JP2008016629A - Manufacturing method of group iii nitride light emitting diode element - Google Patents

Manufacturing method of group iii nitride light emitting diode element Download PDF

Info

Publication number
JP2008016629A
JP2008016629A JP2006186132A JP2006186132A JP2008016629A JP 2008016629 A JP2008016629 A JP 2008016629A JP 2006186132 A JP2006186132 A JP 2006186132A JP 2006186132 A JP2006186132 A JP 2006186132A JP 2008016629 A JP2008016629 A JP 2008016629A
Authority
JP
Japan
Prior art keywords
layer
type
film
ohmic electrode
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006186132A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Takano
剛志 高野
Takahide Shiroichi
隆秀 城市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2006186132A priority Critical patent/JP2008016629A/en
Publication of JP2008016629A publication Critical patent/JP2008016629A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To prevent an in-plane uniformity of light emission of a light emitting layer from deteriorating, in a flip-chip nitride LED where a p-type ohmic electrode and a high-reflectivity film are separated from each other by a light transmitting insulating film. <P>SOLUTION: The method of manufacturing a group III nitride light emitting diode element comprises a processes of: forming a p-type ohmic electrode 3 equipped with an opening pattern on the upper surface of a group III nitride compound semiconductor layer 2 on a transparent substrate 1, which is equipped with a light emitting element structure formed of a laminate composed of an n-type layer and a p-type layer, with a light emitting layer interposed between the n-type layer and p-type layer, and contains a p-type contact layer as the uppermost layer; forming a high-reflectivity film 5 which has higher reflectivity for light of certain wavelength emitted from the light emitting layer than the p-type ohmic electrode 3 in the position where the p-type ohmic electrode 3 is interposed between the film 5 itself and the group III nitride compound semiconductor layer 2; and forming a light-transmitting insulating film 4 that separates the p-type ohmic electrode 3 from the high-reflectivity film 5. The light-transmitting insulation film 4 is formed through an electron beam evaporation method. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、3族窒化物系化合物半導体を用いて形成される3族窒化物系発光ダイオード素子の製造方法に関し、特に、発光層で発生する光を効率的に素子外部に取出すための反射構造を備えた3族窒化物系発光ダイオード素子の製造方法に関する。   The present invention relates to a method for manufacturing a group III nitride light-emitting diode element formed using a group III nitride compound semiconductor, and in particular, a reflection structure for efficiently extracting light generated in a light emitting layer to the outside of the element. The present invention relates to a method for manufacturing a group III nitride light-emitting diode device comprising:

一般式AlInGa1−a−bN(0≦a≦1、0≦b≦1、0≦a+b≦1)で表される3族窒化物系化合物半導体(以下、「窒化物半導体」ともいう。)が公知である。窒化物半導体は、GaN、InGaN、AlGaN、AlInGaN、AlN、InNなどを含む。上記化学式において、3族元素の一部をホウ素(B)、タリウム(Tl)などで置換したもの、また、N(窒素)の一部をリン(P)、ヒ素(As)、アンチモン(Sb)、ビスマス(Bi)などで置換したものも、窒化物半導体に含まれる。 Group III nitride compound semiconductors represented by the general formula Al a In b Ga 1-ab N (0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ a + b ≦ 1) (hereinafter referred to as “nitride semiconductor”) Is also known). The nitride semiconductor includes GaN, InGaN, AlGaN, AlInGaN, AlN, InN, and the like. In the above chemical formula, a part of the group 3 element is substituted with boron (B), thallium (Tl), etc., and a part of N (nitrogen) is phosphorus (P), arsenic (As), antimony (Sb) Those substituted with bismuth (Bi) or the like are also included in the nitride semiconductor.

窒化物半導体からなる発光層を挟んでp型およびn型の窒化物半導体層を積層してなる発光素子構造を有する、3族窒化物系発光ダイオード素子(以下「窒化物LED」ともいう。)が公知である。典型的な窒化物LEDは、有機金属化合物気相成長(MOVPE)法、ハイドライド気相成長(HVPE)法、分子ビームエピタキシー(MBE)法などの気相成長方法を用いて、サファイア基板上にn型GaNコンタクト層、InGaN発光層、p型AlGaNクラッド層、p型GaNコンタクト層をこの順に積層した後、エッチングにより露出させたn型GaNコンタクト層の表面に負電極を形成し、p型GaNコンタクト層の上面に正電極を形成することによって、構成される。   A group 3 nitride-based light-emitting diode element (hereinafter also referred to as “nitride LED”) having a light-emitting element structure in which p-type and n-type nitride semiconductor layers are stacked with a light-emitting layer made of a nitride semiconductor interposed therebetween. Is known. A typical nitride LED is formed on a sapphire substrate using a vapor phase growth method such as a metal organic compound vapor phase growth (MOVPE) method, a hydride vapor phase growth (HVPE) method, or a molecular beam epitaxy (MBE) method. After laminating a n-type GaN contact layer, an InGaN light emitting layer, a p-type AlGaN cladding layer, and a p-type GaN contact layer in this order, a negative electrode is formed on the surface of the n-type GaN contact layer exposed by etching, and a p-type GaN contact is formed. Constructed by forming a positive electrode on the top surface of the layer.

サファイア基板などの透明基板の上に窒化物半導体層を積層してなる窒化物LEDは、発光層で生じる光を透明基板を通して素子外部に取出すのに適した、「フリップチップ型」の構成とすることができる。フリップチップ型窒化物LEDでは、発光層で発生する光のうち、透明基板とは反対の方向に向かう光を、効率よく透明基板側に反射させることによって、光取出し効率を高くすることができる。そのために、各種の反射構造を備えたフリップチップ型窒化物LEDが提案されている(特許文献1)。   A nitride LED formed by laminating a nitride semiconductor layer on a transparent substrate such as a sapphire substrate has a “flip chip type” configuration suitable for extracting light generated in the light emitting layer to the outside of the device through the transparent substrate. be able to. In the flip-chip nitride LED, light extraction efficiency can be increased by efficiently reflecting light traveling in the direction opposite to the transparent substrate out of the light generated in the light emitting layer to the transparent substrate side. For this purpose, flip-chip nitride LEDs having various reflecting structures have been proposed (Patent Document 1).

特許文献1で新たに提案されているフリップチップ型窒化物LEDは、サファイア基板上にp型GaNコンタクト層を最上層とする窒化物半導体層を形成し、その上面にRh(ロジウム)からなる網目状のp型オーミック電極、酸化ケイ素からなる透光性絶縁膜、Al(アルミニウム)膜、Au(金)膜を順次積層した構成を有している。この窒化物LEDは、p型オーミック電極とは別個に、Rhよりも紫外〜可視域における反射率の高いAlからなる高反射膜として設け、この高反射膜により発光層で発生する光をサファイア基板側に反射させるので、高い光取出し効率を示すとされている。また、p型オーミック電極とAl膜とが透光性絶縁膜で隔てられているために、AlとRhとの合金化が防止され、電気的、光学的、信頼性の総合面で優れた効果を発揮するとされている。本明細書では、以下、このようにp型オーミック電極と高反射膜とが透光性絶縁膜で隔てられた構成を有するフリップチップ型窒化物LEDを、「電極/高反射膜分離型LED」と呼ぶことにする。   In the flip chip type nitride LED newly proposed in Patent Document 1, a nitride semiconductor layer having a p-type GaN contact layer as an uppermost layer is formed on a sapphire substrate, and a mesh made of Rh (rhodium) is formed on the upper surface thereof. A p-type ohmic electrode, a translucent insulating film made of silicon oxide, an Al (aluminum) film, and an Au (gold) film are sequentially stacked. This nitride LED is provided as a highly reflective film made of Al having a higher reflectivity in the ultraviolet to visible range than Rh, separately from the p-type ohmic electrode, and the light generated in the light emitting layer by this highly reflective film is a sapphire substrate It is said to show high light extraction efficiency because it is reflected to the side. In addition, since the p-type ohmic electrode and the Al film are separated by the translucent insulating film, alloying of Al and Rh is prevented, and excellent effects in terms of overall electrical, optical, and reliability It is supposed to demonstrate. In the present specification, hereinafter, a flip-chip nitride LED having a configuration in which a p-type ohmic electrode and a high-reflection film are separated by a light-transmitting insulating film will be referred to as an “electrode / high-reflection film-separated LED”. I will call it.

