JP2008008740A - Method for detecting defect, and device therefor - Google Patents

Method for detecting defect, and device therefor Download PDF

Info

Publication number
JP2008008740A
JP2008008740A JP2006179208A JP2006179208A JP2008008740A JP 2008008740 A JP2008008740 A JP 2008008740A JP 2006179208 A JP2006179208 A JP 2006179208A JP 2006179208 A JP2006179208 A JP 2006179208A JP 2008008740 A JP2008008740 A JP 2008008740A
Authority
JP
Japan
Prior art keywords
inspected
scattered light
defect
laser
ultrasonic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006179208A
Other languages
Japanese (ja)
Other versions
JP4631002B2 (en
Inventor
Kazufumi Sakai
一文 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006179208A priority Critical patent/JP4631002B2/en
Publication of JP2008008740A publication Critical patent/JP2008008740A/en
Application granted granted Critical
Publication of JP4631002B2 publication Critical patent/JP4631002B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2697Wafer or (micro)electronic parts

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect a defect such as foreign matter or deposit on the surface of an inspection object and an internal hollow defect, distinctively with high resolution. <P>SOLUTION: A laser emitted from a laser device 5 is polarized through an analyzer 6 and allowed to enter the inspection object W from an oblique direction, and scattered light SB is imaged by a CCD camera installed on a dark field through an analyzer 8 arranged in a cross Nicol state, and the intensity of the scattered light is determined from acquired image data. The inspection object can be switched into the state where an ultrasonic wave is not applied or into the state where the ultrasonic wave is applied. The scattered light is detected and its intensity is determined in the state where the ultrasonic wave is not applied to the inspection object and in the state where the ultrasonic wave is applied thereto, respectively. It is determined that, when the difference between both intensities of the scattered light exceeds a prescribed threshold, the scattered light is generated from a hollow defect in the inspection object, and that when the difference does not exceeds the threshold, the defect belongs to another kind. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、被検査体の欠陥を検出する方法及びそのための装置に関し、特に半導体ウエハのような被検査体の欠陥が内部の空洞欠陥か否かを判別する方法及びそのための装置に関する。   The present invention relates to a method for detecting a defect in an object to be inspected and an apparatus therefor, and more particularly to a method for determining whether or not a defect in an object to be inspected such as a semiconductor wafer is an internal cavity defect and an apparatus therefor.

半導体の製造工程において、ウエハの内部に存在する欠陥は、製品としての半導体デバイスの電気的な特性の劣化、不良の原因となる。そのため、半導体装置を製造するにあたっては、半導体製造前の段階のウエハ、あるいは製造工程に入って表面に工程処理のなされたウエハに対し欠陥の検査を行う。欠陥があるウエハにそのまま工程処理を行っていくと、最終的な半導体の製品として不良品になるので、欠陥の除去を行っておく必要がある。   In a semiconductor manufacturing process, a defect existing inside a wafer causes deterioration of electrical characteristics and a defect of a semiconductor device as a product. Therefore, when manufacturing a semiconductor device, a defect is inspected for a wafer in a stage before semiconductor manufacturing or a wafer that has been subjected to process processing on the surface after entering the manufacturing process. If a process is performed on a wafer having a defect as it is, it becomes a defective product as a final semiconductor product. Therefore, it is necessary to remove the defect.

近年において、半導体デバイスの集積度が増すとともに、デバイスを構成するパターンの微細化が進む中で、検出すべきウエハの欠陥のサイズも小さくなり、それだけ高い欠陥の検出能力が必要となっている。また、欠陥の検出には、破壊的方法と非破壊的方法があり、前者はウエハをエッチング液で溶かしたり、物理的に削るなどにより、欠陥を表面に出し、顕微鏡や電子顕微鏡などで観察するものである。しかしながら、この方法で検査したウエハは半導体デバイスの製造には使用できなくなる。   In recent years, as the degree of integration of semiconductor devices increases and the miniaturization of patterns constituting the devices progresses, the size of the defect of the wafer to be detected also becomes smaller, and thus a higher defect detection capability is required. In addition, there are destructive methods and non-destructive methods for detecting defects. In the former case, the defects are exposed to the surface by melting the wafer with an etching solution or physically scraping it, and observed with a microscope or an electron microscope. Is. However, the wafer inspected by this method cannot be used for manufacturing semiconductor devices.

