JP2007273407A - Alkaline battery - Google Patents
Alkaline battery Download PDFInfo
- Publication number
- JP2007273407A JP2007273407A JP2006100539A JP2006100539A JP2007273407A JP 2007273407 A JP2007273407 A JP 2007273407A JP 2006100539 A JP2006100539 A JP 2006100539A JP 2006100539 A JP2006100539 A JP 2006100539A JP 2007273407 A JP2007273407 A JP 2007273407A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- zinc alloy
- alloy powder
- surfactant
- alkaline battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y02E60/12—
Landscapes
- Primary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、アルカリ電池に関し、特に、負極に添加する有機防食剤に関する。 The present invention relates to an alkaline battery, and more particularly to an organic anticorrosive added to a negative electrode.
一般に、アルカリ電池は、正極端子を兼ねる正極ケースの中に、正極ケースに密着して、正極活物質として二酸化マンガン粉末を含む円筒状の正極合剤を配置し、その中央にセパレータを介して負極活物質として亜鉛粉末を含むゲル状負極を配置した構造を有する。
そして、上記負極の防食剤として、炭素数が7以上のスルホン酸エステルや、炭素数が5以上のアルキル基を有するスルホン酸のようなスルホン基を含むアニオン性界面活性剤を用いることが提案されている(例えば、特許文献1および2)。
Generally, an alkaline battery has a cylindrical positive electrode mixture containing manganese dioxide powder as a positive electrode active material in close contact with a positive electrode case in a positive electrode case that also serves as a positive electrode terminal, and a negative electrode through a separator in the center. It has a structure in which a gelled negative electrode containing zinc powder as an active material is disposed.
And as an anticorrosive for the negative electrode, it is proposed to use an anionic surfactant containing a sulfonic group such as a sulfonic acid ester having 7 or more carbon atoms or a sulfonic acid having an alkyl group having 5 or more carbon atoms. (For example, Patent Documents 1 and 2).
アニオン性界面活性剤は集合体を形成して亜鉛粒子表面に吸着し、保護被膜層を形成する。この保護被膜層が水酸化物イオンや水の亜鉛粒子への接近を阻止し、亜鉛粒子表面上での式(1)や式(2)の反応が抑制される。
Zn + 4OH- → Zn(OH)4 2- + 2e- (1)
2H2O + 2e- → 2OH- + H2 (2)
The anionic surfactant forms an aggregate and is adsorbed on the surface of the zinc particles to form a protective coating layer. This protective coating layer prevents the hydroxide ions and water from approaching the zinc particles, and the reaction of the formulas (1) and (2) on the surface of the zinc particles is suppressed.
Zn + 4OH - → Zn (OH ) 4 2- + 2e - (1)
2H 2 O + 2e - → 2OH - + H 2 (2)
そして、界面活性剤は、負極反応時には、亜鉛粒子表面から離散して電解液中に離散する。しかし、上記特許文献1および2の界面活性剤は、炭素数が多いため、亜鉛粒子表面に強く吸着し、拡散速度が遅いため、式(1)に示す電極反応の進行を阻害するという問題がある。
また、近年、瞬間的に強負荷を必要とするデジタル機器が増えてきており、このような機器の電源として、大電流放電性能に優れた電池を用いる必要がある。しかし、従来の界面活性剤を負極に添加したアルカリ電池では、閉路電圧が大きく降下し、十分な大電流放電性能が得られない場合がある。
The surfactant is dispersed from the surface of the zinc particles and dispersed in the electrolyte during the negative electrode reaction. However, since the surfactants of
In recent years, the number of digital devices that require a heavy load instantaneously has increased, and it is necessary to use a battery with excellent high-current discharge performance as a power source for such devices. However, in an alkaline battery in which a conventional surfactant is added to the negative electrode, the closed circuit voltage is greatly reduced, and sufficient large current discharge performance may not be obtained.
上記界面活性剤は発泡しやすく、特に炭素数が13付近において最も発泡しやすい性質を有する(例えば、非特許文献1)。従って、このようなアニオン性界面活性剤を負極に添加すると、負極の密度が低下し、負極活物質の充填量が減少するため、放電性能が低下するという問題がある。
また、上記界面活性剤は炭素数が多いと、アルカリ電解液に溶け難くなる。このため、ゲル状負極作製時に、亜鉛粉末と、ゲル化剤と、アルカリ電解液と、アニオン性界面活性剤とを混合した場合に、アルカリ電解液中にアニオン性界面活性剤が均一に分散し難い場合がある。
Further, when the surfactant has a large number of carbon atoms, it becomes difficult to dissolve in the alkaline electrolyte. Therefore, when zinc powder, gelling agent, alkaline electrolyte, and anionic surfactant are mixed during the preparation of the gelled negative electrode, the anionic surfactant is uniformly dispersed in the alkaline electrolyte. It may be difficult.
そこで、本発明では、防食剤を含む負極を用いても、負極反応を阻害することなく、ガス発生が抑制された、耐漏液性および放電性能に優れたアルカリ電池を提供することを目的とする。 Accordingly, an object of the present invention is to provide an alkaline battery excellent in leakage resistance and discharge performance in which gas generation is suppressed without inhibiting the negative electrode reaction even when a negative electrode containing an anticorrosive agent is used. .
本発明のアルカリ電池は、二酸化マンガン粉末およびオキシ水酸化ニッケル粉末の少なくとも一方を含む正極と、亜鉛合金粉末およびアニオン性界面活性剤を含む負極と、前記正極と負極との間に配されるセパレータと、アルカリ電解液とを具備し、
前記界面活性剤は、
一般式(1):
The alkaline battery of the present invention includes a positive electrode including at least one of manganese dioxide powder and nickel oxyhydroxide powder, a negative electrode including a zinc alloy powder and an anionic surfactant, and a separator disposed between the positive electrode and the negative electrode And an alkaline electrolyte,
The surfactant is
General formula (1):
(式中、R1は水素原子または炭素数が1〜4の炭化水素基であり、R2は−CH2CH2−または−CH(CH3)CH2−であり、m=0〜1であり、R1が水素原子の場合はn=0〜8であり、R1が炭化水素基の場合はn=1〜8である。)で表される構造を有する化合物またはそのアルカリ金属塩である。 (In the formula, R 1 is a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, R 2 is —CH 2 CH 2 — or —CH (CH 3 ) CH 2 —, and m = 0 to 1. And when R 1 is a hydrogen atom, n = 0 to 8, and when R 1 is a hydrocarbon group, n = 1 to 8) or a alkali metal salt thereof It is.
