたときに撮像素子7で撮影される映像の一例を示す図である。
(Principle of detection of X and Y direction end of work)
FIG. 4 is a diagram illustrating an example of an image captured by the image sensor 7 when the measurement laser light is reflected by the reflecting plate 9 illustrated in FIG. 1.

本形態では、反射板9で反射された計測用レーザ光を用いて、ワーク2のX、Y方向の端部が検出される。以下、直方体状のワーク2のX方向端部2b(図2参照)が検出される場合を例に、本形態のワーク2のX、Y方向端部の検出原理を説明する。   In this embodiment, the measurement laser light reflected by the reflecting plate 9 is used to detect the ends of the workpiece 2 in the X and Y directions. Hereinafter, the detection principle of the X and Y direction end portions of the workpiece 2 of this embodiment will be described by taking as an example the case where the X direction end portion 2b (see FIG. 2) of the rectangular parallelepiped workpiece 2 is detected.

ワーク2のX方向端部2bの検出前に、まず、上述の方法で計測用レーザ光の焦点FのZ方向位置が検出され、ワーク2と焦点Fとの位置合せが行われる。すなわち、図1に示すように、Z方向で、ワーク2の上面2aと焦点Fとの位置合せが行われる。この状態で、撮像素子7によって撮影された映像上に、焦点Fに対応する焦点対応点F1が設定される(図4参照)。その後、図2に示すように、移動機構10によってワーク2がX方向へ移動され、X方向で焦点Fから外れた位置に配置される。   Before detecting the X-direction end 2b of the workpiece 2, first, the Z-direction position of the focus F of the measurement laser beam is detected by the above-described method, and the workpiece 2 and the focus F are aligned. That is, as shown in FIG. 1, the upper surface 2a of the workpiece 2 and the focal point F are aligned in the Z direction. In this state, a focus corresponding point F1 corresponding to the focus F is set on the video imaged by the image sensor 7 (see FIG. 4). Thereafter, as shown in FIG. 2, the workpiece 2 is moved in the X direction by the moving mechanism 10 and is disposed at a position out of the focal point F in the X direction.

ワーク2がX方向で焦点Fから外れると、撮像素子7によってたとえば、図4に示す映像が撮影される。すなわち、反射板9で乱反射された計測用レーザ光の一部がワーク2によって遮られるため、撮像素子7によって撮影された映像上の、ワーク2に対応するワーク対応エリア21が暗くなり、その他のエリアは明るくなる。また、Z方向で、ワーク2の上面2aと焦点Fとの位置合せが行われているため、ワーク2のX方向端部2bに対応する端部対応線211は、撮像素子7によって撮影された映像上で明確に特定される。すなわち、ワーク2のX方向端部2bが検出される。なお、ワーク2のX方向端部2bをより精度良く検出するためには、撮像素子7の前に拡大光学系を配置することが好ましい。   When the work 2 deviates from the focus F in the X direction, for example, an image shown in FIG. That is, a part of the measurement laser light irregularly reflected by the reflecting plate 9 is blocked by the work 2, so that the work corresponding area 21 corresponding to the work 2 on the image taken by the image sensor 7 becomes dark, The area becomes brighter. Further, since the upper surface 2a of the work 2 and the focal point F are aligned in the Z direction, the end corresponding line 211 corresponding to the X direction end 2b of the work 2 was photographed by the image sensor 7. It is clearly identified on the video. That is, the X direction end 2b of the workpiece 2 is detected. In order to detect the X-direction end 2b of the work 2 with higher accuracy, it is preferable to dispose a magnifying optical system in front of the image sensor 7.

