JPH1123952A - Automatic focusing device and laser beam machining device using the same - Google Patents

Automatic focusing device and laser beam machining device using the same

Info

Publication number
JPH1123952A
JPH1123952A JP9174749A JP17474997A JPH1123952A JP H1123952 A JPH1123952 A JP H1123952A JP 9174749 A JP9174749 A JP 9174749A JP 17474997 A JP17474997 A JP 17474997A JP H1123952 A JPH1123952 A JP H1123952A
Authority
JP
Japan
Prior art keywords
objective lens
focused
distance
mounting surface
reference distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9174749A
Other languages
Japanese (ja)
Inventor
Hiroshi Ueda
浩史 上田
Hiroyuki Takahashi
宏幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9174749A priority Critical patent/JPH1123952A/en
Publication of JPH1123952A publication Critical patent/JPH1123952A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To achieve an accurate and stable focusing operation. SOLUTION: This device has an objective lens 9 arranged opposing a mount plane 11 for an object to be focused on, a moving means for moving this objective lens 9 with respect to the mount plane 11, an image-pickup means 2 for picking up a distance measuring mark marked on the mount plane 11 through the objective lens 9, and a control parts 1, 13 which drives the moving means according to an output of this image-pickup means 2 and controls the objective lens 9 to come to a position of a reference distance from the mount plane where the objective lens 9 focuses on the distance measuring mark. By the control parts 1, 13 the focusing position of the objective lens is controlled to the position being away from the reference distance by the preset distance from the mount plane 11 to an intended focus point of the object to be focused.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、オートフォーカス
装置及びこれを利用したレーザ加工装置に係り、特に、
加工対象点等に自動的に焦点を結ぶオートフォーカス装
置及びこれを利用したレーザ加工装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an autofocus apparatus and a laser processing apparatus using the same.
The present invention relates to an autofocus device that automatically focuses on a processing target point or the like and a laser processing device using the same.

【0002】[0002]

【従来の技術】従来、IC内配線を切断するレーザ加工
装置等で対象物に焦点を合わせる場合、非点収差法やナ
イフエッジ法に代表される光学式のオートフォーカス機
構が用いられてきた。
2. Description of the Related Art Conventionally, when focusing on an object using a laser processing apparatus or the like for cutting wiring in an IC, an optical autofocus mechanism represented by an astigmatism method or a knife edge method has been used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
光学式のオートフォーカス機構は、対象物上に直径数μ
mの狭いエリアの光を当てその反射光をセンサで検出す
ることによりフォーカス制御されていたために、対象物
表面の反射率のばらつき、散乱光、凹凸などの影響によ
り、精度良くフォーカスが合わなかったり、オートフォ
ーカスが外れてしまう等の不都合があった。
However, the conventional optical auto-focus mechanism has a diameter of several μm on the object.
Focus control was performed by applying light in an area with a small area of m and detecting the reflected light with a sensor, so that the focus could not be adjusted accurately due to variations in the reflectance of the object surface, scattered light, irregularities, etc. However, there are inconveniences such as a loss of auto focus.

【0004】[0004]

【発明の目的】本発明は、かかる従来例の有する不都合
を改善し、特に、精度良く安定したフォーカス動作を実
現するオートフォーカス装置及びこれを利用したレーザ
加工装置を提供することを、その目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to improve the disadvantages of the prior art and, in particular, to provide an auto-focusing device for realizing a stable and accurate focusing operation and a laser processing device using the same. I do.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、請求項1記載の発明では、合焦対象物の載置面に対
向装備された対物レンズと、この対物レンズを載置面に
対し相対移動させる移動手段と、載置面に印された距離
測定マークを対物レンズを介して撮像する撮像手段と、
この撮像手段の出力に基づいて移動手段を駆動し対物レ
ンズが距離測定マークに焦点を結ぶ載置面からの基準距
離に来るように制御する制御部とを備えている。そし
て、制御部は、基準距離に対し予め設定された載置面か
ら合焦対象物の合焦予定点までの距離だけ遠ざけた位置
を対物レンズの合焦位置とする、という構成を採ってい
る。
In order to achieve the above object, according to the first aspect of the present invention, an objective lens is provided opposite to a mounting surface of an object to be focused, and the objective lens is mounted on the mounting surface with respect to the mounting surface. Moving means for relatively moving, imaging means for imaging a distance measurement mark marked on the mounting surface via an objective lens,
A control unit that drives the moving unit based on the output of the imaging unit and controls the objective lens to be at a reference distance from the mounting surface that focuses on the distance measurement mark. Then, the control unit adopts a configuration in which a position apart from the mounting surface set in advance with respect to the reference distance by a distance from the planned focusing point of the object to be focused is set as a focusing position of the objective lens. .

