JP2008016414A - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
JP2008016414A
JP2008016414A JP2006189303A JP2006189303A JP2008016414A JP 2008016414 A JP2008016414 A JP 2008016414A JP 2006189303 A JP2006189303 A JP 2006189303A JP 2006189303 A JP2006189303 A JP 2006189303A JP 2008016414 A JP2008016414 A JP 2008016414A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
negative electrode
aqueous electrolyte
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006189303A
Other languages
English (en)
Inventor
Yoshiaki Obana
良哲 尾花
Midori Saito
緑 斎藤
Takashi Murakami
隆 村上
Kenichi Ogawa
健一 小川
Hiroyuki Akashi
寛之 明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006189303A priority Critical patent/JP2008016414A/ja
Publication of JP2008016414A publication Critical patent/JP2008016414A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】充放電容量が大きく高エネルギー密度化を図ることができ、且つ充電状態での高温保存劣化の小さい非水電解質二次電池を提供すること。
【解決手段】セパレータを介して対向配置された正極及び負極と、非水電解質組成物を備えた非水電解質二次電池である。一対の正極及び負極当たりの完全充電状態における開回路電圧が4.25〜4.55Vである。セパレータの正極側の少なくとも一部が、ポリプロピレン、ポリテトラフルオロエチレン及びポリフッ化ビニリデンなどの高分子化合物で形成されている。非水電解質組成物が、アニオン中心となるホウ素(B)原子に対して酸素原子を介してカルボニル基又はスルホニル基である電子求引性の有機置換基が結合した有機リチウム塩を含む。
【選択図】なし

Description

本発明は、非水電解質二次電池に係り、更に詳細には、正極と負極とがセパレータを介して対向配置された電池であって、一対の正極及び負極当たりの完全充電状態における開回路電圧が4.25V以上である非水電解質二次電池の改良に関する。
近年、携帯電話、ビデオカメラ、ノートパソコンなどの携帯情報電子機器の普及に伴い、機器の高性能化や小型化、軽量化が急速に発展している。これらの機器に使用される電源には、使い捨ての一次電池や繰り返して使用できる二次電池が用いられているが、経済性や高性能、小型軽量などの総合的なバランスの良さから、二次電池、特にリチウムイオン二次電池の需要が伸びている。また、これらの携帯情報電子機器では、更なる高性能化及び小型化が進められており、リチウムイオン二次電池に関しても高エネルギー密度化が要求されている。
高エネルギー密度化には、単位体積当たりの放電容量が高い正極を用いることが重要であり、例えば、種々の正極活物質を用いることが検討されている。
このようなリチウムイオン二次電池では、例えば、電解液のイオン伝導性を向上させるために、電解質塩として、LiPFが主に使われている。しかし、LiPFの乖離により生じるPFにより、例えば溶媒として用いられる炭酸エステル類が分解されてしまい、電池容量が低下してしまう。そこで、LiBFを添加することにより、BF−アニオンを生成させ、LiPFの分解を抑制することが知られている。さらに、LiPFとリチウムビスオキサレートボレートとを用いることにより、電流分布を均一にし、正極側の端部における過電圧を下げて、サイクル特性を向上させることが提案されている(例えば、特許文献1参照)。
また、LiPFと後記する(1)式で表されるリチウムビスオキサレートボレートとを用いることにより、電流分布を均一にし、正極側の端部における過電圧を下げることにより、サイクル特性を向上させることが提案されている(例えば、特許文献2参照)。
また、リチウム二次電池で使用されるセパレータには、両極間のイオン伝導を妨げないこと、電解液を保持できること、電解液に対して耐性を有すること、などの条件を満たすことが求められ、主にポリエチレン等の熱可塑性樹脂から成る高分子多孔質膜が用いられている。
ところで、従来のリチウムイオン二次電池は、正極にコバルト酸リチウム、負極に炭素材料を用い、充電終止電圧は4.1V〜4.2Vとされている。
このように充電終止電圧を設計したリチウムイオン二次電池では、正極に用いられるコバルト酸リチウムなどの正極活物質は、その理論容量に対して50%〜60%程度の容量を活用しているに過ぎない。このため、更に充電電圧を上げることにより、残存容量を活用することが原理的には可能であり、実際に充電時の電圧を4.30V以上にすることにより高エネルギー密度化を図れることが知られている(例えば、特許文献3参照)。
特開平8−64237号公報 特開2002−175836号公報 国際公開第WO03/0197131号パンフレット
しかしながら、かかる従来のリチウムイオン二次電池において、充電終止電圧を4.2Vよりも高めると、コバルト酸リチウムの構造劣化、正極表面における電解液や正極に接しているセパレータの分解等が生じ易くなる。特に、充電状態において高温下で保存した場合には、正極と電解液、セパレータとの反応による抵抗増加が生じ、また正極材料の崩壊により、充放電特性の低下が生じるという問題があった。
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、充放電容量が大きく高エネルギー密度化を図ることができ、且つ充電状態での高温保存劣化の小さい非水電解質二次電池を提供することにある。
本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、セパレータの正極側に所定の高分子化合物を配し、非水電解質組成物に所定の有機リチウム塩を用いることにより、上記目的が達成できることを見出し、本発明を完成するに至った。
即ち、本発明の非水電解質二次電池は、セパレータを介して対向配置された正極及び負極と、非水電解質組成物を備えた非水電解質二次電池であって、
一対の上記正極及び上記負極当たりの完全充電状態における開回路電圧が4.25〜4.55Vの範囲内にあり、
上記セパレータの正極側の少なくとも一部が、ポリプロピレン、ポリテトラフルオロエチレン及びポリフッ化ビニリデンから成る群から選ばれた少なくも1種の高分子化合物で形成され、
且つ上記非水電解質組成物が、アニオン中心となるホウ素(B)原子に対して酸素原子を介してカルボニル基又はスルホニル基である電子求引性の有機置換基が結合した有機リチウム塩を含むことを特徴とする。
また、本発明の非水電解質二次電池の好適形態は、上記有機リチウム塩が、次の(1)式
Figure 2008016414
又は(2)式
Figure 2008016414
で表されることを特徴とする。
本発明によれば、セパレータの正極側に所定の高分子化合物を配し、非水電解質組成物に所定の有機リチウム塩を用いることとしたため、充放電容量が大きく高エネルギー密度化を図ることができ、且つ充電状態での高温保存劣化の小さい非水電解質二次電池を提供することができる。
以下、本発明の非水電解質二次電池につき詳細に説明する。なお、本明細書において、濃度や添加量などについての「%」は、特記しない限り質量百分率を表すものとする。