特開2006−100529号公報JP 2006-100529 A

本発明者等が、特許文献1で提案された電極/高反射膜分離型LEDを試作し、その特性を評価したところ、p型オーミック電極が反射膜を兼用する従来の典型的なフリップチップ型窒化物LEDと比べて、発光層における発光の面内均一性が低くなる傾向があることが分かった。   The present inventors made a prototype of the electrode / high reflection film separation type LED proposed in Patent Document 1 and evaluated its characteristics. As a result, a conventional typical flip chip type in which a p-type ohmic electrode also serves as a reflection film. It was found that the in-plane uniformity of light emission in the light emitting layer tends to be lower than that of the nitride LED.

本発明はかかる事情に鑑みなされたものであり、電極/高反射膜分離型LEDにおける上記問題点を改善する方法を提供することを目的とする。   This invention is made | formed in view of this situation, and it aims at providing the method of improving the said problem in electrode / high reflective film separated type LED.

本発明者等による検討の結果、電極/高反射膜分離型LEDにおいて、発光層における発光の面内均一性が、透光性絶縁膜の形成方法によって変化することが見出された。具体的には、透光性絶縁膜をプラズマCVD法で形成すると面内均一性が低くなるのに対し、電子ビーム蒸着法またはスパッタリング法などの方法で低温成膜すると、該面内均一性が改善されることが見出された。更に、透光性絶縁膜をスパッタリング法で形成したときには、発光層における発光の面内均一性が改善される一方で、順方向電圧が高くなる傾向が生じるのに対し、電子ビーム蒸着法で形成したときにはそのような傾向が生じないことも判明した。本発明者等は、これらの知見を得たことに基づいて、本発明を完成させるに至った。   As a result of studies by the present inventors, it has been found that in the electrode / high reflection film separated type LED, the in-plane uniformity of light emission in the light emitting layer varies depending on the method of forming the translucent insulating film. Specifically, in-plane uniformity is reduced when a light-transmitting insulating film is formed by a plasma CVD method, whereas in-plane uniformity is reduced when a low-temperature film is formed by a method such as an electron beam evaporation method or a sputtering method. It has been found to be improved. Further, when the light-transmitting insulating film is formed by sputtering, the in-plane uniformity of light emission in the light-emitting layer is improved, while the forward voltage tends to increase, whereas it is formed by electron beam evaporation. It has also been found that such a tendency does not occur. The present inventors have completed the present invention based on these findings.

本発明の製造方法は次の特徴を有する。
(1)透明基板上に形成され、発光層を挟んでn型層およびp型層を積層してなる発光素子構造を備えるとともに、p型コンタクト層を最上層として含む、3族窒化物系化合物半導体層の上面に、p型オーミック電極を開口部を有するパターンに形成する、p型オーミック電極形成工程と、 前記3族窒化物系化合物半導体層とで前記p型オーミック電極を挟む位置に、前記発光層で生じる光の波長においてp型オーミック電極よりも高い反射率を示す高反射膜を形成する、高反射膜形成工程と、前記p型オーミック電極と前記高反射膜とを隔てる透光性絶縁膜を形成する透光性絶縁膜形成工程とを有し、前記透光性絶縁膜の形成に電子ビーム蒸着法を用いることを特徴とする、3族窒化物系発光ダイオード素子の製造方法。
(2)前記透光性絶縁膜を0.3μm以上の膜厚に形成する、前記(1)に記載の製造方法。
(3)前記透光性絶縁膜が、誘電体多層膜型の反射膜の構成を含んでいる、前記(1)または(2)に記載の製造方法。
(4)前記p型オーミック電極の形成を電子ビーム蒸着法により行う、前記(1)〜(3)のいずれかに記載の製造方法。
(5)更に、前記高反射膜形成工程の後に、プラズマCVD法またはスパッタリング法を用いて、3族窒化物系化合物半導体層の表面を保護するための絶縁保護膜を形成する工程を有する、前記(1)〜(4)のいずれかに記載の製造方法。
The manufacturing method of the present invention has the following characteristics.
(1) A Group 3 nitride compound comprising a light-emitting element structure formed on a transparent substrate and having an n-type layer and a p-type layer laminated with a light-emitting layer sandwiched therebetween, and a p-type contact layer as an uppermost layer Forming a p-type ohmic electrode in a pattern having an opening on the upper surface of the semiconductor layer; and a position sandwiching the p-type ohmic electrode between the group III nitride compound semiconductor layer and Forming a highly reflective film having a higher reflectivity than the p-type ohmic electrode at the wavelength of light generated in the light-emitting layer; and a translucent insulation separating the p-type ohmic electrode and the highly reflective film A method of manufacturing a group III nitride light-emitting diode device, comprising: forming a light-transmitting insulating film; and forming the light-transmitting insulating film using an electron beam evaporation method.
(2) The manufacturing method according to (1), wherein the translucent insulating film is formed to a thickness of 0.3 μm or more.
(3) The manufacturing method according to (1) or (2), wherein the translucent insulating film includes a dielectric multilayer film type reflective film.
(4) The manufacturing method according to any one of (1) to (3), wherein the p-type ohmic electrode is formed by an electron beam evaporation method.
(5) Further, after the highly reflective film forming step, the method includes a step of forming an insulating protective film for protecting the surface of the group III nitride compound semiconductor layer using a plasma CVD method or a sputtering method. (1) The manufacturing method in any one of (4).

本発明の製造方法によれば、発光層における発光の面内均一性の良好な電極/高反射膜分離型LEDが得られる。LED素子の発光層における発光の面内均一性が良好であると、それを用いて構成される照明装置や表示装置の配向特性の設計値からのずれを小さくすることができる。また、発光層における発光の面内均一性が高いLEDでは、発光層を均一に電流が流れるので、発熱も均一に生じる。よって、素子の劣化の進行が緩やかなものとなる。
また、本発明の製造方法によれば、順方向電圧の上昇を伴うことなく、発光層における発光の面内均一性が良好な、極/高反射膜分離型LEDを得ることができる。LEDは順方向電圧が低い程、発光効率が高くなる他、駆動時の発熱量が少なくなるので、その耐久性や信頼性が向上する。
According to the manufacturing method of the present invention, it is possible to obtain an electrode / high reflection film separation type LED having good in-plane uniformity of light emission in the light emitting layer. When the in-plane uniformity of light emission in the light emitting layer of the LED element is good, the deviation from the design value of the orientation characteristics of the lighting device or display device configured using the light emitting layer can be reduced. In addition, in an LED having high in-plane light emission uniformity in the light emitting layer, since current flows uniformly through the light emitting layer, heat is generated uniformly. Therefore, the progress of deterioration of the element becomes slow.
In addition, according to the manufacturing method of the present invention, it is possible to obtain a pole / high reflection film separated type LED having good in-plane uniformity of light emission in the light emitting layer without increasing the forward voltage. The lower the forward voltage of the LED, the higher the light emission efficiency and the less the amount of heat generated during driving, thereby improving the durability and reliability.

以下、図面を参照して本発明を具体的に説明する。
図1は、本発明の製造方法により得られる、電極/高反射膜分離型LEDの構造の一例を示す断面図である。1は透明基板であり、その上に、発光層を挟んでn型層とp型層とを積層してなる発光素子構造を含む窒化物半導体層2が積層されている。窒化物半導体層2は、n型層としてn型コンタクト層を含んでおり、また、p型コンタクト層を最上層として含んでいる。3は窒化物半導体層2の上面に、網目状のパターンに形成されたp型オーミック電極である。そのp型オーミック電極3を、窒化物半導体層2とで挟むように、透光性絶縁膜4が形成され、その上に高反射膜5が形成されている。透光性絶縁膜4が、p型オーミック電極3と高反射膜5を隔てているために、p型オーミック電極3と高反射膜5との合金化が防止される。透光性絶縁膜4にはp型オーミック電極3の一部が露出するように開口部4Aが設けられており、該開口部4Aを通してp型オーミック電極3と電気的に接続されるように、p側ボンディング電極6が形成されている。p側ボンディング電極6は正側の接点用電極であり、素子を実装する際には、外部電極との接続に用いられる金属ワイヤまたは導電性接着剤(ハンダ、導電ペースト等)がその表面に接合される。7はn型オーミック電極であり、エッチングによって窒化物半導体層2の一部を除去することにより露出した、n型コンタクト層の表面2S上に形成されている。このn型オーミック電極7は、負側の接点用電極を兼ねている。
Hereinafter, the present invention will be specifically described with reference to the drawings.
FIG. 1 is a cross-sectional view showing an example of the structure of an electrode / high reflection film separation type LED obtained by the manufacturing method of the present invention. Reference numeral 1 denotes a transparent substrate, on which a nitride semiconductor layer 2 including a light emitting element structure formed by laminating an n-type layer and a p-type layer with a light emitting layer interposed therebetween is laminated. Nitride semiconductor layer 2 includes an n-type contact layer as an n-type layer, and also includes a p-type contact layer as an uppermost layer. Reference numeral 3 denotes a p-type ohmic electrode formed in a mesh pattern on the upper surface of the nitride semiconductor layer 2. A translucent insulating film 4 is formed so that the p-type ohmic electrode 3 is sandwiched between the nitride semiconductor layers 2, and a highly reflective film 5 is formed thereon. Since the translucent insulating film 4 separates the p-type ohmic electrode 3 and the highly reflective film 5, alloying of the p-type ohmic electrode 3 and the highly reflective film 5 is prevented. The translucent insulating film 4 is provided with an opening 4A so that a part of the p-type ohmic electrode 3 is exposed, and is electrically connected to the p-type ohmic electrode 3 through the opening 4A. A p-side bonding electrode 6 is formed. The p-side bonding electrode 6 is a positive-side contact electrode, and when a device is mounted, a metal wire or conductive adhesive (solder, conductive paste, etc.) used for connection to an external electrode is bonded to the surface. Is done. Reference numeral 7 denotes an n-type ohmic electrode, which is formed on the surface 2S of the n-type contact layer exposed by removing a part of the nitride semiconductor layer 2 by etching. The n-type ohmic electrode 7 also serves as a negative contact electrode.