【0006】本発明では、載置面に印された距離測定マ
ークを目印として当該距離測定マークに焦点を結ぶよう
な基準距離に対物レンズが制御される。その後、載置面
から合焦予定点までの距離が考慮され、その分基準距離
から遠ざけられた距離が対物レンズのオンフォーカス位
置とされる。
In the present invention, the objective lens is controlled to a reference distance that focuses on the distance measurement mark using the distance measurement mark marked on the mounting surface as a mark. After that, the distance from the mounting surface to the in-focus point is considered, and the distance away from the reference distance is set as the on-focus position of the objective lens.

【0007】請求項2記載の発明では、載置面には合焦
対象物を囲うように複数の距離測定マークが印され、制
御部は、距離測定マーク毎に基準距離を求め、この各基
準距離に基づく補完計算により合焦対象物の位置での基
準距離を算出し、この合焦対象物の位置での基準距離に
対し載置面から合焦予定点までの距離だけ遠ざけた位置
を対物レンズの合焦位置とする、という構成を採ってい
る。
According to the second aspect of the present invention, a plurality of distance measurement marks are marked on the mounting surface so as to surround the object to be focused, and the control unit obtains a reference distance for each distance measurement mark. The reference distance at the position of the object to be focused is calculated by supplementary calculation based on the distance, and the position at a distance from the mounting surface to the planned focusing point with respect to the reference distance at the position of the object to be focused is set as the object. The focus position of the lens is adopted.

【0008】本発明では、複数の距離測定マークについ
て基準距離が個別に算出される。そして、これらの値か
ら合焦対象物が配置された位置での基準距離が補完計算
により導かれこの補完計算による基準距離から上記合焦
予定点までの距離が考慮される。
According to the present invention, the reference distance is individually calculated for a plurality of distance measurement marks. From these values, the reference distance at the position where the object to be focused is arranged is derived by complementary calculation, and the distance from the reference distance by this complementary calculation to the above-mentioned planned focusing point is considered.

【0009】請求項3記載の発明では、対物レンズの光
軸を合焦対象物に合わせると共に当該対物レンズを合焦
位置に設定する請求項1又は2記載のオートフォーカス
装置と、対物レンズの光軸に沿って加工レーザを入射さ
せるレーザ光源とを備えた、という構成を採っている。
According to a third aspect of the present invention, the optical axis of the objective lens is aligned with the object to be focused and the objective lens is set at the in-focus position. And a laser light source for injecting a processing laser along the axis.

【0010】これらにより、前述した目的を達成しよう
とするものである。
[0010] Accordingly, the above-mentioned object is to be achieved.

【0011】[0011]

【発明の実施の形態】以下、本発明の一実施形態を図1
乃至図3に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIG.
This will be described with reference to FIG.

【0012】図1は、本実施形態にかかるレーザ加工装
置を示す光学系のブロック図である。
FIG. 1 is a block diagram of an optical system showing a laser processing apparatus according to the present embodiment.

