JP2008010197A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2008010197A
JP2008010197A JP2006176988A JP2006176988A JP2008010197A JP 2008010197 A JP2008010197 A JP 2008010197A JP 2006176988 A JP2006176988 A JP 2006176988A JP 2006176988 A JP2006176988 A JP 2006176988A JP 2008010197 A JP2008010197 A JP 2008010197A
Authority
JP
Japan
Prior art keywords
voltage
fuel cell
fuel
electrode side
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006176988A
Other languages
English (en)
Inventor
Yosuke Suzuki
陽介 鈴木
Ryoichi Shimoi
亮一 下井
Masaru Idono
大 井殿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006176988A priority Critical patent/JP2008010197A/ja
Publication of JP2008010197A publication Critical patent/JP2008010197A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】燃料電池システム起動時における劣化抑制効果の減少を抑え、且つシステム停止期間中における劣化を抑制することが可能な燃料電池システムを提供する。
【解決手段】燃料電池システムは、システム停止時に空気系入口弁23および空気系出口弁24の弁閉と電流取出部30による電流の取り出しとを行う。このため、電流取り出しにより酸化剤極側の酸素を消費し、空気系入口弁23および空気系出口弁24の弁閉により酸素が消費された酸化剤極側を規制することとなる。これにより、システム起動時における酸化剤極側の酸素濃度の上昇を抑制することができる。特に、システムが再起動されるまでのシステム停止期間中においても電流取出部30による電流の取り出しを行うため、仮にシステム停止期間中に外気が流入してきたとしても、再度電流が取り出されて酸素が消費されることとなり、システム起動時における酸化剤極側の酸素濃度を低く保つことができる。
【選択図】図1

Description

本発明は、燃料電池システムに関する。
従来、システム停止時又は起動時に酸化剤極側の上流および下流の弁を遮断して酸化剤極側を規制し、燃料極側に燃料ガスを供給しつつ発電および電力取出を行うことで、酸化剤極側の酸素を消費させる燃料電池システムが知られている。この燃料電池システムでは、酸化剤極側の酸素が消費されるため、システム起動時における触媒劣化反応を抑制することができる(例えば特許文献1参照)。
特開2005−158555号公報
ここで、従来の燃料電池システムにおいて、システム停止時に上記動作を行った場合、システム停止期間中に外気が燃料電池スタックの酸化剤極側に流入してしまい、起動時における劣化抑制効果を得にくくなってしまう。さらに、システム停止期間中に外気が流入してくるため、停止期間中おいても燃料電池スタック内で劣化反応が起こってしまう。また、システム起動時に上記動作を行ったとしても、システム停止期間中に劣化反応が起こってしまう。
本発明はこのような従来の課題を解決するためになされたものであり、その目的とするところは、燃料電池システム起動時における劣化抑制効果の減少を抑え、且つシステム停止期間中における劣化を抑制することが可能な燃料電池システムを提供することにある。