上述の如く、本発明の非水電解質二次電池は、セパレータと、このセパレータを介して対向して配置された正極及び負極と、非水電解質組成物を備え、一対の正極と負極当たりの完全充電状態における開回路電圧が4.25〜4.55Vである高充電型の非水電解質二次電池である。
また、本発明の非水電解質二次電池は、代表的には、黒鉛材料を負極物質として含む負極と、コバルト酸リチウムを正極活物質の主成分として含む正極と、非水電解液のような非水電解質組成物を備える非水電解質二次電池であり、セパレータの正極側の少なくとも一部がポリプロピレン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン又はこれらの任意の混合物から形成されており、且つ非水電解液が次の(1)式
Figure 2008016414
及び(2)式
Figure 2008016414
の少なくとも一方で表される有機リチウム塩を含むものである。
ここで、コバルト酸リチウムを正極活物質、炭素材料を負極活物質、非水溶媒を電解液に使用する電池において、充電状態で高温保存した際に容量低下が生じるのは、充電により酸化状態が上がった活物質中のコバルトの触媒的作用による電解液及びセパレータの分解や、正極の結晶構造の破壊によるものと推測される。
本発明の非水電解質二次電池において、高い充電電圧で充電した際、高温保存による特性低下が小さくなる原因についての詳細は必ずしも明らかではないが、セパレータの正極側の少なくとも一部が上記のポリプロピレンなどで形成されており、且つ上記(1)式及び/又は(2)式で表される有機リチウム塩が分解すると、セパレータ表面の化学的安定性が向上し、更に活物質表面をホウ素等を有する被膜で保護することになり、正極と電解液、セパレータとの接触が阻害され、副反応が抑制されるためと推察される。
以下、本発明の非水電解質二次電池の一実施形態について、図面を参照して説明する。
(1)リチウムイオン二次電池の構成
図1は、本発明の非水電解質二次電池の一実施形態を示すもので、リチウムイオン二次電池の断面構造を示している。
この二次電池は、電極反応物質としてリチウム(Li)を用いるものである。この二次電池は、いわゆる円筒型といわれるものであり、ほぼ中空円柱状の電池缶1の内部に、一対の帯状の正極2と帯状の負極3とセパレータ4とが巻回された巻回電極体20を有し、正極2及び負極3は、セパレータ4を介して対向配置されている。
ここで、正極2、負極3及びセパレータ4のそれぞれの幅は、例えば、セパレータ幅>負極幅>正極幅の関係とされる。充電時に正極2中のリチウムが負極3に回りこんで負極3においてデンドライト状に結晶成長したり、また、このデンドライト状の結晶が正極2に到達して内部短絡に至るのを効果的に防止することができるからである。
電池缶1は、例えばニッケル(Ni)のめっきがされた鉄(Fe)により構成されており、一端部が閉鎖され他端部が開放されている。電池缶1の内部には、巻回電極体20を挟むように巻回周面に対して垂直に一対の絶縁板5及び絶縁板6がそれぞれ配置されている。
電池缶1の開放端部には、電池蓋7と、この電池蓋7の内側に設けられた安全弁機構8及び熱感抵抗素子(Positive Temperature Coefficient;PTC素子)9とが、ガスケット10を介してかしめられることにより取り付けられており、電池缶1の内部は密閉されている。
電池蓋7は、例えば、電池缶1と同様の材料により構成されている。安全弁機構8は、熱感抵抗素子9を介して電池蓋7と電気的に接続されており、内部短絡又は外部からの加熱などにより電池の内圧が一定以上となった場合にディスク板11が反転して電池蓋7と巻回電極体20との電気的接続を切断するようになっている。
熱感抵抗素子9は、温度が上昇すると抵抗値の増大により電流を制限し、大電流による異常な発熱を防止するものである。ガスケット10は、例えば、絶縁材料により構成されており、表面にはアスファルトが塗布されている。
巻回電極体20の中心には、センターピン12が挿入されている。巻回電極体20の正極2には、例えばアルミニウム(Al)などからなる正極リード13が接続されており、負極3には、例えばニッケル(Ni)などからなる負極リード14が接続されている。正極リード13は、安全弁機構8に溶接されることにより電池蓋7と電気的に接続されており、負極リード14は、電池缶1に溶接され電気的に接続されている。
図2は、図1に示した巻回電極体20の一部を拡大して表したものである。図2に示すように、正極2は、例えば、対向する一対の面を有する正極集電体2Aの両面に正極活物質層2Bが設けられた構造を有している。なお、図示はしないが、正極集電体2Aの片面のみに正極活物質層2Bが設けられた領域を備えるようにしてもよい。
正極集電体2Aは、例えば、アルミニウム箔などの金属箔により構成されている。正極活物質層2Bは、例えば、正極活物質として、リチウム(Li)を吸蔵及び放出することが可能な正極材料を含んでいる。
また、負極3は、例えば、対向する一対の面を有する負極集電体3Aの両面に負極活物質層3Bが設けられた構造を有している。なお、図示はしないが、負極集電体3Aの片面のみに負極活物質層3Bが設けられた領域を備えるようにしてもよい。
負極集電体3Aは、例えば、銅箔などの金属箔により構成されている。負極活物質層3Bは、負極活物質として、リチウム(Li)を吸蔵及び放出することが可能な負極材料のいずれか1種又は2種以上を含んで構成されている。
なお、この二次電池では、リチウム(Li)を吸蔵及び放出することが可能な負極材料の電気化学当量が、正極2の電気化学当量よりも大きくなっており、充電の途中において負極3にリチウム金属が析出しないようになっている。
また、この二次電池は、完全充電時における開回路電圧(すなわち電池電圧)が4.30V以上4.55V以下の範囲内になるように設計されている。よって、完全充電時における開回路電圧が4.20Vの電池よりも、同じ正極活物質であっても、単位質量当たりのリチウムの放出量が多くなるので、それに応じて正極活物質と負極活物質との量が調整されており、これにより高いエネルギー密度が得られるようになっている。特に、完全充電時における開回路電圧が4.35V以上4.45V以下の範囲内とした場合に、実際上利用できる効果が高くなっている。
[正極]
正極2は、正極活物質、導電剤及び結着剤等を正極集電体2Aの表面に塗布して得ることができる。具体的には、正極2は、粉末状の正極活物質と、導電剤と、結着剤及び結着剤の溶媒又は分散楳から成る正極合剤スラリーを、例えばアルミニウム箔等の正極集電体2Aに塗工・乾燥及びプレス圧延せしめて、正極集電体2A上に正極活物質層2Bを形成することによって作製できる。
[正極活物質]
正極活物質としては、リチウムを吸蔵及び放出することが可能な正極材料を用いることができる。具体的に、正極材料としては、例えば、リチウム酸化物、リチウムリン酸化物、リチウム硫化物又はリチウムを含む層間化合物などのリチウム含有化合物が適当であり、これらの2種以上を混合して用いてもよい。エネルギー密度を高くするには、リチウム(Li)と遷移金属元素と酸素(O)とを含むリチウム含有化合物が好ましく、中でも、遷移金属元素として、コバルト(Co),ニッケル(Ni),マンガン(Mn)及び鉄(Fe)からなる群のうちの少なくとも1種を含むものであればより好ましい。
このようなリチウム含有化合物としては、例えば、以下の(3)式で表される平均組成を有するリチウム複合酸化物(以下、第1の正極材料と適宜称する)、(4)式で表される平均組成を有するリチウム複合酸化物(以下、第2の正極材料と適宜称する)を挙げることができる。
LiCo1−bM12−c…(3)
(式中のM1はバナジウム(V),銅(Cu),ジルコニウム(Zr),亜鉛(Zn),マグネシウム(Mg),アルミニウム(Al),ガリウム(Ga),イットリウム(Y)及び鉄(Fe)から成る群より選ばれた少なくとも1種を示す。a,b及びcの値は、0.9≦a≦1.1,0≦b≦0.3,−0.1≦c≦0.1の範囲内である。なお、リチウムの組成は充放電の状態によって異なり、aの値は完全放電状態における値を表している。)
LiNiCoMnM21−x−y−z2−v…(4)