図1に示すGaN系LEDの製造方法を、図2および図3を用いて説明する。
まず、サファイア基板などの透明基板1を準備し、その上にMOVPE法等を用いて、窒化物半導体層2を形成する。図2(a)は、透明基板1上に窒化物半導体層2を形成する工程までが完了したウェハを、窒化物半導体層2側から見た上面図である。なお、便宜上、ひとつの素子に相当する領域のみを表示しているが、実際の工程はウェハ単位で行われる。図2(b)および(c)、図3(d)〜(f)も同様である。
A method of manufacturing the GaN-based LED shown in FIG. 1 will be described with reference to FIGS.
First, a transparent substrate 1 such as a sapphire substrate is prepared, and a nitride semiconductor layer 2 is formed thereon using a MOVPE method or the like. FIG. 2A is a top view of the wafer that has been subjected to the process of forming the nitride semiconductor layer 2 on the transparent substrate 1 as viewed from the nitride semiconductor layer 2 side. For convenience, only the region corresponding to one element is displayed, but the actual process is performed in units of wafers. The same applies to FIGS. 2B and 2C and FIGS. 3D to 3F.

次に、窒化物半導体層2の形成が完了したウェハの上面(窒化物半導体層2の上面)に、図2(b)に示すように、p型オーミック電極3を網目状パターンに形成する。電極膜の形成方法に限定はないが、好ましくは、p型コンタクト層に与える損傷が小さい電子ビーム蒸着法である。電極膜のパターニングはリフトオフ法を用いて行うことができる。パターニングした電極膜に対しては、p型コンタクト層との接触抵抗を低下させるための熱処理を行う。   Next, as shown in FIG. 2B, a p-type ohmic electrode 3 is formed in a mesh pattern on the upper surface of the wafer on which the formation of the nitride semiconductor layer 2 has been completed (the upper surface of the nitride semiconductor layer 2). There is no limitation on the method of forming the electrode film, but the electron beam evaporation method is preferable because it causes little damage to the p-type contact layer. The patterning of the electrode film can be performed using a lift-off method. The patterned electrode film is subjected to heat treatment for reducing the contact resistance with the p-type contact layer.

次に、塩素ガスを用いた反応性イオンエッチング法により窒化物半導体層2の一部を除去して、図2(c)に示すように、n型コンタクト層の表面2Sを露出させる。そして、この露出面上にn型オーミック電極7を形成する。必要に応じて、n型オーミック電極とn型コンタクト層との接触抵抗を低下させるための熱処理を行う。この熱処理と、前記のp型オーミック電極の熱処理とは同時に行うことができる。   Next, a part of the nitride semiconductor layer 2 is removed by a reactive ion etching method using chlorine gas to expose the surface 2S of the n-type contact layer as shown in FIG. Then, an n-type ohmic electrode 7 is formed on the exposed surface. If necessary, heat treatment is performed to reduce the contact resistance between the n-type ohmic electrode and the n-type contact layer. This heat treatment and the heat treatment of the p-type ohmic electrode can be performed simultaneously.

次に、図3(d)に示すように、酸化ケイ素などの無機材料からなる透光性絶縁膜4を形成する。この透光性絶縁膜4の形成は、電子ビーム蒸着法を用いて行う。4Aは、透光性絶縁膜4を貫通する開口部であり、後に形成するp側ボンディング電極6とp型オーミック電極3との電気的接続のために設けられている。   Next, as shown in FIG. 3D, a translucent insulating film 4 made of an inorganic material such as silicon oxide is formed. The translucent insulating film 4 is formed using an electron beam evaporation method. 4A is an opening that penetrates the translucent insulating film 4 and is provided for electrical connection between the p-side bonding electrode 6 and the p-type ohmic electrode 3 to be formed later.

次に、図3(e)に示すように、透光性絶縁膜4の表面に高反射膜5を形成する。高反射膜5は、発光層で生じる光の波長における反射率がp型オーミック電極3よりも高くなるように、その材料および構成を定める。   Next, as shown in FIG. 3E, a highly reflective film 5 is formed on the surface of the translucent insulating film 4. The material and configuration of the highly reflective film 5 are determined so that the reflectance at the wavelength of light generated in the light emitting layer is higher than that of the p-type ohmic electrode 3.

次に、図3(f)に示すように、p側ボンディング電極6を形成する。透光性絶縁膜4に設けられた開口部4Aを通して、p型オーミック電極3とp側ボンディング電極6とが接触することにより、これらの間の電気的接続が達成される。   Next, as shown in FIG. 3F, the p-side bonding electrode 6 is formed. The p-type ohmic electrode 3 and the p-side bonding electrode 6 come into contact with each other through the opening 4A provided in the light-transmitting insulating film 4, thereby achieving electrical connection therebetween.

p側ボンディング電極6の形成後、スクライビング、ダイシング、レーザ溶断など、この分野の周知の方法を用いて、ウェハからLEDチップを切り出す。   After the p-side bonding electrode 6 is formed, the LED chip is cut out from the wafer by using a well-known method in this field, such as scribing, dicing, or laser cutting.

本発明の製造方法によって、発光層における発光の面内均一性の良好な電極/高反射膜分離型LEDが得られる理由について、本発明者等は次のように考えている。
従来の製造方法では、透光性絶縁膜の形成をプラズマCVD法等のCVD法で行っていたが、CVD法では成膜時のウェハ温度を比較的高い温度とする必要があるために、透光性絶縁膜とp型オーミック電極との熱膨張率差により発生する熱応力が比較的大きかった。そして、この熱応力の作用によってp型オーミック電極とp型コンタクト層との接触状態が部分的に変化して、両者間の接触抵抗の高い領域が局所的に形成されるために、p型オーミック電極から窒化物半導体層への電流注入が均一に起こらなくなり、その結果、発光層の面内における発光強度の不均一性が高くなっていた。
これに対して、本発明の製造方法では、絶縁保護膜の形成を電子ビーム蒸着法で行うので、絶縁保護膜形成時のウェハ温度をCVD法に比べて低くすることができる。そのために、絶縁保護膜とp型オーミック電極との熱膨張率差により生じる熱応力が小さくなるので、CVD法を用いた場合に発生していた上記の問題が緩和される。また、電子ビーム蒸着法で形成される無機薄膜は、CVD法により形成されるものに比べて緻密性が低く、変形し易いものとなるので、絶縁保護膜側の変形による熱応力の緩和が生じ、そのために、p型オーミック電極に作用する熱応力が低減されるものと思われる。
The present inventors consider the reason why an electrode / high reflection film separation type LED with good in-plane uniformity of light emission in the light emitting layer can be obtained by the manufacturing method of the present invention as follows.
In the conventional manufacturing method, the light-transmitting insulating film is formed by a CVD method such as a plasma CVD method. However, the CVD method requires a relatively high wafer temperature during film formation. The thermal stress generated due to the difference in thermal expansion coefficient between the light insulating film and the p-type ohmic electrode was relatively large. The contact state between the p-type ohmic electrode and the p-type contact layer is partially changed by the action of the thermal stress, and a region having a high contact resistance between the two is locally formed. Current injection from the electrode to the nitride semiconductor layer does not occur uniformly, and as a result, the non-uniformity of the emission intensity in the plane of the light emitting layer is high.
On the other hand, in the manufacturing method of the present invention, since the insulating protective film is formed by the electron beam evaporation method, the wafer temperature at the time of forming the insulating protective film can be lowered as compared with the CVD method. For this reason, the thermal stress generated by the difference in thermal expansion coefficient between the insulating protective film and the p-type ohmic electrode is reduced, so that the above-described problem that occurs when the CVD method is used is alleviated. In addition, the inorganic thin film formed by the electron beam evaporation method is less dense than the CVD method and easily deforms, so that the thermal stress is relaxed due to the deformation on the insulating protective film side. Therefore, it is considered that the thermal stress acting on the p-type ohmic electrode is reduced.