本発明の燃料電池システムは、燃料電池スタックと、規制弁と、負荷取出手段と、制御手段とを備えている。燃料電池スタックは、燃料ガスの供給を受ける燃料極および酸化剤ガスの供給を受ける酸化剤極を有し、燃料ガスと酸化剤ガスとを反応させることにより発電を行うものである。規制弁は、燃料電池スタックの酸化剤極側の上流及び下流に設けられ、弁閉されることで酸化剤極側への外気の流入を規制するものである。負荷取出手段は、燃料電池スタックから電流を取り出すときの電流値又は燃料電池スタックから電流を取り出す際の電圧値を制御するものである。制御手段は、規制弁の開閉および負荷取出手段の電流の取り出しを制御するものである。さらに、制御手段は、システム停止時に規制弁の弁閉と負荷取出手段による電流の取り出しとを行うと共に、システムが再起動されるまでのシステム停止期間中においても負荷取出手段による電流の取り出しを行う構成となっている。
本発明によれば、システム停止時に規制弁の弁閉と負荷取出手段による電流の取り出しとを行う。このため、電流取り出しにより酸化剤極側の酸化剤ガスを消費し、規制弁の弁閉により酸化剤極側を規制して外気の流入を規制することとなる。これにより、システム起動時における酸化剤極側の酸化剤ガス濃度の上昇を抑制することができる。特に、システムが再起動されるまでのシステム停止期間中においても負荷取出手段による電流の取り出しを行うため、仮にシステム停止期間中に外気が流入してきたとしても、再度電流が取り出されて酸化剤ガスが消費されることとなり、システム起動時及びシステム停止期間中における酸化剤極側の酸化剤ガス濃度を低く保つことができる。従って、燃料電池システム起動時における劣化抑制効果の減少を抑え、且つシステム停止期間中における劣化を抑制することができる。
以下、本発明の好適な実施形態を図面に基づいて説明する。
図1は、本発明の第1実施形態に係る燃料電池システムの構成図である。同図に示す燃料電池システムは、固体高分子電解質膜を挟んで燃料ガスの供給を受ける燃料極と酸化剤ガスの供給を受ける酸化剤極とを有し燃料電池構造体(燃料電池セル)をセパレータで挟持して、これを複数積層して構成される燃料電池スタック1を備える。この燃料電池スタック1は、燃料極に燃料ガスが供給されるとともに、酸化剤極に酸化剤ガスが供給され、これらガスを電気化学的に反応させることにより発電を行う。本実施形態では、燃料ガスとして水素を、酸化剤ガスとして酸素(具体的には、酸素を含む空気)を用いるケースについて説明する。この燃料電池システムは、例えば、車両を駆動する電動モータの電源として、車両に搭載される。
さらに、燃料電池システムには、燃料電池スタック1に水素を供給するための水素系10と、燃料電池スタック1に空気を供給するための空気系20と、制御装置3と、各センサ32〜34とが備えられている。
水素系10において、燃料ガスである水素は、燃料タンク(燃料ガス供給手段)11から、水素供給流路L10を介して燃料電池スタック1の燃料極側に供給される。具体的には、燃料タンク11の下流の水素供給流路L10には水素供給弁12が設けられており、この水素供給弁12が開状態となると、燃料タンク11からの高圧水素ガスが、その下流に設けられた減圧弁(図示せず)によって機械的に所定の圧力まで減圧される。減圧された水素は、減圧弁よりも下流に設けられた水素調圧弁13によって更に減圧された後に、燃料電池スタック1に供給される。水素供給弁12は、燃料電池スタック1への水素供給の必要性に応じて、制御装置3によってその開閉状態が制御される。また、水素調圧弁13は、燃料電池スタック1へ供給される水素圧力が所望の値となるように、制御装置3によってその開度が制御される。
燃料電池スタック1の燃料極側から排出されるガス(未使用の水素を含む排出ガス)は、水素循環流路L11へと排出される。この水素循環流路L11は、他方の端部が水素調圧弁13よりも下流側の水素供給流路L10に接続されている。水素循環流路L11には、例えば、水素循環ポンプ14およびエゼクタ15といった水素循環手段が設けられている。この水素循環手段により、燃料極の排出側から排出された水素はその供給側へと循環され、水素の燃費向上を図ることができる。