端部対応線211が明確に特定されると、端部対応線211と焦点対応点F1とのX方向の距離X1が算出される。すなわち、X方向端部2bと焦点Fとの距離が算出される。また、X方向端部2bとワーク2の加工部位と距離は予め、設計上でわかっているため、焦点Fとワーク2の加工部位までのX方向の距離が算出される。同様に、ワーク2のY方向の端部も検出され、焦点Fとワーク2の加工部位までのY方向の距離が算出される。また、焦点Fとワーク2の加工部位までの距離の算出は、制御部11で行われている。   When the end corresponding line 211 is clearly specified, a distance X1 in the X direction between the end corresponding line 211 and the focus corresponding point F1 is calculated. That is, the distance between the X direction end 2b and the focal point F is calculated. Further, since the distance between the X-direction end 2b and the machining part of the workpiece 2 is known in advance in design, the distance in the X direction from the focal point F to the machining part of the workpiece 2 is calculated. Similarly, the end of the workpiece 2 in the Y direction is also detected, and the distance in the Y direction from the focal point F to the machining site of the workpiece 2 is calculated. Further, the calculation of the distance from the focal point F to the processing part of the workpiece 2 is performed by the control unit 11.

(ワークの位置合せ方法)
図5は、図1に示すレーザ加工装置1でのワーク2の位置合せの手順を示すフローチャートである。以上のように構成されたレーザ加工装置1では、以下のように、ワーク2の位置合せを行う。
(Work positioning method)
FIG. 5 is a flowchart showing a procedure for aligning the workpiece 2 in the laser processing apparatus 1 shown in FIG. In the laser processing apparatus 1 configured as described above, the workpiece 2 is aligned as follows.

まず、移動機構10によって、ワーク2をX、Y方向へ移動させて、レーザ光源3から出射されるレーザ光が照射される位置にワーク2を配置する(ステップS1)。その後、レーザ光源3から計測用レーザ光を出射し(ステップS2)、第1受光素子4で出射光量を測定するとともに、第2受光素子5で反射光量を測定する(ステップS3)。   First, the workpiece 2 is moved in the X and Y directions by the moving mechanism 10, and the workpiece 2 is arranged at a position where the laser beam emitted from the laser light source 3 is irradiated (step S1). Thereafter, measurement laser light is emitted from the laser light source 3 (step S2), the emitted light quantity is measured by the first light receiving element 4, and the reflected light quantity is measured by the second light receiving element 5 (step S3).

その後、第1受光素子4で測定された出射光量と第2受光素子5で測定された反射光量とから、補正光量を算出して記憶する(ステップS4)。その後、ワーク2をZ方向の所定範囲に配置して、各配置位置で出射光量および反射光量を測定したか否かを判断する(ステップS5)。具体的には、ステップS5では、Z方向で計測用レーザ光の焦点Fの位置を含む所定範囲にワーク2を配置して、各配置位置で出射光量および反射光量を測定したか否かを判断する。所定範囲で測定が行われていない場合には、ステップS3へ戻る。   Thereafter, a corrected light amount is calculated and stored from the emitted light amount measured by the first light receiving element 4 and the reflected light amount measured by the second light receiving element 5 (step S4). Thereafter, the work 2 is arranged in a predetermined range in the Z direction, and it is determined whether or not the emitted light quantity and the reflected light quantity are measured at each arrangement position (step S5). Specifically, in step S5, it is determined whether or not the work 2 is arranged in a predetermined range including the position of the focal point F of the measurement laser beam in the Z direction and the emitted light quantity and reflected light quantity are measured at each arrangement position. To do. When the measurement is not performed within the predetermined range, the process returns to step S3.

一方、所定範囲で出射光量および反射光量を測定している場合には、ステップS4で算出、記憶された補正光量から計測用レーザ光の焦点FのZ方向位置を検出する(ステップS7)。具体的には、ワーク2の各位置に対応する補正光量から近似曲線を作成し、ワーク2のZ方向位置との関係で補正光量が極大となる点を特定して、焦点FのZ方向位置を検出する。   On the other hand, when the emitted light quantity and the reflected light quantity are measured within a predetermined range, the Z-direction position of the focus F of the measurement laser beam is detected from the corrected light quantity calculated and stored in step S4 (step S7). Specifically, an approximate curve is created from the correction light quantity corresponding to each position of the work 2, the point where the correction light quantity is maximized in relation to the Z direction position of the work 2 is specified, and the position of the focus F in the Z direction Is detected.