前記一般式(1)において、R1が水素原子の場合はn=1〜4であり、R1が炭化水素基の場合はn=0〜4であるのが好ましい。
前記負極は、前記界面活性剤を前記亜鉛合金粉末100重量部あたり0.005〜1重量部含むのが好ましい。
前記亜鉛合金粉末は、ビスマスを30〜250ppm含むのが好ましい。
In the general formula (1), when R 1 is a hydrogen atom, n = 1 to 4, and when R 1 is a hydrocarbon group, n = 0 to 4 is preferable.
The negative electrode preferably contains the surfactant in an amount of 0.005 to 1 part by weight per 100 parts by weight of the zinc alloy powder.
The zinc alloy powder preferably contains 30 to 250 ppm of bismuth.
前記負極は、さらにゲル化剤および前記アルカリ電解液を含み、前記亜鉛合金粉末を前記電解液100重量部あたり170〜220重量部含むのが好ましい。
前記負極において、前記亜鉛合金粉末は粒径75μm以下の粒子を5〜45重量%含むのが好ましい。
The negative electrode further includes a gelling agent and the alkaline electrolyte, and preferably includes 170 to 220 parts by weight of the zinc alloy powder per 100 parts by weight of the electrolyte.
In the negative electrode, the zinc alloy powder preferably contains 5 to 45% by weight of particles having a particle size of 75 μm or less.
本発明によれば、防食剤を含む負極を用いても、負極反応を阻害することなく、ガス発生を抑制することができるため、優れた耐漏液性と放電性能とを両立することができる。 According to the present invention, even when a negative electrode containing an anticorrosive agent is used, gas generation can be suppressed without inhibiting the negative electrode reaction, so that both excellent liquid leakage resistance and discharge performance can be achieved.
本発明は、正極活物質として二酸化マンガン粉末およびオキシ水酸化ニッケル粉末の少なくとも一方を含む正極と、負極活物質として亜鉛粉末、およびアニオン性界面活性剤を含む負極と、前記正極と負極との間に配されるセパレータと、アルカリ電解液とを具備するアルカリ電池に関する。
そして、前記界面活性剤として、一般式(1):
The present invention relates to a positive electrode including at least one of manganese dioxide powder and nickel oxyhydroxide powder as a positive electrode active material, a negative electrode including zinc powder and an anionic surfactant as a negative electrode active material, and between the positive electrode and the negative electrode The present invention relates to an alkaline battery comprising a separator and an alkaline electrolyte.
And as said surfactant, general formula (1):
(式中、R1は水素原子または炭素数が1〜4の炭化水素基であり、R2は−CH2CH2−または−CH(CH3)CH2−であり、m=0〜1であり、R1が水素原子の場合はn=0〜8であり、R1が炭化水素基の場合はn=1〜8である。)で表される構造を有する化合物またはそのアルカリ金属塩を用いる点に特徴を有する。 (In the formula, R 1 is a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, R 2 is —CH 2 CH 2 — or —CH (CH 3 ) CH 2 —, and m = 0 to 1. And when R 1 is a hydrogen atom, n = 0 to 8, and when R 1 is a hydrocarbon group, n = 1 to 8) or a alkali metal salt thereof It is characterized in that
従来から、負極用有機防食剤としてスルホン酸エステル等のスルホン酸系界面活性剤を用いることが知られている。しかし、スルホン酸系界面活性剤の大部分は、亜鉛粒子表面に集合体を形成して強く吸着するため、負極反応を阻害し、放電性能が低下する場合があった。そこで、本発明者らは、負極の腐食を抑制する効果を有し、かつ放電性能が低下しない程度の亜鉛粒子への吸着力を有するスルホン酸系界面活性剤の構造について種々検討を行った。その結果、負極に上記の一般式(1)で表される構造を有する化合物またはそのアルカリ金属塩を添加した場合に、亜鉛粒子の腐食によるガス発生を抑制することができ、かつ亜鉛粒子表面への吸着力は負極反応を阻害するほど強くないため、放電性能の低下を抑制することができることを見出した。 Conventionally, it is known to use a sulfonic acid surfactant such as a sulfonic acid ester as an organic anticorrosive for a negative electrode. However, since most of the sulfonic acid surfactants form aggregates on the surface of the zinc particles and strongly adsorb, the negative electrode reaction may be hindered and the discharge performance may be reduced. Therefore, the present inventors have conducted various studies on the structure of a sulfonic acid surfactant that has an effect of suppressing corrosion of the negative electrode and has an adsorbing ability to zinc particles to such an extent that the discharge performance does not deteriorate. As a result, when the compound having the structure represented by the general formula (1) or the alkali metal salt thereof is added to the negative electrode, gas generation due to corrosion of the zinc particles can be suppressed, and the surface of the zinc particles can be suppressed. It has been found that the adsorbing power of is not so strong as to inhibit the negative electrode reaction, so that a reduction in discharge performance can be suppressed.