ところで、酸化剤ガスとして空気を用いた場合、空気中の窒素が酸化剤極から燃料極に透過するため、水素系10におけるガスの窒素濃度が増加し、水素分圧が減少する傾向となる。そのため、水素循環流路L11には、水素系10内のガスを外部に排出する水素排出流路L12が接続されている(換言すれば、水素循環流路L11の一部は、燃料極から水素を排出する水素排出流路L12としての機能を担う)。水素排出流路L12には、パージ弁16が設けられており、このパージ弁16の開閉状態を切り替えることにより、水素循環流路L11を流れる排出ガス(窒素、未使用な水素等を含むガス)が外部に排出される。パージ弁16は、燃料電池スタック1の運転状態に応じて、その開閉状態が制御装置3によって制御される。パージ弁16は、基本的に閉状態に制御されているが、燃料極における窒素濃度を推定して、或いは、所定の周期毎に、必要に応じて閉状態から開状態へと切り替えられる。これにより、未反応な水素とともに窒素が水素系10からパージされ、水素分圧の減少を抑制することができる。
空気系20において、酸化剤ガスである空気は、コンプレッサ21によって燃料電池スタック1の酸化剤極側に供給される。具体的には、大気がコンプレッサ21によって空気が取り込まれて加圧されると、この加圧状態の空気が、空気供給流路L20を介して燃料電池スタック1の酸化剤極側に供給される。燃料電池スタック1の酸化剤極側から排出されるガス(酸素の一部が消費された空気)は、空気排出流路L21を介して外部(大気)に排出される。この空気排出流路L21には、空気調圧弁22が設けられている。空気調圧弁22は、燃料電池スタック1の酸化剤極側下流に設けられ、制御装置3によって開度が調整されることにより酸化剤極側の圧力を制御するものである。
空気系入口弁(規制弁)23は、燃料電池スタック1の酸化剤極側の上流、すなわち空気供給流路L20に設けられており、弁閉されることで空気供給流路L20から燃料電池スタック1への外気の流入を規制する構成となっている。また、空気系出口弁(規制弁)24は、燃料電池スタック1の酸化剤極側の下流、すなわち空気排出流路L21に設けられており、弁閉されることで空気排出流路L21から燃料電池スタック1への外気の流入を規制する構成となっている。
制御装置3は、電流取出部(負荷取出手段)30と、メイン制御部(制御手段)31とから構成されている。電流取出部30は、メイン制御部31によって制御され、燃料電池スタック1から電流を取り出すユニットである。また、電流取出部30は、燃料電池スタック1から電流を取り出すときの電流値、または燃料電池スタック1から電流を取り出す際の電圧値を制御する構成となっている。
メイン制御部31は、システム全体を統合的に制御するユニットである。このメイン制御部31は、制御プログラムに従い、システムの各部を制御することにより、燃料電池スタック1の運転状態を制御する。
電圧センサ(電圧計測手段)32は、燃料電池スタック1の電圧、燃料電池スタック1を構成するセルの電圧、又はセル複数個によって構成されるセル群の電圧を計測するものである。さらに、電圧センサ32は、複数個設けられ、セル群の電圧を複数箇所において計測するようになっている。酸化剤極側水素濃度センサ(酸化剤極側燃料ガス濃度検出手段)33は、燃料電池スタック1の酸化剤極側の水素濃度を検出するものである。燃料極側水素濃度センサ(燃料極側燃料ガス濃度検出手段)34は、燃料電池スタック1の燃料極側の水素濃度を検出するものである。
ここで、上記メイン制御部31は、空気系入口弁23および空気系出口弁24の開閉、並びに電流取出部30の電流の取り出しを制御する構成となっている。具体的にメイン制御部31は、燃料電池システムの停止時に空気系入口弁23および空気系出口弁24の弁閉と、電流取出部30による電流の取り出しを行う。このため、電流取り出しにより酸化剤極側の酸素を消費し、空気系入口弁23および空気系出口弁24の弁閉により酸化剤極側を規制して外気の流入を防ぐこととなる。これにより、システム起動時における酸化剤極側の酸素濃度の上昇を抑制することができる。
特に、メイン制御部31は、システムが再起動されるまでのシステム停止期間中においても電流取出部30による電流の取り出しを行うため、仮にシステム停止期間中に外気が流入してきたとしても、再度電流が取り出されて酸素が消費されるため、システム起動時及びシステム停止期間中における酸化剤極側の酸素濃度を低く保つことができる。以上より、本実施形態に係る燃料電池システムは、システム起動時における劣化抑制効果の減少を抑え、且つシステム停止期間中における劣化を抑制することできるようになっている。