【0013】この図1において、LSIウェハ11は合
焦対象物であるLSIチップの載置面をなす。この載置
面には、所定の距離測定マークが印されている。また、
この載置面には、対物レンズ9が対向装備されている。
この対物レンズ9の光軸上には、ビームスプリッタ7
と、反射ミラー4とが配置されている。対物レンズ9,
ビームスプリッタ7及び反射ミラー4は、第1の移動手
段としてのポジショナ機構により対物レンズ9の光軸と
直交する2軸方向に一体的に移動可能となっている(図
示略)。また、対物レンズ9には、当該対物レンズ9を
その光軸方向に変位させるアクチュエータ10が第2の
移動手段として併設されている。ビームスプリッタ7で
反射されたビームの進行先には、観察レンズ3を介し撮
像手段であるCCDカメラ2が配置されている。制御部
としての画像処理装置1及びコントローラ13は、CC
Dカメラ2の出力に基づいて移動手段を駆動し対物レン
ズが距離測定マークに焦点を結ぶ載置面からの基準距離
に来るように制御する。更に、制御部は、基準距離に対
し予め設定された載置面から合焦対象物上の合焦予定点
までの距離だけ遠ざけた位置を対物レンズの合焦位置と
するオートフォーカス機能を備えている。
In FIG. 1, an LSI wafer 11 forms a mounting surface of an LSI chip to be focused. A predetermined distance measurement mark is marked on the mounting surface. Also,
An objective lens 9 is provided opposite to the mounting surface.
A beam splitter 7 is provided on the optical axis of the objective lens 9.
And a reflection mirror 4. Objective lens 9,
The beam splitter 7 and the reflection mirror 4 can be integrally moved in two axial directions orthogonal to the optical axis of the objective lens 9 by a positioner mechanism as first moving means (not shown). Further, an actuator 10 for displacing the objective lens 9 in the optical axis direction is provided along with the objective lens 9 as second moving means. A CCD camera 2 serving as an image pickup unit is arranged via an observation lens 3 at a destination of the beam reflected by the beam splitter 7. The image processing device 1 as a control unit and the controller 13
The moving means is driven based on the output of the D camera 2 to control the objective lens so as to be at a reference distance from the mounting surface that focuses on the distance measurement mark. Further, the control unit includes an autofocus function that sets a position away from the mounting surface set in advance with respect to the reference distance by a distance from the mounting surface to a planned focusing point on the object to be focused, as a focusing position of the objective lens. I have.

【0014】図2は、LSIウェハ11表面の拡大図で
ある。加工対象物(合焦対象物)としてのLSIチップ
14が整列して複数配置されている。また、LSIチッ
プ14を囲うように4つの距離測定マーク(高さ測定ポ
イント)が印されている。
FIG. 2 is an enlarged view of the surface of the LSI wafer 11. A plurality of LSI chips 14 as processing objects (focusing objects) are arranged in a line. Further, four distance measurement marks (height measurement points) are marked so as to surround the LSI chip 14.

【0015】上述のオートフォーカス機能は、高さ測定
ポイント毎に対物レンズの基準距離を求め、この各基準
距離に基づく補完計算により合焦対象物の位置での基準
距離を算出し、この合焦対象物の位置での基準距離に対
し載置面から合焦予定点までの高さだけ遠ざけた位置を
対物レンズの合焦位置とするものとなっている。
In the above-described autofocus function, a reference distance of the objective lens is obtained for each height measurement point, and a reference distance at the position of the object to be focused is calculated by a complementary calculation based on each reference distance. An in-focus position of the objective lens is set at a position apart from the reference distance at the position of the target object by a height from the mounting surface to a planned focusing point.

【0016】ここで、符号12は、コントローラ13が
出力する制御信号に応じて移動手段を駆動し、対物レン
ズ9を3軸方向に移動せしめるアクチュエータドライバ
を示す。また、符号6は、対物レンズ9の光軸に沿って
加工レーザを入射させるレーザ光源としてのレーザ装置
を示す。更に、符号8は、LSIウェハ11を撮像する
ための照明装置を示す。
Here, reference numeral 12 denotes an actuator driver for driving the moving means in accordance with a control signal output from the controller 13 to move the objective lens 9 in three axial directions. Reference numeral 6 denotes a laser device as a laser light source that causes a processing laser to be incident along the optical axis of the objective lens 9. Further, reference numeral 8 denotes an illumination device for imaging the LSI wafer 11.