計測用レーザ光の焦点FのZ方向位置を検出すると、移動機構10でワーク2をZ方向へ移動させ、Z方向で、検出された焦点Fとワーク2との位置合せを行う(ステップS8)。その後、移動機構10でワーク2をX、Y方向へ移動させ、X、Y方向で焦点Fから外れた位置にワーク2を配置する(ステップS9)。この状態で、反射板9からの反射光を用いて、撮像素子7によって、ワーク2の端部を検出する(ステップS10)。その後、ワーク2の端部と焦点Fとの距離を算出するとともに、ワーク2の加工部位と焦点Fとの距離を算出して、焦点Fに対するワーク2の位置を検出する(ステップS11)。そして、移動機構10によって、X、Y方向で加工部位と焦点Fとの位置合せを行い(ステップS12)、ワーク2の位置合せが終了する。また、ワーク2の位置合せ後には、レーザ光源3から加工用レーザ光を出射してワーク2のレーザ加工を行う。   When the Z direction position of the focus F of the measurement laser beam is detected, the moving mechanism 10 moves the work 2 in the Z direction, and the detected focus F and the work 2 are aligned in the Z direction (step S8). . Thereafter, the workpiece 2 is moved in the X and Y directions by the moving mechanism 10, and the workpiece 2 is arranged at a position out of the focal point F in the X and Y directions (step S9). In this state, the edge of the workpiece 2 is detected by the image sensor 7 using the reflected light from the reflecting plate 9 (step S10). Thereafter, the distance between the end portion of the workpiece 2 and the focal point F is calculated, and the distance between the processed part of the workpiece 2 and the focal point F is calculated, and the position of the workpiece 2 with respect to the focal point F is detected (step S11). Then, the processing mechanism and the focus F are aligned in the X and Y directions by the moving mechanism 10 (step S12), and the alignment of the workpiece 2 is completed. Further, after the workpiece 2 is aligned, a laser beam for processing is emitted from the laser light source 3 to perform laser processing on the workpiece 2.

なお、本形態では、ステップS9は、レーザ光源3と反射板9との間に、かつ、X、Y方向で、焦点Fから外れた位置にワークを配置ステップであり、ステップS2は、計測用レーザ光を出射する出射ステップであり、ステップS10は、反射板9で反射された計測用レーザ光を撮像素子7が受光して、X、Y方向の端部を検出する端部検出ステップであり、ステップS11は、ワーク2の端部と焦点Fとの距離を算出して、ワーク2の位置を検出する距離算出ステップである。また、本形態では、ステップS3〜S8は、配置ステップであるステップS9の前に、Z方向における焦点Fの位置とワーク2の位置との位置合せを行う位置合せステップである。   In this embodiment, step S9 is a step of placing a workpiece between the laser light source 3 and the reflector 9 in the X and Y directions at a position deviating from the focus F, and step S2 is for measurement. This is an emission step for emitting laser light, and step S10 is an edge detection step in which the imaging element 7 receives the measurement laser light reflected by the reflecting plate 9 and detects the edges in the X and Y directions. Step S11 is a distance calculation step for detecting the position of the workpiece 2 by calculating the distance between the end portion of the workpiece 2 and the focal point F. In the present embodiment, steps S3 to S8 are alignment steps in which the position of the focal point F and the position of the work 2 in the Z direction are aligned before step S9, which is an arrangement step.

