JP2008010250A - Alkali battery - Google Patents

Alkali battery Download PDF

Info

Publication number
JP2008010250A
JP2008010250A JP2006177897A JP2006177897A JP2008010250A JP 2008010250 A JP2008010250 A JP 2008010250A JP 2006177897 A JP2006177897 A JP 2006177897A JP 2006177897 A JP2006177897 A JP 2006177897A JP 2008010250 A JP2008010250 A JP 2008010250A
Authority
JP
Japan
Prior art keywords
negative electrode
zinc alloy
alloy powder
surfactant
alkaline battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006177897A
Other languages
Japanese (ja)
Inventor
Shinichi Sumiyama
真一 住山
Susumu Kato
丞 加藤
Kenji Yamamoto
賢爾 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006177897A priority Critical patent/JP2008010250A/en
Publication of JP2008010250A publication Critical patent/JP2008010250A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alkali battery with excellent leakage resistance and discharge performance in which gas generation of a negative electrode is suppressed even when a negative electrode with excellent reactivity is used. <P>SOLUTION: The alkali battery includes the negative electrode containing a negative electrode active material and anionic surface active agent. The surface active agent is a compound having a structure expressed by a general formula (1) or its alkali metal salt. The negative electrode active material is zinc alloy powder of a gas evolution rate 5-30 μl/g day in a solution at 45 °C containing 38 wt.% of potassium hydroxide and 2 wt.% of zinc oxide. In the formula, R<SB>1</SB>and R<SB>2</SB>are respectively independent, and are a hydrogen atom or 1-26C hydrocarbon radical, and a total of carbon numbers of R<SB>1</SB>and R<SB>2</SB>is 1-26. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、アルカリ電池に関し、特に、アルカリ電池の負極に関する。   The present invention relates to an alkaline battery, and more particularly to a negative electrode of an alkaline battery.

一般に、アルカリ電池は、正極端子を兼ねる電池ケースの中に、電池ケースに密着して、正極活物質として二酸化マンガン粉末を含む円筒状の正極合剤を配置し、その中央にセパレータを介して負極活物質として亜鉛合金粉末を含むゲル状負極を配置した構造を有する。
従来から、アルカリ電池における負極の性能向上に対して種々の検討が行われている。例えば、特許文献1では、放電性能を向上するために、亜鉛合金粉末を微粉化して、反応面積を増大させることが提案されている。しかし、亜鉛合金粉末の反応性が向上するため、腐食が進行しやすくなり、耐食性が低下する。
Generally, an alkaline battery has a cylindrical positive electrode mixture containing manganese dioxide powder as a positive electrode active material in close contact with the battery case in a battery case also serving as a positive electrode terminal, and a negative electrode through a separator in the center. It has a structure in which a gelled negative electrode containing zinc alloy powder is disposed as an active material.
Conventionally, various studies have been made to improve the performance of negative electrodes in alkaline batteries. For example, Patent Document 1 proposes to pulverize zinc alloy powder to increase the reaction area in order to improve discharge performance. However, since the reactivity of the zinc alloy powder is improved, the corrosion tends to proceed and the corrosion resistance is lowered.

これに対して、特許文献2では、負極の耐食性を改善するために、負極に耐アルカリ性を有するアニオン性界面活性剤としてリン酸エステルを添加することが提案されている。
上記界面活性剤は集合体を形成して亜鉛粒子表面に吸着し、保護被膜層を形成する。この保護皮膜層が水酸化物イオンや水の亜鉛粒子への接近を阻止し、亜鉛粒子表面上での式(1)や式(2)の反応が抑制される。
Zn + 4OH- → Zn(OH)4 2- + 2e- (1)
2H2O + 2e- → 2OH- + H2 (2)
On the other hand, Patent Document 2 proposes to add a phosphate ester as an anionic surfactant having alkali resistance to the negative electrode in order to improve the corrosion resistance of the negative electrode.
The surfactant forms an aggregate and is adsorbed on the surface of the zinc particles to form a protective coating layer. This protective coating layer prevents the hydroxide ions and water from approaching the zinc particles, and the reactions of the formulas (1) and (2) on the surface of the zinc particles are suppressed.
Zn + 4OH - → Zn (OH ) 4 2- + 2e - (1)
2H 2 O + 2e - → 2OH - + H 2 (2)

上記のような界面活性剤は、負極反応時には、亜鉛粒子表面から離散して電解液中に拡散する。しかし、炭素数が多くなると、亜鉛粒子表面への吸着力が大きくなり、拡散速度が遅くなり、式(1)に示す電極反応の進行が阻害されやすくなる。
また、特許文献3では、負極の耐食性を改善するため、ガス発生量の少ない亜鉛合金が提案されている。ところが、一方で、亜鉛合金の反応性が低下し、放電性能が低下するという問題があった。
このように、放電性能の向上と、負極の耐食性の向上とを両立することは困難であった。
特表2001−512284号公報 特開昭55−69969号公報 特開平11−265715号公報
The surfactant as described above is dispersed from the surface of the zinc particles and diffuses into the electrolyte during the negative electrode reaction. However, when the number of carbon atoms increases, the adsorption force on the surface of the zinc particles increases, the diffusion rate decreases, and the progress of the electrode reaction shown in the formula (1) is likely to be hindered.
Moreover, in patent document 3, in order to improve the corrosion resistance of a negative electrode, the zinc alloy with few gas generation amounts is proposed. However, on the other hand, there is a problem that the reactivity of the zinc alloy is lowered and the discharge performance is lowered.
Thus, it has been difficult to achieve both improved discharge performance and improved corrosion resistance of the negative electrode.
Special table 2001-512284 gazette JP 55-69969 A JP-A-11-265715

そこで、本発明では、上記従来の問題を解決するために、反応性に優れた負極を用いても、負極のガス発生が抑制された、優れた放電性能および耐漏液性を有するアルカリ電池を提供することを目的とする。   Therefore, in order to solve the above-described conventional problems, the present invention provides an alkaline battery having excellent discharge performance and leakage resistance, in which gas generation of the negative electrode is suppressed even when a negative electrode having excellent reactivity is used. The purpose is to do.

上記のような従来の問題を解決するため、本発明者らは、放電性能の向上と、負極の耐食性の向上を両立させるために、反応性の高い亜鉛合金粉末と、界面活性剤とを組み合わせて用いることを検討し、さらに亜鉛合金粉末のガス発生量(反応性)と、界面活性剤による防食効果との相関性について鋭意検討の結果、本発明を完成させるに至った。   In order to solve the conventional problems as described above, the inventors combined a highly reactive zinc alloy powder and a surfactant in order to achieve both improved discharge performance and improved corrosion resistance of the negative electrode. As a result of intensive studies on the correlation between the gas generation amount (reactivity) of the zinc alloy powder and the anticorrosive effect of the surfactant, the present invention has been completed.