(式中のM2はバナジウム(V),銅(Cu),ジルコニウム(Zr),亜鉛(Zn),マグネシウム(Mg),アルミニウム(Al),ガリウム(Ga),イットリウム(Y)及び鉄(Fe)から成る群より選ばれた少なくとも1種を表す。v,w,x,y及びzの値は、−0.1≦v≦0.1、0.9≦w≦1.1、0<x<1、0<y<1、0<z<0.5、0≦1−x−y−zの範囲内である。なお、リチウムの組成は充放電の状態によって異なり、wの値は完全放電状態における値を表している。)
また、第1の正極材料と第2の正極材料を混合したものを、正極活物質として用いてもよい。第1の正極材料は、正極活物質層2Bにおける充填量を多くすることができ、エネルギー密度を高くすることができるからである。さらに、第1の正極材料は、充電電圧を高くした場合に、正極材料、電解質又はセパレータが劣化し、充放電効率が低下する場合がある。第1の正極材料と、第2の正極材料とを混合することにより、これらの劣化が抑制されることがあるからである。
第1の正極材料の粉体と、第2の正極材料の粉体との混合粉体の密度は、1t/cmの圧力でプレスした際に、3.0g/cm以上であることが好ましく、3.2g/cm以上であればより好ましい。正極2を圧縮成型して作製する際に、粉体の粒径分布が適正化されることにより、単位体積当たりの容量を高くすることができるからである。
より具体的には、例えば、粉体の粒径分布に幅があり、小さい粉体の粒径が20%から50%である場合には、大きい粉体に粒径の分布を狭くすることにより、粉体の粒径分布を適正化できる。
正極材料の粉体のBET(Brunauer Emmett Teller)法による比表面積は、0.05m/g以上10.0m/g以下の範囲内であることが好ましく、0.1m/g以上5.0m/g以下の範囲内であればより好ましい。この範囲内で、電池電圧を高くしても、正極材料と電解液等との反応性を低下させることができるからである。なお、正極材料を複数種混合した混合粉体の場合には、混合粉体の比表面積がこの範囲内にあれば好ましい。
さらに、リチウム含有化合物としては、例えば、以下の(5)式で表されたスピネル型の構造を有するリチウム複合酸化物、又は(6)式で表されたオリビン型の構造を有するリチウム複合リン酸塩などを挙げることができ、具体的には、LiMn(d≒1)又はLiFePO(e≒1)などを挙げることができる。
LiMn2−qM4…(5)
(式中のM4は、コバルト(Co),ニッケル(Ni),マグネシウム(Mg),アルミニウム(Al),ホウ素(B),チタン(Ti),バナジウム(V),クロム(Cr),鉄(Fe),銅(Cu),亜鉛(Zn),モリブデン(Mo),スズ(Sn),カルシウム(Ca),ストロンチウム(Sr)及びタングステン(W)から成る群より選ばれた少なくとも1種を示す。p,q,r及びsは、0.9≦p≦1.1、0≦q≦0.6、3.7≦r≦4.1、0≦s≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、pの値は完全放電状態における値を表している。)
LiM5PO…(6)
(式中、M5はコバルト(Co),マンガン(Mn),鉄(Fe),ニッケル(Ni),マグネシウム(Mg),アルミニウム(Al),ホウ素(B),チタン(Ti),バナジウム(V),ニオブ(Nb),銅(Cu),亜鉛(Zn),モリブデン(Mo),カルシウム(Ca),ストロンチウム(Sr),タングステン(W)及びジルコニウム(Zr)から成る群より選ばれた少なくとも1種を示す。tは0.9≦t≦1.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、tの値は完全放電状態における値を表している。)
上述した正極材料の他にも、リチウム(Li)を吸蔵及び放出することが可能な正極材料としては、MnO,V,V13,NiS及びMoSなどのリチウムを含まない無機化合物を挙げることができる。
なお、リチウムを吸蔵及び放出することが可能な正極材料については、特許第3543437号公報に記載されているように、上記(1)〜(6)式で表されるリチウム含有化合物のいずれかよりなる芯粒子の表面を、これらリチウム含有化合物のいずれかよりなる微粒子で被覆した複合粒子としてもよい。高い電極充填性とサイクル特性が得られるからである。
正極活物質層2Bは、必要に応じて導電剤を含んでいてもよい。導電剤としては、例えば、アセチレンブラック、黒鉛、ケッチェンブラックなどの炭素系材料を用いることができる。
正極活物質層2Bは、さらに、結着剤として、例えば、ポリフッ化ビニリデン又はフッ化ビニリデンの共重合体若しくはこれらの変性物などの重合体を含有する。ポリフッ化ビニリデンは、耐久性、特に耐膨潤性に優れているので好ましい。
フッ化ビニリデンの共重合体としては、より具体的には、例えばフッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、又は上記例示した共重合体に、さらに、他のエチレン性不飽和モノマーを共重合したものなどを挙げることができる。なお、共重合可能なエチレン性不飽和モノマーとしては、より具体的には、例えば、アクリル酸エステル、メタクリル酸エステル、酢酸ビニル、アクリロニトリル、アクリル酸、メタクリル酸、無水マレイン、ブタジエン、スチレン、N−ビニルピロリドン、N−ビニルピリジン、グリシジルメタクリレート、ヒドロキシエチルメタクリレート又はメチルビニルエーテルなどを挙げることができる。
かかる重合体は、1種を単独で用いてもよいし、複数種を混合して用いてもよく、さらに、このような固有粘度の範囲外にある重合体又は他の結着剤を混合して用いてもよい。
重合体の正極活物質層2Bにおける含有量としては、好ましくは、1%以上7%以下の範囲内であり、より好ましくは、2%以上4%以下の範囲内である。重合体の含有量が少ないと、結着性が十分ではなく、正極活物質などを正極集電体2Aに結着させるのが難しくなるからである。また、重合体の含有量が多いと、電子伝導性及びイオン伝導性の低い重合体が正極活物質を被覆してしまい、充放電効率が低下してしまうからである。
[負極]
負極3は、負極活物質、導電剤及び結着剤などを混合して得られた負極合剤を、負極集電体3Aの表面に塗布し、負極活物質層3Bを設けて得ることができる。
[負極活物質]
負極活物質としては、リチウム(Li)を吸蔵及び放出することが可能な負極材料を用いることができる。
リチウム(Li)を吸蔵及び放出することが可能な負極材料としては、例えば、難黒鉛化性炭素、易黒鉛化性炭素、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維及び活性炭などの炭素材料を挙げることができる。このうち、コークス類には、ピッチコークス、ニードルコークス及び石油コークスなどがある。
ここで、有機高分子化合物焼成体というのは、フェノール樹脂やフラン樹脂等の高分子材料を適当な温度で焼成して炭素化したものをいい、一部には難黒鉛化性炭素又は易黒鉛化性炭素に分類されるものもある。また、高分子材料としては、ポリアセチレン又はポリピロールなどがある。
これらの炭素材料は、充放電時に生じる結晶構造の変化が非常に少なく、高い充放電容量を得ることができるとともに、良好なサイクル特性を得ることができるので好ましい。特に黒鉛は、電気化学当量が大きく、高いエネルギー密度を得ることができるので好ましい。また、難黒鉛化性炭素は、優れた特性が得られるので好ましい。さらに、充放電電位が低いもの、具体的には充放電電位がリチウム金属に近いものが、電池の高エネルギー密度化を容易に実現することができるので好ましい。
負極材料として、炭素材料を用いる場合には、負極3に対する正極2の合剤面積密度比(正極合剤面積密度/負極合剤面積密度)は、1.60以上2.05以下の範囲内が好ましい。合剤面積密度比が2.05より大きいと、負極3の表面に金属リチウムが析出してしまい、充放電効率又は安全性などが低下してしまうことがある。また、合剤面積密度比が1.60より小さいと、電極反応物質であるリチウム(Li)との反応に関与しない負極材料が増加してしまい、エネルギー密度が低下してしまうことがある。