【0017】本レーザ加工装置では、対物レンズ9の直
下に置かれたLSIウエハ11の表面から高さ測定ポイ
ントをCCDカメラ2により撮影し、画像処理装置1に
その画像データを取り込む。次に、その取り込んだ画像
データから高さ測定ポイントの「鮮明さ」を特徴量と
し、これに基づいて焦点が合うような対物レンズ9の移
動量を算出する。そして、コントローラ13が、この移
動量に基づく制御信号を出力し、アクチュエータ10を
して対物レンズ9を光軸方向に移動させる。焦点が合う
までこの動作を繰り返し、焦点が合った距離を対物レン
ズの基準距離とする機構となっている。
In this laser processing apparatus, a height measuring point is photographed by the CCD camera 2 from the surface of the LSI wafer 11 placed immediately below the objective lens 9, and the image data is taken into the image processing apparatus 1. Next, the “clearness” of the height measurement point is used as a feature amount from the captured image data, and the moving amount of the objective lens 9 that is in focus is calculated based on the feature amount. Then, the controller 13 outputs a control signal based on the movement amount, and causes the actuator 10 to move the objective lens 9 in the optical axis direction. This operation is repeated until the object is in focus, and the in-focus distance is set as the reference distance of the objective lens.

【0018】コントローラ13は、ポジショナ機構を操
作して、各高さ測定ポイントについて基準距離を算出す
る。このようにして測定算出された4ケ所の基準距離か
ら補間計算を行い、LSIチップ14が配置された位置
での基準距離を算出する。そして、当該基準距離に対
し、コントローラ13が有するメモリに予め設定された
載置面から加工予定点(合焦予定点)までの高さだけ遠
ざけた位置を対物レンズ9の合焦位置とする。そして配
線を切断する場合には、算出された合焦位置に対物レン
ズ9を上下させ、レーザビームの焦点を加工する配線に
合わせる。
The controller 13 operates the positioner mechanism to calculate a reference distance for each height measurement point. Interpolation calculation is performed from the four reference distances measured and calculated in this way, and the reference distance at the position where the LSI chip 14 is arranged is calculated. Then, with respect to the reference distance, a position away from the mounting surface preset in the memory of the controller 13 by a height from the processing scheduled point (planned focusing point) is set as the focusing position of the objective lens 9. Then, when cutting the wiring, the objective lens 9 is moved up and down to the calculated focusing position, and the laser beam is focused on the wiring to be processed.

【0019】従来技術として説明したように、光学式の
オートフォーカスであるとLSI表面の反射率のばらつ
きや散乱光の影響を受けるため、レーザビームの焦点が
精度良く配線に合わないという問題があった。これに対
し、本実施形態にかかるオートフォーカス方式を用いる
と光学式のオートフォーカス方式と比較して、LSI表
面上の広いエリアからの反射光をとらえるため、LSI
表面の反射率のばらつきや散乱光の影響を受けることが
なく、しかもあらかじめ算出した高さデータに基づき配
線へ焦点を合わせることから、効率的にフォーカスを合
わせることができる。
As described in the prior art, the optical autofocus is affected by variations in the reflectivity of the LSI surface and scattered light, so that the laser beam cannot be accurately focused on the wiring. Was. On the other hand, when the autofocus method according to the present embodiment is used, reflected light from a large area on the LSI surface is captured as compared with the optical autofocus method.
It is not affected by variations in surface reflectance or scattered light, and focuses on the wiring based on height data calculated in advance, so that the focus can be adjusted efficiently.

【0020】[0020]