すなわち、本発明のアルカリ電池は、二酸化マンガン粉末およびオキシ水酸化ニッケル粉末の少なくとも一方からなる正極活物質を含む正極と、負極活物質およびアニオン性界面活性剤を含む負極と、前記正極と負極との間に配されるセパレータと、アルカリ電解液とを具備し、前記界面活性剤は、一般式(1):   That is, the alkaline battery of the present invention includes a positive electrode including a positive electrode active material composed of at least one of manganese dioxide powder and nickel oxyhydroxide powder, a negative electrode including a negative electrode active material and an anionic surfactant, and the positive electrode and the negative electrode. A separator disposed between and an alkaline electrolyte, and the surfactant is represented by the general formula (1):

Figure 2008010250
Figure 2008010250

(式中、RおよびRは、それぞれ独立して水素原子または炭素数が1〜26の炭化水素基であり、RおよびRの炭素数の合計は1〜26である。)で表される構造を有する化合物またはそのアルカリ金属塩であり、
前記負極活物質が、38重量%の水酸化カリウムおよび2重量%の酸化亜鉛を含む45℃の水溶液中におけるガス発生速度が5〜30μl/g・dayの亜鉛合金粉末であることを特徴とする。
(Wherein R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 26 carbon atoms, and the total carbon number of R 1 and R 2 is 1 to 26). A compound having the structure represented or an alkali metal salt thereof,
The negative electrode active material is a zinc alloy powder having a gas generation rate of 5 to 30 μl / g · day in a 45 ° C. aqueous solution containing 38 wt% potassium hydroxide and 2 wt% zinc oxide. .

前記一般式(1)において、RおよびRは、それぞれ独立して水素原子または炭素数が1〜6の炭化水素基であり、RおよびRの炭素数の合計は1〜6であるのが好ましい。
前記一般式(1)において、RはH−(CH2m−であり、RはH−(CH2n−であり、m=0〜26、n=0〜26、およびm+n=1〜26であるのが好ましい。
前記一般式(1)において、RはH−(CH2m−であり、RはH−(CH2n−であり、m=0〜6、n=0〜6、およびm+n=1〜6であるのが好ましい。
In the general formula (1), R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and the total number of carbon atoms of R 1 and R 2 is 1 to 6. Preferably there is.
In the general formula (1), R 1 is H— (CH 2 ) m —, R 2 is H— (CH 2 ) n —, m = 0 to 26, n = 0 to 26, and m + n. = 1 to 26 is preferable.
In the general formula (1), R 1 is H— (CH 2 ) m —, R 2 is H— (CH 2 ) n —, m = 0 to 6, n = 0 to 6, and m + n. = 1 to 6 is preferable.

前記負極は、前記界面活性剤を前記亜鉛合金粉末100重量部あたり0.005〜1重量部含むのが好ましい。
前記亜鉛合金粉末は、5〜100ppmのアルミニウム、30〜150ppmのビスマス、および0〜250ppmのインジウム含むのが好ましい。
The negative electrode preferably contains the surfactant in an amount of 0.005 to 1 part by weight per 100 parts by weight of the zinc alloy powder.
The zinc alloy powder preferably contains 5 to 100 ppm of aluminum, 30 to 150 ppm of bismuth, and 0 to 250 ppm of indium.

本発明によれば、反応性に優れた負極を用いても、負極のガス発生を抑制することができるため、優れた放電性能と耐漏液性とを両立することができる。   According to the present invention, even when a negative electrode having excellent reactivity is used, gas generation of the negative electrode can be suppressed, and thus both excellent discharge performance and leakage resistance can be achieved.

本発明は、正極活物質として二酸化マンガン粉末およびオキシ水酸化ニッケル粉末の少なくとも一方からなる正極活物質を含む正極と、負極活物質およびアニオン性界面活性剤を含む負極と、前記正極と負極との間に配されるセパレータと、アルカリ電解液とを具備するアルカリ電池に関する。
前記界面活性剤は、一般式(1):
The present invention provides a positive electrode including a positive electrode active material comprising at least one of manganese dioxide powder and nickel oxyhydroxide powder as a positive electrode active material, a negative electrode including a negative electrode active material and an anionic surfactant, and the positive electrode and the negative electrode. The present invention relates to an alkaline battery including a separator disposed between them and an alkaline electrolyte.
The surfactant is represented by the general formula (1):

Figure 2008010250
Figure 2008010250

(式中、RおよびRは、それぞれ独立して水素原子または炭素数が1〜26の炭化水素基であり、RおよびRの炭素数の合計は1〜26である。)で表される構造を有する化合物またはそのアルカリ金属塩であり、前記負極活物質として、38重量%の水酸化カリウムおよび2重量%の酸化亜鉛を含む45℃の水溶液(以下、試験溶液と表す)中におけるガス発生速度が5〜30μl/g・dayである亜鉛合金粉末を用いる点に特徴を有する。 (Wherein R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 26 carbon atoms, and the total carbon number of R 1 and R 2 is 1 to 26). In a 45 ° C. aqueous solution (hereinafter referred to as a test solution) containing 38% by weight of potassium hydroxide and 2% by weight of zinc oxide as the negative electrode active material, which is a compound having the structure represented or an alkali metal salt thereof It is characterized in that a zinc alloy powder having a gas generation rate of 5 to 30 μl / g · day is used.

本発明者らは、反応性の高い(ガス発生量の多い)亜鉛合金粉末に対しても、優れた防食性を発揮する界面活性剤を選定し、この界面活性剤を用いた場合の亜鉛合金粉末のガス発生量(反応性の高さ)と負極の耐食性との関連性について検討した。
その結果、上記の場合に、放電性能の向上および負極の耐食性の向上が両立可能なアルカリ電池が得られることを見出した。
The present inventors have selected a surfactant that exhibits excellent anticorrosion properties even for highly reactive (a large amount of gas generation) zinc alloy powder, and a zinc alloy in which this surfactant is used. The relationship between the amount of gas generated in the powder (high reactivity) and the corrosion resistance of the negative electrode was examined.
As a result, it was found that in the above case, an alkaline battery capable of achieving both improved discharge performance and improved corrosion resistance of the negative electrode was obtained.

試験溶液中の亜鉛合金粉末のガス発生速度が5〜30μl/g・dayの範囲であれば、上記界面活性剤を用いることにより、負極としてのガス発生速度を電池が漏液しないレベル(例えば、10μl/g・day以下)に十分低減することができる。
試験溶液中の亜鉛合金粉末のガス発生速度が30μl/g・dayを超えると、上記の界面活性剤を用いても負極の耐食性が十分に得られない。亜鉛合金粉末のガス発生速度が5μl/g・day未満であると、亜鉛合金の反応性が低くなるため、放電性能が低下する場合がある。
When the gas generation rate of the zinc alloy powder in the test solution is in the range of 5 to 30 μl / g · day, by using the above surfactant, the gas generation rate as the negative electrode is set at a level at which the battery does not leak (for example, 10 μl / g · day or less).
If the gas generation rate of the zinc alloy powder in the test solution exceeds 30 μl / g · day, the corrosion resistance of the negative electrode cannot be sufficiently obtained even if the above surfactant is used. When the gas generation rate of the zinc alloy powder is less than 5 μl / g · day, the reactivity of the zinc alloy becomes low, and the discharge performance may be lowered.

上記界面活性剤は、放電性能が低下しない程度の亜鉛合金粒子表面への吸着力を有するため、放電性能を損なうことなく、負極の耐食性を向上させることができる。
一般式(1)の化合物中のリンの含有量は12〜28原子%である。
もしくはRの炭素数、または両者の炭素数の合計が26を超えると、亜鉛合金粉末への吸着力が大きくなるため、放電性能が低下する。
Since the surfactant has an adsorption power to the surface of the zinc alloy particles such that the discharge performance does not deteriorate, the corrosion resistance of the negative electrode can be improved without impairing the discharge performance.
The phosphorus content in the compound of the general formula (1) is 12 to 28 atomic%.
When the carbon number of R 1 or R 2 or the sum of the carbon numbers of both exceeds 26, the adsorption power to the zinc alloy powder increases, so that the discharge performance decreases.