非破壊的な検査の方法としては、電気的方法、光や超音波を用いた非接触検査方法がある。電気的な検査の方法は、ウエハに電極を付けたり、プローブを押しつけたりして、ウエハに電気信号を与え、電気信号の変化からウエハに欠陥が存在することを検出するものであるが、欠陥の位置を決めることが難しいこと、電極等による接触が必要なこともあり、製品の製造段階でのウエハに用いることはできない。   Non-destructive inspection methods include electrical methods and non-contact inspection methods using light and ultrasonic waves. The electrical inspection method applies an electrical signal to the wafer by attaching an electrode to the wafer or pressing a probe, and detects the presence of a defect in the wafer from a change in the electrical signal. It is difficult to determine the position of the substrate, and contact with an electrode or the like may be necessary, so that it cannot be used for a wafer in a product manufacturing stage.

超音波による欠陥検出は、被検査体に超音波を印加して、欠陥から反射される超音波を検出器で検出する方法である。金属等の光が透過しない材料の内部の欠陥でも検出できることから、パッケージ内部の検査等に使用されるが、検出限界や分解能の点でウエハの欠陥や異物を高分解能で検出するのには使われない。   Defect detection using ultrasonic waves is a method in which ultrasonic waves are applied to an object to be inspected and ultrasonic waves reflected from the defects are detected by a detector. It can be used to detect defects inside materials that do not transmit light, such as metal, so it is used for inspection inside packages, but it is used to detect wafer defects and foreign matter with high resolution in terms of detection limit and resolution. I will not.

光を用いた検査方法は、欠陥や異物による散乱光を暗視野や明視野の光学系で検出し、欠陥の位置を同時に検出するものである。ウエハ内部の欠陥検出にはシリコンに対して透明なレーザーが使用され、表面ないし表層の欠陥の検出には可視光レーザーが使用される。   In the inspection method using light, light scattered by a defect or foreign matter is detected by a dark field or bright field optical system, and the position of the defect is detected simultaneously. A laser transparent to silicon is used to detect defects inside the wafer, and a visible light laser is used to detect defects on the surface or surface layer.

光、超音波を用いた欠陥の検査について、次のような文献に開示されている。
特開昭62−177447号公報 特開2001−208729号公報 特開2005−147813号公報 特開2002−188999号公報 特開平11−211668号公報 特開2000−216208号公報 特開平10−293101号公報 特開平10−293102号公報 特許3664134号公報
A defect inspection using light and ultrasonic waves is disclosed in the following documents.
Japanese Patent Laid-Open No. 62-177447 JP 2001-208729 A JP 2005-147813 A JP 2002-188999 A JP-A-11-21668 JP 2000-216208 A Japanese Patent Laid-Open No. 10-293101 Japanese Patent Laid-Open No. 10-293102 Japanese Patent No. 3664134

特許文献1には、被検査体に電磁超音波を送信するとともに、その超音波による被検査体の励振部分と同じ部分にレーザーを向け、その反射信号に基づいて被検査体の欠陥、板厚等を検出するようにした配管、鋼材等の被検査体の超音波探傷方法について記載されている。   In Patent Document 1, an electromagnetic ultrasonic wave is transmitted to an object to be inspected, and a laser is directed to the same part as the excitation part of the object to be inspected by the ultrasonic wave. Are described for ultrasonic flaw detection methods for inspection objects such as pipes and steel materials.