【発明の効果】本発明は、以上のように構成され機能す
るので、これによると、撮像手段により載置面に印され
た距離測定マークの画像を撮像し、その撮像結果から合
焦予定点を特定し、対物レンズのフォーカスを合わせる
ので、光学式のオートフォーカス方式と比較して、載置
面上の広いエリアからの反射光をとらえるため、対象物
表面の反射率のばらつき、散乱光、凹凸などに影響され
ず、精度良くしかも安定してフォーカスを合わせること
ができる。また、複数の距離測定マークから補完計算に
よりフォーカスを合わせる場合は、載置面に歪みが生じ
ていても、合焦予定点に精度良くフォーカスを合わせる
ことができる。更に、このフォーカス装置をレーザ加工
装置に適用した場合は、高精度なレーザ加工を行うこと
ができ、加工対象点が微小なものであっても適切な加工
を施すことができる、という従来にない優れたオートフ
ォーカス装置及びこれを利用したレーザ加工装置を提供
することができる。
Since the present invention is constructed and functions as described above, according to the present invention, an image of the distance measuring mark marked on the mounting surface is taken by the image pickup means, and the in-focus point is obtained from the image pickup result. Since the focus of the objective lens is specified, compared with the optical auto-focus method, the reflected light from a wide area on the mounting surface is captured, so that the variation in the reflectance of the object surface, the scattered light, Focusing can be performed accurately and stably without being affected by irregularities. Further, when focusing is performed by a complementary calculation from a plurality of distance measurement marks, it is possible to accurately focus on the planned focusing point even if the mounting surface is distorted. Furthermore, when this focusing device is applied to a laser processing device, laser processing with high precision can be performed, and appropriate processing can be performed even if the processing target point is minute, which has not been available in the past. An excellent autofocus device and a laser processing device using the same can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示すレーザ加工装置のブ
ロック図である。
FIG. 1 is a block diagram of a laser processing apparatus according to an embodiment of the present invention.

【図2】実施形態の動作を説明する図である。FIG. 2 is a diagram illustrating the operation of the embodiment.

【図3】実施形態の動作を説明する図である。FIG. 3 is a diagram illustrating the operation of the embodiment.

【符号の説明】[Explanation of symbols]

1 画像処理装置(制御部) 2 CCDカメラ(撮像手段) 3 観察レンズ 4 反射ミラー 5 レーザビーム 6 レーザ装置(レーザ光源) 7 ビームスプリッタ 8 照明装置 9 対物レンズ 10 アクチュエータ(移動手段) 11 LSIウエハ(載置面) 12 アクチュエータドライバ 13 コントローラ(制御部) 14 LSIチップ(合焦対象物) DESCRIPTION OF SYMBOLS 1 Image processing apparatus (control part) 2 CCD camera (imaging means) 3 Observation lens 4 Reflection mirror 5 Laser beam 6 Laser apparatus (laser light source) 7 Beam splitter 8 Illumination apparatus 9 Objective lens 10 Actuator (moving means) 11 LSI wafer ( Mounting surface) 12 Actuator driver 13 Controller (control unit) 14 LSI chip (object to be focused)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 合焦対象物の載置面に対向装備された対
物レンズと、この対物レンズを前記載置面に対し相対移
動させる移動手段と、前記載置面に印された距離測定マ
ークを前記対物レンズを介して撮像する撮像手段と、こ
の撮像手段の出力に基づいて前記移動手段を駆動し前記
対物レンズが前記距離測定マークに焦点を結ぶ載置面か
らの基準距離に来るように制御する制御部とを備え、前
記制御部は、前記基準距離に対し予め設定された前記載
置面から合焦対象物 の合焦予定点までの距離だけ遠ざけた位置を前記対物レ
ンズの合焦位置とすることを特徴としたオートフォーカ
ス装置。
1. An objective lens mounted opposite to a mounting surface of an object to be focused, moving means for moving the objective lens relative to the mounting surface, and a distance measurement mark marked on the mounting surface. Imaging means for imaging the object lens through the objective lens, and driving the moving means based on the output of the imaging means so that the objective lens comes at a reference distance from a mounting surface that focuses on the distance measurement mark. A control unit that controls the focus of the objective lens at a position that is away from the reference surface, which is set in advance with respect to the reference distance, by a distance from the mounting surface to a planned focusing point of the object to be focused. An autofocus device characterized by a position.
【請求項2】 前記載置面には前記合焦対象物を囲うよ
うに複数の距離測定マークが印され、 前記制御部は、前記距離測定マーク毎に前記基準距離を
求め、この各基準距離に基づく補完計算により前記合焦
対象物の位置での基準距離を算出し、この合焦対象物の
位置での基準距離に対し前記載置面から合焦予定点まで
の距離だけ遠ざけた位置を前記対物レンズの合焦位置と
することを特徴とした請求項1記載のオートフォーカス
装置。
2. A plurality of distance measurement marks are marked on the placement surface so as to surround the object to be focused, and the control unit obtains the reference distances for each of the distance measurement marks, The reference distance at the position of the object to be focused is calculated by a supplemental calculation based on the reference distance at the position of the object to be focused. 2. The autofocus device according to claim 1, wherein a focus position of the objective lens is set.
【請求項3】 対物レンズの光軸を合焦対象物に合わせ
ると共に当該対物レンズを合焦位置に設定する請求項1
又は2記載のオートフォーカス装置と、前記対物レンズ
の光軸に沿って加工レーザを入射させるレーザ光源とを
備えたことを特徴とするレーザ加工装置。
3. The apparatus according to claim 1, wherein the optical axis of the objective lens is aligned with an object to be focused, and the objective lens is set at a focusing position.
Or a laser processing apparatus comprising: the autofocus device according to claim 2; and a laser light source that inputs a processing laser along an optical axis of the objective lens.
JP9174749A 1997-06-30 1997-06-30 Automatic focusing device and laser beam machining device using the same Pending JPH1123952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9174749A JPH1123952A (en) 1997-06-30 1997-06-30 Automatic focusing device and laser beam machining device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9174749A JPH1123952A (en) 1997-06-30 1997-06-30 Automatic focusing device and laser beam machining device using the same