なお、透光性絶縁膜を比較的低いウェハ温度で形成できる方法として、電子ビーム蒸着法の他にスパッタリング法が挙げられるが、前述のように、透光性絶縁膜の形成にスパッタリング法を用いると、電子ビーム蒸着法を用いた場合よりも、LEDの順方向電圧が高くなる。その原因の詳細は不明であるが、恐らく、スパッタリング法による成膜時には、p型コンタクト層の表面がp型オーミック電極に覆われていない領域に、分子状またはクラスター状の薄膜原料が高速で衝突するので、窒化物半導体結晶中から窒素が脱離してドナー性欠陥が生じ、そのために、p型コンタクト層の表面近傍のp型キャリア密度が低下して、電極との接触抵抗が上昇するからではないかと思われる。   Note that as a method for forming the light-transmitting insulating film at a relatively low wafer temperature, a sputtering method can be given in addition to the electron beam evaporation method. As described above, the sputtering method is used for forming the light-transmitting insulating film. Then, the forward voltage of the LED becomes higher than when the electron beam evaporation method is used. Although the details of the cause are unknown, it is likely that molecular or cluster thin film materials collide at high speed in a region where the surface of the p-type contact layer is not covered with the p-type ohmic electrode during film formation by sputtering. As a result, nitrogen is desorbed from the nitride semiconductor crystal and a donor defect is generated. For this reason, the p-type carrier density in the vicinity of the surface of the p-type contact layer is lowered and the contact resistance with the electrode is increased. It seems that there is not.

次に、本発明の好適な実施形態について説明する。
気相エピタキシャル成長法により窒化物半導体層を形成する際に使用できる基板としては、少なくとも結晶成長面を含む表層部分に、サファイア、SiC、GaN、AlGaN、AlN、Si、GaAs、GaP、スピネル、ZnO、NGO(NdGaO)、LGO(LiGaO)、LAO(LaAlO)、ZrB、TiB等からなる単結晶層を有する基板が挙げられる。この基板が透明基板(当該LEDの発光波長において実用上問題ない程度に高い透過率を有する基板)である場合には、窒化物半導体層の形成に用いた後、そのままLED素子中に構造体として残すことができる。一方、この基板が透明基板でない場合には、窒化物半導体層の形成に用いた後、これを研磨、レーザリフトオフ、エッチング等の方法により除去し、別途準備した透明基板に置換することができる。このような基板の置換は、窒化物半導体層の形成時に用いる基板が透明基板の場合であっても、目的に応じて任意に行うことができる。
Next, a preferred embodiment of the present invention will be described.
As a substrate that can be used when forming a nitride semiconductor layer by vapor phase epitaxial growth, sapphire, SiC, GaN, AlGaN, AlN, Si, GaAs, GaP, spinel, ZnO, at least on the surface layer portion including the crystal growth surface, Examples include a substrate having a single crystal layer made of NGO (NdGaO 3 ), LGO (LiGaO 2 ), LAO (LaAlO 3 ), ZrB 2 , TiB 2 or the like. When this substrate is a transparent substrate (a substrate having such a high transmittance that there is no practical problem at the emission wavelength of the LED), it is used as a structure in the LED element after being used for forming a nitride semiconductor layer. Can leave. On the other hand, if this substrate is not a transparent substrate, it can be used for forming a nitride semiconductor layer, and then removed by a method such as polishing, laser lift-off, or etching, and replaced with a separately prepared transparent substrate. Such substitution of the substrate can be arbitrarily performed according to the purpose even when the substrate used when forming the nitride semiconductor layer is a transparent substrate.

窒化物半導体層は、n型層に注入された電子キャリアと、p型層に注入された正孔キャリアとが、発光層で再結合して発光が生じるように、n型層と発光層とp型層が積層された発光素子構造を含んでいればよく、詳細な構成については従来公知の技術を適宜参照することができる。好ましくは、発光素子構造はダブルヘテロ型とし、発光層は多重量子井戸(MQW)構造とする。   The nitride semiconductor layer includes an n-type layer and a light-emitting layer so that the electron carriers injected into the n-type layer and the hole carriers injected into the p-type layer recombine in the light-emitting layer to generate light. A light-emitting element structure in which p-type layers are stacked may be included, and conventionally known techniques can be referred to as appropriate for the detailed configuration. Preferably, the light emitting element structure is a double hetero type, and the light emitting layer is a multiple quantum well (MQW) structure.

p型オーミック電極の構成については、従来公知の技術を適宜参照することができる。好ましくは、p型オーミック電極の、p型コンタクト層と接する部分を、Rh、Pt(白金)、Pd(パラジウム)等の白金族元素の単体または合金で形成する。白金族元素は紫外〜可視短波長域における光の反射率が高いからである。   For the configuration of the p-type ohmic electrode, conventionally known techniques can be referred to as appropriate. Preferably, the portion of the p-type ohmic electrode that is in contact with the p-type contact layer is formed of a simple substance or an alloy of a platinum group element such as Rh, Pt (platinum), or Pd (palladium). This is because platinum group elements have high light reflectance in the ultraviolet to visible short wavelength region.

p型オーミック電極は、発光層で発生する光に対する反射性が十分高くなるよう、また、シート抵抗が高くならないように、膜厚を0.06μm以上とすることが好ましく、0.1μm以上とすることがより好ましい。p型オーミック電極の膜厚が30nmより小さいと、電極膜を光が透過し、その際に受ける吸収による損失が大きくなるので、好ましくない。p型オーミック電極の膜厚に特に上限はないが、膜厚を大きくし過ぎると材料の浪費となるので、p型オーミック電極の膜厚は1μm以下とすることが好ましく、0.5μm以下とすることがより好ましく、0.3μm以下とすることが特に好ましい。   The p-type ohmic electrode preferably has a film thickness of 0.06 μm or more and 0.1 μm or more so that the reflectivity to light generated in the light emitting layer is sufficiently high and the sheet resistance is not increased. It is more preferable. If the film thickness of the p-type ohmic electrode is smaller than 30 nm, light is transmitted through the electrode film, and loss due to absorption at that time is increased, which is not preferable. There is no particular upper limit to the thickness of the p-type ohmic electrode, but if the film thickness is too large, the material is wasted. Therefore, the thickness of the p-type ohmic electrode is preferably 1 μm or less, preferably 0.5 μm or less. It is more preferable that the thickness be 0.3 μm or less.

p型オーミック電極は開口部を有するパターンに形成する。開口部を有するパターンには、網目状、分岐状、櫛状、放射状、渦巻き状、ミアンダ状など、種々のパターンがある。開口部を有するパターンの例を図4に示す。図4(a)は方形の開口部を有する網目状パターンの一例、図4(b)は円形の開口部を有する網目状パターンの一例、図4(c)は多重環状パターンと放射状パターンとを組み合わせた網目状パターンの一例、図4(d)はミアンダ状パターンの一例、図4(e)は櫛状パターンの一例、図4(f)は分岐状パターンの一例である。ここでいう開口部は、電極膜を貫通する孔状部に限定されず、電極膜の外周部と連なった切れ込み部を含んでいる。開口部を有するパターンにおいて、電極膜や開口部の形状が帯状である場合の帯幅や、開口部の形状がドット状である場合の、開口部の最大幅(幅が最大となる方向における幅)は、1μm〜50μmとすることが好ましく、2μm〜25μmとすることがより好ましく、2μm〜15μmとすることが特に好ましい。また、p型オーミック電極に占める開口部の面積比(電極膜部分と開口部の面積の合計に占める開口部の面積比)は50%〜80%の範囲とすることが好ましい。   The p-type ohmic electrode is formed in a pattern having an opening. The patterns having openings include various patterns such as a mesh shape, a branched shape, a comb shape, a radial shape, a spiral shape, and a meander shape. An example of a pattern having an opening is shown in FIG. 4A shows an example of a mesh pattern having a square opening, FIG. 4B shows an example of a mesh pattern having a circular opening, and FIG. 4C shows a multi-ring pattern and a radial pattern. FIG. 4D shows an example of a meander pattern, FIG. 4E shows an example of a comb pattern, and FIG. 4F shows an example of a branch pattern. The opening here is not limited to the hole-like portion penetrating the electrode film, but includes a notch that is continuous with the outer periphery of the electrode film. In a pattern having an opening, the band width when the shape of the electrode film or the opening is a band, or the maximum width of the opening when the shape of the opening is a dot (width in the direction in which the width is maximum) ) Is preferably 1 μm to 50 μm, more preferably 2 μm to 25 μm, and particularly preferably 2 μm to 15 μm. Further, the area ratio of the opening to the p-type ohmic electrode (the area ratio of the opening to the total area of the electrode film portion and the opening) is preferably in the range of 50% to 80%.