特許文献2には、被検査物に対して超音波振動子から表面弾性波を入射するとともに、被検査物の表面にレーザーを照射し、その反射光を受光して、信号処理装置によりレーザーの出射光と反射光との周波数の差を検出し、その差によって被検査物の振動速度を測定し欠陥を検出する欠陥検出装置について記載されている。   In Patent Document 2, surface acoustic waves are incident on an object to be inspected from an ultrasonic transducer, a laser is irradiated on the surface of the object to be inspected, and the reflected light is received. There is described a defect detection apparatus that detects a frequency difference between emitted light and reflected light, and detects a defect by measuring a vibration speed of an inspection object based on the difference.

特許文献3には、被測定物面にパルスレーザーを照射して弾性波を生じさせ、連続発振の信号用のレーザーをパルスレーザーと同軸上に被測定物面に照射し、被測定物面の散乱面及び弾性波の影響を受けた反射光をレーザー干渉計に入射して周波数成分の変化を検出することにより被測定物の内部欠陥を検出する材料非破壊検査方法、装置について記載されている。   In Patent Document 3, a surface of an object to be measured is irradiated with a pulse laser to generate an elastic wave, and a laser for a continuous wave signal is irradiated on the surface of the object to be measured coaxially with the pulse laser. A material nondestructive inspection method and apparatus for detecting an internal defect of an object to be measured by detecting a change in a frequency component by entering reflected light affected by a scattering surface and an elastic wave into a laser interferometer is described. .

特許文献4には、半導体ウエハ等の被検査物にレーザーを照射し、被検査物からの反射散乱光を複数方向で検知し、検知結果を比較して反射散乱光の指向性を検出することにより被検査物における傷等の欠陥と異物とを区別して検出することについて記載されている。   In Patent Document 4, a laser is irradiated on an inspection object such as a semiconductor wafer, reflected and scattered light from the inspection object is detected in a plurality of directions, and the directivity of the reflected and scattered light is detected by comparing the detection results. Describes that a defect such as a flaw in an object to be inspected and a foreign object are distinguished from each other.

特許文献5には、被検査試料にレーザーを入射させ、その散乱光、発光を複数の異なる波長帯に分割して撮像装置に結像させ、得られた複数の画像から欠陥の内容を識別する欠陥検査方法について記載されている。   In Patent Document 5, a laser is incident on a sample to be inspected, and the scattered light and emitted light are divided into a plurality of different wavelength bands to form an image on an imaging device, and the content of the defect is identified from the obtained plurality of images. Describes defect inspection methods.

特許文献6には、半導体ウエハ等の面に対し、入射角度が異なるように設定され、発振のタイミングをずらせた2つのパルス発振レーザーを照射し、一方のレーザーはパーティクルとピットの両方で散乱光を生じ、他方のレーザーはピットによる散乱光が少なくなるように設定して、両方の散乱光の検出結果からパーティクルかピットかを弁別する検査方法について記載されている。   Patent Document 6 irradiates two pulsed lasers with different incident angles and shifted oscillation timings on the surface of a semiconductor wafer or the like, and one of the lasers scatters both particles and pits. An inspection method is described in which the other laser is set so that the scattered light from the pits is reduced, and the particle or pit is discriminated from the detection result of both scattered lights.

特許文献7、8には、被検物体に入射させるレーザーの波長を変えた場合に、反射率Rが極大値になる波長λ1と極小値になる波長λ2とを求めておき、波長λ1,λ2のレーザーをそれぞれ被検物体に入射させた時の光情報を得ることにより、被検物体のごく表層近傍の欠陥と表面の欠陥を区別するようにした欠陥の検出方法について、またその場合に、レーザーが被検物体に斜めに入射し上方に配置した顕微鏡により欠陥の散乱像を全体的に観察することについて記載されている。   In Patent Documents 7 and 8, the wavelength λ1 at which the reflectance R becomes a maximum value and the wavelength λ2 at which the reflectance R becomes a minimum value when the wavelength of the laser incident on the test object is changed are obtained, and the wavelengths λ1, λ2 are obtained. By detecting optical information when each laser is incident on the object to be detected, a defect detection method for distinguishing between defects near the surface of the object to be detected and defects on the surface, and in that case, It is described that a scattered image of a defect is observed as a whole with a microscope in which a laser is incident obliquely on an object to be examined and arranged above.