Publications (1)

Publication Number Publication Date
JPH1123952A true JPH1123952A (en) 1999-01-29

Family

ID=15984019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9174749A Pending JPH1123952A (en) 1997-06-30 1997-06-30 Automatic focusing device and laser beam machining device using the same

Country Status (1)

Country Link
JP (1) JPH1123952A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003533876A (en) * 2000-05-16 2003-11-11 ジェネラル スキャニング インコーポレイテッド Method and system for precisely positioning the waist of a material processing laser beam for processing microstructures in a laser processing site
WO2008001808A1 (en) * 2006-06-30 2008-01-03 O.M.C Co., Ltd. Laser machining apparatus
JP2009244319A (en) * 2008-03-28 2009-10-22 V Technology Co Ltd Method of forming pattern and pattern formation apparatus
KR100926178B1 (en) 2008-10-08 2009-11-10 은강정보통신(주) Light projector using laser
DE102008029622A1 (en) 2008-06-23 2009-12-24 Ihi Corporation Process to manufacture high-resolution liquid crystal display with rectangular laser beam directed at semiconductor film
US8115137B2 (en) 2008-06-12 2012-02-14 Ihi Corporation Laser annealing method and laser annealing apparatus
US8170072B2 (en) 2008-01-07 2012-05-01 Ihi Corporation Laser annealing method and apparatus
CN104793445A (en) * 2014-01-22 2015-07-22 海益视系统有限公司 Focusing device of video camera module, and method
WO2018176878A1 (en) * 2016-03-26 2018-10-04 广州新可激光设备有限公司 Laser marking machine and automatic focusing and marking method therefor
WO2023279550A1 (en) * 2021-07-06 2023-01-12 广东工业大学 Part machining control method, controller, system and apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61105531A (en) * 1984-10-29 1986-05-23 Fuji Photo Film Co Ltd Focusing mechanism
JPS61286820A (en) * 1985-06-14 1986-12-17 Minolta Camera Co Ltd Focus adjusting device for camera
JPH02186312A (en) * 1989-01-13 1990-07-20 Topcon Corp Automatic focusing and illuminating device
JPH05268419A (en) * 1992-03-17 1993-10-15 Fuji Xerox Co Ltd Picture reader
JPH06225089A (en) * 1993-01-27 1994-08-12 Ricoh Co Ltd Focusing position adjusting device for picture reader and its method
JPH07132391A (en) * 1993-11-10 1995-05-23 Niigata Eng Co Ltd Method for automatically grasping focus position in laser beam machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61105531A (en) * 1984-10-29 1986-05-23 Fuji Photo Film Co Ltd Focusing mechanism
JPS61286820A (en) * 1985-06-14 1986-12-17 Minolta Camera Co Ltd Focus adjusting device for camera
JPH02186312A (en) * 1989-01-13 1990-07-20 Topcon Corp Automatic focusing and illuminating device
JPH05268419A (en) * 1992-03-17 1993-10-15 Fuji Xerox Co Ltd Picture reader
JPH06225089A (en) * 1993-01-27 1994-08-12 Ricoh Co Ltd Focusing position adjusting device for picture reader and its method
JPH07132391A (en) * 1993-11-10 1995-05-23 Niigata Eng Co Ltd Method for automatically grasping focus position in laser beam machine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003533876A (en) * 2000-05-16 2003-11-11 ジェネラル スキャニング インコーポレイテッド Method and system for precisely positioning the waist of a material processing laser beam for processing microstructures in a laser processing site
WO2008001808A1 (en) * 2006-06-30 2008-01-03 O.M.C Co., Ltd. Laser machining apparatus
JP4852098B2 (en) * 2006-06-30 2012-01-11 オー・エム・シー株式会社 Laser processing equipment
US8170072B2 (en) 2008-01-07 2012-05-01 Ihi Corporation Laser annealing method and apparatus
US8446924B2 (en) 2008-01-07 2013-05-21 Ihi Corporation Laser annealing method and apparatus
JP2009244319A (en) * 2008-03-28 2009-10-22 V Technology Co Ltd Method of forming pattern and pattern formation apparatus
US8115137B2 (en) 2008-06-12 2012-02-14 Ihi Corporation Laser annealing method and laser annealing apparatus
DE102008029622B4 (en) 2008-06-23 2018-05-09 Ihi Corporation Laser annealing process and laser annealing device
DE102008029622A1 (en) 2008-06-23 2009-12-24 Ihi Corporation Process to manufacture high-resolution liquid crystal display with rectangular laser beam directed at semiconductor film
KR100926178B1 (en) 2008-10-08 2009-11-10 은강정보통신(주) Light projector using laser
CN104793445A (en) * 2014-01-22 2015-07-22 海益视系统有限公司 Focusing device of video camera module, and method
WO2018176878A1 (en) * 2016-03-26 2018-10-04 广州新可激光设备有限公司 Laser marking machine and automatic focusing and marking method therefor
WO2023279550A1 (en) * 2021-07-06 2023-01-12 广东工业大学 Part machining control method, controller, system and apparatus