さらに、リチウム(Li)を吸蔵及び放出することが可能な負極材料としては、リチウム(Li)を吸蔵及び放出することが可能であり、金属元素及び半金属元素のうちの少なくとも1種を構成元素として含む材料を挙げることができる。このような材料を用いれば、高いエネルギー密度を得ることができるからである。特に、炭素材料とともに用いるようにすれば、高エネルギー密度を得ることができるとともに、優れたサイクル特性を得ることができるのでより好ましい。
この負極材料は、金属元素又は半金属元素の単体でも合金でも化合物でもよく、またこれらの1種又は2種以上の相を少なくとも一部に有するようなものでもよい。
なお、合金には、2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とを含むものも含める。また、非金属元素を含んでいてもよい。その組織には固溶体、共晶(共融混合物)、金属間化合物又はそれらのうちの2種以上が共存するものがある。
この負極材料を構成する金属元素又は半金属元素としては、例えば、マグネシウム(Mg),ホウ素(B),アルミニウム(Al),ガリウム(Ga),インジウム(In),ケイ素(Si),ゲルマニウム(Ge),スズ(Sn),鉛(Pb),ビスマス(Bi),カドミウム(Cd),銀(Ag),亜鉛(Zn),ハフニウム(Hf),ジルコニウム,イットリウム(Y),パラジウム(Pd)及び白金(Pt)を挙げることができる。これらは結晶質のものでもアモルファスのものでもよい。
中でも、この負極材料としては、短周期型周期表における4B族の金属元素又は半金属元素を構成元素として含むものが好ましく、特に好ましいのはケイ素(Si)及びスズ(Sn)の少なくとも一方を構成元素として含むものである。ケイ素(Si)及びスズ(Sn)は、リチウム(Li)を吸蔵及び放出する能力が大きく、高いエネルギー密度を得ることができるからである。
スズ(Sn)の合金としては、例えば、スズ(Sn)以外の第2の構成元素として、ケイ素(Si),ニッケル(Ni),銅(Cu),鉄(Fe),コバルト(Co),マンガン(Mn),亜鉛(Zn),インジウム(In),銀(Ag),チタン(Ti),ゲルマニウム(Ge),ビスマス(Bi),アンチモン(Sb),クロム(Cr)又はこれらの任意の混合物を含むものを挙げることができる。
ケイ素(Si)の合金としては、例えば、ケイ素(Si)以外の第2の構成元素として、スズ(Sn),ニッケル(Ni),銅(Cu),鉄(Fe),コバルト(Co),マンガン(Mn),亜鉛(Zn),インジウム(In),銀(Ag),チタン(Ti),ゲルマニウム(Ge),ビスマス(Bi),アンチモン(Sb)、クロム(Cr)又はこれらの任意の混合物を含むものを挙げることができる。
スズ(Sn)の化合物又はケイ素(Si)の化合物としては、例えば、酸素(O)又は炭素(C)を含むものを挙げることができ、スズ(Sn)又はケイ素(Si)に加えて、上述した第2の構成元素を含んでいてもよい。
さらに、リチウム(Li)を吸蔵及び放出することが可能な負極材料としては、他の金属化合物又は高分子材料を挙げることができる。
他の金属化合物としては、MnO,V,V13などの酸化物、NiS,MoSなどの硫化物、又はLiNなどのリチウム窒化物を挙げることができる。他の高分子材料としては、ポリアセチレン、ポリアニリン又はポリピロールなどを挙げることができる。
負極活物質層3Bは、必要に応じて導電剤及び結着剤を含んでいてもよい。導電剤としては、例えば、人造黒鉛又は膨張黒鉛などのグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック又はファーネスブラックなどのカーボンブラック類、炭素繊維又は金属繊維などの導電性繊維類、銅粉末又はニッケル粉末などの金属粉末類、ポリフェニレン誘導体などの有機導電性材料を挙げることができ、中でも、アセチレンブラック、ケッチェンブラック又は炭素繊維が好ましい。
導電剤の添加量は、負極材料100質量部に対して0.1質量部以上30質量部以下の範囲内とすることが好ましく、0.5質量部以上10質量部以下の範囲内とすればより好ましい。導電剤は、1種を単独で用いてもよいが、複数種を混合して用いてもよい。
結着剤としては、例えば、ポリテトラフルオロエチレン又はポリフッ化ビニリデンを挙げることができ、1種を単独で用いてもよいし、複数種を混合して用いてもよい。
[セパレータ]
セパレータ4は、例えば、基材層と、表面層とを有している。表面層は、正極2に対向する側の面の少なくとも一部、より好ましくは、正極2に対向する側の全面、さらに好ましくは両面に設けられている。
基材層は、例えば、ポリプロピレン又はポリエチレンなどの合成樹脂製の多孔質膜により構成されており、これら2種以上の多孔質膜を積層した構造とされていてもよい。
中でも、ポリオレフィン製の多孔質膜は、ショート防止効果に優れ、且つシャットダウン効果による電池の安全性向上を図ることができるので好ましい。特に、ポリエチレンは、100℃以上160℃以下の範囲内においてシャットダウン効果を得ることができ、且つ電気化学的安定性にも優れているので、基材層を構成する材料として好ましい。
また、ポリプロピレンも好ましく、他にも化学的安定性を備えた樹脂であればポリエチレン又はポリプロピレンと共重合させたり、又はブレンド化することで用いることができる。
本発明の非水電解質二次電池においては、表面層は、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリプロピレン又はこれらの任意の混合物を含んで構成されている。
これにより、化学的安定性が向上し、微小ショートの発生による充放電効率の低下が抑制されるようになっている。なお、表面層をポリプロピレンにより形成する場合には、基材層をポリプロピレンにより形成し単層としてもよい。
正極2に対向する側の表面層の厚みは、0.1μm以上10μm以下の範囲内が好ましい。厚みが薄いと微小ショートの発生を抑制する効果が低く、厚みが厚いとイオン伝導性が低下してしまうと共に体積容量が低下してしまうからである。
また、セパレータ4の孔径は、正極2又は負極3からの溶出物などが透過しない範囲とするのが好ましく、具体的には、0.01μm以上1μm以下の範囲内が好ましい。また、セパレータ4の厚みは、例えば、10μm以上300μm以下の範囲内が好ましく、15μm以上30μm以下の範囲内がより好ましい。セパレータ4の厚みが薄いと、ショートが発生してしまうことがあり、厚みが厚いと、正極材料の充填量が低下してしまうからである。
なお、セパレータ4の空孔率は、電子及びイオンの透過性、素材及び厚みなどに応じて決定されるが、一般には、30%以上80%以下の範囲内であり、より好ましくは35%以上50%以下の範囲内である。空孔率が低いとイオン伝導性が低下してしまい、空孔率が高いとショートが発生することがあるからである。
[電解液]
セパレータ4には、液状の非水電解質組成物の一例である電解液が含浸されている。この電解液は、溶媒(非水溶媒)と、この溶媒に溶解された電解質塩とを含んでいる。
電解質塩は、LiPFと、アニオン中心となるホウ素(B)原子に対して酸素原子を介してカルボニル基又はスルホニル基である電子求引性の有機置換基が結合した有機リチウム塩を含んでいる。
LiPFを用いることにより、電解液のイオン伝導性を高くすることができる。一方、LiPFのみでは、高温環境に保持すると電池容量が低下してしまうので、ある特定のセパレータを用い、且つアニオン中心となるB(ホウ素)原子に対して酸素原子を介してカルボニル基又はスルホニル基である電子求引性の有機置換基が結合した有機リチウム塩を混合することにより、高温環境下において高い保存特性を示すようになる。
アニオン中心となるB原子に対して酸素原子を介してカルボニル基又はスルホニル基である電子求引性の有機置換基が結合した有機リチウム塩としては、具体的に以下のものである。
アニオン中心となるIII族bからV族bの原子は、B(ホウ素)、N(窒素)、P(リン)、Ga(ガリウム)、Al(アルミニウム)、Si(ケイ素)などのいずれでもよいが、結合数を考慮するとIII族bからIV族bの原子が好ましく、特にIII族bの原子が好ましい。アニオン中心となる原子としては、B(ホウ素)が最も適している。
