JP2006317428A - Face position detector - Google Patents

Face position detector Download PDF

Info

Publication number
JP2006317428A
JP2006317428A JP2006025534A JP2006025534A JP2006317428A JP 2006317428 A JP2006317428 A JP 2006317428A JP 2006025534 A JP2006025534 A JP 2006025534A JP 2006025534 A JP2006025534 A JP 2006025534A JP 2006317428 A JP2006317428 A JP 2006317428A
Authority
JP
Japan
Prior art keywords
light
light receiving
optical path
receiving means
test object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006025534A
Other languages
Japanese (ja)
Inventor
Yoshihiro Naganuma
義広 長沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2006025534A priority Critical patent/JP2006317428A/en
Publication of JP2006317428A publication Critical patent/JP2006317428A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately detect a face position even of an object having backside reflection. <P>SOLUTION: The face position detector comprises projection optical systems 13, 14 and 3 for irradiating an inspected object with light from a light source 11, a first optical path dividing member 12 that is disposed in the projection optical systems, shields part of a light flux from the light source, and reflects light from the inspected object, a second optical path dividing member 15 for dividing the light from the inspected object that is reflected by the first optical path dividing member into two optical paths, a first light receiving means 16 that has a plurality of light receiving sections and receives the light in one optical path divided by the second optical path dividing member, first position detecting sections 17 and 7 for detecting the face position of the inspected object based on the light quantity received by the plurality of light receiving sections detected by the first light receiving means, a second light receiving means 19 for receiving light having transmitted through a pinhole 18 disposed in the other optical path divided by the second optical path dividing member, second position detecting sections 20 and 7 for detecting the face position of the inspected object based on the light quantity received by the second light receiving means, and a moving means for altering the relative position between the projection optical systems and the inspected object. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、面位置検出装置に関し、さらに詳細には、測定機における高さ測定、表面形状測定及び顕微鏡や測定機のオートフォーカス制御に使用され、被検物の面の位置を検出する面位置検出装置に関する。   The present invention relates to a surface position detection device, and more specifically, a surface position that is used for height measurement in a measuring machine, surface shape measurement, and autofocus control of a microscope or a measuring machine, and detects the position of the surface of a test object. The present invention relates to a detection device.

被検物表面に対して光学系を一定の相対的距離に非接触で位置決めする目的で、例えば顕微鏡の鏡筒をピント位置に位置決めするオートフォーカス装置や、その駆動量から段差や形状を求める測定機等では、ナイフエッジ方式を用いたものが知られている。例えば、特開平11−72311号公報の従来技術の欄には、ナイフエッジ方式の詳細な説明がある。   For the purpose of non-contact positioning of the optical system at a certain relative distance with respect to the surface of the object to be tested, for example, an autofocus device that positions the lens barrel of the microscope at the focus position, or measurement that determines the step or shape from the driving amount As a machine, one using a knife edge method is known. For example, there is a detailed description of the knife edge method in the prior art column of JP-A-11-72311.

被検物面と光学系との相対的距離の変化によって補助光の受光位置が偏位し、これを光電変換素子で検出して、電気的に信号処理をすることにより、一定の位置(焦点位置)を検出する。その光電変換素子には、2つの領域に狭いギャップで分割したフォトダイオード(2分割センサ)を用いたものがある。A領域の信号とB領域の信号の差信号A−Bをとり、この信号が0になる一定の位置(例えば焦点位置)を検出する。または、0となる位置を目標に被検物面と光学系とを相対駆動することにより、位置決めする。また、光電変換素子としてPSD(半導体位置検出素子)、CCDラインセンサ等、光量差ではなく光点像の位置そのものを検出する素子を用いたものもある。
特開平11−72311号公報
The light receiving position of the auxiliary light is deviated by a change in the relative distance between the object surface and the optical system, and this is detected by the photoelectric conversion element and electrically processed to obtain a fixed position (focal point). Position). Some photoelectric conversion elements use photodiodes (two-divided sensors) that are divided into two regions with a narrow gap. A difference signal A-B between the signal in the A area and the signal in the B area is taken, and a certain position (for example, the focal position) where this signal becomes 0 is detected. Alternatively, positioning is performed by relatively driving the object surface and the optical system with the position of 0 as a target. Some photoelectric conversion elements, such as PSDs (semiconductor position detection elements) and CCD line sensors, detect not the light amount difference but the position of the light spot image itself.
Japanese Patent Laid-Open No. 11-72311

上記のようなナイフエッジ方式では、焦点深度よりもはるかに広い引込範囲とすることが可能で、検出する信号がボケの方向が分かるゼロクロス信号のため、追従動作可能であるという利点を有する。   The knife edge method as described above has an advantage that a pull-in range far wider than the depth of focus can be obtained, and the detected signal is a zero-cross signal in which the direction of blur is known, so that a follow-up operation is possible.