疎水基であるR1は、水素原子または炭素数1〜4の炭化水素基である。このとき、界面活性剤は負極反応時に電解液中に速やかに拡散するため、負極反応を阻害しない。従って、亜鉛粒子表面が界面活性剤で十分に覆われた状態でも、強負荷時の閉路電圧の降下を抑制し、優れた大電流放電性能が得られる。一方、炭素数が4を超えると亜鉛合金粒子への吸着力が強くなり放電性能が低下する。R1が炭化水素基の場合、炭化水素基は二重結合を含んでいてもよく、直鎖状でも分岐状でもよい。例えばR1は、CH3CH2CH(CH3)−や、CH3CH=CHCH2−などでもよい。
ポリオキシアルキレン基(−(R2O)n−)の重合度nは0〜8である。nが8を超えると、防食剤としての効果が弱くなり、耐漏液性が低下する。好ましくは、nは0〜4であり、nは0であるのが最も好ましい。
一般式(1)で表される構造を有する化合物またはそのアルカリ金属塩としては、例えば、一般式(2):
R 1 which is a hydrophobic group is a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms. At this time, since the surfactant diffuses rapidly into the electrolyte during the negative electrode reaction, it does not inhibit the negative electrode reaction. Therefore, even when the surface of the zinc particles is sufficiently covered with the surfactant, a drop in the closed circuit voltage during a heavy load is suppressed, and an excellent large current discharge performance can be obtained. On the other hand, when the number of carbon atoms exceeds 4, the adsorptive power to the zinc alloy particles is increased and the discharge performance is deteriorated. When R 1 is a hydrocarbon group, the hydrocarbon group may contain a double bond and may be linear or branched. For example, R 1 may be CH 3 CH 2 CH (CH 3 ) — or CH 3 CH═CHCH 2 —.
The degree of polymerization n of the polyoxyalkylene group (— (R 2 O) n —) is 0-8. When n exceeds 8, the effect as an anticorrosive will become weak and liquid leakage resistance will fall. Preferably, n is 0-4, and most preferably n is 0.
Examples of the compound having the structure represented by the general formula (1) or the alkali metal salt thereof include, for example, the general formula (2):
(式中、R2は−CH2CH2−または−CH(CH3)CH2−であり、l、m、およびnは、l=0〜4、m=0〜1、n=0〜8、およびl+n≠0を満たし、XはH、Na、またはKである。)で表される構造を有する化合物が挙げられる。
優れた耐漏液性および放電性能が同時に得られる点で、前記負極は、前記界面活性剤を前記亜鉛合金粉末100重量部あたり0.005〜1重量部含むのが好ましい。
さらに好ましくは、より優れた放電性能が得られる点で、前記負極中の界面活性剤の含有量は、前記亜鉛合金粉末100重量部あたり、0.005〜0.3重量部である。
(In the formula, R 2 is —CH 2 CH 2 — or —CH (CH 3 ) CH 2 —, and l, m, and n are 1 = 0 to 4, m = 0 to 1, and n = 0 to 0. 8 and l + n ≠ 0, and X is H, Na, or K.).
It is preferable that the negative electrode contains 0.005 to 1 part by weight of the surfactant per 100 parts by weight of the zinc alloy powder in that excellent liquid leakage resistance and discharge performance can be obtained at the same time.
More preferably, the content of the surfactant in the negative electrode is 0.005 to 0.3 parts by weight per 100 parts by weight of the zinc alloy powder in that a better discharge performance can be obtained.
前記亜鉛合金粉末は、ビスマスを30〜250ppm含むのが好ましい。無機防食剤として亜鉛合金にビスマスを添加するが、ビスマスは放電時に負極反応を阻害する性質を有する。しかし、上記界面活性剤が有機防食剤として用いられるため、ビスマス添加量を低減することができ、放電性能を損なうことなく負極の耐食性を十分に向上させることができる。亜鉛合金粉末中のビスマス含有量が30ppm未満であると、ビスマスによる負極の耐食性向上の効果が十分に得られない。亜鉛合金粉末中のビスマス含有量が250ppmを超えると、ビスマス含有量が多くなり、放電性能が低下しやすい。 The zinc alloy powder preferably contains 30 to 250 ppm of bismuth. Bismuth is added to a zinc alloy as an inorganic anticorrosive, and bismuth has the property of inhibiting the negative electrode reaction during discharge. However, since the surfactant is used as an organic anticorrosive, the amount of bismuth added can be reduced, and the corrosion resistance of the negative electrode can be sufficiently improved without impairing the discharge performance. If the bismuth content in the zinc alloy powder is less than 30 ppm, the effect of improving the corrosion resistance of the negative electrode by bismuth cannot be sufficiently obtained. If the bismuth content in the zinc alloy powder exceeds 250 ppm, the bismuth content increases, and the discharge performance tends to deteriorate.
前記負極には、例えば、亜鉛合金粉末、ゲル化剤、アルカリ電解液、および上記一般式(1)で表される界面活性剤の混合物からなるゲル状負極が用いられる。
亜鉛合金は、例えば、アルミニウム、ビスマス、インジウム、カルシウム、およびマグネシウムからなる群より選択される少なくとも1種の元素を含む。亜鉛合金粉末の平均粒径は、例えば、75〜180μmである。
ゲル化剤には、例えば、ポリアクリル酸ナトリウムが用いられる。
アルカリ電解液には、例えば、水酸化カリウム水溶液や水酸化ナトリウム水溶液が用いられる。
For the negative electrode, for example, a gelled negative electrode made of a mixture of a zinc alloy powder, a gelling agent, an alkaline electrolyte, and a surfactant represented by the general formula (1) is used.
The zinc alloy includes, for example, at least one element selected from the group consisting of aluminum, bismuth, indium, calcium, and magnesium. The average particle diameter of the zinc alloy powder is, for example, 75 to 180 μm.
As the gelling agent, for example, sodium polyacrylate is used.
For the alkaline electrolyte, for example, a potassium hydroxide aqueous solution or a sodium hydroxide aqueous solution is used.