(本形態の主な効果)
以上説明したように、本形態では、反射板9で反射された計測用レーザ光を撮像素子7で受光して、ワーク2のX、Y方向の端部を検出している。また、計測用レーザ光の焦点Fとワーク2の端部との距離を算出して、ワーク2の焦点Fに対する位置を検出している。また、本形態では、波長がほぼ等しい加工用レーザ光と計測用レーザ光とが共通のレーザ光源3から出射されている。そのため、加工用レーザ光の焦点と計測用レーザ光の焦点Fとがほぼ一致する。すなわち、X、Y方向で加工用レーザ光の焦点と計測用レーザ光の焦点Fとがほぼ一致する。したがって、計測用レーザ光の焦点Fとワーク2の端部との距離から、加工用レーザ光の焦点とワーク2の端部との距離を精度良く求めることができ、X、Y方向において、加工用レーザ光の焦点とワーク2との位置合せを高精度で行うことが可能になる。
(Main effects of this form)
As described above, in the present embodiment, the measurement laser light reflected by the reflecting plate 9 is received by the image sensor 7 and the ends of the workpiece 2 in the X and Y directions are detected. Further, the distance between the focus F of the measurement laser beam and the end of the work 2 is calculated, and the position of the work 2 with respect to the focus F is detected. In this embodiment, the processing laser light and the measurement laser light having substantially the same wavelength are emitted from the common laser light source 3. For this reason, the focal point of the processing laser beam and the focal point F of the measuring laser beam substantially coincide. That is, the focal point of the processing laser beam and the focal point F of the measuring laser beam substantially coincide with each other in the X and Y directions. Therefore, the distance between the focal point of the processing laser beam and the end of the workpiece 2 can be obtained with high precision from the distance between the focal point F of the measuring laser beam and the end of the workpiece 2, and machining can be performed in the X and Y directions. It becomes possible to align the focal point of the laser beam for use with the workpiece 2 with high accuracy.

特に、本形態では、Z方向における計測用レーザ光の焦点Fの位置と、ワーク2の位置との位置合せを行った後に、反射板9で反射された計測用レーザ光を用いて、ワーク2のX、Y方向の端部を検出している。そのため、撮像素子7によって、ワーク2の端部より鮮明に撮影でき、その結果、ワーク2の端部をより精度良く検出できる。   In particular, in the present embodiment, after the position of the focus F of the measurement laser light in the Z direction and the position of the work 2 are aligned, the work 2 is reflected using the measurement laser light reflected by the reflecting plate 9. The ends in the X and Y directions are detected. Therefore, the image pickup device 7 can capture a clear image from the end portion of the work 2, and as a result, the end portion of the work 2 can be detected with higher accuracy.

本形態では、反射板9の反射面9aは、計測用レーザ光を乱反射させる乱反射面となっている。そのため、計測用レーザ光の光軸に対する反射板9の傾きを精度良く調整しなくても、撮像素子7で容易にワーク2の端部を検出できる。   In this embodiment, the reflection surface 9a of the reflection plate 9 is an irregular reflection surface that irregularly reflects the measurement laser beam. Therefore, the end of the workpiece 2 can be easily detected by the image sensor 7 without adjusting the inclination of the reflecting plate 9 with respect to the optical axis of the measurement laser light with high accuracy.