透光性絶縁膜の好ましい材料としては、各種の金属酸化物、金属窒化物、金属酸窒化物が挙げられる。金属酸化物の好適例は、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化タンタル、酸化ハフニウム、酸化イットリウム、酸化マグネシウム、酸化アルミニウム、酸化ニオブである。金属窒化物の好適例は窒化ケイ素、窒化アルミニウムである。これらの他、フッ化マグネシウムも好適に用いることができる。透光性絶縁膜は多層膜であってもよく、例えば、屈折率の異なる薄膜を積層してなる誘電体多層膜型の反射膜の構成を含んでいてもよい。透光性絶縁膜の膜厚は、p型オーミック電極と高反射膜の合金化を実質的に防止できる膜厚であればよく、好ましくは0.1μm以上、より好ましくは0.2μm以上、特に好ましくは0.3μm以上である。透光性絶縁膜の膜厚を大きくすることには、窒化物半導体層と透光性絶縁膜との界面における、屈折率差による反射が生じ易くなるという利点もある。窒化物半導体層と透光性絶縁膜との屈折率差により生じる反射に伴う損失は、金属製の高反射膜による反射に伴う損失よりも小さい。透光性絶縁膜の膜厚が3μmを越えると、そのパターニングを簡便なリフトオフ法を用いて行うことが難しくなる。   Preferable materials for the light-transmitting insulating film include various metal oxides, metal nitrides, and metal oxynitrides. Preferred examples of the metal oxide are silicon oxide, titanium oxide, zirconium oxide, tantalum oxide, hafnium oxide, yttrium oxide, magnesium oxide, aluminum oxide, and niobium oxide. Preferred examples of the metal nitride are silicon nitride and aluminum nitride. In addition to these, magnesium fluoride can also be suitably used. The translucent insulating film may be a multilayer film, and may include, for example, a configuration of a dielectric multilayer film type reflection film formed by laminating thin films having different refractive indexes. The film thickness of the translucent insulating film may be any film thickness that can substantially prevent alloying of the p-type ohmic electrode and the highly reflective film, preferably 0.1 μm or more, more preferably 0.2 μm or more, and particularly Preferably it is 0.3 micrometer or more. Increasing the thickness of the light-transmitting insulating film has an advantage that reflection due to a difference in refractive index is likely to occur at the interface between the nitride semiconductor layer and the light-transmitting insulating film. The loss caused by reflection caused by the difference in refractive index between the nitride semiconductor layer and the light-transmitting insulating film is smaller than the loss caused by reflection by the metal high reflection film. If the film thickness of the translucent insulating film exceeds 3 μm, it becomes difficult to perform patterning using a simple lift-off method.

透光性絶縁膜は、その全体を電子ビーム蒸着法により形成することが好ましいが、電子ビーム蒸着法で形成した層と、CVD法、スパッタリング法など、電子ビーム蒸着法以外の方法で形成した層とを重ねた構成としてもよい。その場合、膜厚の80%以上を、電子ビーム蒸着法で形成した層が占めるようにする。   The entire light-transmitting insulating film is preferably formed by electron beam evaporation, but a layer formed by electron beam evaporation and a layer formed by methods other than electron beam evaporation such as CVD and sputtering. It is good also as a structure which piled up. In that case, the layer formed by the electron beam evaporation method occupies 80% or more of the film thickness.

透光性絶縁膜はp型オーミック電極3と高反射膜5の合金化を実質的に防止できるものであればよいので、例えば、図5に示す電極/高反射膜分離型LEDの例のように、p型オーミック電極3の開口部において、高反射膜5が窒化物半導体層2と接するように、透光性絶縁膜4の形状を設定することもできる。   The translucent insulating film may be any material that can substantially prevent the p-type ohmic electrode 3 and the highly reflective film 5 from being alloyed. For example, the electrode / highly reflective film separated LED shown in FIG. In addition, the shape of the translucent insulating film 4 can be set so that the highly reflective film 5 is in contact with the nitride semiconductor layer 2 in the opening of the p-type ohmic electrode 3.

高反射膜の好ましい材料は、近紫外〜可視波長域における反射率の高いAg(銀)、Al、Rh、Ptなどであり、とりわけ、Ag、Alである。Rh、Pt以外の白金族元素(Ir、Pd、Ru、Os)も好適に使用できる。AgやAlに、光反射性を大きく損なわない範囲で他の元素を添加して熱安定性や化学的安定性を改善した、Ag合金、Al合金も好適に用い得る。   Preferred materials for the highly reflective film are Ag (silver), Al, Rh, Pt, etc., which have a high reflectivity in the near ultraviolet to visible wavelength range, and in particular, Ag and Al. Platinum group elements (Ir, Pd, Ru, Os) other than Rh and Pt can also be suitably used. Ag alloys and Al alloys in which thermal stability and chemical stability are improved by adding other elements to Ag and Al within a range that does not significantly impair the light reflectivity can also be suitably used.

p側ボンディング電極は、前述のように、正側の接点用電極である。p側ボンディング電極は、最表面を含む部分をAuで形成すると、その表面に金属ワイヤやハンダを接合することが容易となる。また、p側ボンディング電極は、最表面を含む部分をAu、Au合金、Sn、Sn合金で形成すると、その表面に、AuやSn(錫)を成分に含むハンダを接合することが容易となる。   As described above, the p-side bonding electrode is a positive contact electrode. When the portion including the outermost surface is made of Au, the p-side bonding electrode can easily bond a metal wire or solder to the surface. In addition, when the portion including the outermost surface is formed of Au, Au alloy, Sn, or Sn alloy, the p-side bonding electrode can easily bond solder containing Au or Sn (tin) as a component to the surface. .

図1や図5に例示する電極/高反射膜分離型LEDでは、高反射膜5上にp側ボンディング電極6が積層されているが、高反射膜5とp側ボンディング電極6との間で合金化が生じると、高反射膜5の反射性が低下し、また、p側ボンディング電極6と金属ワイヤまたはハンダとの接合性が悪くなるという問題が生じる。これを防止するために、高反射膜5とp側ボンディング層6との間にはバリア層を介在させることが好ましい。バリア層は、例えば、W(タングステン)、Mo(モリブデン)、Ta(タンタル)、Nb(ニオブ)、V(バナジウム)、Zr(ジルコニウム)等のいわゆる高融点金属、白金族元素、Ti(チタン)、Ni(ニッケル)等の単体、またはその合金で形成することができる。また、金属酸化物、金属窒化物、金属酸窒化物などの無機材料で形成することもできる。高反射膜5とp側ボンディング電極6との合金化を防ぐには、また、図6に例示する電極/高反射膜分離型LEDのように、p側ボンディング電極6を高反射膜5上に積層させないように形成してもよい。この場合には、高反射膜5の表面を絶縁保護膜で覆って保護することが好ましい。   In the electrode / high reflection film separation type LED illustrated in FIGS. 1 and 5, the p-side bonding electrode 6 is laminated on the high reflection film 5, but between the high reflection film 5 and the p-side bonding electrode 6. When alloying occurs, the reflectivity of the highly reflective film 5 decreases, and the problem arises that the bonding property between the p-side bonding electrode 6 and the metal wire or solder is deteriorated. In order to prevent this, it is preferable to interpose a barrier layer between the highly reflective film 5 and the p-side bonding layer 6. The barrier layer is, for example, a so-called refractory metal such as W (tungsten), Mo (molybdenum), Ta (tantalum), Nb (niobium), V (vanadium), or Zr (zirconium), a platinum group element, or Ti (titanium). , Ni (nickel) or the like, or an alloy thereof. Further, it can be formed of an inorganic material such as a metal oxide, a metal nitride, or a metal oxynitride. In order to prevent alloying of the high reflection film 5 and the p-side bonding electrode 6, the p-side bonding electrode 6 is placed on the high reflection film 5 as in the electrode / high reflection film separation type LED illustrated in FIG. You may form so that it may not laminate | stack. In this case, it is preferable to protect the surface of the highly reflective film 5 by covering it with an insulating protective film.