なお、メイン制御部31は、システム停止期間中において、電圧センサ32により計測された電圧が所定電圧以上高くなった場合に、電流取出部30によって電流を取り出すようになっている。電圧が高くなった場合、劣化反応が起こりつつあると言えるためである。また、メイン制御部31は、電圧センサ32により計測された電圧が高くなるほど、電流取出部30によって取り出す電流の値を大きくする。電圧が高いほど劣化反応が促進し易いといえ、取出電流を大きくして早期にガスを消費して劣化反応を抑制することができるからである。
次に、本発明の実施形態に係る燃料電池システムの動作を説明する。図2は、第1実施形態に係る燃料電池システムの停止時の動作を示すフローチャートである。なお、図2に示す処理の開始時において、水素調圧弁13は所定開度で開いており、パージ弁16は閉じているものとする。また、水素循環ポンプ14およびコンプレッサ21は作動しており、空気調圧弁22は閉じており、空気系入口弁23および空気系出口弁24は開いているものとする。
同図に示すように、本実施形態に係る燃料電池システムは、停止時において空気系入口弁23および空気系出口弁24を閉じ、電流取出部30による電流の取り出しを行うと共に、燃料電池スタック1に水素を供給してスタック内を水素雰囲気としたうえで、停止完了とする。
まず、メイン制御部31は、コンプレッサ21を停止させる(ST1)。そして、メイン制御部31は、空気系入口弁23および空気系出口弁24を閉じる(ST2)。その後、メイン制御部31は、電流の取り出しを開始する(ST3)。次いで、メイン制御部31は、酸化剤極側水素濃度センサ33および燃料極側水素濃度センサ34からの信号に基づいて、両極の水素濃度が規定の濃度以上であるか否かを判断する(ST4)。
両極の水素濃度が規定の濃度以上でないと判断した場合(ST4:NO)、両極の水素濃度が規定の濃度以上であると判断されるまで、この処理が繰り返される。なお、ステップST4において、水素調圧弁13は開けられており、パージ弁16は閉じられている。このため、ステップST4において「NO」と判断されて処理が繰り返される間、燃料極側の水素濃度は上昇していくこととなる。さらに、燃料極側の水素濃度が高くなると、燃料極側から酸化剤極側へ水素がクロスリークするため、酸化剤極側の水素濃度についても上昇していくこととなる。
両極の水素濃度が規定の濃度以上であると判断した場合(ST4:YES)、両極は水素雰囲気となったと判断できるため、電流取出部30は電流の取り出しを終了する(ST5)。その後、メイン制御部31は、水素調圧弁13を閉じ(ST6)、水素循環ポンプ14を停止させる(ST7)。
図3は、第1実施形態に係る燃料電池システムの停止期間中の動作を示すフローチャートである。なお、図3において、電圧センサ32は、セル群の電圧を複数箇所において計測する構成のものであるとする。
同図に示すように、燃料電池システムの停止期間中においてメイン制御部31は、電圧センサ32からの信号に基づいて、各セル群の電圧を検出する(ST11)。その後、メイン制御部31は、計測された複数箇所すべてにおける電圧が所定電圧以上高くなったか否かを判断する(ST12)。計測された複数箇所すべてにおける電圧が所定電圧以上高くなっていないと判断した場合(ST12:NO)、処理はステップST11に移行する。一方、計測された複数箇所すべてにおける電圧が所定電圧以上高くなったと判断した場合(ST12:YES)、メイン制御部31は、取り出し電流値を決定し(ST13)、その後電流の取り出しを開始する(ST14)。このように、メイン制御部31は、電圧センサ32によって計測された複数箇所すべてにおける電圧が所定電圧以上高くなった場合に、電流取出部30によって電流を取り出すこととしている。
図4は、図3に示したステップST12に示す処理を示す図であり、(a)は第1の例を示し、(b)は第2の例を示し、(c)は第3の例を示している。なお、図3において縦軸は電圧を示し、横軸は第1〜第n(nは2以上の整数)のセル群を示している。
図4(a)に示すように、第1〜第nのセル群の電圧値すべてが所定電圧を超えている。この場合、図3のステップST12において「YES」と判断されることとなる。また、図4(b)に示すように、第4のセル群の電圧値のみが所定電圧を下回っている。この場合、図3のステップST12において「NO」と判断されることとなる。さらに、図4(c)に示すように、第n−i(iはn未満の整数)から第nのセル群の電圧値が所定電圧を下回っている。この場合、図3のステップST12において「NO」と判断されることとなる。このように、計測された複数箇所すべてにおける電圧が所定電圧以上高くなった場合に電流を取り出すことで、一カ所だけ電圧が低い場合などに、電流を取り出してその一カ所のセル群において劣化が起こってしまうことを防止するようにしている。