しかしナイフエッジ方式では次のような問題点があった。ナイフエッジ方式の利点である引き込み範囲の広さは、一方では透明体の裏面反射や、二次光源化してスポットが滲む乳白色体では、誤検出につながる場合があった。例えば、ガラス基板等では表面からの反射光と裏面からの反射光の両方をセンサが受光してしまい、両者の光量の加重平均の位置でゼロクロスする場合がある。乳白色体では、被検物が二次光源化して光点が滲んで広がるため、本来の表面からの反射光だけでなく、この滲んだ光点の影響を加えた位置を検出する場合がある。   However, the knife edge method has the following problems. The wide pull-in range, which is an advantage of the knife-edge method, may lead to false detection in the case of reflection of the back surface of a transparent body or a milky-white body in which spots are blurred by using a secondary light source. For example, in a glass substrate or the like, there are cases where the sensor receives both reflected light from the front surface and reflected light from the back surface, and zero-crosses at a weighted average position of the light amounts of both. In the milky white body, since the test object becomes a secondary light source and the light spot spreads and spreads, not only the reflected light from the original surface but also the position to which the influence of the blurred light spot is added may be detected.

本発明は、裏面反射があるような対象物であっても、精度良く面位置を検出できる面位置検出装置を提供することを目的とする。   An object of this invention is to provide the surface position detection apparatus which can detect a surface position accurately even if it is a target object with back surface reflection.

前記課題を解決するために、本発明の面位置検出装置は、
光源からの光を被検物に照射する投光光学系と、
前記投光光学系に設けられ、前記光源からの光束の一部を遮蔽し、前記被検物からの光を反射する第1光路分割部材と、
前記第1光路分割部材で反射された被検物からの光を2つの光路に分割する第2光路分割部材と、
複数の受光部を有し、前記第2光路分割部材により分割された一方の光を受光する第1受光手段と、
前記第1受光手段により検出された前記複数の受光部で受光された光量を基に、前記被検物の面位置を検出する第1位置検出部と、
前記第2光路分割部材により分割された他方の光の光路中に設けられたピンホールあるいはスリットと、
前記ピンホールあるいはスリットを透過した光を受光する第2受光手段と、
前記第2受光手段により受光された光量を基に前記被検物の面位置を検出する第2位置検出部と、
前記投光光学系と前記被検物との相対位置を変更する移動手段と
を有することを特徴とする。
In order to solve the above-described problem, the surface position detection device of the present invention includes:
A projection optical system for irradiating the object with light from the light source;
A first optical path dividing member that is provided in the light projecting optical system, shields a part of a light beam from the light source, and reflects light from the test object;
A second optical path splitting member that splits light from the object reflected by the first optical path splitting member into two optical paths;
A first light receiving means having a plurality of light receiving portions and receiving one light divided by the second optical path dividing member;
A first position detection unit that detects a surface position of the test object based on a light amount received by the plurality of light receiving units detected by the first light receiving unit;
A pinhole or slit provided in the optical path of the other light split by the second optical path splitting member;
Second light receiving means for receiving light transmitted through the pinhole or slit;
A second position detecting unit for detecting a surface position of the test object based on the amount of light received by the second light receiving means;
It has a moving means which changes the relative position of the projection optical system and the test object.

本発明によれば、表面と裏面の両方からの反射光が受光される場合でも、精度良く面位置検出することができる。   According to the present invention, even when reflected light from both the front surface and the back surface is received, the surface position can be detected with high accuracy.

以下、図面を用いて本発明の実施形態を説明する。
(第1の実施形態)
図1は、本実施形態の面位置検出装置の構成を示す図である。面位置検出装置1は、センサユニット2、対物レンズ3、撮像装置4、被検物を載置するステージ5、センサユニット2の移動量を検出するエンコーダ6、制御部7を有している。 センサユニット2、対物レンズ3、撮像装置4は不図示の駆動機構を介して支柱8に取り付けられており、エンコーダ6で検出した移動量から被検物との相対位置を求めることが出来る。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a diagram illustrating a configuration of a surface position detection apparatus according to the present embodiment. The surface position detection device 1 includes a sensor unit 2, an objective lens 3, an imaging device 4, a stage 5 on which a test object is placed, an encoder 6 that detects the amount of movement of the sensor unit 2, and a control unit 7. The sensor unit 2, the objective lens 3, and the imaging device 4 are attached to the support column 8 via a drive mechanism (not shown), and the relative position with respect to the test object can be obtained from the amount of movement detected by the encoder 6.