(他の実施の形態)
上述した形態では、ワーク2で反射された計測用レーザ光の反射光量は、第2受光素子5で測定されているが、計測用レーザ光の反射光量は、撮像素子7で測定されても良い。また、計測用レーザ光の反射光量は、第2受光素子5と撮像素子7との両者で測定されても良い。ここで、撮像素子7に入射する反射光は、図6の実線で示すように、反射光の中心部が一番明るく、中心部から離れるにしたがって次第に暗くなる。そして、撮像素子7で撮影される反射光の映像において、所定の閾値t以上の明るさを有する領域が反射光のスポットとして特定され、特定されたスポットの明るさの総和が撮像素子7で測定される計測用レーザ光の反射光量となる。また、第2受光素子5で反射光量が測定される場合と同様に、移動機構10でZ方向にワーク2を移動させながら、撮像素子7で計測用レーザ光の反射光量を測定して、ワーク2のZ方向位置との関係で、反射光量の極大点を特定することで、計測用レーザ光の焦点FのZ方向位置の検出が可能である。
(Other embodiments)
In the embodiment described above, the reflected light amount of the measurement laser light reflected by the workpiece 2 is measured by the second light receiving element 5, but the reflected light amount of the measurement laser light may be measured by the image sensor 7. . Further, the amount of reflected laser light for measurement may be measured by both the second light receiving element 5 and the image sensor 7. Here, as shown by the solid line in FIG. 6, the reflected light incident on the image sensor 7 is brightest at the center of the reflected light and gradually becomes darker as the distance from the center increases. Then, in the reflected light image captured by the image sensor 7, an area having a brightness equal to or higher than a predetermined threshold t is specified as a spot of the reflected light, and the total brightness of the specified spots is measured by the image sensor 7. The amount of reflected laser light for measurement is reflected. Similarly to the case where the reflected light amount is measured by the second light receiving element 5, the reflected light amount of the measurement laser beam is measured by the imaging element 7 while the workpiece 2 is moved in the Z direction by the moving mechanism 10, and the workpiece is measured. The position of the focal point F of the measurement laser beam can be detected by specifying the maximum point of the reflected light quantity in relation to the position of 2 in the Z direction.

この場合にも、計測用レーザ光の出力が経時的に変動すると、ワーク2のZ方向の位置が一定であっても、撮像素子7で測定される反射光量は変動する。たとえば、図6の二点鎖線で示すように、計測用レーザ光の出力が低下すると、撮像素子7に入射する反射光の明るさも低下して、スポットが小さくなり、その結果、測定される反射光量も低下する。そのため、上述した形態と同様に、第1受光素子4での測定結果から、出射光量の変動を考慮して撮像素子7で測定される反射光量を補正することで、計測用レーザ光の焦点FのZ方向位置を高精度で検出できる。   Also in this case, when the output of the measurement laser light varies with time, even if the position of the workpiece 2 in the Z direction is constant, the amount of reflected light measured by the image sensor 7 varies. For example, as indicated by a two-dot chain line in FIG. 6, when the output of the measurement laser light is reduced, the brightness of the reflected light incident on the image sensor 7 is also reduced, resulting in a smaller spot, and as a result, the reflected reflection measured. The amount of light also decreases. Therefore, similarly to the above-described embodiment, the focus F of the measurement laser beam is corrected by correcting the reflected light amount measured by the imaging device 7 in consideration of the variation of the emitted light amount from the measurement result of the first light receiving element 4. Can be detected with high accuracy.

なお、撮像素子7のみで反射光量を測定する場合には、図7に示すように、第2受光素子5、遮蔽部材6および第2ビームサンプラー18が不要となるため、レーザ加工装置1の構成を簡素化できる。また、図7に示すように、レーザ加工装置1は、必ずしも、第1受光素子4を備えていなくても良い。すなわち、第1受光素子4を備えていないレーザ加工装置1であっても、X、Y方向において、加工用レーザ光の焦点とワーク2との位置合せを高精度で行うことが可能である。   In the case where the amount of reflected light is measured using only the image sensor 7, the second light receiving element 5, the shielding member 6, and the second beam sampler 18 are not required as shown in FIG. Can be simplified. Further, as shown in FIG. 7, the laser processing apparatus 1 does not necessarily include the first light receiving element 4. That is, even in the laser processing apparatus 1 that does not include the first light receiving element 4, it is possible to accurately align the focal point of the processing laser beam and the workpiece 2 in the X and Y directions.

上述した形態では、反射板9の反射面9aは、乱反射面となっている。この他にもたとえば、反射面9aは鏡面であっても良い。この場合には、端部対応線211が撮像素子7によって撮影された映像上に現れるように、反射面9aの傾きを調整すれば良い。   In the embodiment described above, the reflection surface 9a of the reflection plate 9 is a diffuse reflection surface. In addition, for example, the reflecting surface 9a may be a mirror surface. In this case, the inclination of the reflecting surface 9a may be adjusted so that the end corresponding line 211 appears on the video imaged by the image sensor 7.