ゲル状負極中への界面活性剤の添加方法としては、ゲル状負極作製時に、アルカリ電解液とゲル化剤との混合物であるゲル状電解液に界面活性剤を添加すればよい。本発明のアルカリ電池に用いられる界面活性剤は、ゲル状電解液に可溶であり、ゲル状負極中に均一に分散する。また、電池作製時にセパレータや正極に界面活性剤を含浸させてもよい。電池作製後において、界面活性剤は電解液中に分散し、ゲル状負極における亜鉛合金粒子の表面上に吸着する。 As a method for adding the surfactant into the gelled negative electrode, the surfactant may be added to the gelled electrolyte which is a mixture of the alkaline electrolyte and the gelling agent when the gelled negative electrode is produced. The surfactant used in the alkaline battery of the present invention is soluble in the gel electrolyte and is uniformly dispersed in the gel negative electrode. Moreover, you may make a separator and a positive electrode impregnate a surfactant at the time of battery preparation. After the battery is produced, the surfactant is dispersed in the electrolytic solution and adsorbed on the surface of the zinc alloy particles in the gelled negative electrode.
また、本発明のアルカリ電池に用いられる界面活性剤は、従来のアルカリ電池に用いられていた界面活性剤に比べて発泡性が弱いため、ゲル状負極の密度の低下を抑制することができる。
ゲル状負極において、亜鉛合金粉末をゲル負極中に含まれる電解液100重量部あたり170〜220重量部含むのが好ましい。ゲル状負極中の亜鉛合金粉末の含有量が、ゲル負極中に含まれる電解液100重量部あたり170重量部未満であると、ゲル状負極が発泡しやすくなり、放電性能が低下する。一方、ゲル状負極中の亜鉛合金粉末の含有量が、ゲル負極中に含まれる電解液100重量部あたり220重量部を超えると、ゲル負極中の電解液量が少なすぎるため、放電性能が低下する。
In addition, since the surfactant used in the alkaline battery of the present invention has a lower foaming property than the surfactant used in conventional alkaline batteries, it is possible to suppress a decrease in the density of the gelled negative electrode.
In the gelled negative electrode, the zinc alloy powder is preferably contained in an amount of 170 to 220 parts by weight per 100 parts by weight of the electrolyte contained in the gel negative electrode. When the content of the zinc alloy powder in the gelled negative electrode is less than 170 parts by weight per 100 parts by weight of the electrolyte contained in the gelled negative electrode, the gelled negative electrode is liable to foam and discharge performance is deteriorated. On the other hand, when the content of the zinc alloy powder in the gelled negative electrode exceeds 220 parts by weight per 100 parts by weight of the electrolyte contained in the gel negative electrode, the amount of the electrolyte in the gel negative electrode is too small and the discharge performance is lowered. To do.
一般にスルホン酸エステル等の界面活性剤を添加した水溶液は、泡の安定性が増すことが知られている。従って、負極作製時に、ゲル状負極が発泡して空気を取り込み、ゲル状負極の密度が低下する。そこで、本発明者らは、ゲル状負極における、電解液量に対する亜鉛合金粉末量の割合と、ゲル状負極の発泡性との関連性を検討した。その結果、電解液量に対する亜鉛合金粉末量の割合が大きいほど、発泡による負極密度の低下が抑制されることがわかった。これは、複雑な形状をした亜鉛合金粒子が泡を破壊する効果が大きくなったためと考えられる。 In general, an aqueous solution to which a surfactant such as a sulfonic acid ester is added is known to increase foam stability. Therefore, when the negative electrode is produced, the gelled negative electrode is foamed to take in air, and the density of the gelled negative electrode is lowered. Therefore, the present inventors examined the relationship between the ratio of the amount of zinc alloy powder to the amount of electrolyte in the gelled negative electrode and the foamability of the gelled negative electrode. As a result, it was found that as the ratio of the amount of zinc alloy powder to the amount of electrolytic solution was larger, the decrease in negative electrode density due to foaming was suppressed. This is probably because the zinc alloy particles having a complicated shape have a greater effect of breaking bubbles.
前記負極において、前記亜鉛合金粉末は粒径75μm以下の粒子を5〜45重量%含むのが好ましい。亜鉛合金粉末中における粒径75μm以下の粒子の含有量が5重量%以上であると、負極の反応効率が向上し、放電性能が向上する。亜鉛合金粉末中における粒径75μm以下の粒子の含有量が45重量%を超えると、ゲル状負極の充填工程における生産性が低下する。
例えば、亜鉛合金粉末を目開き75μm及び425μmの篩にて分級し、75〜425μmの間に篩い分けされた粒子からなる粉末に、75μm以下の粒子からなる粉末を所定重量混合することにより、粒径75μm以下の粒子を5〜45重量%含む亜鉛合金粉末は得られる。
また、目開き75μmの篩にて亜鉛粉末を篩い分けし秤量することにより、亜鉛合金粉末が粒径75μm以下の粒子を5〜45重量%含むことを確認することができる。
In the negative electrode, the zinc alloy powder preferably contains 5 to 45% by weight of particles having a particle size of 75 μm or less. When the content of particles having a particle size of 75 μm or less in the zinc alloy powder is 5% by weight or more, the reaction efficiency of the negative electrode is improved and the discharge performance is improved. When the content of particles having a particle size of 75 μm or less in the zinc alloy powder exceeds 45% by weight, the productivity in the filling process of the gelled negative electrode is lowered.
For example, the zinc alloy powder is classified with a sieve having a mesh size of 75 μm and 425 μm, and a powder made of particles having a particle size of 75 μm or less is mixed with a powder having a particle size of 75 μm to 425 μm to a predetermined weight. A zinc alloy powder containing 5 to 45% by weight of particles having a diameter of 75 μm or less is obtained.
Moreover, it can confirm that zinc alloy powder contains 5-45 weight% of particles with a particle size of 75 micrometers or less by sieving and weighing zinc powder with a sieve of 75 micrometers of openings.