図2はセンサユニット2の構成を示す図である。図2の破線の内部がセンサユニット2である。レーザダイオード11から射出された光束はナイフエッジ12により円形の光束の半分を遮蔽され、半円状の断面を持つ光束が補助レンズ13、ダイクロイックミラー14を経て対物レンズ3の紙面左半分を通り、被検物O面に照射される。対物レンズ3を通った光束は、対物レンズ3の焦点位置に光点像を形成する。図2においては、被検物O面と対物レンズ3の焦点位置が一致している場合を示している。被検物Oで反射した光は、対物レンズ3の紙面右半分を通り、ダイクロイックミラー14で反射され、補助レンズ13を通り、ナイフエッジミラー12のミラー面で反射され、ハーフミラー15へと導かれる。ハーフミラー15を透過した光は、二分割された受光素子a、bで構成される二分割センサ16上に光点像を形成する。また、ハーフミラー15で反射された光は、ピンホール18の面上に光点像を形成し、受光素子19で受光される。図2において、レーザダイオード11と被検物Oと二分割センサ16とピンホール18とは共役な位置に配置されている。被検物Oとセンサユニット2との相対位置が対物レンズ3の光軸方向に変化して被検物Oの面位置が対物レンズ3の焦点位置からずれると、二分割センサ16上での光点像がぼけるので、受光素子bで受光される光量が大きくなる。また、被検物Oの面位置が対物レンズ3の焦点位置からずれると、光点像がピンホール18の面上からずれるので、ピンホールを通過する光量が小さくなる。このような変化を利用して、センサユニット2の位置に対する被検物Oの面位置を検出することができる。   FIG. 2 is a diagram showing the configuration of the sensor unit 2. The inside of the broken line in FIG. The light beam emitted from the laser diode 11 is shielded by the knife edge 12 at half of the circular light beam, and the light beam having a semicircular cross section passes through the auxiliary lens 13 and the dichroic mirror 14 through the left half of the paper surface of the objective lens 3, Irradiate the surface of the test object O. The light beam that has passed through the objective lens 3 forms a light spot image at the focal position of the objective lens 3. FIG. 2 shows a case where the object O surface and the focal position of the objective lens 3 coincide. The light reflected by the object O passes through the right half of the objective lens 3 on the paper surface, is reflected by the dichroic mirror 14, passes through the auxiliary lens 13, is reflected by the mirror surface of the knife edge mirror 12, and is guided to the half mirror 15. It is burned. The light transmitted through the half mirror 15 forms a light spot image on the two-divided sensor 16 composed of the two-divided light receiving elements a and b. The light reflected by the half mirror 15 forms a light spot image on the surface of the pinhole 18 and is received by the light receiving element 19. In FIG. 2, the laser diode 11, the test object O, the two-divided sensor 16, and the pinhole 18 are arranged at conjugate positions. When the relative position between the test object O and the sensor unit 2 changes in the optical axis direction of the objective lens 3 and the surface position of the test object O deviates from the focal position of the objective lens 3, the light on the two-divided sensor 16. Since the point image is blurred, the amount of light received by the light receiving element b increases. Further, when the surface position of the test object O deviates from the focal position of the objective lens 3, the light spot image deviates from the surface of the pinhole 18, so that the amount of light passing through the pinhole becomes small. By utilizing such a change, the surface position of the test object O with respect to the position of the sensor unit 2 can be detected.