即ち、ホウ素(B)は、原子量が10.8と小さいうえに、有機物に含まれる元素としては酸素(O)やチッ素(N)よりも多い4本の結合が可能であり、酸素原子を介して多くの電子求引性を有する有機置換基と結合できる能力を持っているからである。
アニオン中心の原子と電子求引性の有機置換基とを直接結合させずに、その間に酸素原子を介在させているのは、酸素原子の電気陰性度が高く、酸素原子がアニオン中心の原子を安定化させる上に、2本しか結合を持たないため、立体障害が少ない状態で電子求引性の有機置換基を結合させ得るからである。そして、電子求引性の有機置換基はアニオン中心の原子に対して酸素原子を介して電子を求引し、アニオン中心の原子の電子密度を低下させて、アニオン中心から電子を取り出しにくくすることによって、アニオンが酸化されるのを防止する。
電子求引性の有機置換基としては、例えばカルボニル基、スルホニル基、アミノ基、シアノ基及びハロゲン化アルキル基などがあるが、特にカルボニル基、スルホニル基が容易に合成できることから適切である。
上述のような有機リチウム塩の具体例としては、たとえば、LiBXX′やLiBF2X〔ここで、X、X′はB(ホウ素)原子に結合する酸素を有する電子求引性の有機置換基で、例えばX、X′=−O−C(=O)−(CRR’)n−C(=O)−O−、−O−S(=O)−O−(CRR’)n−O−S(=O)−O−であり、nは0〜5までの整数、R、R′はアルキル基又はH(水素)原子、F,Cl等のハロゲン原子である〕が挙げられる。
さらに好ましいものとしては、次の(1)式や(2)式で表される化合物が挙げられる。
Figure 2008016414
Figure 2008016414
また、かかる有機リチウム塩の濃度は、電解液において、0.0005mol/kg以上0.3mol/kg以下の範囲内であることが好ましい。0.0005mol/lgよりも少ないと混合する効果が十分に発揮されないおそれがある。また、0.3mol/kgよりも多い場合、充放電効率が低下し、電池の容量が低下してしまうおそれがある。
さらに、電解質塩としては、これらの電解質塩に加え、他の電解質塩を混合して用いてもよい。他の電解質塩には、例えば、LiBF,LiAsF,LiClO,LiB(C,LiCHSO,LiCFSO,LiN(SOCF,LiC(SOCF,LiAlCl,LiSiF,LiCl及びLiBrなどがある。
一方、溶媒(非水溶媒)としては、炭酸エチレン又は炭酸プロピレンなどの環状の炭酸エステルを用いることができ、炭酸エチレン及び炭酸プロピレンのうちの一方、特に両方を混合して用いることが好ましい。サイクル特性を向上させることができるからである。
また、溶媒としては、これらの環状の炭酸エステルに加えて、炭酸ジエチル、炭酸ジメチル、炭酸エチルメチル及び炭酸メチルプロピルなどの鎖状の炭酸エステルを混合して用いることが好ましい。高いイオン伝導性を得ることができるからである。
さらに、本発明の一実施形態によるリチウムイオン二次電池においては、非水電解質組成物中にビニレンカーボネート(VC)を含むのが好ましい。
正極での酸化副反応は、主に電解質を消費しつつ起こる酸化反応によるものであり、電池性能に大きな影響を与える可能性がある。ビニレンカーボネートは、酸化耐性が弱く、充電状態の正極場において、他の電解質材料よりも優先的に酸化分解を受け、副反応生成物を発生する。詳細は不明な部分も多いが、この副反応生成物の一部に、負極被膜の形成に非常に有効に作用するものがあり、電池特性の向上に寄与するものと考えられる。
さらに、溶媒としては、炭酸ブチレン、γ−ブチロラクトン、γ−バレロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、酢酸メチル、プロピオン酸メチル、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3−メトキシプロピロニトリル、N,N−ジメチルフォルムアミド、N−メチルピロリジノン、N−メチルオキサゾリジノン、N,N−ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、ジメチルスルフォキシド及びリン酸トリメチルなどを例示することができる。
なお、これらの非水溶媒の少なくとも一部の水素をフッ素で置換した化合物は、組み合わせる電極の種類によっては、電極反応の可逆性を向上させることができることがあるので、好ましい場合もある。
(2)リチウムイオン二次電池の製造方法
このリチウムイオン二次電池は、例えば、次のようにして製造することができる。
まず、例えば、正極活物質と、導電剤と、且つフッ化ビニリデンを成分として含む重合体とを混合して正極合剤を調製し、この正極合剤をN−メチル−2−ピロリドンなどの溶剤に分散させてペースト状の正極合剤スラリーを作製する。次に、この正極合剤スラリーを正極集電体2Aに塗布し溶剤を乾燥させ、ロールプレス機などにより圧縮成型することにより正極活物質層2Bを形成し、正極2を形成する。
次に、例えば、負極活物質と、結着剤とを混合して負極合剤を調製し、この負極合剤をN−メチル−2−ピロリドンなどの溶剤に分散させてペースト状の負極合剤スラリーを作製する。次に、この負極合剤スラリーを負極集電体3Aに塗布し溶剤を乾燥させ、ロールプレス機などにより圧縮成型することにより負極活物質層3Bを形成し、負極3を作製する。
次に、正極集電体2Aに正極リード13を溶接などにより取り付けるとともに、負極集電体3Aに負極リード14を溶接などにより取り付ける。その後、正極2と負極3とをセパレータ4を介して巻回し、正極リード13の先端部を安全弁機構8に溶接するとともに、負極リード14の先端部を電池缶1に溶接して、巻回した正極2及び負極3を一対の絶縁板5,6で挟み電池缶1の内部に収納する。
正極2及び負極3を電池缶1の内部に収納した後、電解液を電池缶1の内部に注入し、セパレータ4に含浸させる。その後、電池缶1の開口端部に電池蓋7、安全弁機構8及び熱感抵抗素子9をガスケット10を介してかしめることにより固定する。以上により、図1に示すこの発明の一実施形態によるリチウムイオン二次電池が製造される。
この二次電池では、充電を行うと、正極活物質層2Bからリチウムイオンが放出され、電解液を介して、負極活物質層3Bに含まれるリチウムを吸蔵及び放出することが可能な負極材料に吸蔵される。次に、放電を行うと、負極活物質層3B中のリチウムを吸蔵及び放出することが可能な負極材料に吸蔵されたリチウムイオンが放出され、電解液を介して正極活物質層2Bに吸蔵される。
本発明の一実施形態によると、完全充電時における開回路電圧を4.30V以上4.55以下の範囲内としたので、高いエネルギー密度を得ることができる。
また、正極2、負極3及びセパレータ4を備えた巻回電極体20の空間体積に対して適切に電解液量を調整し、且つ電解液中にビニレンカーボネートを含むので、充放電サイクルの容量維持率の低下を抑制できる。
さらに、正極2と負極3とを帯状のセパレータ4を介して巻回することによって構成された渦巻き型の巻回電極体20から成り、この巻回電極体20の正極2、負極3、及びセパレータ4の幅が、セパレータ幅>負極幅>正極幅の関係にあるため、より良好な充放電サイクル特性を得ることができる。
以下、本発明を実施例、参考例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
以下では、本発明の効果を確認すべく、サンプル1〜サンプル35の二次電池を作製し、その特性を評価した。二次電池としては図1及び図2に示すものを作製した。
<サンプル1〜サンプル35>
表1〜表4には、サンプル1〜サンプル35の充電電圧、正極活物質、セパレータ、電解液への添加Li塩及び添加量、初回定格容量、高温サイクル後の容量維持率、高温保存後の復帰維持率を示す。以下、表1〜表4を参照して、サンプル1〜サンプル35について説明する。
はじめに、正極2の作製に用いたリチウム−コバルト複合酸化物(I)[LiCo0.98Al0.01Mg0.01](以下、正極活物質Iと適宜称する)を合成した。
(正極活物質Iの合成)