さらに、放電性能が向上するため、前記一般式(1)において、RおよびRは、それぞれ独立して水素原子または炭素数が1〜6の炭化水素基であり、RおよびRの炭素数の合計は1〜6であるのが好ましい。RおよびRは二重結合を含んでいてもよく、直鎖状でも分岐状でもよい。
例えば、RはH−(CH2m−およびRはH−(CH2n−であり、m=0〜26、n=0〜26、およびm+n=1〜26である。好ましくは、m=0〜6、n=0〜6、およびm+n=1〜6である。
一般式(1)で表される構造を有する化合物またはそのアルカリ金属塩としては、例えば、一般式(2):
Furthermore, in order to improve the discharge performance, in the general formula (1), R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and R 1 and R 2 The total number of carbon atoms is preferably 1-6. R 1 and R 2 may contain a double bond, and may be linear or branched.
For example, R 1 is H— (CH 2 ) m — and R 2 is H— (CH 2 ) n —, where m = 0 to 26, n = 0 to 26, and m + n = 1 to 26. Preferably, m = 0 to 6, n = 0 to 6, and m + n = 1 to 6.
Examples of the compound having the structure represented by the general formula (1) or the alkali metal salt thereof include, for example, the general formula (2):

Figure 2008010250
Figure 2008010250

(式中、m=0〜26、n=0〜26、およびm+n=1〜26であり、XおよびYは、それぞれ独立してH、Na、またはKである。)で表される構造を有する化合物が挙げられる。
優れた耐漏液性および放電性能が同時に得られる点で、前記負極は、前記界面活性剤を前記亜鉛合金粉末100重量部あたり0.005〜1重量部含むのが好ましい。さらに好ましくは、前記負極中の界面活性剤の含有量は、前記亜鉛合金粉末100重量部あたり、0.05〜0.2重量部である。
(Wherein, m = 0 to 26, n = 0 to 26, and m + n = 1 to 26, and X and Y are each independently H, Na, or K). The compound which has is mentioned.
It is preferable that the negative electrode contains 0.005 to 1 part by weight of the surfactant per 100 parts by weight of the zinc alloy powder in that excellent liquid leakage resistance and discharge performance can be obtained at the same time. More preferably, the content of the surfactant in the negative electrode is 0.05 to 0.2 parts by weight per 100 parts by weight of the zinc alloy powder.

前記負極には、例えば、亜鉛合金粉末、ゲル化剤、アルカリ電解液、および上記添加剤の混合物からなるゲル状負極が用いられる。ゲル化剤には、例えば、ポリアクリル酸ナトリウムが用いられる。 アルカリ電解液には、例えば、水酸化カリウム水溶液や水酸化ナトリウム水溶液が用いられる。   For the negative electrode, for example, a gelled negative electrode made of a zinc alloy powder, a gelling agent, an alkaline electrolyte, and a mixture of the above additives is used. As the gelling agent, for example, sodium polyacrylate is used. For the alkaline electrolyte, for example, a potassium hydroxide aqueous solution or a sodium hydroxide aqueous solution is used.

試験溶液中におけるガス発生量が5〜30μl/g・dayである亜鉛合金粉末には、例えば、5〜100ppmのアルミニウム、30〜150ppmのビスマス、および0〜250ppmのインジウムを含む亜鉛合金粉末が用いられる。上記以外に、例えば、100〜200ppmのカルシウム、50〜150ppmのビスマス、および200〜300ppmのインジウムを含む亜鉛合金粉末が用いられる。   For the zinc alloy powder whose gas generation amount in the test solution is 5 to 30 μl / g · day, for example, a zinc alloy powder containing 5 to 100 ppm of aluminum, 30 to 150 ppm of bismuth, and 0 to 250 ppm of indium is used. It is done. In addition to the above, for example, a zinc alloy powder containing 100 to 200 ppm of calcium, 50 to 150 ppm of bismuth, and 200 to 300 ppm of indium is used.

亜鉛合金中のビスマスの含有量が150ppmを超えると、放電性能が低下する。亜鉛合金中のビスマス含有量が30ppm未満であると、ビスマスによる負極の耐食性向上の効果が十分に得られない。ガス発生量を低減する目的で、水素化電圧を高める効果のあるインジウムを添加するのが好ましい。亜鉛合金中のインジウム含有量が250ppmを超えると、インジウムによるガス発生量を抑制する効果は変わらなくなる。亜鉛合金中のアルミニウム含有量が100ppmを超えると、放電性能が低下する。亜鉛合金中のアルミニウム含有量が5ppm未満であると、アルミニウムによる耐食性向上の効果が十分に得られない。   When the content of bismuth in the zinc alloy exceeds 150 ppm, the discharge performance is degraded. When the bismuth content in the zinc alloy is less than 30 ppm, the effect of improving the corrosion resistance of the negative electrode by bismuth cannot be sufficiently obtained. In order to reduce the amount of gas generated, it is preferable to add indium which has an effect of increasing the hydrogenation voltage. When the indium content in the zinc alloy exceeds 250 ppm, the effect of suppressing the amount of gas generated by indium remains the same. When the aluminum content in the zinc alloy exceeds 100 ppm, the discharge performance decreases. If the aluminum content in the zinc alloy is less than 5 ppm, the effect of improving the corrosion resistance by aluminum cannot be obtained sufficiently.

亜鉛合金粉末の試験溶液中のガス発生速度は、例えば以下のように測定することができる。
有底円筒形の収納部11a、および収納部11aの開口部に連なり、収納部11aよりも径が小さい開口筒状部11bを有するガラス器具11と、開口筒状部11bに対応する挿入筒状部12a、挿入筒状部12aの下部と連通する管状部12b、および挿入筒状部12aの上部と連通する目盛り付きのシリンダー状測定部12cを有するガラス器具12とを準備し、ガラス器具11の開口筒状部11bに、管状部12bが収納部11a内に位置するようにガラス器具12の挿入筒状部12aを挿入して、試験容器を構成する。このとき、挿入筒状部12aと開口筒状部11bとの間にグリースを塗ることにより、挿入筒状部12aと開口管状部11bとの間を密着させる。
The gas generation rate in the test solution of zinc alloy powder can be measured, for example, as follows.
The bottomed cylindrical storage portion 11a, and the glass appliance 11 having an opening cylindrical portion 11b having a diameter smaller than that of the storage portion 11a connected to the opening portion of the storage portion 11a, and an insertion cylindrical shape corresponding to the opening cylindrical portion 11b A glass instrument 12 having a portion 12a, a tubular part 12b communicating with the lower part of the insertion cylindrical part 12a, and a cylindrical measuring part 12c with a scale communicating with the upper part of the insertion cylindrical part 12a; The insertion cylindrical part 12a of the glass instrument 12 is inserted into the open cylindrical part 11b so that the tubular part 12b is positioned in the storage part 11a, thereby constituting a test container. At this time, grease is applied between the insertion cylindrical portion 12a and the opening cylindrical portion 11b, thereby bringing the insertion cylindrical portion 12a and the opening tubular portion 11b into close contact with each other.