Similar Documents

Publication Publication Date Title
JP4121849B2 (en) Defect inspection apparatus and defect inspection method
TWI772348B (en) Predictive focus tracking apparatus and methods
JP4097761B2 (en) Autofocus microscope and autofocus detection device
JPH1123952A (en) Automatic focusing device and laser beam machining device using the same
JP2002321080A (en) Automatic focussing apparatus for laser precision processing
JP2005241607A (en) Apparatus for measuring angle
CN116540393B (en) Automatic focusing system and method, semiconductor defect detection system and method
JP3290606B2 (en) Autofocus device for microscope
US6768964B2 (en) Method and apparatus for determining dot-mark-forming position of semiconductor wafer
TWI574072B (en) Automatic focusing system and focusing method thereof
JP3794670B2 (en) Microscope autofocus method and apparatus
JP2008102014A (en) Apparatus and method for measuring surface profile
JP2001091821A (en) Autofocusing system for microscope
KR100758198B1 (en) Auto-focusing apparatus
JPH10122823A (en) Positioning method and height measuring device using the method
JP2001305420A (en) Automatic focusing device for microscope
JPH10216976A (en) Laser beam machine and alignment device
JPH09230250A (en) Automatic focusing device for optical microscope
JP5019507B2 (en) Laser processing apparatus and position detection method of workpiece
JP2822698B2 (en) Positioning device and laser processing device
JP2004205289A (en) Image measuring instrument
JP2019155402A (en) Centering method for laser beam and lase processing device
KR20190063027A (en) A method for auto-focus controlling in a line-scanning confocal microscopy and the apparatus therefor
JP4877588B2 (en) Focus correction method
JP4684646B2 (en) Autofocus method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000404