本実施形態の面位置検出装置では、不図示の移動機構によりセンサユニット2を対物レンズ3の光軸方向に移動させながら、ハーフミラー15を透過した光を受光素子a、bで受光される。レーザダイオード11は変調駆動され、受光素子a、bはこれに同期して復調し、受光信号を得る。ここで、二分割センサ16の受光素子aの領域からの出力信号レベルをA、受光素子b側の領域からの出力信号レベルをBとする。2つの受光素子からの出力信号は、第1位置検出部17に入力される。第1位置検出部17では、2つの受光素子a、bからの出力信号レベルの差から差信号レベルS(後述)を求め、ナイフエッジ法により合焦位置を検出する。また、第1位置検出部17は、2つの出力信号レベルの和から受光光量信号レベル(A+B)を求める。第1位置検出部17で求められた(A−B)、(A+B)の値は、制御部7に出力される。制御部7は、受光光量信号レベル(A+B)が略一定になるように、レーザダイオード11の発光光量をフィードバック制御する。   In the surface position detection apparatus of the present embodiment, the light transmitted through the half mirror 15 is received by the light receiving elements a and b while the sensor unit 2 is moved in the optical axis direction of the objective lens 3 by a moving mechanism (not shown). The laser diode 11 is modulated and driven, and the light receiving elements a and b demodulate in synchronism with this to obtain a light receiving signal. Here, the output signal level from the region of the light receiving element a of the two-divided sensor 16 is A, and the output signal level from the region on the light receiving element b side is B. Output signals from the two light receiving elements are input to the first position detector 17. The first position detector 17 obtains a difference signal level S (described later) from the difference between the output signal levels from the two light receiving elements a and b, and detects the in-focus position by the knife edge method. Further, the first position detector 17 obtains the received light amount signal level (A + B) from the sum of the two output signal levels. The values (A−B) and (A + B) obtained by the first position detection unit 17 are output to the control unit 7. The control unit 7 feedback-controls the light emission amount of the laser diode 11 so that the received light amount signal level (A + B) is substantially constant.

次に、受光素子a、bを用いたナイフエッジ方式の動作を説明する。制御部7では、以下の式により差信号レベルSを求める。
S=(A−B)/(A+B)
センサユニット2を対物レンズ3の光軸方向(Z方向)に移動させる。Z方向の移動量に対する差信号レベルSの変化は図3に示すようになる。Z方向位置の変化に伴って、差信号レベルSは負からゼロを通り正の値になる。このとき、ゼロを通るZ方向位置(ゼロクロス位置)と合焦位置とを一致させておく。センサユニット2をZ方向に一定速で駆動して、
S=(A−B)/(A+B)=0
A+B>T
の条件(すなわち、(A+B)が所定レベルより大きく、かつ差信号レベルSがゼロになるとき)で制御部7は、その瞬間のセンサユニット2の高さ位置(Z方向位置)を、エンコーダ6からの位置情報を読み取る。そして、高さ測定を行なう。または、その高さ位置を目標値としてセンサユニット2を位置決め駆動することにより、合焦動作を行なう。または、差信号レベルSそのものの0を目標としてフィードバック駆動することにより、合焦動作を行なう、あるいはその停止位置として高さ位置を測定する。
Next, the operation of the knife edge method using the light receiving elements a and b will be described. In the control unit 7, the difference signal level S is obtained by the following equation.
S = (A−B) / (A + B)
The sensor unit 2 is moved in the optical axis direction (Z direction) of the objective lens 3. The change of the difference signal level S with respect to the amount of movement in the Z direction is as shown in FIG. As the position in the Z direction changes, the difference signal level S goes from negative to zero and becomes a positive value. At this time, the Z-direction position passing through zero (zero cross position) and the in-focus position are matched. Drive the sensor unit 2 at a constant speed in the Z direction,
S = (A−B) / (A + B) = 0
A + B> T
(That is, when (A + B) is larger than a predetermined level and the difference signal level S becomes zero), the control unit 7 determines the height position (Z direction position) of the sensor unit 2 at that moment as the encoder 6. Read location information from. Then, the height is measured. Alternatively, the focusing operation is performed by positioning and driving the sensor unit 2 with the height position as a target value. Alternatively, by performing feedback driving with the target of 0 of the difference signal level S itself, the focusing operation is performed, or the height position is measured as the stop position.

さらに、ナイフエッジ方式では、差信号レベルSの0を目標としたフィードバック駆動を連続的に行い、被検物を高さ方向(Z方向)に直行する方向にスキャンすることで、追従駆動(コンティニュアスAF)や、連続的な断面形状測定を行うことができる。   Further, in the knife edge method, the feedback drive with the difference signal level S of 0 as the target is continuously performed, and the object to be scanned is scanned in the direction orthogonal to the height direction (Z direction). (Nuus AF) and continuous cross-sectional shape measurement.

次にピンホールを用いた位置検出(擬似共焦点方式)について説明する。ナイフエッジ方式と同様に、レーザダイオード11は変調駆動され、受光素子19はこれに同期して復調し、受光信号を得る。受光素子19からの出力信号は、第2位置検出部20に入力される。第2位置検出部20で得られる受光素子19からの出力信号レベルをCとする。この信号レベルCの値は、制御部7に出力される。制御部7は、前述のように、受光光量信号レベル(A+B)が略一定になるように、レーザダイオード11の発光光量をフィードバック制御する。   Next, position detection using a pinhole (pseudo confocal method) will be described. Similar to the knife edge method, the laser diode 11 is modulated and driven, and the light receiving element 19 demodulates in synchronism with this to obtain a light receiving signal. An output signal from the light receiving element 19 is input to the second position detector 20. The output signal level from the light receiving element 19 obtained by the second position detector 20 is C. The value of the signal level C is output to the control unit 7. As described above, the control unit 7 feedback-controls the light emission amount of the laser diode 11 so that the received light amount signal level (A + B) is substantially constant.