従来から、負極の反応効率を上げるために、亜鉛合金粉末を微粉化すると、ゲル状負極の粘度が上昇して生産性が悪くなるという問題があった。
しかし、上記界面活性剤を添加することにより、ゲル状負極の粘度が低下する。これは、電解液と亜鉛合金粒子およびゲル化剤との間の界面張力が低下し、亜鉛合金粒子やゲル化剤の濡れ性が増大し、潤滑性が高まるため、亜鉛合金粒子やゲル化剤の衝突による摩擦を軽減できるためである考えられる。ゲル状負極の粘度の低下により、ゲル状負極の電池ケース内への充填工程の生産性が向上する。特に炭素鎖の短いスルホン酸エステルは、界面張力低下能が強いことが知られている(特開昭55−148277号公報参照)。
従って、上記のようにゲル状負極に界面活性剤を添加するため、亜鉛合金の微粉末を用いても、ゲル状負極の粘度の上昇を抑えることができ、生産性を低下させることなく、放電性能を向上させることができる。
Conventionally, when the zinc alloy powder is pulverized in order to increase the reaction efficiency of the negative electrode, there is a problem that the viscosity of the gelled negative electrode is increased and the productivity is deteriorated.
However, the viscosity of the gelled negative electrode is reduced by adding the surfactant. This is because the interfacial tension between the electrolyte, the zinc alloy particles and the gelling agent decreases, the wettability of the zinc alloy particles and the gelling agent increases, and the lubricity increases. It is considered that this is because the friction caused by the collision of can be reduced. Due to the decrease in the viscosity of the gelled negative electrode, the productivity of the step of filling the gelled negative electrode into the battery case is improved. In particular, sulfonic acid esters having a short carbon chain are known to have a strong interfacial tension reducing ability (see JP-A-55-148277).
Therefore, since the surfactant is added to the gelled negative electrode as described above, an increase in the viscosity of the gelled negative electrode can be suppressed even if a zinc alloy fine powder is used, and the discharge can be performed without reducing the productivity. Performance can be improved.
正極には、例えば、正極活物質と、導電剤として黒鉛粉末と、アルカリ電解液との混合物からなる正極合剤が用いられる。正極活物質には、二酸化マンガン粉末、オキシ水酸化ニッケル粉末、またはそれらの混合物が用いられる。二酸化マンガン粉末やオキシ水酸化ニッケル粉末の平均粒径は、例えば、25〜55μmである。黒鉛粉末の平均粒径は、例えば、8〜20μmである。
セパレータには、例えば、ポリビニルアルコール繊維およびレーヨン繊維を主体として混抄した不織布が用いられる。
For the positive electrode, for example, a positive electrode mixture made of a mixture of a positive electrode active material, graphite powder as a conductive agent, and an alkaline electrolyte is used. As the positive electrode active material, manganese dioxide powder, nickel oxyhydroxide powder, or a mixture thereof is used. The average particle diameter of the manganese dioxide powder or the nickel oxyhydroxide powder is, for example, 25 to 55 μm. The average particle diameter of the graphite powder is, for example, 8 to 20 μm.
For the separator, for example, a nonwoven fabric mainly composed of polyvinyl alcohol fiber and rayon fiber is used.
(1)正極合剤の作製
正極活物質としての二酸化マンガン粉末(平均粒径:40μm)と、導電剤としての黒鉛粉末(平均粒径:15μm)と、電解液とを、100:6:1の重量比で混合した後、フレーク状に圧縮成形した。ついでフレーク状の正極合剤を粉砕して顆粒状とし、これを篩によって分級し、10〜100メッシュのものを中空円筒状に加圧成形してペレット状の正極合剤を得た。なお、電解液には、40重量%の水酸化カリウム水溶液を用いた。
(1) Preparation of positive electrode mixture Manganese dioxide powder (average particle size: 40 μm) as a positive electrode active material, graphite powder (average particle size: 15 μm) as a conductive agent, and an electrolyte solution are 100: 6: 1. After being mixed at a weight ratio, the mixture was compression molded into flakes. Next, the flaky positive electrode mixture was pulverized into granules, which were classified with a sieve, and those having a 10 to 100 mesh shape were pressure-formed into a hollow cylinder to obtain a pellet-like positive electrode mixture. In addition, 40 weight% potassium hydroxide aqueous solution was used for electrolyte solution.
(2)ゲル状負極の作製
亜鉛を約500℃まで加熱し溶融状態とし、ここに所定量のAl、Bi及びInを添加し溶融させ、これを細流状に滴下し、圧縮空気を噴射させて噴霧することにより、50ppmのAl、200ppmのBi、250ppmのInを含む亜鉛合金粉末を得た。
そして、得られた亜鉛合金粉末を目開き75μm及び425μmの篩にて分級し、75〜425μmの間に篩い分けされた粒子からなる粉末に、75μm以下の粒子からなる粉末を所定重量混合することにより、粒径75μm以下の微粉末を25重量%含む亜鉛合金粉末(平均粒径:120μm)を得た。
(2) Preparation of gel-like negative electrode Zinc is heated to about 500 ° C. to be in a molten state, a predetermined amount of Al, Bi and In is added and melted therein, this is dropped into a trickle, and compressed air is injected. By spraying, a zinc alloy powder containing 50 ppm Al, 200 ppm Bi, and 250 ppm In was obtained.
Then, the obtained zinc alloy powder is classified with a sieve having openings of 75 μm and 425 μm, and a predetermined weight of the powder made of particles of 75 μm or less is mixed with the powder made of particles sieved between 75 to 425 μm. Thus, a zinc alloy powder (average particle size: 120 μm) containing 25% by weight of fine powder having a particle size of 75 μm or less was obtained.