そして、ガラス器具12の測定部12cの開口部よりガラス器具11の収納部11a内へ、試料として亜鉛合金粉末13(重量:X(g))、38重量%の水酸化カリウムおよび2重量%の酸化亜鉛を含む試験溶液14、流動パラフィン15(関東化学(株)製、鹿1級)の順に投入する。このとき、試験溶液14が管状部12bの先端よりも下方に位置するように試験溶液14の量を調整する。   Then, the zinc alloy powder 13 (weight: X (g)), 38 wt% potassium hydroxide, and 2 wt% of the sample are introduced from the opening of the measuring section 12 c of the glass apparatus 12 into the storage section 11 a of the glass apparatus 11. Test solution 14 containing zinc oxide and liquid paraffin 15 (manufactured by Kanto Chemical Co., Inc., deer grade 1) are added in this order. At this time, the amount of the test solution 14 is adjusted so that the test solution 14 is positioned below the tip of the tubular portion 12b.

収納部11a内で発生したガスは、収納部11a内における流動パラフィン15の層の上部に滞留し、その体積分のパラフィン15が、管状部12bを経て、ガラス器具12内に流入することにより、ガラス器具12内の流動パラフィン15が上方に押し上げられ、測定部12c内の流動パラフィン15の液面が上方に移動する。なお、発生したガスがガラス器具12内へ入らないように、管状部12bの先端は折れ曲がり、開口部が横に向いた構造を有する。従って、流動パラフィン15の液高さの変化量からガス発生量を求めることができる。   The gas generated in the storage part 11a stays in the upper part of the layer of liquid paraffin 15 in the storage part 11a, and the volume of paraffin 15 flows into the glass apparatus 12 through the tubular part 12b. The liquid paraffin 15 in the glass apparatus 12 is pushed upward, and the liquid level of the liquid paraffin 15 in the measurement unit 12c moves upward. In addition, it has the structure where the front-end | tip of the tubular part 12b was bent and the opening part was turned sideways so that the generated gas may not enter into the glass instrument 12. Therefore, the gas generation amount can be obtained from the amount of change in the liquid height of the liquid paraffin 15.

45℃環境下に試験容器を1時間静置した後、測定部12cの目盛りを読んで流動パラフィン15の液高さを測定する。さらに、45℃環境下に試験容器をY日間静置した後、同様の方法で再度流動パラフィン15の液高さを測定する。そして、以下の式を用いてガス発生速度を求めることができる。
ガス発生速度(μl/g・day)=(Y日後の液高さ(ml)−1時間後の液高さ(ml))/(X(g)×Y(日))×1000
After leaving the test container in a 45 ° C. environment for 1 hour, the scale of the measurement unit 12c is read to measure the liquid height of the liquid paraffin 15. Further, after leaving the test container in a 45 ° C. environment for Y days, the liquid height of the liquid paraffin 15 is measured again by the same method. And the gas generation rate can be calculated | required using the following formula | equation.
Gas generation rate (μl / g · day) = (Liquid height after day Y (ml) −Liquid height after 1 hour (ml)) / (X (g) × Y (day)) × 1000

ゲル状負極中への界面活性剤の添加方法としては、ゲル状負極作製時に、アルカリ電解液とゲル化剤との混合物であるゲル状電解液に界面活性剤を添加すればよい。本発明の界面活性剤は、ゲル状電解液に可溶であり、ゲル状負極中に均一に分散する。また、電池作製時にセパレータや正極に界面活性剤を含浸させてもよい。電池作製後において、界面活性剤は電解液中に分散し、ゲル状負極における亜鉛合金粒子の表面上に吸着する。   As a method for adding the surfactant into the gelled negative electrode, the surfactant may be added to the gelled electrolyte which is a mixture of the alkaline electrolyte and the gelling agent when the gelled negative electrode is produced. The surfactant of the present invention is soluble in the gel electrolyte and is uniformly dispersed in the gel negative electrode. Moreover, you may make a separator and a positive electrode impregnate a surfactant at the time of battery preparation. After the battery is produced, the surfactant is dispersed in the electrolytic solution and adsorbed on the surface of the zinc alloy particles in the gelled negative electrode.

ゲル状負極において、亜鉛合金粉末をゲル負極中に含まれる電解液100重量部あたり170〜220重量部含むのが好ましい。ゲル状負極中の亜鉛合金粉末の含有量が、ゲル負極中に含まれる電解液100重量部あたり170重量部未満であると、ゲル状負極が発泡しやすくなり、放電性能が低下する。一方、ゲル状負極中の亜鉛合金粉末の含有量が、ゲル負極中に含まれる電解液100重量部あたり220重量部を超えると、ゲル負極中の電解液量が少なすぎるため、放電性能が低下する。   In the gelled negative electrode, the zinc alloy powder is preferably contained in an amount of 170 to 220 parts by weight per 100 parts by weight of the electrolyte contained in the gel negative electrode. When the content of the zinc alloy powder in the gelled negative electrode is less than 170 parts by weight per 100 parts by weight of the electrolyte contained in the gelled negative electrode, the gelled negative electrode is liable to foam and discharge performance is deteriorated. On the other hand, when the content of the zinc alloy powder in the gelled negative electrode exceeds 220 parts by weight per 100 parts by weight of the electrolyte contained in the gel negative electrode, the amount of the electrolyte in the gel negative electrode is too small and the discharge performance is lowered. To do.

一般にリン酸エステルを添加した水溶液は、泡の安定性が増すことが知られている。従って、負極作製時に、ゲル状負極が発泡して空気を取り込み、ゲル状負極の密度が低下する。そこで、本発明者らは、ゲル状負極における、電解液量に対する亜鉛合金粉末量の割合と、ゲル状負極の発泡性との関連性を検討した。その結果、電解液量に対する亜鉛合金粉末量の割合が大きいほど発泡による負極密度の低下が抑制されることがわかった。これは、複雑な形状をした亜鉛合金粒子が泡を破壊する効果が大きくなったためと考えられる。   In general, it is known that an aqueous solution to which a phosphate ester has been added increases the stability of foam. Therefore, when the negative electrode is produced, the gelled negative electrode is foamed to take in air, and the density of the gelled negative electrode is lowered. Therefore, the present inventors examined the relationship between the ratio of the amount of zinc alloy powder to the amount of electrolyte in the gelled negative electrode and the foamability of the gelled negative electrode. As a result, it was found that the lowering of the negative electrode density due to foaming was suppressed as the ratio of the amount of zinc alloy powder to the amount of electrolytic solution was larger. This is probably because the zinc alloy particles having a complicated shape have a greater effect of breaking bubbles.

前記負極において、亜鉛合金粉末は粒径75μm以下の粒子を5〜30重量%含むのが好ましい。亜鉛合金粉末中における粒径75μm以下の粒子の含有量が上記範囲内であれば、試験溶液中の亜鉛合金粉末のガス発生速度は5〜30μl/g・dayとなる。亜鉛合金粉末中における粒径75μm以下の粒子の含有量が30重量%を超えると、試験溶液中の亜鉛合金粉末のガス発生速度が30μl/g・dayを超える場合がある。
また、亜鉛合金粉末中における粒径75μm以下の粒子の含有量が5重量%以上であると、負極の反応効率が向上し、放電性能が向上する。亜鉛合金粉末中における粒径75μm以下の粒子の含有量が30重量%を超えると、ゲル状負極の充填工程における生産性が低下する。
In the negative electrode, the zinc alloy powder preferably contains 5 to 30% by weight of particles having a particle size of 75 μm or less. If the content of particles having a particle size of 75 μm or less in the zinc alloy powder is within the above range, the gas generation rate of the zinc alloy powder in the test solution is 5 to 30 μl / g · day. If the content of particles having a particle size of 75 μm or less in the zinc alloy powder exceeds 30% by weight, the gas generation rate of the zinc alloy powder in the test solution may exceed 30 μl / g · day.
Further, when the content of particles having a particle diameter of 75 μm or less in the zinc alloy powder is 5% by weight or more, the reaction efficiency of the negative electrode is improved and the discharge performance is improved. When the content of particles having a particle size of 75 μm or less in the zinc alloy powder exceeds 30% by weight, the productivity in the gelled negative electrode filling process is lowered.