次に、受光素子19を用いた、擬似共焦点方式の動作を説明する。
制御部7では、以下の式により、信号レベルCを求める。
I=C/(A+B)
センサユニット2を対物レンズ3の光軸方向(Z方向)に移動させる。そして、制御部7は、Iの値がピークになるZ方向位置を検出する。すなわち、Iがピークになった時点のエンコーダ6からの位置情報を読み取ることにより、センサユニット2の高さ方向位置を検出する。例えば、被検物が液晶用のガラス基板である場合、受光素子19からの光量信号レベルCは、Z方向位置の変化に伴い、図4に示すように、2つのピークが検出される。これは、ガラス基板の表面からの反射光によるピークp1と、裏面からの反射光によるピークp2とが分離されて検出されるからである。
Next, the operation of the pseudo confocal method using the light receiving element 19 will be described.
In the control unit 7, the signal level C is obtained by the following equation.
I = C / (A + B)
The sensor unit 2 is moved in the optical axis direction (Z direction) of the objective lens 3. And the control part 7 detects the Z direction position where the value of I peaks. That is, the position in the height direction of the sensor unit 2 is detected by reading the position information from the encoder 6 at the time when I reaches a peak. For example, when the test object is a glass substrate for liquid crystal, the light intensity signal level C from the light receiving element 19 is detected with two peaks as shown in FIG. This is because the peak p1 caused by the reflected light from the surface of the glass substrate and the peak p2 caused by the reflected light from the back surface are detected separately.

本実施形態では、受光素子19で受光される光量に応じた信号レベルCの値を、受光素子a、bで受光される光量に応じた和信号(A+B)で規格化しているため、被検物の面での反射率の不均一さや光量の揺らぎがあった場合でも、精度良く光量ピークを検出できる。   In this embodiment, the value of the signal level C corresponding to the amount of light received by the light receiving element 19 is normalized by the sum signal (A + B) corresponding to the amount of light received by the light receiving elements a and b. Even when the reflectance of the surface of the object is not uniform or the light amount fluctuates, the light amount peak can be detected with high accuracy.

このように、本実施形態の面位置検出装置では、汎用性の高いナイフエッジ方式によるオートフォーカス、高さ測定、追従動作、連続倣い測定が可能であると共に、被検物が透明体や乳白色体である場合でも、操作者が擬似共焦点方式を選択することにより精度良い面検出が可能となる。   As described above, the surface position detection apparatus according to the present embodiment can perform autofocus, height measurement, tracking operation, and continuous scanning measurement with a highly versatile knife edge method, and the test object can be a transparent body or a milky white body. Even in such a case, the surface can be detected with high accuracy by the operator selecting the pseudo confocal method.

また、ナイフエッジ方式と擬似共焦点方式の両方の面検出方式を備えているため、1つの面位置を検出するシングルAF時は、動作はナイフエッジのゼロクロス信号、高さ検出は共焦点のピーク信号を用いることを基本とし、倣いAF時はナイフエッジを用いるような使い分けも可能である。   In addition, since both surface detection methods of knife edge method and pseudo confocal method are provided, during single AF that detects the position of one surface, the operation is the knife edge zero cross signal, and the height detection is the confocal peak. It is basically based on the use of a signal, and it is possible to selectively use a knife edge during copying AF.

例えば、シングルAF(高さ測定)時は両方式の検出結果を両方とも読み取り、その平均値を高さ測定値(または合焦位置/および合焦位置)としてオートフォーカス駆動してもよい。または、平均値に替えて、高さ位置の最も高い値(表面反射)を採用するか或は低い値(裏面反射)を採用するか等、被検物や検出ポイントに応じて条件付けを与えることにより、目的の面位置を確実に検出することも可能である。   For example, in single AF (height measurement), both types of detection results may be read, and the average value may be used as a height measurement value (or in-focus position / and in-focus position) for autofocus driving. Or, instead of using the average value, give the condition according to the test object or detection point, such as whether to adopt the highest value (front surface reflection) or the lower value (back surface reflection). Therefore, it is possible to reliably detect the target surface position.