一方、電解液として40重量%の水酸化カリウム水溶液に、有機防食剤として界面活性剤を加え1分間攪拌した後、ゲル化剤としてポリアクリル酸ナトリウムを加えて45分間混合した。その後、常温で10分間放置してゲル状電解液を得た。
このゲル状電解液に、上記の亜鉛合金粉末を加え30分間混合し、ゲル状負極を得た。このとき、水酸化ナトリウム水溶液、界面活性剤、ポリアクリル酸ナトリウム、および亜鉛合金粉末の混合重量比は、32.934:0.066:1:66とした。このとき、ゲル状負極中の界面活性剤の添加量は亜鉛合金粉末100重量部あたり0.1重量部であった。
On the other hand, after adding a surfactant as an organic anticorrosive agent to 40% by weight potassium hydroxide aqueous solution as an electrolytic solution and stirring for 1 minute, sodium polyacrylate was added as a gelling agent and mixed for 45 minutes. Then, it was left to stand at room temperature for 10 minutes to obtain a gel electrolyte.
To this gel electrolyte, the above zinc alloy powder was added and mixed for 30 minutes to obtain a gelled negative electrode. At this time, the mixing weight ratio of the aqueous sodium hydroxide solution, the surfactant, the sodium polyacrylate, and the zinc alloy powder was 32.934: 0.066: 1: 66. At this time, the addition amount of the surfactant in the gelled negative electrode was 0.1 part by weight per 100 parts by weight of the zinc alloy powder.
(3)アルカリ電池の組み立て
以下に示す手順で、図1に示す円筒形の単3形アルカリ電池を作製した。図1は、アルカリ電池の一部を断面とした正面図である。
電池ケース1内に上記で得られた正極合剤を2個挿入し、加圧治具により正極合剤2を再成形して電池ケース1の内壁に密着させた。そして、電池ケース1内に配置された正極合剤2の中央に有底円筒形のセパレータ4を配置し、セパレータ4内へ上記と同様の電解液を所定量注入した。所定時間経過した後、上記で得られたゲル状負極3をセパレータ4内へ充填した。なお、セパレータ4には、ポリビニルアルコール繊維とレーヨン繊維を主体として混抄した不織布を用いた。
(3) Assembly of alkaline battery The cylindrical AA alkaline battery shown in FIG. FIG. 1 is a front view with a cross section of a part of an alkaline battery.
Two pieces of the positive electrode mixture obtained above were inserted into the battery case 1, and the
続いて、負極集電子6をゲル状負極3の中央に挿入した。なお、負極集電子6には、ガスケット5および負極端子を兼ねる底板7を予め一体化させた。そして、電池ケース1内の開口端部を、ガスケット5の端部を介して、底板7の周縁部にかしめつけ、電池ケース1の開口部を封口した。最後に、外装ラベル8で電池ケース1の外表面を被覆して、アルカリ電池を得た。
Subsequently, the negative electrode
《実施例1〜9および比較例1〜2》
上記のアルカリ電池作製時において、界面活性剤の原材料であるアルキル基誘導前駆体の炭素数、ポリオキシエチレン構造の重合度、およびスルホン酸基を中和する塩の種類を変えることにより、上記の一般式(2)において、R2を−CH2CH2−とし、l、m、n、およびXを表1に示すように種々に変えて、界面活性剤として化合物1〜11を作製した。なお、化合物1〜3は、直鎖状飽和炭化水素化合物のスルホン化により得られた。化合物4および9は、エタノールと硫酸とのエステル化反応により得られた。化合物5〜7および11は、アルキルアルコールにエチレンオキサイドを付加して得られた化合物と、硫酸とのエステル化反応により得られた。化合物8および10は、ポリエチレンオキサイドと硫酸とのエステル化反応により得られた。
そして、化合物1〜11を用いて、それぞれ電池1〜11を作製した。
<< Examples 1-9 and Comparative Examples 1-2 >>
By changing the number of carbon atoms of the alkyl group-derived precursor, which is a raw material of the surfactant, the degree of polymerization of the polyoxyethylene structure, and the type of salt that neutralizes the sulfonic acid group, when the alkaline battery is manufactured, In the general formula (2), R 2 was —CH 2 CH 2 —, and l, m, n, and X were variously changed as shown in Table 1 to prepare compounds 1 to 11 as surfactants. Compounds 1 to 3 were obtained by sulfonation of a linear saturated hydrocarbon compound.
And the batteries 1-11 were produced using the compounds 1-11, respectively.
《比較例3》
負極に界面活性剤を添加しない以外は、実施例1と同様の方法によりアルカリ電池を作製した。
<< Comparative Example 3 >>
An alkaline battery was produced in the same manner as in Example 1 except that the surfactant was not added to the negative electrode.
[電池の評価]
(4)放電性能の評価
各電池について、1.5Wで2秒間放電した後、0.65Wで28秒間放電する工程を繰り返すパルス放電を1時間あたり10サイクル行った。そして、閉路電圧が1.05Vに達するまでの放電持続時間を調べた。
[Battery evaluation]
(4) Evaluation of discharge performance About each battery, after discharging at 1.5 W for 2 seconds, pulse discharge which repeats the process of discharging at 0.65 W for 28 seconds was performed 10 cycles per hour. Then, the discharge duration until the closed circuit voltage reached 1.05 V was examined.
(5)耐漏液性の評価
各電池を150個ずつ準備し、60℃で保存した。そして、4ヶ月間、8ヶ月間、および12ヶ月間保存した後においてそれぞれ漏液した電池の個数を調べた。
これらの評価結果を表2に示す。なお、表2中の放電容量は、実施例1の電池の放電容量を100とした指数として表し、放電容量が100以上であれば放電性能は良好であると判断した。
(5) Evaluation of leakage resistance 150 batteries were prepared and stored at 60 ° C. The number of batteries that leaked after storage for 4 months, 8 months, and 12 months was then examined.
These evaluation results are shown in Table 2. The discharge capacity in Table 2 was expressed as an index with the discharge capacity of the battery of Example 1 being 100, and it was determined that the discharge performance was good when the discharge capacity was 100 or more.