従来から、負極の反応効率を上げるために、亜鉛合金粉末を微粉化すると、ゲル状負極の粘度が上昇して生産性が悪くなるという問題があった。
しかし、上記界面活性剤を添加することにより、ゲル状負極の粘度が低下する。これは、電解液と亜鉛合金粒子およびゲル化剤との間の界面張力が低下し、亜鉛合金粒子やゲル化剤の濡れ性が増大し、潤滑性が高まるため、亜鉛合金粒子やゲル化剤の衝突による摩擦を軽減できるためである考えられる。ゲル状負極の粘度の低下により、ゲル状負極の電池ケース内への充填工程の生産性が向上する。特に炭素鎖の短いリン酸エステルは、界面張力低下能が強い。
従って、上記のようにゲル状負極に界面活性剤を添加するため、亜鉛合金の微粉末を用いても、ゲル状負極の粘度の上昇を抑えることができ、生産性を低下させることなく、放電性能を向上させることができる。
Conventionally, when the zinc alloy powder is pulverized in order to increase the reaction efficiency of the negative electrode, there is a problem that the viscosity of the gelled negative electrode is increased and the productivity is deteriorated.
However, the viscosity of the gelled negative electrode is reduced by adding the surfactant. This is because the interfacial tension between the electrolyte, the zinc alloy particles and the gelling agent decreases, the wettability of the zinc alloy particles and the gelling agent increases, and the lubricity increases. It is considered that this is because the friction caused by the collision of can be reduced. Due to the decrease in the viscosity of the gelled negative electrode, the productivity of the step of filling the gelled negative electrode into the battery case is improved. In particular, phosphates with short carbon chains have a strong interfacial tension reducing ability.
Therefore, since the surfactant is added to the gelled negative electrode as described above, an increase in the viscosity of the gelled negative electrode can be suppressed even if a zinc alloy fine powder is used, and the discharge can be performed without reducing the productivity. Performance can be improved.

正極には、例えば、正極活物質と、導電剤として黒鉛粉末と、アルカリ電解液との混合物からなる正極合剤が用いられる。正極活物質には、二酸化マンガン粉末、オキシ水酸化ニッケル粉末、またはそれらの混合物が用いられる。
セパレータには、例えば、ポリビニルアルコール繊維およびレーヨン繊維を主体として混抄した不織布が用いられる。
For the positive electrode, for example, a positive electrode mixture made of a mixture of a positive electrode active material, graphite powder as a conductive agent, and an alkaline electrolyte is used. As the positive electrode active material, manganese dioxide powder, nickel oxyhydroxide powder, or a mixture thereof is used.
For the separator, for example, a nonwoven fabric mainly composed of polyvinyl alcohol fiber and rayon fiber is used.

《実施例1〜2および比較例1〜4》
(1)正極合剤の作製
正極活物質としての二酸化マンガンと、導電剤としての黒鉛と、電解液とを、100:6:1の重量比で混合した後、フレーク状に圧縮成型した。ついでフレーク状の正極合剤を粉砕して顆粒状とし、これを篩によって分級し、10〜100メッシュのものを中空円筒状に加圧成型してペレット状の正極合剤を得た。なお、電解液には、38重量%の水酸化カリウムおよび2重量%の酸化亜鉛を含む水溶液を用いた。
<< Examples 1-2 and Comparative Examples 1-4 >>
(1) Preparation of positive electrode mixture Manganese dioxide as a positive electrode active material, graphite as a conductive agent, and an electrolytic solution were mixed at a weight ratio of 100: 6: 1, and then compression molded into flakes. Subsequently, the flaky positive electrode mixture was pulverized into granules, which were classified by a sieve, and those having a 10 to 100 mesh shape were pressure-molded into a hollow cylinder to obtain a pellet-like positive electrode mixture. As the electrolytic solution, an aqueous solution containing 38% by weight of potassium hydroxide and 2% by weight of zinc oxide was used.

(2)ゲル状負極の作製
亜鉛地金を約500℃で溶融し、その中にアルミニウム、ビスマス、およびインジウムを所定量投入した。エアーアトマイズ法により、溶融状態の亜鉛合金から亜鉛合金粉末を得た。そして、これを篩にて分級し、粒度が25〜425μm、および平均粒径165μmの亜鉛合金粉末を得た。なお、得られた合金は、30ppmのアルミニウム、200ppmのビスマス、および500ppmのインジウムを含有する亜鉛合金であった。
一方、上記と同じ電解液に、有機防食剤として界面活性剤を加え1分間攪拌した後、ゲル化剤としてポリアクリル酸ナトリウムを加えて45分間混合した。その後、常温で10分間放置してゲル状電解液を得た。
(2) Production of gelled negative electrode Zinc ingot was melted at about 500 ° C., and predetermined amounts of aluminum, bismuth, and indium were charged therein. A zinc alloy powder was obtained from a molten zinc alloy by an air atomization method. And this was classified with the sieve and the zinc alloy powder whose particle size is 25-425 micrometers and an average particle diameter of 165 micrometers was obtained. The obtained alloy was a zinc alloy containing 30 ppm of aluminum, 200 ppm of bismuth, and 500 ppm of indium.
On the other hand, a surfactant as an organic anticorrosive was added to the same electrolytic solution as above and stirred for 1 minute, and then sodium polyacrylate was added as a gelling agent and mixed for 45 minutes. Then, it was left to stand at room temperature for 10 minutes to obtain a gel electrolyte.

このゲル状電解液に、上記の亜鉛合金粉末を加え30分間混合し、ゲル状負極を得た。このとき、電解液、界面活性剤、ポリアクリル酸ナトリウム、および亜鉛合金粉末の混合重量比は、32.934:0.066:1:66とした。界面活性剤には、上記の一般式(2)においてm=2、n=0、XおよびYがHであるものを用い、これはリン酸とエチルアルコールとのエステル化反応により得られた。ゲル状負極中の界面活性剤の添加量は、亜鉛合金粉末100重量部あたり0.2重量部とした。   To this gel electrolyte, the above zinc alloy powder was added and mixed for 30 minutes to obtain a gelled negative electrode. At this time, the mixing weight ratio of the electrolytic solution, the surfactant, the sodium polyacrylate, and the zinc alloy powder was 32.934: 0.066: 1: 66. As the surfactant, one in which m = 2, n = 0, and X and Y in the above general formula (2) are H was obtained by esterification reaction of phosphoric acid and ethyl alcohol. The addition amount of the surfactant in the gelled negative electrode was 0.2 parts by weight per 100 parts by weight of the zinc alloy powder.