n型オーミック電極の構成については、従来公知の技術を適宜参照することができる。好ましいn型オーミック電極は、n型コンタクト層と接する部分が、Al、Ti、W、Ni、Cr、V等の単体、または、その合金で形成される。図1、図5、図6、図7に示す電極/高反射膜分離型LEDでは、いずれも、n型オーミック電極が接点用電極を兼用しているが、n型オーミック電極に接続する負側の接点用電極を別個に設けることもできる。n側の接点用電極も、また、その最表面を含む部分をAuで形成すると、金属ワイヤとの接合性が良好となり、また、Au、Au合金、Sn、Sn合金などで形成すると、ハンダとの接合性が良好となる。   For the configuration of the n-type ohmic electrode, conventionally known techniques can be referred to as appropriate. In a preferred n-type ohmic electrode, the portion in contact with the n-type contact layer is formed of a single substance such as Al, Ti, W, Ni, Cr, V, or an alloy thereof. In the electrode / high reflection film separation type LED shown in FIG. 1, FIG. 5, FIG. 6, and FIG. 7, the n-type ohmic electrode also serves as the contact electrode, but the negative side connected to the n-type ohmic electrode These contact electrodes can also be provided separately. The n-side contact electrode also has a good bondability with a metal wire if the portion including the outermost surface is made of Au, and if it is made of Au, Au alloy, Sn, Sn alloy, etc., solder and The bondability is improved.

n型導電性を有する透明基板、例えば、n型導電性を付与したSiC基板、GaN基板、ZnO基板などを用いる場合には、透明基板の表面にn型オーミック電極を形成し、基板を経由して窒化物半導体層に含まれるn型層に電流を供給する構成を採用することもできる。   When using a transparent substrate having n-type conductivity, for example, an SiC substrate, GaN substrate, ZnO substrate or the like imparted with n-type conductivity, an n-type ohmic electrode is formed on the surface of the transparent substrate, and the substrate passes through the substrate. Thus, it is possible to employ a configuration in which current is supplied to the n-type layer included in the nitride semiconductor layer.

p型コンタクト層と高反射膜の合金化を防止するための透光性絶縁膜とは別個に、発光層の端面を含む窒化物半導体の表面を保護するための、絶縁保護膜とを形成することが望ましい。図7に、絶縁保護膜8が設けられた電極/高反射膜分離型LEDの一例を示す。この図の例では、絶縁保護膜8が、p側ボンディング電極6およびn型オーミック電極7の上面の一部を除いて、素子の上面を全面的に覆っており、素子を外傷や環境中の水分などから保護している。絶縁保護膜8は、各種の金属酸化物、金属窒化物、金属酸窒化物で形成することができ、金属酸化物の好適例としては、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化タンタル、酸化ハフニウム、酸化イットリウム、酸化マグネシウム、酸化アルミニウム、酸化ニオブが挙げられ、金属窒化物の好適例としては窒化ケイ素、窒化アルミニウムが挙げられる。これらの他、フッ化マグネシウムも好適に用いることができる。絶縁保護膜8の膜厚は、好ましくは0.2μm〜1μmである。絶縁保護膜8は、電子ビーム蒸着法よりも緻密な膜を形成することのできる、プラズマCVD法やスパッタリング法により形成することが好ましい。   An insulating protective film for protecting the surface of the nitride semiconductor including the end face of the light emitting layer is formed separately from the translucent insulating film for preventing alloying of the p-type contact layer and the highly reflective film. It is desirable. FIG. 7 shows an example of an electrode / high reflection film separation type LED provided with an insulating protective film 8. In the example of this figure, the insulating protective film 8 covers the entire upper surface of the element except for a part of the upper surfaces of the p-side bonding electrode 6 and the n-type ohmic electrode 7, and the element is damaged or in the environment. Protects against moisture. The insulating protective film 8 can be formed of various metal oxides, metal nitrides, and metal oxynitrides. Preferred examples of the metal oxide include silicon oxide, titanium oxide, zirconium oxide, tantalum oxide, and hafnium oxide. , Yttrium oxide, magnesium oxide, aluminum oxide, and niobium oxide. Preferred examples of the metal nitride include silicon nitride and aluminum nitride. In addition to these, magnesium fluoride can also be suitably used. The thickness of the insulating protective film 8 is preferably 0.2 μm to 1 μm. The insulating protective film 8 is preferably formed by a plasma CVD method or a sputtering method, which can form a denser film than the electron beam evaporation method.

(実施例)
本発明の実施例として、図7に示す電極/高反射膜分離型LEDを次のようにして作製した。
透明基板1としてC面サファイア基板を用い、その上に、MOVPE法を用いて、AlGaNからなる低温バッファ層、Si(ケイ素)を5×1018cm−3の濃度でドープした膜厚3μmのn型GaNコンタクト層、膜厚8nmのGaN障壁層と膜厚2nmのInGaN井戸層(発光波長:400nm)とを各10層交互に積層してなるMQW(多重量子井戸)構造の発光層、Mg(マグネシウム)を5×1019cm−3の濃度でドープした膜厚0.03μmのp型Al0.15Ga0.85Nクラッド層、Mgを1×1020cm−3の濃度でドープした膜厚0.2μmのp型GaN層コンタクト層を、この順に積層した。積層後、p型層に添加したMgを活性化させるために、ラピッドサーマルアニーリング(RTA)装置を用いてウェハのアニーリング処理を行った。このようにして、透明基板1上に発光素子構造を含む窒化物半導体層2が形成されたLEDウェハを得た。
(Example)
As an example of the present invention, an electrode / high reflection film separation type LED shown in FIG. 7 was produced as follows.
A C-plane sapphire substrate is used as the transparent substrate 1, and a low-temperature buffer layer made of AlGaN and Si (silicon) are doped at a concentration of 5 × 10 18 cm −3 by using the MOVPE method. Type GaN contact layer, GaN barrier layer having a thickness of 8 nm and InGaN well layer having a thickness of 2 nm (emission wavelength: 400 nm), a light emitting layer having an MQW (multiple quantum well) structure in which 10 layers are alternately stacked, Mg ( Magnesium) doped at a concentration of 5 × 10 19 cm −3 and a p-type Al 0.15 Ga 0.85 N cladding layer having a thickness of 0.03 μm, Mg doped at a concentration of 1 × 10 20 cm −3 A p-type GaN layer contact layer having a thickness of 0.2 μm was laminated in this order. After the lamination, in order to activate Mg added to the p-type layer, a wafer annealing process was performed using a rapid thermal annealing (RTA) apparatus. Thus, the LED wafer in which the nitride semiconductor layer 2 including the light emitting element structure was formed on the transparent substrate 1 was obtained.

上記のようにして得たLEDウェハの上面(窒化物半導体層2に最上層として含まれるp型GaNコンタクト層の上面)に、p型オーミック電極3を、縦横に規則的に並んだ正方形状の開口部を有する網目状パターン(格子状パターン)に形成した。開口部の一辺は8μm、隣接する開口部間を隔てる帯状の電極膜部分の幅は2μmとした。電極膜の形成は、電子ビーム蒸着法を用いて、膜厚0.05μmのRh層、膜厚0.1μmのAu層、膜厚0.01μmのNi層を、この順に積層することにより行った。ここで、最上部に設けたNi薄膜は、後に形成する透光性絶縁膜4をp型オーミック電極3に強く密着させるための、接着強化層である。電極膜のパターニングは、フォトリソグラフィ技法を用いた通常のリフトオフ法により行った。   A square shape in which p-type ohmic electrodes 3 are regularly arranged horizontally and vertically on the upper surface of the LED wafer obtained as described above (the upper surface of the p-type GaN contact layer included as the uppermost layer in the nitride semiconductor layer 2). A mesh pattern (lattice pattern) having openings was formed. One side of the opening was 8 μm, and the width of the strip-shaped electrode film part separating adjacent openings was 2 μm. The electrode film was formed by laminating a 0.05 μm thick Rh layer, a 0.1 μm thick Au layer, and a 0.01 μm thick Ni layer in this order using an electron beam evaporation method. . Here, the Ni thin film provided at the top is an adhesion reinforcing layer for strongly attaching the translucent insulating film 4 to be formed later to the p-type ohmic electrode 3. The patterning of the electrode film was performed by a normal lift-off method using a photolithography technique.