再度、図3を参照する。電流の取り出しを開始した後、メイン制御部31は、電圧センサ32によって計測された複数箇所の電圧の値のうち、最小の値のものが所定の電圧閾値に達したか否かを判断する(ST15)。最小の値のものが所定の電圧閾値に達していないと判断した場合(ST15:NO)、達したと判断されるまで、この処理を繰り返す。一方、最小の値のものが所定の電圧閾値に達したと判断した場合(ST15:YES)、メイン制御部31は、電流の取り出しを終了する(ST16)。そして、図3に示す処理は終了する。
このように、ステップST15では、計測された複数箇所の電圧の値のうち最小の値のものが所定の電圧閾値に達した時点で、電流の取り出しを終了する。図4(a)に示すように、電流の取り出しを開始すると、各セル群の電圧値は低下していく。メイン制御部31は、図4(a)の第1及び第2のセル群の電圧のように、セル群の電圧のうち最小の電圧が所定の電圧閾値に達したか否かを判断する。これにより、最小のセル群の電圧が所定の電圧閾値を下回らないようにし、電流の取り出し過ぎによって一部のセル群が劣化してしまうことを防止するようにしている。
このようにして、第1実施形態に係る燃料電池システムによれば、システム停止時に空気系入口弁23および空気系出口弁24の弁閉と電流取出部30による電流の取り出しとを行う。このため、電流取り出しにより酸化剤極側の酸素を消費し、空気系入口弁23および空気系出口弁24の弁閉により酸化剤極側を規制して外気の流入を規制することとなる。これにより、システム起動時における酸化剤極側の酸素濃度の上昇を抑制することができる。特に、システムが再起動されるまでのシステム停止期間中においても電流取出部30による電流の取り出しを行うため、仮にシステム停止期間中に外気が流入してきたとしても、再度電流が取り出されて酸素が消費されることとなり、システム起動時及びシステム停止期間中における酸化剤極側の酸素濃度を低く保つことができる。従って、燃料電池システム起動時における劣化抑制効果の減少を抑え、且つシステム停止期間中における劣化を抑制することができる。
また、システム停止期間中において計測電圧が所定電圧以上高くなった場合に電流を取り出す。ここで、システム停止期間中において計測電圧が所定電圧以上高くなった場合、システム停止期間中における劣化反応が起こりつつあるといえる。このため、上記場合に電流を取り出すことで、適切に劣化を抑制することができる。
また、計測電圧が高くなるほど取り出す電流の値を大きくする。これにより、電圧値が高くなるほど、早期にガスを消費することとなり、適切に劣化を抑制することができる。
また、計測された複数箇所すべてにおける電圧が所定電圧以上高くなった場合に、電流を取り出す。このため、一カ所だけ電圧が低い場合などに、電流を取り出してその一カ所のセル群において劣化が起こってしまうことを防止することができる。
また、計測された複数箇所の電圧の値のうち、最小の値のものが所定の閾値を下回らないように、電流を取り出す。このため、電流の取り出し過ぎによって一部のセル群が劣化してしまうことを防止することができる。
次に、本発明の第2実施形態を説明する。第2実施形態に係る燃料電池システムは、第1実施形態のものと同様であるが、処理内容が第1実施形態のものと一部異なっている。以下、第1実施形態との相違点を説明する。
図5は、第2実施形態に係る燃料電池システムの停止期間中の動作を示すフローチャートである。なお、図5において、電圧センサ32は、セル群の電圧を複数箇所において計測する構成のものであるとする。また、図5に示すステップST21,ST22,ST25〜ST28の処理は、図3に示したステップST11,ST12,ST13〜ST16の処理と同様であるため、説明を省略する。