ゲル状負極中に有機防食剤を添加しない比較例2および3では、亜鉛合金の腐食にともなうガス発生により漏液した電池がみられた。比較例1の電池では、界面活性剤の炭素数が多くなり、亜鉛合金粉末への吸着力が大きくなるため、放電性能が低下した。
これに対して、本発明の実施例1〜9の電池は、良好な放電性能を示すとともに、いずれも漏液しなかった。
In Comparative Examples 2 and 3 in which no organic anticorrosive was added to the gelled negative electrode, batteries leaked due to gas generation accompanying corrosion of the zinc alloy were observed. In the battery of Comparative Example 1, the number of carbon atoms in the surfactant increased, and the adsorptive power to the zinc alloy powder increased, so the discharge performance decreased.
On the other hand, the batteries of Examples 1 to 9 of the present invention showed good discharge performance and none leaked.
《実施例10〜15》
ゲル状負極中への有機防食剤の亜鉛合金粉末100重量部あたりの添加量を表3に示すように変えた以外は、実施例2と同様の方法によりアルカリ電池を作製し、上記と同様に評価した。その評価結果を実施例2の結果とともに表3に示す。なお、表3中の放電容量は、実施例1の電池の放電容量を100とした指数として表し、放電容量が100以上であれば放電性能は良好であると判断した。
<< Examples 10 to 15 >>
An alkaline battery was prepared in the same manner as in Example 2 except that the amount of the organic anticorrosive added to the gelled negative electrode per 100 parts by weight of the zinc alloy powder was changed as shown in Table 3. evaluated. The evaluation results are shown in Table 3 together with the results of Example 2. The discharge capacity in Table 3 was expressed as an index with the discharge capacity of the battery of Example 1 being 100, and it was determined that the discharge performance was good when the discharge capacity was 100 or more.
実施例10〜15の電池では、良好な耐漏液性および放電性能が同時に得られた。特に、負極中の有機防食剤の添加量が亜鉛合金粉末100重量部あたり0.005〜1重量部である実施例2および11〜14の電池では、優れた耐漏液性および放電性能が得られた。 In the batteries of Examples 10 to 15, good leakage resistance and discharge performance were obtained at the same time. In particular, in the batteries of Examples 2 and 11 to 14 in which the amount of the organic anticorrosive added in the negative electrode is 0.005 to 1 part by weight per 100 parts by weight of the zinc alloy powder, excellent leakage resistance and discharge performance are obtained. It was.
《実施例16〜19》
亜鉛合金の組成(ビスマスの含有量)を表4に示すように種々に変えた以外は、実施例2と同様の方法によりアルカリ電池を作製し、上記と同様に評価した。その評価結果を実施例2の結果とともに表4に示す。なお、表4中の放電容量は、実施例1の電池の放電容量を100とした指数として表し、放電容量が100以上であれば放電性能は良好であると判断した。
<< Examples 16 to 19 >>
An alkaline battery was prepared in the same manner as in Example 2 except that the composition of the zinc alloy (bismuth content) was variously changed as shown in Table 4, and was evaluated in the same manner as described above. The evaluation results are shown in Table 4 together with the results of Example 2. The discharge capacity in Table 4 was expressed as an index with the discharge capacity of the battery of Example 1 being 100, and it was determined that the discharge performance was good when the discharge capacity was 100 or more.
実施例16〜19の電池では、良好な耐漏液性および放電性能が同時に得られた。特に、亜鉛合金中のビスマス含有量が30〜250ppmである実施例2、17、および18の電池では、優れた耐漏液性および放電性能が得られた。 In the batteries of Examples 16 to 19, good leakage resistance and discharge performance were obtained at the same time. In particular, in the batteries of Examples 2, 17, and 18 in which the bismuth content in the zinc alloy was 30 to 250 ppm, excellent liquid leakage resistance and discharge performance were obtained.
《実施例20〜23》
ゲル状負極作製時に用いた電解液量100重量部あたりの亜鉛合金粉末の含有量を表5に示すように種々に変えた以外は、実施例2と同様の方法によりアルカリ電池を作製し、上記と同様に放電性能を評価した。その評価結果を実施例2の結果とともに表5に示す。なお、表5中の放電容量は、実施例1の電池の放電容量を100とした指数として表し、放電容量が100以上であれば放電性能は良好であると判断した。ゲル状負極の密度の括弧内の値は、有機防食剤を添加しない場合の値である。
<< Examples 20 to 23 >>
An alkaline battery was prepared by the same method as in Example 2 except that the content of the zinc alloy powder per 100 parts by weight of the electrolyte used for preparing the gelled negative electrode was variously changed as shown in Table 5. The discharge performance was evaluated in the same manner. The evaluation results are shown in Table 5 together with the results of Example 2. The discharge capacity in Table 5 was expressed as an index with the discharge capacity of the battery of Example 1 being 100, and it was determined that the discharge performance was good when the discharge capacity was 100 or more. The value in parentheses of the density of the gelled negative electrode is a value when no organic anticorrosive is added.
実施例20〜23の電池では、良好な放電性能が得られた。特に、ゲル状負極中の亜鉛合金粉末の添加量がゲル状負極中の電解液100重量部あたり170〜220重量部である実施例2、21、および22の電池では、ゲル状負極の密度が高く、かつゲル状負極中に十分な量の電解液が存在するため、優れた放電性能が得られた。 In the batteries of Examples 20 to 23, good discharge performance was obtained. In particular, in the batteries of Examples 2, 21, and 22 in which the addition amount of the zinc alloy powder in the gelled negative electrode is 170 to 220 parts by weight per 100 parts by weight of the electrolyte in the gelled negative electrode, the density of the gelled negative electrode is Since the electrolyte solution is high and a sufficient amount of the electrolytic solution is present in the gelled negative electrode, excellent discharge performance was obtained.