LiOH及びCo0.98Al0.01Mg0.01(OH)で表される共沈水酸化物を、Li:遷移金属合計のモル比が1:1となるように乳鉢にて混合した。この混合物を空気雰囲気中に800℃で12時間熱処理した後に粉砕し、BET比表面積0.44m/g、平均粒子径6.2μmのリチウム−コバルト複合酸化物(A)[LiCo0.98Al0.01Mg0.01]、及びBET比表面積0.20m/g、平均粒子径16.7μmのリチウム−コバルト複合酸化物(B)[LiCo0.98Al0.01Mg0.01]を得た。
この(A)及び(B)を重量比で85:15で混ぜ合わせることで、正極活物質Iを得た。正極活物質IをCuKαによるX線回折分析したところR−3菱面体層状岩塩方構造であることがわかった。
(正極活物質IIの作成)
LiOHと、Ni0.5Co0.2Mn0.3(OH)で表される共沈水酸化物とを、リチウムと他の金属元素の合計とのモル比がLi:(Ni+Co+Mn)=1:1となるように混合し、この混合物を空気中において1000℃で20時間熱処理することにより、平均組成がLiNi0.5Co0.2Mn0.3で表される正極活物質IIを得た。次いで、得られた第2の正極材料を粉砕した。粉砕後のBETによる比表面積は0.38m/g、平均粒子径は11.5μmであった。
(正極の作製)
まず、正極活物質Iと、導電剤としてケッチェンブラックと、結着剤としてポリフッ化ビニリデンとを混合して正極合剤を調製した。正極合剤におけるケッチェンブラック及びポリフッ化ビニリデンの割合は、同一とした。
次に、この正極合剤を溶剤であるN−メチル−2−ピロリドンに分散させて正極合剤スラリーとし、厚み12μmの帯状アルミニウム箔よりなる正極集電体2Aの両面に塗布して乾燥させ、ロールプレス機で圧縮成型して正極活物質層2Bを形成し正極2を作製した。次に、正極集電体21Aにニッケル製の正極リード25を取り付けた。
(負極の作製)
負極材料として、BETによる比表面積が0.52m/gの粒状人造黒鉛粉末と、導電剤として気相成長炭素繊維と、結着剤としてポリフッ化ビニリデンとを混合して負極合剤を調製した。次に、この負極合剤を溶剤であるN−メチル−2−ピロリドンに分散させて負極合剤スラリーとし、厚み12μmの帯状銅箔よりなる負極集電体3Aの両面に塗布して乾燥させ、ロールプレス機で圧縮成型して負極活物質層3Bを形成し負極3を作製した。
負極活物質層3Bについて体積密度を調べたところ、1.80g/cmであった。次に、負極集電体3Aにニッケル製の負極リード14を取り付けた。その際、正極材料と負極材料の量を調節し、完全充電時における開回路電圧が表1に示すものであり、負極3の容量がリチウムの吸蔵及び放出による容量成分により表されるように設計した。
(非水電解液の調製)
電解液には、プロピレンカーボネート、エチレンカーボネート、メチルエチルカーボネート、ジメチルカーボネート及びビニレンカーボネートを、プロピレンカーボネート:エチレンカーボネート:メチルエチルカーボネート:ジメチルカーボネート:ビニレンカーボネート=12:15:5:67:1の重量比で混合した溶媒に、さらに電解質塩としてLiPF及びリチウムビスオキサレートボレート((1)式)、又はリチウムジフルオロオキサレートボレート((2)式)を溶解させたものを用いた。
LiPFは、質量モル濃度が1.5mol/kgとなるように溶解させたものを用いた。ビニレンカーボネート、リチウムビスオキサレートボレート又はリチウムジフルオロオキサレートボレートの添加量は表1〜表4に示すとおりである。
(巻回電極体の作製)
正極2、負極3、20μmの厚みのセパレータを円筒状に巻くことで、巻回電極体20を作製した。具体的には、以下に説明するようにして作製した。
正極2及び負極3をそれぞれ作製した後、微多孔質膜のセパレータ4を用意し、負極3、セパレータ4、正極2、セパレータ4の順に積層してこの積層体を渦巻状に多数回巻回し、ジェリーロール型の巻回電極体20を作製した。セパレータ4には、厚みが20μmであり、ポリエチレン層の両面にポリプロピレン層を設けた3層構造のものを用いた。
帯状のセパレータ4、負極3及び正極2の幅はセパレータ幅>負極幅>正極幅の関係にあるように巻回した。このために、充電時に正極2中のリチウムが負極3に回りこんで負極3においてデンドライト状に結晶成長したり、また、このデンドライト状の結晶が正極2に到達して内部短絡にいたるのをさらに効果的に防止できるので、さらに良好な充放電サイクル特性が得られる。3.5φの巻き芯を用い、素子径17.20mmになるように正・負極の電極長を調整した。
(円筒電池の組み立て)
作製した巻回電極体20を一対の絶縁板5,6で挟み、負極リード14を電池缶11に溶接するとともに、正極リード13を安全弁機構8に溶接して、巻回電極体20を電池缶1の内部に収納した。その後、電池缶1の内部に、表1に示す実電解液量の電解液を注入し、ガスケット10を介して電池蓋7を電池缶1にかしめることにより、外径18mm、高さ65mmの円筒型二次電池を得た。
1)初期充放電
作製したサンプル1〜サンプル35の二次電池について、25℃で、0.1Cに相当する電流で、表1に示す充電上限電圧で定電流−定電圧充電(CCCV充電)を行った後、25℃で7日間充電保管を行い、その後、0.2Cに相当する電流で、3.0Vになるまで放電を行った。次いで、0.5C相当の電流で表1に示す充電上限電圧と3.0Vの範囲で充放電を5回繰り返した。そして、5サイクル目の放電容量を、定格放電容量とした。
表1〜表4には、正極活物質1g当たりの定格放電容量を示す。
2)高温保存試験
上記1)で初期充放電を行ったサンプル1〜サンプル35の二次電池について、25℃にて、表1に示す充電上限電圧で定電流−定電圧充電(CCCV充電)を行った後、0.5C放電を行い、初期容量とした。次いで、再度、表1に示す充電上限電圧で定電流−定電圧充電を行った後、45℃の環境下にて30日間保存した。保存後の電池を25℃にて、0.5Cに相当する電流値で3Vまで放電した。次いで、初期と同様のCCCV充電を行い、0.5C放電を3.0Vになるまで行い、その値を保存後容量(復帰容量)とした。
そして、保存後の容量復帰率を、以下の計算式で算出した。
保存後の容量復帰率(%)=保存後の容量(復帰容量)/保存前の容量×100
3)高温サイクル試験
上記1)で初期充放電を行ったサンプル1〜サンプル35の二次電池について、40℃の環境下にて、0.7C相当の電流で表1に示す充電上限電圧で定電流−定電圧充電(CCCV充電)を行った後、10Wの出力で3.0Vまでの放電を繰り返すサイクル評価試験を行った。40℃における1回目の放電電力を初期放電電力とし、300サイクル目の放電電力の電力維持率を算出した。
電力維持率は、以下の計算式に従って算出した。
300サイクル目の電力維持率
=300サイクル目の放電電力/1サイクル目の放電電力×100
Figure 2008016414
Figure 2008016414
Figure 2008016414
Figure 2008016414
表1に示すように、完全充電時の開回路電圧を、4.20Vにしたサンプル1〜5では、セパレータの種類、添加Li塩によらず、高温保存後の復帰容量にも違いは見られなかった。
また、完全充電時の開回路電圧を4.30Vにしたサンプル6〜サンプル9において、4.20Vに比べ、高い定格容量が得られることが確認でき、高容量な電池を得ることができた。さらにPP/PE/PPセパレータを用い、電解液にリチウムビスオキサレートボレートを0.05M添加したサンプル7では、高温サイクルの容量維持率及び高温保存後の復帰容量が増大した。しかしながら、PEのセパレータを用いたサンプル8とサンプル9、及びPP/PE/PPセパレータを用いたサンプル6においては高温サイクルでの容量維持率、高温保存後の復帰容量が低下した。
また、完全充電時の開回路電圧を4.35Vにしたサンプル10〜サンプル16において、4.20Vに比べ、高い定格容量が得られることが確認でき、高容量な電池を得ることができた。
さらにPP/PE/PPセパレータを用い、電解液にリチウムビスオキサレートボレートを0.05M添加したサンプル11及び電解液にリチウムジフルオロオキサレートボレートを0.05M添加したサンプル12、さらにPVDF/PE/PVDFセパレータを用いかつ電解液にリチウムビスオキサレートボレートを0.05M添加したサンプル14では、高温サイクルの容量維持率及び高温保存後の復帰容量が増大した。