図5に示すように、計測された複数箇所すべてにおける電圧が所定電圧以上高くなったと判断した場合(ST22:YES)、メイン制御部31は、酸化剤極側水素濃度センサ33および燃料極側水素濃度センサ34により検出された水素濃度の少なくとも一方が所定濃度以下であるか否かを判断する(ST23)。
酸化剤極側水素濃度センサ33および燃料極側水素濃度センサ34により検出された水素濃度の少なくとも一方が所定濃度以下であると判断した場合(ST23:YES)、メイン制御部31は、水素調圧弁13を開ける(ST24)。これにより、燃料電池スタック1の燃料極側に水素を供給して燃料極側を水素雰囲気とする。また、燃料極側の水素はクロスリークして酸化剤極側に至るため、酸化剤極側についても水素雰囲気とすることとなる。そして、処理はステップST25に移行する。
一方、酸化剤極側水素濃度センサ33および燃料極側水素濃度センサ34により検出された水素濃度の双方が所定濃度以下でないと判断した場合(ST23:NO)、水素調圧弁13は開けられることなく、処理はステップST25に移行する。
その後、ステップST26〜ST28において電流が取り出され、処理はステップST29に至る。ステップST29において、メイン制御部31は、水素調圧弁13が開いている場合、これを閉じる(ST29)。そして、図5に示す処理は終了する。
なお、図5に示す処理においてメイン制御部31は、ステップST23において「YES」と判断された場合、水素タンク11から水素を供給しつつ電流取出部30により電流を取り出すこととなる。これにより、クロスリークのみならず、以下の式(1)及び(2)の反応によって燃料極側の水素を早期に酸化剤極側に移動させることができる。すなわち、燃料極側に水素を供給する場合に電流を取り出すことで、
燃料極側 :H2→2H++2e- (1)
酸化剤極側:2H++2e-→H2 (2)
なる反応を起こすことができ、クロスリークのみでなく水素ガスを積極的に酸化剤極側に移行させることができる。
このようにして、第2実施形態に係る燃料電池システムによれば、第1実施形態と同様に、燃料電池システム起動時における劣化抑制効果の減少を抑え、且つシステム停止期間中における劣化を抑制することができる。また、適切に劣化を抑制することができ、一カ所だけ電圧が低い場合などに、電流を取り出してその一カ所のセル群において劣化が起こってしまうことを防止することができる。また、電流の取り出し過ぎによって一部のセル群が劣化してしまうことを防止することができる。
さらに、第2実施形態によれば、システム停止期間中において計測電圧が所定電圧以上高くなった場合、検出された燃料極側及び酸化剤極側の水素濃度の少なくとも一方が所定濃度以下であるときには、燃料電池スタック1に水素を供給する。このため、燃料極側に外気が混入して水素濃度が低くなった場合に水素を燃料極側に供給して、燃料極側を水素雰囲気とし、劣化を抑制することができる。また、酸化剤極側に外気が混入して水素濃度が低くなった場合においても水素を燃料極側に供給することにより、燃料極側の水素がクロスリークして酸化剤極側に至る。このため、酸化剤極側を水素雰囲気とし、劣化を抑制することができる。従って、適切に劣化を抑制することができる。
また、水素を供給する場合に電流を取り出す。これにより、クロスリークのみならず、式(1)及び(2)の反応によって燃料極側の水素を早期に酸化剤極側に移動させることができる。
以上、実施形態に基づき本発明を説明したが、本発明は上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で、変更を加えてもよいし、各実施形態を組み合わせてもよい。例えば、空気系入口弁23および空気系出口弁24はそれぞれ1つに限らず、複数個備え付けられていてもよい。
本発明の第1実施形態に係る燃料電池システムの構成図である。 第1実施形態に係る燃料電池システムの停止時の動作を示すフローチャートである。 第1実施形態に係る燃料電池システムの停止期間中の動作を示すフローチャートである。 図3に示したステップST12に示す処理を示す図であり、(a)は第1の例を示し、(b)は第2の例を示し、(c)は第3の例を示している。 第2実施形態に係る燃料電池システムの停止期間中の動作を示すフローチャートである。
符号の説明
1…燃料電池スタック
3…制御装置
10…水素系
11…燃料タンク(燃料ガス供給手段)
12…水素供給弁
13…水素調圧弁
14…水素循環ポンプ