《実施例24〜25》
亜鉛合金粉末中における粒径75μm以下の粒子の含有量を表6に示すように変えた以外は、実施例2と同様の方法によりアルカリ電池を作製し、上記と同様に放電性能を評価した。その評価結果を実施例2の結果とともに表6に示す。なお、表6中の放電容量は、実施例1の電池の放電容量を100とした指数として表し、放電容量が100以上であれば放電性能は良好であると判断した。
<< Examples 24 to 25 >>
An alkaline battery was prepared in the same manner as in Example 2 except that the content of particles having a particle size of 75 μm or less in the zinc alloy powder was changed as shown in Table 6, and the discharge performance was evaluated in the same manner as described above. The evaluation results are shown in Table 6 together with the results of Example 2. The discharge capacity in Table 6 is expressed as an index with the discharge capacity of the battery of Example 1 being 100, and it was determined that the discharge performance was good when the discharge capacity was 100 or more.
実施例2、24、および25の電池では、良好な放電性能が得られた。特に、亜鉛合金粉末中における粒径75μm以下の粒子の含有量が5重量%以上である実施例2および25の電池では、亜鉛合金の反応面積が増大するため、優れた放電性能が得られた。
しかし、亜鉛合金粉末中における粒径75μm以下の粒子の含有量が45重量%を超えると、ゲル状負極の粘度が上昇し、ゲル状負極の充填工程における生産性が悪くなる。従って、亜鉛合金粉末中における粒径75μm以下の粒子の含有量は5〜45重量%であるのが望ましい。
In the batteries of Examples 2, 24, and 25, good discharge performance was obtained. In particular, in the batteries of Examples 2 and 25 in which the content of particles having a particle diameter of 75 μm or less in the zinc alloy powder was 5% by weight or more, the reaction area of the zinc alloy was increased, and thus excellent discharge performance was obtained. .
However, when the content of particles having a particle size of 75 μm or less in the zinc alloy powder exceeds 45% by weight, the viscosity of the gelled negative electrode is increased, and the productivity in the filling process of the gelled negative electrode is deteriorated. Therefore, the content of particles having a particle size of 75 μm or less in the zinc alloy powder is preferably 5 to 45% by weight.
本発明のアルカリ電池は、通信機器や携帯機器等の電子機器の電源として好適に用いられる。 The alkaline battery of the present invention is suitably used as a power source for electronic devices such as communication devices and portable devices.
1 電池ケース
2 正極合剤
3 ゲル状負極
4 セパレータ
5 ガスケット
6 負極集電子
7 底板
8 外装ラベル
DESCRIPTION OF SYMBOLS 1
Claims (6)
前記界面活性剤は、
一般式(1):
The surfactant is
General formula (1):
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006100539A JP2007273407A (en) | 2006-03-31 | 2006-03-31 | Alkaline battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006100539A JP2007273407A (en) | 2006-03-31 | 2006-03-31 | Alkaline battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007273407A true JP2007273407A (en) | 2007-10-18 |
Family
ID=38675980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006100539A Pending JP2007273407A (en) | 2006-03-31 | 2006-03-31 | Alkaline battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007273407A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190260036A1 (en) * | 2018-02-21 | 2019-08-22 | Duracell U.S. Operations, Inc. | Sulfate and Sulfonate Based Surfactants for Alkaline Battery Anode |
CN115172647A (en) * | 2022-09-02 | 2022-10-11 | 中南大学 | Fatty acid zinc modified zinc metal negative electrode and preparation method and application thereof |
-
2006
- 2006-03-31 JP JP2006100539A patent/JP2007273407A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190260036A1 (en) * | 2018-02-21 | 2019-08-22 | Duracell U.S. Operations, Inc. | Sulfate and Sulfonate Based Surfactants for Alkaline Battery Anode |
WO2019164564A1 (en) * | 2018-02-21 | 2019-08-29 | Duracell U.S. Operations, Inc. | Sulfate and sulfonate based surfactants for alkaline battery anode |
US10547059B2 (en) | 2018-02-21 | 2020-01-28 | Duracell U.S. Operations, Inc. | Sulfate and sulfonate based surfactants for alkaline battery anode |
CN115172647A (en) * | 2022-09-02 | 2022-10-11 | 中南大学 | Fatty acid zinc modified zinc metal negative electrode and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008001813A1 (en) | Alkaline dry cell | |
EP0510239A1 (en) | Zinc-alkaline batteries | |
JP5172181B2 (en) | Zinc alkaline battery | |
WO2018163485A1 (en) | Alkaline dry-cell battery | |
PL205987B1 (en) | Zinc powder or zinc alloy powder for alkaline batteries | |
JP5079404B2 (en) | Alkaline battery | |
JP2007273407A (en) | Alkaline battery | |
JP2007227011A (en) | Alkaline cell | |
JP4516092B2 (en) | Alkaline battery | |
CN102856529A (en) | Electrode material for disposable alkaline battery | |
JP2006040887A (en) | Alkaline battery | |
JP2007273406A (en) | Alkaline battery | |
JP2008010250A (en) | Alkali battery | |
JP2000012006A (en) | Hydrogen storage alloy electrode for alkaline battery and manufacture of hydrogen storage alloy electrode for the alkaline storage battery | |
JP6934629B2 (en) | Alkaline batteries | |
WO2020166138A1 (en) | Alkali dry cell | |
JPWO2020188900A1 (en) | Alkaline batteries | |
JP2754865B2 (en) | Manufacturing method of zinc alkaline battery | |
JP2004259454A (en) | Cylindrical alkaline battery | |
JP6948629B2 (en) | Alkaline batteries | |
JPH10116612A (en) | Negative electrode material for alkaline manganese battery and manufacture of negative electrode material | |
JP2006221831A (en) | Alkaline dry cell | |
JP2010262763A (en) | Surface treatment method of hydrogen storage alloy powder, anode active material for nickel-hydrogen battery, anode for nickel-hydrogen battery, and nickel-hydrogen battery | |
JP2005038697A (en) | Cylinder alkaline battery | |
JP2001006666A (en) | Hydrogen storage alloy for alkaline storage battery and manufacture of such alloy |