しかしながら、PEのセパレータを用いたサンプル15とサンプル16、及びPP/PE/PPセパレータを用いたサンプル6及びPVDF/PE/PVDFセパレータを用いたサンプル13においては高温サイクルでの容量維持率、高温保存後の復帰容量が低下した。特にサンプル15、16においては、保存後のOCV低下が著しく、充放電を行うことができず、高温保存時の復帰容量は測定できなかった。
完全充電時の開回路電圧を4.40Vにしたサンプル17〜サンプル18において、4.20Vに比べ、高い定格容量が得られることが確認でき、高容量な電池を得ることができた。さらにPP/PE/PPセパレータを用い、電解液にリチウムビスオキサレートボレートを0.05M添加したサンプル18では、高温サイクルの容量維持率及び高温保存後の復帰容量が増大した。
しかしながら、PP/PE/PPセパレータを用いたサンプル17においては高温サイクルでの容量維持率、高温保存後の復帰容量が低下した。
完全充電時の開回路電圧を4.50Vにしたサンプル19〜サンプル20において、4.20Vに比べ、高い定格容量が得られることが確認でき、高容量な電池を得ることができた。さらにPP/PE/PPセパレータを用い、電解液にリチウムビスオキサレートボレートを0.05M添加したサンプル20では、高温サイクルの容量維持率及び高温保存後の復帰容量が増大した。
しかしながら、PP/PE/PPセパレータを用いたサンプル19においては高温サイクルでの容量維持率、高温保存後の復帰容量が低下した。
以上より、完全充電時の開回路電圧を4.20Vよりも高くした場合において、ポリプロピレン又はポリフッ化ビニリデンが表面にあるセパレータを用い、かつリチウムビスオキサレートボレート及びリチウムジフルオロオキサレートボレートから選ばれる少なくとも1種を含んだ電解液を用いた場合に、高い放電容量を得られ、且つ保存後の復帰容量を得られることがわかった。
表2に示すように、完全充電時の開回路電池を4.35Vに設計した電池において、PP/PE/PPセパレータを用いた電池において、電解液のリチウムビスオキサレートボレート(LiBOB)の添加量を変化させた結果を示した。
サンプル21〜26において、リチウムビスオキサレートボレートの添加量を0.01mol/kg、0.025mol/kg、0.050mol/kg、0.070mol/kg、0.075mol/kgと変化させた。
リチウムビスオキサレートボレートを添加させるに従って、定格容量が低下する傾向が見られた。特に0.075mol/kg以上となると、定格容量の低下が顕著になる傾向が見られた。また、高温サイクルの高温保存後の復帰容量については、添加するに従って改善傾向にあることがわかった。
以上より、完全充電時の開回路電圧を4.20Vよりも高くした場合において、ポリプロピレンが表面にあるセパレータを用い、かつリチウムビスオキサレートボレートの添加量の最適値は、0.025〜0.070mol/kgであることがわかった。
表3に示すように、完全充電時の開回路電池を4.35Vに設計した電池において、PP/PE/PPセパレータを用い、電解液のリチウムビスオキサレートボレートを0.05M添加量させた電池において、ビニレンカーボネートの添加量を変化させた結果を示した。サンプル27〜サンプル32において、ビニレンカーボネートの添加量を、0%、0.1%、0.5%、1.0%、2.0%、3.0%と変化させた。
ビニレンカーボネートを添加させるに従って、定格容量が低下する傾向が見られた。特に3%以上となると、定格容量の低下が顕著になる傾向が見られた。また、高温サイクルの容量維持率及び高温保存後の復帰容量については、添加するに従って改善傾向にあることがわかった。
表4に示すように完全充電時の開回路電池を4.35Vに設計した電池において、PP/PE/PPセパレータを用い、電解液のリチウムビスオキサレートボレートを0.05M添加量させた電池において、正極活物質を、(I)+(II)=8:2とした場合の結果を示した。高温保存後の復帰容量は、(I)のみに比べて、やや高い傾向にあった。
以上、本発明を好適実施形態及び実施例により詳細に説明したが、本発明はこれら実施形態や実施例に限定されるものではなく、本発明の要旨の範囲内において種々の変形が可能である。
本発明の一実施形態による非水電解質二次電池の概略断面図である。 図1に示した巻回電極体の部分拡大断面図である。
符号の説明
1…電池缶、2…正極、2A…正極集電体、2B…正極活物質層、3A…負極集電体、3B…負極活物質層、3…負極、4…セパレータ、5,6…絶縁板、7…電池蓋、8…安全弁機構、9…熱感抵抗素子、10…ガスケット、11…ディスク板、12…センターピン、13…正極リード、14…負極リード、20…巻回電極体

Claims (7)

  1. セパレータを介して対向配置された正極及び負極と、非水電解質組成物を備えた非水電解質二次電池であって、
    一対の上記正極及び上記負極当たりの完全充電状態における開回路電圧が4.25〜4.55Vの範囲内にあり、
    上記セパレータの正極側の少なくとも一部が、ポリプロピレン、ポリテトラフルオロエチレン及びポリフッ化ビニリデンから成る群から選ばれた少なくも1種の高分子化合物で形成され、
    且つ上記非水電解質組成物が、アニオン中心となるホウ素(B)原子に対して酸素原子を介してカルボニル基又はスルホニル基である電子求引性の有機置換基が結合した有機リチウム塩を含むことを特徴とする非水電解質二次電池。
  2. 上記有機リチウム塩が、次の(1)式
    Figure 2008016414
    及び/又は(2)式
    Figure 2008016414
    で表されることを特徴とする請求項1に記載の非水電解質二次電池。
  3. 上記セパレータは、ポリオレフィン多孔質膜から成る基材層と、この基材層の上記正極側に設けられ上記高分子化合物から成る表面層と、を有することを特徴とする請求項1に記載の非水電解質二次電池
  4. 上記基材層が、ポリエチレン及び/又はポリプロピレンを含むことを特徴とする請求項3に記載の非水電解質二次電池。
  5. 上記非水電解質組成物がビニレンカーボネートを含むことを特徴とする請求項1に記載の非水電解質二次電池。
  6. 上記有機リチウム塩が、上記非水電解質組成物に対して、0.00005〜0.3mol/kgの範囲で含まれることを特徴とする請求項1に記載の非水電解質二次電池。
  7. 上記正極に含まれる正極活物質が、次の(3)式
    LiCo1−bM12−c…(3)
    (式中のM1はバナジウム(V)、銅(Cu)、ジルコニウム(Zr)、亜鉛(Zn)、マグネシウム(Mg)、アルミニウム(Al)、ガリウム(Ga)、イットリウム(Y)及び鉄(Fe)から成る群より選ばれた少なくとも1種を示し、a,b及びcの値は0.9≦a≦1.1,0≦b≦0.3,−0.1≦c≦0.1の範囲内である。)で表されるリチウム複合酸化物、
    又は次の(4)式
    LiNiCoMnM21−x−y−z2−v…(4)
    (式中のM2はバナジウム(V)、銅(Cu)、ジルコニウム(Zr)、亜鉛(Zn)、マグネシウム(Mg)、アルミニウム(Al)、ガリウム(Ga)、イットリウム(Y)及び鉄(Fe)から成る群から選ばれた1種を示し、v,w,x,y及びzの値は−0.1≦v≦0.1,0.9≦w≦1.1,0<x<1,0<y<1,0<z<0.5,0≦1−x−y−zの範囲内である。)で表されるリチウム複合酸化物を含むことを特徴とする請求項1に記載の非水電解質二次電池。
JP2006189303A 2006-07-10 2006-07-10 非水電解質二次電池 Pending JP2008016414A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006189303A JP2008016414A (ja) 2006-07-10 2006-07-10 非水電解質二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006189303A JP2008016414A (ja) 2006-07-10 2006-07-10 非水電解質二次電池