特許文献9には、ウエハ表面にレーザーを照射して走査させ、ウエハ表面で反射あるいは散乱した光を、入射光に対する受光角度が異なる(高角度、低角度)複数の受光系で受光し、これら複数の受光系における受光強度比に基づく標準粒子換算サイズの差異を求め、欠陥の形態、種類を判別するようにした半導体ウエハ表面の検査方法について記載されている。   In Patent Document 9, a laser beam is irradiated on a wafer surface to scan, and light reflected or scattered on the wafer surface is received by a plurality of light receiving systems having different light receiving angles (high angle and low angle) with respect to incident light. A method for inspecting the surface of a semiconductor wafer in which a difference in standard particle conversion size based on a ratio of received light intensity in a plurality of light receiving systems is obtained to determine the form and type of a defect is described.

特許文献1、2においては、内部の空洞欠陥を高分解能で検出することはできないものである。特許文献3においては、内部欠陥の有無を検出するが、超音波による材料表面の散乱面の影響を信号光で検出するものであり、コンクリート構造物の非破壊検査には適合するが、半導体ウエハ等の内部欠陥を高分解能で検出するのには適合しないものである。   In Patent Documents 1 and 2, internal cavity defects cannot be detected with high resolution. In Patent Document 3, the presence or absence of an internal defect is detected, but the influence of the scattering surface of the material surface due to ultrasonic waves is detected by signal light, which is suitable for nondestructive inspection of concrete structures. It is not suitable for detecting internal defects such as high resolution.

特許文献4、5においては、反射散乱光の指向性や波長帯域との関係から欠陥の内容を識別するのであるが、やはり、内部欠陥を精度よく検出するのには適合しないものである。また、特許文献6においては、2つのパルスレーザーをタイミングをずらして照射するため、構成、制御機構が複雑になるとともに、パーティクルやピットのような表面の欠陥は検出できても、内部の空洞欠陥を検出するのには適合しない。   In Patent Documents 4 and 5, the content of the defect is identified from the relationship between the directivity of reflected / scattered light and the wavelength band, but it is not suitable for accurately detecting the internal defect. Further, in Patent Document 6, since the two pulse lasers are irradiated at different timings, the configuration and the control mechanism become complicated, and even if surface defects such as particles and pits can be detected, internal cavity defects It is not suitable for detecting.

特許文献7、8においては、波長の違いによって表面の欠陥と内部の欠陥とを区別して検出するが、欠陥が内部の空洞欠陥であるか否かを判別することはできない。
特許文献9においては、異なる受光角度での散乱光強度比に基づいて散乱体の標準粒子換算サイズの数値の組み合わせから、ウエハ表面の欠陥の種類、形態を判別するが、ウエハ内部の空洞欠陥について判別することはできない。
In Patent Documents 7 and 8, surface defects and internal defects are distinguished and detected based on the difference in wavelength, but it cannot be determined whether or not the defects are internal cavity defects.
In Patent Document 9, the type and form of the defect on the wafer surface are determined from the combination of numerical values of the standard particle equivalent size of the scatterer based on the scattered light intensity ratio at different light receiving angles. It cannot be determined.

前述したように、半導体ウエハ等の被検査体の欠陥の検査において、従来の電気的な検査、あるいは光、超音波を用いた欠陥の検査においても、内部の空洞欠陥を高い分解能で検出することはできなかった。半導体ウエハのような被検査体の場合、欠陥の種類によりその除去方法は異なるので、ウエハに欠陥が存在することだけでなく、それとともに欠陥の種類を判別することが必要とされ、そのため被検査体表面の異物、析出物等の欠陥と内部の空洞欠陥とを区別して高分解能で検出できる検出方法、検出装置が求められていた。   As described above, the internal cavity defect can be detected with high resolution in the inspection of the defect of the inspection object such as the semiconductor wafer in the conventional electrical inspection or the inspection of the defect using light or ultrasonic wave. I couldn't. In the case of an object to be inspected such as a semiconductor wafer, the removal method differs depending on the type of defect, so it is necessary not only to have a defect on the wafer but also to determine the type of defect along with it. There has been a need for a detection method and a detection apparatus that can detect defects such as foreign matters and precipitates on the body surface and internal cavity defects with high resolution.