なお、加工用レーザ光の出力が非常に大きく、第1ビームサンプラー17で反射された加工用レーザ光によって、第1受光素子4が破壊されるおそれがある場合、あるいは、ワーク2等で反射された加工用レーザ光によって、第2受光素子5や撮像素子7が破壊されるおそれがある場合には、第1ビームサンプラー17と第1受光素子4との間や、第1ビームサンプラー17と第2ビームサンプラー18との間に、シャッタ、減光用フィルムあるいは、減光を目的としたビームサンプラーを配置することが好ましい。   Note that the output of the processing laser light is very large and the first light receiving element 4 may be destroyed by the processing laser light reflected by the first beam sampler 17, or is reflected by the workpiece 2 or the like. When there is a possibility that the second light receiving element 5 or the image pickup element 7 may be destroyed by the processing laser light, the space between the first beam sampler 17 and the first light receiving element 4, or between the first beam sampler 17 and the first light receiving element 4. A shutter, a light reducing film, or a beam sampler for the purpose of light reduction is preferably disposed between the two beam sampler 18.

本発明の実施の形態のレーザ加工装置の概略構成を模式的に示す図。The figure which shows typically schematic structure of the laser processing apparatus of embodiment of this invention. 図1に示すワークがX方向で計測用レーザ光の焦点から外れた位置にあるときの状態を示す図。The figure which shows a state when the workpiece | work shown in FIG. 1 exists in the position which remove | deviated from the focus of the laser beam for a measurement in a X direction. 図1に示すワークのZ方向の位置と、第2受光素子で測定される反射光量との関係を示すグラフ。The graph which shows the relationship between the position of the Z direction of the workpiece | work shown in FIG. 1, and the reflected light quantity measured with a 2nd light receiving element. 図1に示す反射板で計測用レーザ光が反射されたときに撮像素子で撮影される映像の一例を示す図。The figure which shows an example of the image | video image | photographed with an image pick-up element, when the measurement laser beam is reflected by the reflecting plate shown in FIG. 図1に示すレーザ加工装置でのワークの位置合せの手順を示すフローチャート。The flowchart which shows the procedure of the position alignment of the workpiece | work in the laser processing apparatus shown in FIG. 図1に示すワークで反射された反射光の明るさと反射光の中心部からの距離との関係を示す図。The figure which shows the relationship between the brightness from the center of the reflected light and the reflected light reflected by the workpiece | work shown in FIG. 本発明の他の形態にかかるレーザ加工装置の概略構成を模式的に示す図。The figure which shows typically schematic structure of the laser processing apparatus concerning the other form of this invention.

符号の説明Explanation of symbols

1 レーザ加工装置
2 ワーク(加工対象物)
3 レーザ光源(レーザ光出射手段)
7 撮像素子(撮像手段)
9 反射板(反射手段)
9a 反射面(乱反射面)
10 移動機構(保持手段)
F 焦点
S2 出射ステップ
S3〜S8 位置合せステップ
S9 配置ステップ
S10 端部検出ステップ
S11 距離算出ステップ
1 Laser processing equipment 2 Workpiece (object to be processed)
3 Laser light source (Laser light emitting means)
7 Image sensor (imaging means)
9 Reflector (reflecting means)
9a Reflecting surface (diffuse reflecting surface)
10 Movement mechanism (holding means)
F focus S2 emission step S3 to S8 alignment step S9 placement step S10 edge detection step S11 distance calculation step

Claims (4)