(第2の実施形態)
本実施形態は、センサユニット2を被検物に対して近づける方向に移動させながらシングルAF(高さ測定)をする時に適用するものである。ナイフエッジ方式の引き込み範囲内で、ナイフエッジ方式により1点の合焦位置が検出され、擬似共焦点方式により合焦位置が2点以上検出された時には、ナイフエッジ方式で検出された1点をエラーと判断し、擬似共焦点の第1点目が被検物の表面で、第2点目が裏面と判断する。また、擬似共焦点方式の2つの点から被検物の厚さを求めることも可能である。このような、検出された点の判断は、被検物の種類により、制御部に複数の判定プログラムを用意し、選択することにより行われる。
(Second Embodiment)
The present embodiment is applied when single AF (height measurement) is performed while moving the sensor unit 2 in a direction in which the sensor unit 2 is moved closer to the test object. Within the knife edge method pull-in range, one point of focus position is detected by the knife edge method, and when two or more focus positions are detected by the pseudo confocal method, one point detected by the knife edge method is detected. It is determined as an error, and the first point of the pseudo confocal point is determined as the surface of the test object, and the second point is determined as the back surface. It is also possible to obtain the thickness of the test object from two points of the pseudo confocal method. Such determination of the detected point is performed by preparing and selecting a plurality of determination programs in the control unit according to the type of the test object.

(第3の実施形態)
本実施形態は、図2に示したセンサユニット2のピンホール18の代わりにスリットを設けたものである。一般的にピンホールにビームウェストを通す調整は難しい。本方式は本来の共焦点とは異なり、光点はボケるだけではなく、焦点の前後で位置がシフトしながら広がっていく。そのため、ピンホールに替えて、光点シフト方向に直交したスリットを用いても、ピーク信号が得られる。外乱光の影響等はピンホールに劣るが、合焦位置との共役調整は、1方向のシフトだけで済むため、非常に簡単となる利点がある。
(Third embodiment)
In this embodiment, a slit is provided instead of the pinhole 18 of the sensor unit 2 shown in FIG. In general, it is difficult to adjust the beam waist through the pinhole. Unlike the original confocal point, this method not only blurs the light spot but also spreads while shifting the position before and after the focal point. Therefore, a peak signal can be obtained even if a slit perpendicular to the light spot shift direction is used instead of the pinhole. Although the influence of ambient light is inferior to that of a pinhole, the conjugate adjustment with the in-focus position requires only a shift in one direction, and thus has the advantage of being very simple.

なお、受光素子a、b、ピンホール(またはスリット)18、光源のレーザダイオード11は正確に位置調整がなされていることが望ましい。各受光素子の位置を機械的に微調整する機構を有すると共に、制御部に補正値を用意しておき、ナイフエッジ方式と擬似共焦点方式のオフセットを補正することも可能である。例えば、被検体を基準位置に配置し、これを撮像装置4で撮像したコントラストを基に検出した値と、ナイフエッジ方式で検出した値と、擬似共焦点方式で検出した値とから、各方式で検出した際の補正値を制御部に保持し、測定データを補正する。   It is desirable that the light receiving elements a and b, the pinhole (or slit) 18 and the laser diode 11 of the light source are accurately adjusted. In addition to having a mechanism for finely adjusting the position of each light receiving element mechanically, it is also possible to correct the offset of the knife edge method and the pseudo confocal method by preparing a correction value in the control unit. For example, each method is determined from a value detected based on the contrast obtained by placing the subject at the reference position and imaged by the imaging device 4, a value detected by the knife edge method, and a value detected by the pseudo confocal method. The correction value at the time of detection in (1) is held in the control unit, and the measurement data is corrected.

第1実施形態の面位置検出装置の構成図である。It is a block diagram of the surface position detection apparatus of 1st Embodiment. 第1実施形態の面位置検出装置のセンサユニットの構成図である。It is a block diagram of the sensor unit of the surface position detection apparatus of 1st Embodiment. ナイフエッジ方式における位置検出信号を示す図である。It is a figure which shows the position detection signal in a knife edge system. 擬似共焦点方式における位置検出信号を示す図である。It is a figure which shows the position detection signal in a pseudo-confocal system.