本発明は、前述した課題を解決すべくなしたものであり、本発明による欠陥を検出する方法は、超音波を印加していない状態と、超音波を印加した状態とにおいて被検査体内に浸透し得る波長のレーザーをポラライザーにより偏光を与えた上で前記被検査体の面上の位置に照射しその散乱光の強度をクロスニコルに配置されたアナライザーを介して暗視野に設置された検出手段で検出することにより被検査体の欠陥を検出する方法であって、
前記被検査体に超音波を印加していない状態で前記被検査体の面上の位置において所定角度をなして斜め方向にレーザーを照射してその散乱光を検出し強度を求めることと、
前記被検査体に超音波を印加した状態で前記超音波を印加していない状態でレーザーを入射させたのと同じ前記被検査体の面上の位置において同じ所定角度をなして斜め方向にレーザーを照射してその散乱光を検出し強度を求めることと、
前記被検査体に超音波を印加していない状態で求められた散乱光の強度と前記被検査体に超音波を印加した状態で求められた散乱光の強度との差を求めて両方の散乱光の強度の差が所定の閾値を超える時に散乱光が被検査体内の空洞欠陥によるものであり、閾値を超えない時に他の種類の欠陥であると判別することと、
からなるものである。
前記被検査体が半導体製造に用いられるシリコンウエハであり、赤外光を用いて内部の空洞欠陥の検出を行うようにしてもよい。
The present invention has been made to solve the above-described problems, and the defect detection method according to the present invention penetrates into the inspected body in a state where no ultrasonic wave is applied and a state where an ultrasonic wave is applied. Detection means installed in a dark field via an analyzer arranged in crossed Nicols by irradiating a laser beam of a wavelength that can be polarized by a polarizer and then irradiating a position on the surface of the object to be inspected. A method for detecting defects in an object to be inspected by
Irradiating a laser in an oblique direction with a predetermined angle at a position on the surface of the object to be inspected without applying ultrasonic waves to the object to be inspected, and detecting the scattered light to obtain an intensity;
The laser is obliquely formed at the same predetermined angle at the same position on the surface of the object to be inspected as the laser is incident with the ultrasonic wave being applied to the object to be inspected and the ultrasonic wave not being applied. To detect the scattered light and obtain the intensity,
Both scatterings are obtained by calculating the difference between the intensity of scattered light obtained without applying ultrasonic waves to the object to be inspected and the intensity of scattered light obtained with ultrasonic waves applied to the object to be inspected. When the difference in light intensity exceeds a predetermined threshold, the scattered light is due to a cavity defect in the inspected body, and when it does not exceed the threshold, it is determined that it is another type of defect,
It consists of
The object to be inspected may be a silicon wafer used for semiconductor manufacturing, and an internal cavity defect may be detected using infrared light.