(3)アルカリ電池の組み立て
以下に示す手順で、図1に示す円筒形の単3形アルカリ電池を作製した。図1は、アルカリ電池の一部を断面とした正面図である。
電池ケース1内に上記で得られた正極合剤を2個挿入し、加圧治具により正極合剤2を再成型して電池ケース1の内壁に密着させた。そして、電池ケース1内に配置された正極合剤2の中央に有底円筒形のセパレータ4を配置し、セパレータ4内へ上記と同じ電解液を所定量注入した。所定時間経過した後、上記で得られたゲル状負極3をセパレータ4内へ充填した。なお、セパレータ4には、ポリビニルアルコール繊維とレーヨン繊維を主体として混抄した不織布を用いた。
(3) Assembly of alkaline battery The cylindrical AA alkaline battery shown in FIG. FIG. 1 is a front view with a cross section of a part of an alkaline battery.
Two pieces of the positive electrode mixture obtained above were inserted into the battery case 1, and the positive electrode mixture 2 was remolded with a pressure jig and brought into close contact with the inner wall of the battery case 1. And the bottomed cylindrical separator 4 was arrange | positioned in the center of the positive mix 2 arrange | positioned in the battery case 1, and predetermined amount injected the same electrolyte solution as the above into the separator 4. FIG. After a predetermined time had elapsed, the gelled negative electrode 3 obtained above was filled into the separator 4. In addition, the separator 4 used the nonwoven fabric which mixed and mixed mainly the polyvinyl alcohol fiber and the rayon fiber.

続いて、負極集電子6をゲル状負極3の中央に挿入した。なお、負極集電子6には、ガスケット5および負極端子を兼ねる底板7を予め一体化させた。そして、電池ケース1内の開口端部を、ガスケット5の端部を介して、底板7の周縁部にかしめつけ、電池ケース1の開口部を封口した。最後に、外装ラベル8で電池ケース1の外表面を被覆して、アルカリ電池を得た。   Subsequently, the negative electrode current collector 6 was inserted into the center of the gelled negative electrode 3. Note that the negative electrode current collector 6 was previously integrated with a gasket 5 and a bottom plate 7 that also served as a negative electrode terminal. And the opening edge part in the battery case 1 was crimped to the peripheral part of the bottom plate 7 via the edge part of the gasket 5, and the opening part of the battery case 1 was sealed. Finally, the outer surface of the battery case 1 was covered with the exterior label 8 to obtain an alkaline battery.

上記のアルカリ電池作製時において、亜鉛合金中のAl、Bi、およびInの含有量を表1に示すように変えて、それぞれ実施例1〜2および比較例1の電池を作製した。
さらに、負極作製時に界面活性剤を添加しなかった以外は、実施例1〜2および比較例1と同様にそれぞれ比較例2〜4の電池を作製した。
At the time of producing the alkaline battery, the contents of Al, Bi, and In in the zinc alloy were changed as shown in Table 1, and batteries of Examples 1 and 2 and Comparative Example 1 were produced.
Further, batteries of Comparative Examples 2 to 4 were produced in the same manner as in Examples 1 and 2 and Comparative Example 1, respectively, except that the surfactant was not added during the production of the negative electrode.

Figure 2008010250
Figure 2008010250

[評価]
(4)亜鉛合金粉末のガス発生速度の測定
上述した図2に示す試験容器を用いて、亜鉛合金粉末のガス発生速度を測定した。亜鉛合金粉末(重量:10(g))を試験容器内に投入した後、38重量%の水酸化カリウムおよび2重量%の酸化亜鉛を含む試験溶液とともに流動パラフィン(関東化学(株)製、鹿1級)を容器内に入れた。45℃環境下に試験容器を1時間静置した後、流動パラフィンの液高さを測定した。さらに、45℃環境下に試験容器を3日間静置した後、再度誘導パラフィンの液高さを測定した。そして、以下の式を用いてガス発生量を求めた。
ガス発生量(μl/g・day)=(3日後の液高さ(ml)−1時間後の液高さ(ml))/(10(g)×3(日))×1000
[Evaluation]
(4) Measurement of gas generation rate of zinc alloy powder The gas generation rate of the zinc alloy powder was measured using the test container shown in Fig. 2 described above. After putting zinc alloy powder (weight: 10 (g)) into a test vessel, liquid paraffin (manufactured by Kanto Chemical Co., Ltd., deer) together with a test solution containing 38% by weight potassium hydroxide and 2% by weight zinc oxide. 1st grade) was put in a container. After the test container was allowed to stand for 1 hour in a 45 ° C. environment, the liquid height of the liquid paraffin was measured. Furthermore, after leaving the test container in a 45 ° C. environment for 3 days, the liquid height of the induced paraffin was measured again. And the gas generation amount was calculated | required using the following formula | equation.
Gas generation amount (μl / g · day) = (liquid height after 3 days (ml) −liquid height after 1 hour (ml)) / (10 (g) × 3 (day)) × 1000

(5)負極のガス発生速度の測定
上述した図2に示す試験容器を用いて、ゲル状負極のガス発生速度を測定した。ゲル状負極(重量:10(g))を試験容器に投入した後、流動パラフィンを容器内に入れた。45℃環境下に試験容器を1時間静置した後、流動パラフィンの液高さを測定した。さらに、45℃環境下に試験容器を3日間静置した後、再度誘導パラフィンの液高さを測定した。そして、以下の式を用いてガス発生量を求めた。
ガス発生量(μl/g・day)=(3日後の液高さ(ml)−1時間後の液高さ(ml))/(10(g)×3(日))×1000
なお、負極のガス発生速度が10μl/g・day以下であれば、負極の耐食性が良好であると判断した。
(5) Measurement of gas generation rate of negative electrode Using the test container shown in FIG. 2 described above, the gas generation rate of the gelled negative electrode was measured. After the gelled negative electrode (weight: 10 (g)) was put into a test container, liquid paraffin was put into the container. After the test container was allowed to stand for 1 hour in a 45 ° C. environment, the liquid height of the liquid paraffin was measured. Furthermore, after leaving the test container in a 45 ° C. environment for 3 days, the liquid height of the induced paraffin was measured again. And the gas generation amount was calculated | required using the following formula | equation.
Gas generation amount (μl / g · day) = (liquid height after 3 days (ml) −liquid height after 1 hour (ml)) / (10 (g) × 3 (day)) × 1000
In addition, when the gas generation rate of the negative electrode was 10 μl / g · day or less, it was determined that the corrosion resistance of the negative electrode was good.

(6)放電性能の評価
各電池について、1.5Wで2秒間放電した後、0.65Wで28秒間放電する工程を繰り返すパルス放電を1時間あたり10サイクル行った。そして、閉路電圧が1.05Vに達するまでの放電持続時間を調べた。
上記の評価結果を表1に示す。なお、表2中の放電容量は、比較例2の電池の放電容量を100とした指数として表した。
(6) Evaluation of discharge performance About each battery, after discharging at 1.5 W for 2 seconds, pulse discharge which repeats the process of discharging at 0.65 W for 28 seconds was performed 10 cycles per hour. Then, the discharge duration until the closed circuit voltage reached 1.05 V was examined.
The evaluation results are shown in Table 1. The discharge capacity in Table 2 was expressed as an index with the discharge capacity of the battery of Comparative Example 2 as 100.

実施例1および2の負極では、ガス発生量の多い亜鉛合金粉末を用いたが、有機防食剤を添加したため、比較例3および4の負極と比べてガス発生速度が大幅に低下した。実施例3および4の電池では、反応性の高い亜鉛合金粉末を用いたため、比較例1および2の電池と比べて放電性能が向上した。このように、本発明の実施例1および2の電池では、良好な放電性能および負極の耐食性が同時に得られた。   In the negative electrodes of Examples 1 and 2, zinc alloy powder having a large amount of gas generation was used. However, since an organic anticorrosive was added, the gas generation rate was significantly reduced as compared with the negative electrodes of Comparative Examples 3 and 4. In the batteries of Examples 3 and 4, since highly reactive zinc alloy powder was used, the discharge performance was improved as compared with the batteries of Comparative Examples 1 and 2. Thus, in the batteries of Examples 1 and 2 of the present invention, good discharge performance and negative electrode corrosion resistance were obtained at the same time.