次に、反応性イオンエッチング法により、p型GaNコンタクト層、p型Al0.15Ga0.85Nクラッド層、発光層の一部を除去して、n型GaNコンタクト層の表面2Sを露出させた。露出後、そのn型GaNコンタクト層の表面2S上に、電子ビーム蒸着法を用いて、膜厚0.03μmのAl層、膜厚0.1μmのPd層、膜厚0.1μmのAu層、膜厚0.1μmのPt層、膜厚0.4μmのAu層をこの順に積層して、n型オーミック電極7を形成した。その後、p型オーミック電極3およびn型オーミック電極7と窒化物半導体層2との接触抵抗を下げるために、ウェハに対して窒素気流中、500℃、1分間の熱処理を行った。 Next, the p-type GaN contact layer, the p-type Al 0.15 Ga 0.85 N cladding layer, and a part of the light emitting layer are removed by reactive ion etching to expose the surface 2S of the n-type GaN contact layer. I let you. After the exposure, on the surface 2S of the n-type GaN contact layer, an electron beam evaporation method is used to form a 0.03 μm thick Al layer, a 0.1 μm thick Pd layer, a 0.1 μm thick Au layer, An n-type ohmic electrode 7 was formed by laminating a Pt layer having a thickness of 0.1 μm and an Au layer having a thickness of 0.4 μm in this order. Thereafter, in order to lower the contact resistance between the p-type ohmic electrode 3 and the n-type ohmic electrode 7 and the nitride semiconductor layer 2, the wafer was heat-treated at 500 ° C. for 1 minute in a nitrogen stream.

次に、電子ビーム蒸着法を用いて、酸化ケイ素からなる膜厚0.3μmの透光性絶縁膜4を、p型オーミック電極3を覆うように形成した。蒸着材料には、キヤノンオプトロン株式会社製の顆粒状SiO(サイズ:1mm〜3mm)を用いた。蒸着時にはウェハの加熱、冷却は特に行わなかったが、ルツボからの輻射によってウェハの表面温度は100℃〜150℃程度となった。蒸着時の雰囲気は真空雰囲気とし、イオンビームアシストやプラズマアシスト等は行わなかった。成膜速度は、30nm/分に設定した。 Next, a translucent insulating film 4 made of silicon oxide and having a thickness of 0.3 μm was formed so as to cover the p-type ohmic electrode 3 by using an electron beam evaporation method. Granular SiO 2 (size: 1 mm to 3 mm) manufactured by Canon Optron Co., Ltd. was used as the vapor deposition material. While the wafer was not heated or cooled during the deposition, the surface temperature of the wafer became about 100 ° C. to 150 ° C. due to radiation from the crucible. The atmosphere during vapor deposition was a vacuum atmosphere, and ion beam assist, plasma assist, etc. were not performed. The film formation rate was set to 30 nm / min.

次に、電子ビーム蒸着法を用いて、透光性絶縁膜4上にAlからなる膜厚0.2μmの高反射膜5を形成した。
次に、透光性絶縁膜4の開口部4Aを通してp型オーミック電極3と電気的に接続されるとともに、高反射膜5上に積層された、p側ボンディング電極6を形成した。p側ボンディング電極6は、電子ビーム蒸着法を用いて、膜厚0.05μmのTi層、膜厚0.1μmのPt層、膜厚0.4μmのAu層をこの順に積層することにより形成した。この三層構造のp側ボンディング層は、表面層がAu層であるためにハンダとの接合性が良好である。また、下の二層(Ti層およびPt層)が、表面層であるAu層と、Alからなる高反射層5との間を隔てるために、このAu層と高反射層5との間での合金化が起こり難くなっている。
Next, a highly reflective film 5 made of Al and having a thickness of 0.2 μm was formed on the translucent insulating film 4 by using an electron beam evaporation method.
Next, the p-side bonding electrode 6 that was electrically connected to the p-type ohmic electrode 3 through the opening 4A of the translucent insulating film 4 and was laminated on the highly reflective film 5 was formed. The p-side bonding electrode 6 was formed by laminating a 0.05 μm thick Ti layer, a 0.1 μm thick Pt layer, and a 0.4 μm thick Au layer in this order using an electron beam evaporation method. . The p-side bonding layer having this three-layer structure has good solderability because the surface layer is an Au layer. In addition, since the lower two layers (Ti layer and Pt layer) separate the Au layer as the surface layer from the highly reflective layer 5 made of Al, between this Au layer and the highly reflective layer 5, It is difficult for alloying to occur.

次に、プラズマCVD法を用いて、ウェハの上面全体を覆うように、酸化ケイ素からなる膜厚0.5μmの絶縁保護膜8を形成し、続いて、p側ボンディング電極6の上面の一部およびn型オーミック電極7の上面の一部を露出させるために、ドライエッチングによって該絶縁保護膜8に開口部を形成した。
最後に、透明基板1の下面を研磨して、その厚さを100μmまで薄くしたうえで、スクライビング法を用いてウェハからLEDチップを切り出した。LEDチップのサイズは、350μm角とした。
Next, an insulating protective film 8 made of silicon oxide and having a thickness of 0.5 μm is formed by plasma CVD so as to cover the entire upper surface of the wafer, and then a part of the upper surface of the p-side bonding electrode 6 is formed. In order to expose a part of the upper surface of the n-type ohmic electrode 7, an opening was formed in the insulating protective film 8 by dry etching.
Finally, the lower surface of the transparent substrate 1 was polished to reduce its thickness to 100 μm, and then an LED chip was cut out from the wafer using a scribing method. The size of the LED chip was 350 μm square.

得られたLEDチップ(ベアチップ)をフリップチップ実装し、通電電流20mAのときの順方向電圧を測定したところ、3.4Vであった。また、通電電流を徐々に増加させたときの、LEDチップの発光状態を、光取出し面である透明基板1の下面側から、光学顕微鏡を用いて観察したところ、通電電流を0.1mAまで上げたときに、p型オーミック電極3の射影領域全体で均一に発光が生じていた。   The obtained LED chip (bare chip) was flip-chip mounted, and the forward voltage at an energization current of 20 mA was measured. Further, when the light emission state of the LED chip when the energization current is gradually increased is observed from the lower surface side of the transparent substrate 1 as the light extraction surface using an optical microscope, the energization current is increased to 0.1 mA. Then, light emission was uniformly generated in the entire projection region of the p-type ohmic electrode 3.

(比較例1)
比較のために、透光性絶縁層をプラズマCVD法で形成したことを除いて、実施例と同様にしてLEDチップを作製し、通電電流20mAのときの順方向電圧を測定したところ、3.4Vであった。一方、通電電流を徐々に増加させたときの、LEDチップの発光状態を、光取出し面である透明基板の下面側から、光学顕微鏡を用いて観察したところ、通電電流を0.2mAまで上げても、p型オーミック電極の射影領域には、発光している部位と全く発光していない部位とが存在していた。
(Comparative Example 1)
For comparison, an LED chip was produced in the same manner as in the example except that the light-transmitting insulating layer was formed by the plasma CVD method, and the forward voltage at an energization current of 20 mA was measured. It was 4V. On the other hand, when the energization current was gradually increased, the light emission state of the LED chip was observed from the lower surface side of the transparent substrate, which is the light extraction surface, using an optical microscope. The energization current was increased to 0.2 mA. However, in the projected region of the p-type ohmic electrode, there were sites that emitted light and sites that did not emit light at all.

(比較例2)
比較のために、透光性絶縁層をスパッタリング法で形成したことを除いて、実施例と同様にしてLEDチップを作製し、通電電流20mAのときの順方向電圧を測定したところ、3.7Vであった。
(Comparative Example 2)
For comparison, an LED chip was produced in the same manner as in the example except that the light-transmitting insulating layer was formed by sputtering, and the forward voltage at an applied current of 20 mA was measured. Met.

本発明の製造方法により得られる3族窒化物系発光ダイオード素子の構造例を示す断面図である。It is sectional drawing which shows the structural example of the group III nitride light emitting diode element obtained by the manufacturing method of this invention. 図1に示す3族窒化物系発光ダイオード素子の製造工程を説明するための図である。It is a figure for demonstrating the manufacturing process of the group 3 nitride-type light emitting diode element shown in FIG. 図1に示す3族窒化物系発光ダイオード素子の製造工程を説明するための図である。It is a figure for demonstrating the manufacturing process of the group 3 nitride-type light emitting diode element shown in FIG. p型オーミック電極のパターンを例示する図である。It is a figure which illustrates the pattern of a p-type ohmic electrode. 本発明の製造方法により得られる3族窒化物系発光ダイオード素子の構造例を示す断面図である。It is sectional drawing which shows the structural example of the group III nitride light emitting diode element obtained by the manufacturing method of this invention. 本発明の製造方法により得られる3族窒化物系発光ダイオード素子の構造例を示す断面図である。It is sectional drawing which shows the structural example of the group III nitride light emitting diode element obtained by the manufacturing method of this invention. 本発明の製造方法により得られる3族窒化物系発光ダイオード素子の構造例を示す断面図である。It is sectional drawing which shows the structural example of the group III nitride light emitting diode element obtained by the manufacturing method of this invention.