Publications (1)

Publication Number Publication Date
JP2008016414A true JP2008016414A (ja) 2008-01-24

Family

ID=39073212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006189303A Pending JP2008016414A (ja) 2006-07-10 2006-07-10 非水電解質二次電池

Country Status (1)

Country Link
JP (1) JP2008016414A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050079A (ja) * 2008-03-17 2010-03-04 Sanyo Electric Co Ltd 非水電解質二次電池
JP2011228073A (ja) * 2010-04-19 2011-11-10 Hitachi Maxell Energy Ltd リチウム二次電池用正極およびリチウム二次電池
JP2012516537A (ja) * 2009-07-09 2012-07-19 エルジー・ケム・リミテッド リチウム二次電池用非水電解液及びそれを備えたリチウム二次電池
JP2012256439A (ja) * 2011-06-07 2012-12-27 Toyota Motor Corp リチウムイオン二次電池の製造方法
WO2013065223A1 (ja) * 2011-10-31 2013-05-10 トヨタ自動車株式会社 非水電解液二次電池、その製造方法、及び評価方法
JP2013089445A (ja) * 2011-10-18 2013-05-13 Toyota Motor Corp 非水電解液二次電池及びその製造方法
JP2013118067A (ja) * 2011-12-02 2013-06-13 Hitachi Maxell Ltd リチウム二次電池
US8617742B2 (en) 2009-08-04 2013-12-31 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte type lithium ion secondary cell
US8679670B2 (en) 2007-06-22 2014-03-25 Boston-Power, Inc. CID retention device for Li-ion cell
JP2014216127A (ja) * 2013-04-24 2014-11-17 株式会社Gsユアサ 非水電解質二次電池
CN113823829A (zh) * 2020-06-12 2021-12-21 厦门大学 一种耐高温的锂离子电池体系及其充放电方法
CN114641873A (zh) * 2019-10-31 2022-06-17 松下知识产权经营株式会社 非水电解质二次电池

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8679670B2 (en) 2007-06-22 2014-03-25 Boston-Power, Inc. CID retention device for Li-ion cell
JP2010050079A (ja) * 2008-03-17 2010-03-04 Sanyo Electric Co Ltd 非水電解質二次電池
JP2012516537A (ja) * 2009-07-09 2012-07-19 エルジー・ケム・リミテッド リチウム二次電池用非水電解液及びそれを備えたリチウム二次電池
US8617742B2 (en) 2009-08-04 2013-12-31 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte type lithium ion secondary cell
JP2011228073A (ja) * 2010-04-19 2011-11-10 Hitachi Maxell Energy Ltd リチウム二次電池用正極およびリチウム二次電池
JP2012256439A (ja) * 2011-06-07 2012-12-27 Toyota Motor Corp リチウムイオン二次電池の製造方法
JP2013089445A (ja) * 2011-10-18 2013-05-13 Toyota Motor Corp 非水電解液二次電池及びその製造方法
JP2013097973A (ja) * 2011-10-31 2013-05-20 Toyota Motor Corp 非水電解液二次電池、その製造方法、及び評価方法
WO2013065223A1 (ja) * 2011-10-31 2013-05-10 トヨタ自動車株式会社 非水電解液二次電池、その製造方法、及び評価方法
CN103907225A (zh) * 2011-10-31 2014-07-02 丰田自动车株式会社 非水电解液二次电池、其制造方法及评价方法
JP2013118067A (ja) * 2011-12-02 2013-06-13 Hitachi Maxell Ltd リチウム二次電池
JP2014216127A (ja) * 2013-04-24 2014-11-17 株式会社Gsユアサ 非水電解質二次電池
CN114641873A (zh) * 2019-10-31 2022-06-17 松下知识产权经营株式会社 非水电解质二次电池
CN113823829A (zh) * 2020-06-12 2021-12-21 厦门大学 一种耐高温的锂离子电池体系及其充放电方法

Similar Documents

Publication Publication Date Title
JP4626568B2 (ja) リチウムイオン二次電池
JP5239302B2 (ja) リチウムイオン二次電池
JP4910243B2 (ja) 非水電解質二次電池
JP2008288112A (ja) 非水電解質二次電池
JP2008016414A (ja) 非水電解質二次電池
JP5066798B2 (ja) 二次電池
US20050079417A1 (en) Negative active material for non-aqueous electrolyte battery, method of preparing same, and non-aqueous electrolyte battery comprising same
KR101479631B1 (ko) 정극 합제 및 비수 전해질 전지
JP5103945B2 (ja) 非水電解質二次電池
JP2009117159A (ja) 正極及びリチウムイオン二次電池
JP2007194202A (ja) リチウムイオン二次電池
JP2007522619A (ja) 導電性物質で被覆した電極添加剤、及びそれを含んでなるリチウム二次電池
JPWO2002054524A1 (ja) 非水電解質二次電池
JP2006286531A (ja) 電池
JP3791797B2 (ja) 電池
JP2010123331A (ja) 非水電解質二次電池
JP2005071678A (ja) 電池
JP2001345101A (ja) 二次電池
JP2003203631A (ja) 正極活物質及びこれを用いた非水電解質二次電池
JP2006313719A (ja) 電池
JP2009206091A (ja) 非水電解質電池および負極ならびにこれらの製造方法
JP2006302756A (ja) 電池
JP2009054469A (ja) 非水二次電池
JP2004335439A (ja) 非水電解質二次電池
JP2008071623A (ja) 非水電解質二次電池用正極活物質およびその製造方法