《実施例3〜6および比較例5》
有機防食剤として、一般式(2)において、n=0、ならびにXおよびYをHとし、mの値を表2に示すように変えた界面活性剤を用いた。なお、界面活性剤は、アルキル基誘導前駆体としてのアルキルアルコールと、リン酸とのエステル化反応により得られ、アルキルアルコールの炭素数を変えることによりmの値を変えた。実施例1の有機防食剤の変わりにこれらの有機防食剤を用いて、それぞれ実施例1と同様の方法によりアルカリ電池を作製し、上記と同様に評価した。評価結果を実施例1の結果とともに表2に示す。
<< Examples 3 to 6 and Comparative Example 5 >>
As the organic anticorrosive agent, a surfactant in which n = 0, X and Y are H, and the value of m is changed as shown in Table 2 in the general formula (2) was used. The surfactant was obtained by an esterification reaction between an alkyl alcohol as an alkyl group-derived precursor and phosphoric acid, and the value of m was changed by changing the carbon number of the alkyl alcohol. Using these organic anticorrosives instead of the organic anticorrosives of Example 1, alkaline batteries were prepared in the same manner as in Example 1, and evaluated in the same manner as described above. The evaluation results are shown in Table 2 together with the results of Example 1.

Figure 2008010250
Figure 2008010250

リン酸エステル中の疎水基の炭素数が1〜26である実施例1および3〜6の電池では、良好な放電性能および負極の耐食性が同時に得られた。リン酸エステル中の疎水基の炭素数が26を超える比較例5の電池では、亜鉛合金粉末への吸着力が大きくなるため、放電性能が低下した。   In the batteries of Examples 1 and 3-6 in which the hydrophobic group in the phosphoric ester had 1 to 26 carbon atoms, good discharge performance and corrosion resistance of the negative electrode were obtained at the same time. In the battery of Comparative Example 5 in which the number of carbon atoms of the hydrophobic group in the phosphoric acid ester exceeds 26, the adsorptive power to the zinc alloy powder is increased, so that the discharge performance is lowered.

《実施例7〜9》
有機防食剤の添加量を表3に示すように変えた以外は、実施例1と同様の方法によりアルカリ電池を作製し、上記と同様に評価した。評価結果を実施例1および比較例3の結果とともに表3に示す。
<< Examples 7 to 9 >>
Except for changing the amount of the organic anticorrosive added as shown in Table 3, an alkaline battery was prepared in the same manner as in Example 1 and evaluated in the same manner as described above. The evaluation results are shown in Table 3 together with the results of Example 1 and Comparative Example 3.

Figure 2008010250
Figure 2008010250

有機防食剤の添加量が亜鉛合金粉末100重量部あたり0.005〜1重量部である実施例1および7〜9の電池では、良好な放電性能および負極の耐食性が同時に得られた。特に、有機防食剤の添加量が亜鉛合金粉末100重量部あたり0.05〜0.2重量部である実施例1および8の電池では、優れた耐漏液性および放電性能が得られた。   In the batteries of Examples 1 and 7 to 9 in which the organic anticorrosive was added in an amount of 0.005 to 1 part by weight per 100 parts by weight of the zinc alloy powder, good discharge performance and negative electrode corrosion resistance were obtained at the same time. In particular, in the batteries of Examples 1 and 8 in which the addition amount of the organic anticorrosive was 0.05 to 0.2 parts by weight per 100 parts by weight of the zinc alloy powder, excellent liquid leakage resistance and discharge performance were obtained.

《実施例10〜18および比較例6〜7》
亜鉛合金中の各元素の含有量を表4に示すように変えた以外は、実施例1と同様の方法によりアルカリ電池を作製し、上記と同様に評価した。その評価結果を実施例1および2の結果とともに表4に示す。
<< Examples 10 to 18 and Comparative Examples 6 to 7 >>
Except that the content of each element in the zinc alloy was changed as shown in Table 4, an alkaline battery was produced in the same manner as in Example 1 and evaluated in the same manner as described above. The evaluation results are shown in Table 4 together with the results of Examples 1 and 2.

Figure 2008010250
Figure 2008010250

亜鉛合金中のIn含有量を変えた実施例1および10〜13の電池では、良好な負極の耐食性および放電性能が同時に得られ、In含有量が多いほど、亜鉛合金のガス発生量が減少した。亜鉛合金中のIn含有量は250ppm以上では、ガス発生量は同じであった。
亜鉛合金中のBi含有量が30ppm以上である実施例2、14および15の電池では、良好な負極の耐食性および放電性能が同時に得られた。また、亜鉛合金中のBi含有量が150ppmを超える実施例14の電池では、放電性能が低下した。このことから、亜鉛合金中のビスマス含有量は30〜150ppmが好ましいことがわかった。
亜鉛合金中のAl含有量が5ppm以上である実施例16〜18の電池では、良好な負極の耐食性および放電性能が得られた。亜鉛合金中のAl含有量が100ppmを超える実施例16の電池では、放電性能が低下した。このことから、亜鉛合金中のAl含有量は5〜100ppmが好ましいことがわかった。
In the batteries of Examples 1 and 10-13 in which the In content in the zinc alloy was changed, good corrosion resistance and discharge performance of the negative electrode were obtained at the same time, and the gas generation amount of the zinc alloy decreased as the In content increased. . When the In content in the zinc alloy was 250 ppm or more, the gas generation amount was the same.
In the batteries of Examples 2, 14 and 15 in which the Bi content in the zinc alloy was 30 ppm or more, good negative electrode corrosion resistance and discharge performance were obtained at the same time. Moreover, in the battery of Example 14 in which the Bi content in the zinc alloy exceeded 150 ppm, the discharge performance was lowered. From this, it was found that the bismuth content in the zinc alloy is preferably 30 to 150 ppm.
In the batteries of Examples 16 to 18 in which the Al content in the zinc alloy was 5 ppm or more, good negative electrode corrosion resistance and discharge performance were obtained. In the battery of Example 16 in which the Al content in the zinc alloy exceeded 100 ppm, the discharge performance was lowered. From this, it was found that the Al content in the zinc alloy is preferably 5 to 100 ppm.

上記実施例では、一般式(2)において、XおよびYをHとし、n=0としたが、XおよびYが、それぞれ独立してH、Na、またはKであり、m=0〜26、n=0〜26、およびm+n=1〜26を満たせば、上記と同様の効果が得られる。   In the above embodiment, in general formula (2), X and Y are H and n = 0, but X and Y are each independently H, Na, or K, and m = 0 to 26, If n = 0 to 26 and m + n = 1 to 26 are satisfied, the same effect as described above can be obtained.

本発明のアルカリ電池は、通信機器や携帯機器等の電子機器の電源として好適に用いられる。   The alkaline battery of the present invention is suitably used as a power source for electronic devices such as communication devices and portable devices.

本発明のアルカリ電池の一例の一部を断面にした正面図である。It is the front view which made a part of one example of the alkaline battery of the present invention into the section. 亜鉛合金粉末のガス発生量の測定に用いる試験容器の正面図である。It is a front view of the test container used for the measurement of the gas generation amount of zinc alloy powder.