符号の説明Explanation of symbols

1:面位置検出装置、2:センサユニット、3:対物レンズ、4:撮像装置、5:ステージ、6:エンコーダ、7:制御部、8:支柱、11:レーザダイオード、12:ナイフエッジミラー、13:補助レンズ、14:ダイクロイックミラー、15:ハーフミラー、16:二分割センサ(受光素子a、b)、17:第1位置検出部、18:ピンホール、19:受光素子、20:第2位置検出部。 1: surface position detection device, 2: sensor unit, 3: objective lens, 4: imaging device, 5: stage, 6: encoder, 7: control unit, 8: support, 11: laser diode, 12: knife edge mirror, 13: Auxiliary lens, 14: Dichroic mirror, 15: Half mirror, 16: Two-divided sensor (light receiving elements a and b), 17: First position detector, 18: Pinhole, 19: Light receiving element, 20: Second Position detector.

Claims (3)

光源からの光を被検物に照射する投光光学系と、
前記投光光学系に設けられ、前記光源からの光束の一部を遮蔽し、前記被検物からの光を反射する第1光路分割部材と、
前記第1光路分割部材で反射された被検物からの光を2つの光路に分割する第2光路分割部材と、
複数の受光部を有し、前記第2光路分割部材により分割された一方の光を受光する第1受光手段と、
前記第1受光手段により検出された前記複数の受光部で受光された光量を基に、前記被検物の面位置を検出する第1位置検出部と、
前記第2光路分割部材により分割された他方の光の光路中に設けられたピンホールあるいはスリットと、
前記ピンホールあるいはスリットを透過した光を受光する第2受光手段と、
前記第2受光手段により受光された光量を基に前記被検物の面位置を検出する第2位置検出部と、
前記投光光学系と前記被検物との相対位置を変更する移動手段と
を有することを特徴とする面位置検出装置。
A projection optical system for irradiating the object with light from the light source;
A first optical path dividing member that is provided in the light projecting optical system, shields a part of a light beam from the light source, and reflects light from the test object;
A second optical path splitting member that splits light from the object reflected by the first optical path splitting member into two optical paths;
A first light receiving means having a plurality of light receiving portions and receiving one light divided by the second optical path dividing member;
A first position detection unit that detects a surface position of the test object based on a light amount received by the plurality of light receiving units detected by the first light receiving unit;
A pinhole or slit provided in the optical path of the other light split by the second optical path splitting member;
Second light receiving means for receiving light transmitted through the pinhole or slit;
A second position detecting unit for detecting a surface position of the test object based on the amount of light received by the second light receiving means;
A surface position detection apparatus comprising: a moving unit that changes a relative position between the projection optical system and the test object.
請求項1に記載の面位置検出装置において、
前記第1位置検出部により得られた前記被検物の位置と、前記第2検出部により得られた前記被検物の面位置のいずれかを選択する選択手段を有することを特徴とする面位置検出装置。
The surface position detection apparatus according to claim 1,
A surface having selection means for selecting one of a position of the test object obtained by the first position detection unit and a surface position of the test object obtained by the second detection unit. Position detection device.
請求項1または2に記載の面位置検出装置において、
前記第1受光手段の前記複数の受光部で受光されたそれぞれの光量の和信号を求め、前記和信号を基に前記光源の発光量を制御する光量制御信号を出力し、前記第1受光手段によって受光された光量および前記第2受光手段によって受光された光量を前記和信号により規格化する演算部を備えたことを特徴とする面位置検出装置。
In the surface position detection apparatus according to claim 1 or 2,
A sum signal of the respective light amounts received by the plurality of light receiving portions of the first light receiving means is obtained, a light amount control signal for controlling the light emission amount of the light source is output based on the sum signal, and the first light receiving means A surface position detecting apparatus comprising: an arithmetic unit that normalizes the amount of light received by the second light receiving means and the amount of light received by the second light receiving means using the sum signal.
JP2006025534A 2005-04-12 2006-02-02 Face position detector Pending JP2006317428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006025534A JP2006317428A (en) 2005-04-12 2006-02-02 Face position detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005115005 2005-04-12
JP2006025534A JP2006317428A (en) 2005-04-12 2006-02-02 Face position detector

Publications (1)

Publication Number Publication Date
JP2006317428A true JP2006317428A (en) 2006-11-24

Family

ID=37538214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006025534A Pending JP2006317428A (en) 2005-04-12 2006-02-02 Face position detector

Country Status (1)

Country Link
JP (1) JP2006317428A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157834A (en) * 2006-12-26 2008-07-10 Kanazawa Univ Thickness measuring method and measuring device of transparent layer
JP2011179885A (en) * 2010-02-26 2011-09-15 Seiko Epson Corp Device and method for calibration, tool for position detection, and component inspection apparatus
JP2011257661A (en) * 2010-06-11 2011-12-22 Mitsutoyo Corp Autofocus mechanism and optical processing device provided with the same
JP2013200506A (en) * 2012-03-26 2013-10-03 Nikon Corp Exposure apparatus, exposure method and device manufacturing method
JP2015152372A (en) * 2014-02-13 2015-08-24 株式会社ミツトヨ Position measurement instrument and position measurement method
US10067222B2 (en) 2014-08-01 2018-09-04 Funai Electric Co., Ltd. Laser rangefinder