15…エゼクタ
16…パージ弁
20…空気系
21…コンプレッサ
22…空気調圧弁
23…空気系入口弁(規制弁)
24…空気系出口弁(規制弁)
30…電流取出部(負荷取出手段)
31…メイン制御部(制御手段)
32…電圧センサ(電圧計測手段)
33…酸化剤極側水素濃度センサ(酸化剤極側燃料ガス濃度検出手段)
34…燃料極側水素濃度センサ(燃料極側燃料ガス濃度検出手段)
L10…水素供給流路
L11…水素循環流路
L12…水素排出流路
L20…空気供給流路
L21…空気排出流路

Claims (7)

  1. 燃料ガスの供給を受ける燃料極および酸化剤ガスの供給を受ける酸化剤極を有し、燃料ガスと酸化剤ガスとを反応させることにより発電を行う燃料電池スタックと、
    前記燃料電池スタックの酸化剤極側の上流及び下流に設けられ、弁閉されることで酸化剤極側への外気の流入を規制する規制弁と、
    前記燃料電池スタックから電流を取り出すときの電流値又は前記燃料電池スタックから電流を取り出す際の電圧値を制御する負荷取出手段と、
    前記規制弁の開閉および前記負荷取出手段の電流の取り出しを制御する制御手段と、を備え、
    前記制御手段は、システム停止時に前記規制弁の弁閉と前記負荷取出手段による電流の取り出しとを行うと共に、システムが再起動されるまでのシステム停止期間中においても前記負荷取出手段による電流の取り出しを行う
    ことを特徴とする燃料電池システム。
  2. 前記燃料電池スタックの電圧、前記燃料電池スタックを構成するセルの電圧、又は前記セル複数個によって構成されるセル群の電圧を計測する電圧計測手段をさらに備え、
    前記制御手段は、システム停止期間中において、前記電圧計測手段により計測された電圧が所定電圧以上高くなった場合に、前記負荷取出手段によって電流を取り出す
    ことを特徴とする請求項1に記載の燃料電池システム。
  3. 前記制御手段は、前記電圧計測手段により計測された電圧が高くなるほど、前記負荷取出手段によって取り出す電流の値を大きくする
    ことを特徴とする請求項2に記載の燃料電池システム。
  4. 前記電圧計測手段は、前記燃料電池スタックを構成するセル複数個によって構成されるセル群の電圧を複数箇所において計測し、
    前記制御手段は、前記電圧計測手段によって計測された複数箇所すべてにおける電圧が所定電圧以上高くなった場合に、前記負荷取出手段によって電流を取り出す
    ことを特徴とする請求項2または請求項3のいずれかに記載の燃料電池システム。
  5. 前記制御手段は、前記電圧計測手段によって計測された複数箇所の電圧の値のうち、最小の値のものが所定の電圧閾値を下回らないように、電流を取り出す
    ことを特徴とする請求項4に記載の燃料電池システム。
  6. 前記燃料電池スタックの電圧、前記燃料電池スタックを構成するセルの電圧、又は前記セル複数個によって構成されるセル群の電圧を計測する電圧計測手段と、
    前記燃料電池スタックの燃料極側に燃料ガスを供給する燃料ガス供給手段と、
    前記燃料電池スタックの燃料極側の燃料ガス濃度を検出する燃料極側燃料ガス濃度検出手段と、
    前記燃料電池スタックの酸化剤極側の燃料ガス濃度を検出する酸化剤極側燃料ガス濃度検出手段と、をさらに備え、
    前記制御手段は、システム停止期間中において、前記電圧計測手段によって計測された電圧が所定電圧以上高くなった場合、前記燃料極側燃料ガス濃度検出手段および前記酸化剤極側燃料ガス濃度検出手段により検出された燃料ガス濃度の少なくとも一方が所定濃度以下であるときには、前記燃料ガス供給手段から燃料ガスを供給する
    ことを特徴とする請求項1に記載の燃料電池システム。
  7. 前記制御手段は、前記燃料ガス供給手段から燃料ガスを供給する場合、前記負荷取出手段により電流を取り出す
    ことを特徴とする請求項6に記載の燃料電池システム。
JP2006176988A 2006-06-27 2006-06-27 燃料電池システム Pending JP2008010197A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006176988A JP2008010197A (ja) 2006-06-27 2006-06-27 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006176988A JP2008010197A (ja) 2006-06-27 2006-06-27 燃料電池システム