符号の説明Explanation of symbols

1 電池ケース
2 正極合剤
3 ゲル状負極
4 セパレータ
5 ガスケット
6 負極集電子
7 底板
8 外装ラベル
11、12 ガラス器具
11a 収納部
11b 開口筒状部
12a 挿入筒状部
12b 管状部
12c 測定部
13 亜鉛合金粉末
14 試験溶液
15 流動パラフィン
DESCRIPTION OF SYMBOLS 1 Battery case 2 Positive electrode mixture 3 Gel-like negative electrode 4 Separator 5 Gasket 6 Negative electrode current collection 7 Bottom plate 8 Exterior label 11, 12 Glassware 11a Storage part 11b Opening cylindrical part 12a Insertion cylindrical part 12b Tubular part 12c Measurement part 13 Zinc Alloy powder 14 Test solution 15 Liquid paraffin

Claims (6)

二酸化マンガン粉末およびオキシ水酸化ニッケル粉末の少なくとも一方からなる正極活物質を含む正極と、負極活物質およびアニオン性界面活性剤を含む負極と、前記正極と負極との間に配されるセパレータと、アルカリ電解液とを具備し、
前記界面活性剤は、一般式(1):
Figure 2008010250
(式中、RおよびRは、それぞれ独立して水素原子または炭素数が1〜26の炭化水素基であり、RおよびRの炭素数の合計は1〜26である。)で表される構造を有する化合物またはそのアルカリ金属塩であり、
前記負極活物質が、38重量%の水酸化カリウムおよび2重量%の酸化亜鉛を含む45℃の水溶液中におけるガス発生速度が5〜30μl/g・dayの亜鉛合金粉末であるアルカリ電池。
A positive electrode including a positive electrode active material composed of at least one of manganese dioxide powder and nickel oxyhydroxide powder, a negative electrode including a negative electrode active material and an anionic surfactant, a separator disposed between the positive electrode and the negative electrode, An alkaline electrolyte,
The surfactant is represented by the general formula (1):
Figure 2008010250
(Wherein R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 26 carbon atoms, and the total carbon number of R 1 and R 2 is 1 to 26). A compound having the structure represented or an alkali metal salt thereof,
An alkaline battery in which the negative electrode active material is a zinc alloy powder having a gas generation rate of 5 to 30 μl / g · day in a 45 ° C. aqueous solution containing 38 wt% potassium hydroxide and 2 wt% zinc oxide.
前記一般式(1)において、RおよびRは、それぞれ独立して水素原子または炭素数が1〜6の炭化水素基であり、RおよびRの炭素数の合計は1〜6である請求項1記載のアルカリ電池。 In the general formula (1), R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and the total number of carbon atoms of R 1 and R 2 is 1 to 6. The alkaline battery according to claim 1. 前記一般式(1)において、RはH−(CH2m−であり、RはH−(CH2n−であり、m=0〜26、n=0〜26、およびm+n=1〜26である請求項1記載のアルカリ電池。 In the general formula (1), R 1 is H— (CH 2 ) m —, R 2 is H— (CH 2 ) n —, m = 0 to 26, n = 0 to 26, and m + n. The alkaline battery according to claim 1, wherein = 1 to 26. 前記一般式(1)において、RはH−(CH2m−であり、RはH−(CH2n−であり、m=0〜6、n=0〜6、およびm+n=1〜6である請求項1記載のアルカリ電池。 In the general formula (1), R 1 is H— (CH 2 ) m —, R 2 is H— (CH 2 ) n —, m = 0 to 6, n = 0 to 6, and m + n. The alkaline battery according to claim 1, wherein = 1 to 6. 前記負極は、前記界面活性剤を前記亜鉛合金粉末100重量部あたり0.005〜1重量部含む請求項1〜4のいずれかに記載のアルカリ電池。   The alkaline battery according to claim 1, wherein the negative electrode contains 0.005 to 1 part by weight of the surfactant per 100 parts by weight of the zinc alloy powder. 前記亜鉛合金粉末は、5〜100ppmのアルミニウム、30〜150ppmのビスマス、および0〜250ppmのインジウムを含む請求項1〜5のいずれかに記載のアルカリ電池。   The said zinc alloy powder is an alkaline battery in any one of Claims 1-5 containing 5-100 ppm aluminum, 30-150 ppm bismuth, and 0-250 ppm indium.
JP2006177897A 2006-06-28 2006-06-28 Alkali battery Pending JP2008010250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006177897A JP2008010250A (en) 2006-06-28 2006-06-28 Alkali battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006177897A JP2008010250A (en) 2006-06-28 2006-06-28 Alkali battery

Publications (1)

Publication Number Publication Date
JP2008010250A true JP2008010250A (en) 2008-01-17

Family

ID=39068269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006177897A Pending JP2008010250A (en) 2006-06-28 2006-06-28 Alkali battery

Country Status (1)

Country Link
JP (1) JP2008010250A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018514932A (en) * 2015-05-13 2018-06-07 スペクトラム ブランズ インコーポレイテッド Alkaline cell with improved discharge efficiency
CN109309218A (en) * 2018-08-21 2019-02-05 浙江长虹飞狮电器工业有限公司 Alkaline dry battery
CN114982000A (en) * 2020-01-29 2022-08-30 松下知识产权经营株式会社 Alkaline dry cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018514932A (en) * 2015-05-13 2018-06-07 スペクトラム ブランズ インコーポレイテッド Alkaline cell with improved discharge efficiency
US11133497B2 (en) 2015-05-13 2021-09-28 Energizer Brands, Llc Alkaline cell with improved discharge efficiency
CN109309218A (en) * 2018-08-21 2019-02-05 浙江长虹飞狮电器工业有限公司 Alkaline dry battery
CN114982000A (en) * 2020-01-29 2022-08-30 松下知识产权经营株式会社 Alkaline dry cell

Similar Documents

Publication Publication Date Title
EP1962357B1 (en) Alkaline dry battery
EP0457354B1 (en) Method of manufacturing zinc-alkaline batteries
US3847669A (en) Reduced mercury containing zinc alkaline cells
EP0510239A1 (en) Zinc-alkaline batteries
JPH09237630A (en) Active material and positive electrode for alkali storage battery
JP5172181B2 (en) Zinc alkaline battery
Sato et al. Gas evolution behavior of Zn alloy powder in KOH solution
JP2008010250A (en) Alkali battery
JP5079404B2 (en) Alkaline battery
JP2003017077A (en) Sealed alkaline zinc primary battery
JP4516092B2 (en) Alkaline battery
JP2006040887A (en) Alkaline battery
JP2007227011A (en) Alkaline cell
CN101527355B (en) Preparation method of negative plate of maintenance-free lead-acid storage battery for starting
JP2007273407A (en) Alkaline battery
JP2007273406A (en) Alkaline battery
EP0945908B1 (en) Zinc alloy powder as anode material for use in alkaline manganese cells and process for producing the same
JP2008123791A (en) Manufacturing method gelatinous zinc negative electrode, and zinc alkaline battery
JPWO2008013115A1 (en) Alkaline primary battery
JP2008305742A (en) Alkaline primary battery and size aa alkaline dry cell
JP7304564B2 (en) alkaline battery
JP2808822B2 (en) Manufacturing method of zinc alkaline battery
JP2006179429A (en) Alkaline dry battery
JP6589439B2 (en) Alkaline storage battery
JPH0426067A (en) Manufacture of zinc-alkali battery