符号の説明Explanation of symbols

1 透明基板
2 窒化物半導体層
3 p型オーミック電極
4 透光性絶縁膜
5 高反射膜
6 p側ボンディング電極
7 n型オーミック電極
8 絶縁保護膜
DESCRIPTION OF SYMBOLS 1 Transparent substrate 2 Nitride semiconductor layer 3 P-type ohmic electrode 4 Translucent insulating film 5 High reflection film 6 P-side bonding electrode 7 N-type ohmic electrode 8 Insulating protective film

Claims (5)

透明基板上に形成され、発光層を挟んでn型層およびp型層を積層してなる発光素子構造を備えるとともに、p型コンタクト層を最上層として含む、3族窒化物系化合物半導体層の上面に、p型オーミック電極を開口部を有するパターンに形成する、p型オーミック電極形成工程と、
前記3族窒化物系化合物半導体層とで前記p型オーミック電極を挟む位置に、前記発光層で生じる光の波長においてp型オーミック電極よりも高い反射率を示す高反射膜を形成する、高反射膜形成工程と、
前記p型オーミック電極と前記高反射膜とを隔てる透光性絶縁膜を形成する透光性絶縁膜形成工程とを有し、
前記透光性絶縁膜の形成に電子ビーム蒸着法を用いることを特徴とする、3族窒化物系発光ダイオード素子の製造方法。
A Group 3 nitride compound semiconductor layer comprising a light emitting device structure formed on a transparent substrate and having an n-type layer and a p-type layer stacked with a light-emitting layer sandwiched therebetween, and a p-type contact layer as an uppermost layer Forming a p-type ohmic electrode on the upper surface in a pattern having an opening;
A highly reflective film is formed at a position sandwiching the p-type ohmic electrode with the Group III nitride compound semiconductor layer and having a higher reflectance than the p-type ohmic electrode at the wavelength of light generated in the light emitting layer. A film forming step;
A translucent insulating film forming step of forming a translucent insulating film separating the p-type ohmic electrode and the highly reflective film;
An electron beam evaporation method is used to form the light-transmitting insulating film.
前記透光性絶縁膜を0.3μm以上の膜厚に形成する、請求項1に記載の製造方法。   The manufacturing method of Claim 1 which forms the said translucent insulating film in the film thickness of 0.3 micrometer or more. 前記透光性絶縁膜が、誘電体多層膜型の反射膜の構成を含んでいる、請求項1または2に記載の製造方法。   The manufacturing method according to claim 1, wherein the translucent insulating film includes a dielectric multilayer film type reflective film. 前記p型オーミック電極の形成を電子ビーム蒸着法により行う、請求項1〜3のいずれかに記載の製造方法。   The manufacturing method according to claim 1, wherein the p-type ohmic electrode is formed by an electron beam evaporation method. 更に、前記高反射膜形成工程の後に、プラズマCVD法またはスパッタリング法を用いて、3族窒化物系化合物半導体層の表面を保護するための絶縁保護膜を形成する工程を有する、請求項1〜4のいずれかに記載の製造方法。   Furthermore, it has the process of forming the insulation protective film for protecting the surface of a group 3 nitride type compound semiconductor layer using a plasma CVD method or sputtering method after the said high reflective film formation process. 4. The production method according to any one of 4 above.
JP2006186132A 2006-07-05 2006-07-05 Manufacturing method of group iii nitride light emitting diode element Pending JP2008016629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006186132A JP2008016629A (en) 2006-07-05 2006-07-05 Manufacturing method of group iii nitride light emitting diode element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006186132A JP2008016629A (en) 2006-07-05 2006-07-05 Manufacturing method of group iii nitride light emitting diode element

Publications (1)

Publication Number Publication Date
JP2008016629A true JP2008016629A (en) 2008-01-24

Family

ID=39073370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006186132A Pending JP2008016629A (en) 2006-07-05 2006-07-05 Manufacturing method of group iii nitride light emitting diode element

Country Status (1)

Country Link
JP (1) JP2008016629A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119640A1 (en) * 2008-03-26 2009-10-01 パナソニック電工株式会社 Semiconductor light emitting element and illuminating apparatus using the same
JP2009231356A (en) * 2008-03-19 2009-10-08 Nichia Corp Semiconductor light emitting device and method of manufacturing the same
JP2009238932A (en) * 2008-03-26 2009-10-15 Panasonic Electric Works Co Ltd Semiconductor light emitting device and lighting device using the same
JP2011071316A (en) * 2009-09-25 2011-04-07 Panasonic Electric Works Co Ltd Semiconductor light-emitting element and lighting apparatus
WO2012026068A1 (en) * 2010-08-24 2012-03-01 パナソニック株式会社 Light-emitting element
JP2017085010A (en) * 2015-10-29 2017-05-18 旭化成株式会社 Nitride semiconductor light-emitting element and nitride semiconductor light-emitting device
US10326056B2 (en) 2015-03-26 2019-06-18 Lg Innotek Co., Ltd. Light emitting device, light emitting device package including the device, and lighting apparatus including the package

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231356A (en) * 2008-03-19 2009-10-08 Nichia Corp Semiconductor light emitting device and method of manufacturing the same
US8525204B2 (en) 2008-03-26 2013-09-03 Panasonic Corporation Semiconductor light emitting element and illuminating apparatus using the same
JP2009238932A (en) * 2008-03-26 2009-10-15 Panasonic Electric Works Co Ltd Semiconductor light emitting device and lighting device using the same
JP2009260316A (en) * 2008-03-26 2009-11-05 Panasonic Electric Works Co Ltd Semiconductor light-emitting element and illuminating apparatus using the same
US20110018024A1 (en) * 2008-03-26 2011-01-27 Panasonic Electric Works Co., Ltd. Semiconductor light emitting element and illuminating apparatus using the same
WO2009119640A1 (en) * 2008-03-26 2009-10-01 パナソニック電工株式会社 Semiconductor light emitting element and illuminating apparatus using the same
KR101240011B1 (en) * 2008-03-26 2013-03-06 파나소닉 주식회사 Semiconductor light emitting element and illuminating apparatus using the same
JP2011071316A (en) * 2009-09-25 2011-04-07 Panasonic Electric Works Co Ltd Semiconductor light-emitting element and lighting apparatus
WO2012026068A1 (en) * 2010-08-24 2012-03-01 パナソニック株式会社 Light-emitting element
US10326056B2 (en) 2015-03-26 2019-06-18 Lg Innotek Co., Ltd. Light emitting device, light emitting device package including the device, and lighting apparatus including the package
US10546977B2 (en) 2015-03-26 2020-01-28 Lg Innotek Co., Ltd. Light emitting device, light emitting device package including the device, and lighting apparatus including the package
US10651345B2 (en) 2015-03-26 2020-05-12 Lg Innotek Co., Ltd. Light emitting device, light emitting device package including the device, and lighting apparatus including the package
JP2017085010A (en) * 2015-10-29 2017-05-18 旭化成株式会社 Nitride semiconductor light-emitting element and nitride semiconductor light-emitting device

Similar Documents

Publication Publication Date Title
JP4956902B2 (en) GaN-based light emitting diode and light emitting device using the same
US9142729B2 (en) Light emitting element
JP4766966B2 (en) Light emitting element
KR102427642B1 (en) Semiconductor light emitting device
US8022430B2 (en) Nitride-based compound semiconductor light-emitting device
JPWO2006082687A1 (en) GaN-based light emitting diode and light emitting device
JP2007103690A (en) Semiconductor light emitting device and its fabrication process
JP2012212929A (en) InGaAlN LIGHT-EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME
JP2007103689A (en) Semiconductor light emitting device
JP2008218878A (en) GaN BASED LED ELEMENT AND LIGHT-EMITTING DEVICE
JP2008016629A (en) Manufacturing method of group iii nitride light emitting diode element
JP2007243074A (en) Group iii nitride light emitting diode
JP4857883B2 (en) Nitride semiconductor light emitting device
JP6040769B2 (en) Light emitting device and manufacturing method thereof
JP4868821B2 (en) Gallium nitride compound semiconductor and light emitting device
JP2011071444A (en) Light-emitting element
JP5326383B2 (en) Light emitting device
JP5304855B2 (en) GaN-based light emitting diode and light emitting device using the same
KR101499954B1 (en) fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
KR101510382B1 (en) fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
JP2012064759A (en) Semiconductor light-emitting device and manufacturing method of semiconductor light-emitting device
JP2012178453A (en) GaN-BASED LED ELEMENT
JP6119906B2 (en) Light emitting element
WO2005027232A1 (en) GaN LIGHT-EMITTING DIODE
JP5586860B2 (en) Semiconductor light emitting device and semiconductor light emitting device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080402