加工対象物の加工を行うための加工用レーザ光と上記加工対象物へ照射されるとともに上記加工用レーザ光よりも出力の小さな計測用レーザ光とを出射するレーザ光出射手段と、上記レーザ光出射手段に対して、上記計測用レーザ光の光軸方向で上記計測用レーザ光の焦点よりも離れた位置に配置され、上記計測用レーザ光を反射する反射手段と、上記レーザ光出射手段と上記反射手段との間で上記加工対象物を保持する保持手段と、上記反射手段で反射された上記計測用レーザ光を受光する撮像手段とを備えることを特徴とするレーザ加工装置。   Laser beam emitting means for emitting a processing laser beam for processing a workpiece and a measurement laser beam that is irradiated onto the workpiece and has a smaller output than the processing laser beam, and the laser beam Reflecting means for reflecting the measurement laser light, disposed at a position away from the focus of the measurement laser light in the optical axis direction of the measurement laser light with respect to the emission means, and the laser light emission means, A laser processing apparatus comprising: a holding unit that holds the object to be processed with the reflecting unit; and an imaging unit that receives the measurement laser light reflected by the reflecting unit. 前記反射手段は、前記計測用レーザ光を乱反射させる乱反射面を備えることを特徴とする請求項1記載のレーザ加工装置。   The laser processing apparatus according to claim 1, wherein the reflection unit includes an irregular reflection surface that irregularly reflects the measurement laser beam. 加工用レーザ光を用いて加工対象物に加工を行うレーザ加工装置での加工対象物の位置検出方法において、
上記加工用レーザ光および上記加工用レーザ光よりも出力の小さな計測用レーザ光を出射するレーザ光出射手段と、上記レーザ光出射手段に対して、上記計測用レーザ光の光軸方向で上記計測用レーザ光の焦点よりも離れた位置に配置され、上記計測用レーザ光を反射する反射手段との間に、かつ、上記光軸方向に直交する方向で上記焦点から外れた位置に上記加工対象物を配置する配置ステップと、
上記計測用レーザ光を出射する出射ステップと、
上記反射手段で反射された上記計測用レーザ光を受光して、上記加工対象物の上記光軸方向に直交する方向の端部を検出する端部検出ステップと、
上記焦点と上記端部との距離を算出して、上記加工対象物の位置を検出する距離算出ステップとを備えることを特徴とする加工対象物の位置検出方法。
In a method for detecting a position of a processing object in a laser processing apparatus that processes the processing object using a processing laser beam,
Laser light emitting means for emitting the processing laser light and measurement laser light having a smaller output than the processing laser light, and the measurement in the optical axis direction of the measurement laser light with respect to the laser light emitting means The processing object is disposed at a position away from the focal point of the laser beam for measurement and is reflected from the reflection means for reflecting the measurement laser beam and at a position off the focus in a direction perpendicular to the optical axis direction. A placement step for placing objects;
An emission step of emitting the measurement laser beam;
An end detection step of receiving the measurement laser beam reflected by the reflection means and detecting an end of the workpiece in a direction orthogonal to the optical axis direction;
A distance detection step of calculating a distance between the focal point and the end portion, and detecting a position of the processing object.
前記配置ステップの前に、前記光軸方向における前記焦点の位置と、前記加工対象物の位置との位置合せを行う位置合せステップを備えることを特徴とする請求項3記載の加工対象物の位置検出方法。   The position of the processing object according to claim 3, further comprising an alignment step of aligning the position of the focal point in the optical axis direction and the position of the processing object before the arranging step. Detection method.
JP2006206067A 2006-07-28 2006-07-28 Laser processing apparatus and position detection method of workpiece Active JP5019507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006206067A JP5019507B2 (en) 2006-07-28 2006-07-28 Laser processing apparatus and position detection method of workpiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006206067A JP5019507B2 (en) 2006-07-28 2006-07-28 Laser processing apparatus and position detection method of workpiece

Publications (2)

Publication Number Publication Date
JP2008030092A true JP2008030092A (en) 2008-02-14
JP5019507B2 JP5019507B2 (en) 2012-09-05

Family

ID=39120044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006206067A Active JP5019507B2 (en) 2006-07-28 2006-07-28 Laser processing apparatus and position detection method of workpiece