Publications (1)

Publication Number Publication Date
JP2008010197A true JP2008010197A (ja) 2008-01-17

Family

ID=39068223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006176988A Pending JP2008010197A (ja) 2006-06-27 2006-06-27 燃料電池システム

Country Status (1)

Country Link
JP (1) JP2008010197A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037790A (ja) * 2011-08-03 2013-02-21 Honda Motor Co Ltd 燃料電池システム
US11450867B2 (en) 2019-01-28 2022-09-20 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037790A (ja) * 2011-08-03 2013-02-21 Honda Motor Co Ltd 燃料電池システム
US11450867B2 (en) 2019-01-28 2022-09-20 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Similar Documents

Publication Publication Date Title
US7223489B2 (en) Hydrogen purge control apparatus
JP5070685B2 (ja) 燃料電池システム、ガス漏れ検知装置およびガス漏れ検知方法
US8211581B2 (en) Control apparatus and control method for fuel cell
WO2006030969A1 (ja) 燃料電池システムおよび燃料電池システムのガス漏れ判定方法
JP2009037770A (ja) 燃料電池システム及びその運転停止方法
JPWO2007013453A1 (ja) 燃料電池システム
JP5428307B2 (ja) 燃料電池システム
JP4993241B2 (ja) 燃料電池システム
JP2005353569A (ja) 燃料電池システム
JP2008103137A (ja) 燃料電池システムおよびその膜含水量調節方法
JP2006099993A (ja) 燃料電池システム及び燃料電池システムの故障診断装置
JP2009016170A (ja) 燃料電池システムおよび燃料電池システムの制御装置
WO2009016985A1 (ja) 燃料電池システム及びその制御方法
CA2597570C (en) Fuel cell system with voltage detection device
JP2010086939A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP5168828B2 (ja) 燃料電池システム
JP2007165103A (ja) 燃料電池システム及びその運転方法並びに移動体
JP5515193B2 (ja) 燃料電池システム
JP2007157587A (ja) 燃料電池システム
JP2009117066A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP5186794B2 (ja) 燃料電池システムおよび燃料電池システムにおけるガス圧力調節方法
JP2010108756A (ja) 燃料電池システムおよび燃料電池システムのパージ制御方法
JP2008010188A (ja) 燃料電池システム
JP2008269910A (ja) 燃料電池システムおよび燃料電池システムにおける不純物排出方法
JP2008010197A (ja) 燃料電池システム