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580246A (en) * 1991-09-21 1993-04-02 Canon Inc Automatic focusing device and observation device equipped with the same
JPH06241720A (en) * 1993-02-18 1994-09-02 Sony Corp Measuring method for displacement quantity and displacement meter
JPH08304019A (en) * 1995-05-11 1996-11-22 Olympus Optical Co Ltd Focus detection apparatus
JPH11211972A (en) * 1998-01-27 1999-08-06 Nikon Corp Focusing detector
JP2000074622A (en) * 1998-08-27 2000-03-14 Murata Mfg Co Ltd Method and instrument for displacement measurement
JP2000162506A (en) * 1998-11-30 2000-06-16 Tokyo Seimitsu Co Ltd Confocal microscope
JP2001091821A (en) * 1999-09-21 2001-04-06 Olympus Optical Co Ltd Autofocusing system for microscope

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580246A (en) * 1991-09-21 1993-04-02 Canon Inc Automatic focusing device and observation device equipped with the same
JPH06241720A (en) * 1993-02-18 1994-09-02 Sony Corp Measuring method for displacement quantity and displacement meter
JPH08304019A (en) * 1995-05-11 1996-11-22 Olympus Optical Co Ltd Focus detection apparatus
JPH11211972A (en) * 1998-01-27 1999-08-06 Nikon Corp Focusing detector
JP2000074622A (en) * 1998-08-27 2000-03-14 Murata Mfg Co Ltd Method and instrument for displacement measurement
JP2000162506A (en) * 1998-11-30 2000-06-16 Tokyo Seimitsu Co Ltd Confocal microscope
JP2001091821A (en) * 1999-09-21 2001-04-06 Olympus Optical Co Ltd Autofocusing system for microscope

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157834A (en) * 2006-12-26 2008-07-10 Kanazawa Univ Thickness measuring method and measuring device of transparent layer
JP2011179885A (en) * 2010-02-26 2011-09-15 Seiko Epson Corp Device and method for calibration, tool for position detection, and component inspection apparatus
JP2011257661A (en) * 2010-06-11 2011-12-22 Mitsutoyo Corp Autofocus mechanism and optical processing device provided with the same
JP2013200506A (en) * 2012-03-26 2013-10-03 Nikon Corp Exposure apparatus, exposure method and device manufacturing method
JP2015152372A (en) * 2014-02-13 2015-08-24 株式会社ミツトヨ Position measurement instrument and position measurement method
US10067222B2 (en) 2014-08-01 2018-09-04 Funai Electric Co., Ltd. Laser rangefinder

Similar Documents

Publication Publication Date Title
EP1091229B1 (en) Apparatus and method for autofocus
US5610719A (en) Displacement detection system
KR101484323B1 (en) Automatic focus control unit, electronic device and automatic focus control method
JP2008145160A (en) Optical displacement sensor and its adjusting method
JP2006317428A (en) Face position detector
JP5007070B2 (en) Exposure equipment
KR19980063666A (en) Auto focusing method and device
JP5162783B2 (en) Method and apparatus for phase correction of position and detection signals in scanning microscopy and scanning microscope
JP2005241607A (en) Apparatus for measuring angle
JP6590366B2 (en) Microscope device, autofocus device, and autofocus method
JPH10239037A (en) Observation device
JP3579630B2 (en) Microscope autofocus device
US20070058159A1 (en) Method of and apparatus for determining focus of an imaging system
JP2003222634A (en) Optical movement detecting device, transferring system, and transfer processing system
JP5570879B2 (en) Autofocus mechanism and optical processing apparatus having the same
JP2008196855A (en) Method and device for positioning wafer
JP2001304831A (en) Optical angle measuring apparatus
JPH0762604B2 (en) Alignment device
JP4419427B2 (en) Method for controlling focal position of reticle inspection apparatus
JP4710068B2 (en) Focus adjustment mechanism, inspection apparatus, and focus adjustment method
US20220390733A1 (en) Compact microscope auto-focus assembly
JP2009042128A (en) Height measuring device
JPH10133117A (en) Microscope equipped with focus detecting device
JP2005311057A (en) Exposure device
JP2008039605A (en) Fluorescence detector

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080623

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110628