Country Status (1)

Country Link
JP (1) JP5019507B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011104630A (en) * 2009-11-18 2011-06-02 Pulstec Industrial Co Ltd Laser beam machining apparatus
JP2012091186A (en) * 2010-10-25 2012-05-17 Pulstec Industrial Co Ltd Laser beam machining device and laser irradiation position control method of laser beam machining device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08118055A (en) * 1994-10-21 1996-05-14 Shinozaki Seisakusho:Kk Coaxial observation device in laser machining
JPH115185A (en) * 1997-06-11 1999-01-12 Nikon Corp Laser processing device
JP2005161387A (en) * 2003-12-05 2005-06-23 Nissan Motor Co Ltd Laser beam machining apparatus and method
JP2005334928A (en) * 2004-05-26 2005-12-08 Yamazaki Mazak Corp Focus adjusting apparatus in laser beam machine
JP2008032524A (en) * 2006-07-28 2008-02-14 National Institute Of Advanced Industrial & Technology Laser beam machining device, and focal point detection method of laser light for measurement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08118055A (en) * 1994-10-21 1996-05-14 Shinozaki Seisakusho:Kk Coaxial observation device in laser machining
JPH115185A (en) * 1997-06-11 1999-01-12 Nikon Corp Laser processing device
JP2005161387A (en) * 2003-12-05 2005-06-23 Nissan Motor Co Ltd Laser beam machining apparatus and method
JP2005334928A (en) * 2004-05-26 2005-12-08 Yamazaki Mazak Corp Focus adjusting apparatus in laser beam machine
JP2008032524A (en) * 2006-07-28 2008-02-14 National Institute Of Advanced Industrial & Technology Laser beam machining device, and focal point detection method of laser light for measurement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011104630A (en) * 2009-11-18 2011-06-02 Pulstec Industrial Co Ltd Laser beam machining apparatus
JP2012091186A (en) * 2010-10-25 2012-05-17 Pulstec Industrial Co Ltd Laser beam machining device and laser irradiation position control method of laser beam machining device

Also Published As

Publication number Publication date
JP5019507B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
US9492889B2 (en) Laser processing machine
EP2789968A1 (en) Shape-measuring device
US10175041B2 (en) Measuring head and eccentricity measuring device including the same
JP2017049087A5 (en)
JP4751156B2 (en) Autocollimator and angle measuring device using the same
JP5019507B2 (en) Laser processing apparatus and position detection method of workpiece
JP2006317428A (en) Face position detector
JP3794670B2 (en) Microscope autofocus method and apparatus
JPH1123952A (en) Automatic focusing device and laser beam machining device using the same
JP2008032524A (en) Laser beam machining device, and focal point detection method of laser light for measurement
JP5142252B2 (en) Laser processing equipment
JP2005308960A (en) Imaging apparatus provided with automatic focusing device
JP2004102032A (en) Scanning type confocal microscope system
JP5142916B2 (en) Laser processing method and laser processing apparatus
JPH10209502A (en) Apparatus and method for adjusting optical axis
KR101138647B1 (en) High speed substrate inspection apparatus and method using the same
KR101138648B1 (en) High speed substrate inspection apparatus and method using the same
JP4248536B2 (en) Measuring method and apparatus for mounting position of pixel surface and mat surface in single lens reflex digital camera
JP2004361581A (en) Method and device of automatic focus
JP4611174B2 (en) Image sensor position measuring apparatus and image sensor position measuring method
JP4710068B2 (en) Focus adjustment mechanism, inspection apparatus, and focus adjustment method
JP2003232610A (en) Method of measuring micro displacement
JP6444029B2 (en) Detection device and imaging device including the same
KR20140087244A (en) High Speed Substrate Inspection Apparatus And Method Using The Same
KR20210058657A (en) Image capturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120608

R150 Certificate of patent or registration of utility model

Ref document number: 5019507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250