また、本発明による欠陥を検査するための装置は、被検査体の支持部と、前記被検査体に超音波を印加するための超音波発生装置と、前記支持部に支持された前記被検査体にポラライザーを介してレーザーを照射するレーザー装置と、前記被検査体と前記レーザー装置とを相対的に移動させるための駆動部と、前記被検査体に照射されたレーザーの散乱光をクロスニコルに配置されたアナライザーを介して受光するように暗視野に配設された散乱光検出手段と、該散乱光検出手段により受光された散乱光のデータから散乱光強度を求める演算処理を行う演算処理部と、制御部とを備えてなり、前記制御部は前記超音波を被検査体に超音波を印加しない状態と印加した状態とを切り換えるとともに、前記演算処理部において超音波を印加しない時の散乱光強度と超音波を印加した時の散乱光強度との差を求め、それによって散乱光が被検査体内部の空洞欠陥によるものであるか否かを判別するように制御を行うようにしたものである。
前記レーザー装置は被検査体の内部の欠陥の検査を行うための赤外光レーザーと被検査体表層の検査を行うための可視光レーザーとを選択可能に備えたものとしてもよい。
Further, an apparatus for inspecting a defect according to the present invention includes a support part of an inspection object, an ultrasonic generator for applying ultrasonic waves to the inspection object, and the inspection object supported by the support part. A laser device for irradiating a body with a laser via a polarizer, a drive unit for relatively moving the object to be inspected and the laser device, and a crossed Nicols laser scattered light emitted to the object to be inspected The scattered light detecting means arranged in the dark field so as to receive light through the analyzer arranged in the and the arithmetic processing for calculating the scattered light intensity from the scattered light data received by the scattered light detecting means And a control unit, wherein the control unit switches between the state in which the ultrasonic wave is not applied to the object to be inspected and the state in which the ultrasonic wave is applied, and the operation processing unit does not apply the ultrasonic wave. The difference between the intensity of scattered light and the intensity of scattered light when an ultrasonic wave is applied is obtained, and control is performed to determine whether the scattered light is due to a cavity defect inside the object to be inspected. It is a thing.
The laser apparatus may include an infrared laser for inspecting a defect inside the object to be inspected and a visible light laser for inspecting a surface layer of the object to be inspected.

本発明においては、被検査体に対して超音波を印加した状態で偏光を与えたレーザーを照射した時に、内部の空洞欠陥では偏光状態が保存されない強い散乱光が生じ、他の欠陥では偏光状態が保存されることを用いて、欠陥が被検査体内部の空洞欠陥であるか、表面の異物、析出物等であるかを区別して高分解能で被検査体の欠陥の検出を行うことができる。   In the present invention, when irradiated with a polarized laser with ultrasonic waves applied to the object to be inspected, strong scattered light that does not preserve the polarization state is generated in the internal cavity defect, and the polarization state is generated in the other defects. Can be used to distinguish whether a defect is a cavity defect inside the object to be inspected, a foreign object on the surface, a precipitate, or the like, and detect the defect in the object to be inspected with high resolution. .

本発明によるウエハの欠陥を検出する方法について説明する。本発明においては、ウエハ等の被検査体の表面にレーザーを照射しその散乱光を測定し分析することにより欠陥を検出するが、特に被検査体の内部に浸透し得る波長のレーザーを照射することにより被検査体内の空洞欠陥を検出するものである。   A method for detecting a wafer defect according to the present invention will be described. In the present invention, the surface of an object to be inspected such as a wafer is irradiated with a laser, and the scattered light is measured and analyzed to detect defects. In particular, a laser having a wavelength that can penetrate into the object to be inspected is irradiated. Thus, the cavity defect in the inspected body is detected.

被検査体として、シリコンウエハに対して内部の欠陥を検出する場合について言えば、レーザーとしてはシリコンウエハ内に必要な深さまで浸透し得る赤外レーザーを用いる。ポラライザー(偏光子)により偏光を与えたレーザーをウエハの面にウエハの面に対して斜めに照射し、ウエハによる散乱光を暗視野に配置した光検出手段で検出する。その際、光検出手段の前側にアナライザー(検光子)をクロスニコルになるように配置しておいて、偏光状態の変化を検出する。また、ウエハの検査箇所に超音波を印加する手段を備えておき、同じ検査箇所について、ウエハに超音波を印加しない場合と、印加した場合とについて、散乱光の検出を行い、両者の間での散乱強度分布の差異を検出する。   In the case of detecting an internal defect with respect to a silicon wafer as an object to be inspected, an infrared laser that can penetrate to a required depth in the silicon wafer is used as the laser. A laser beam polarized by a polarizer (polarizer) is irradiated to the wafer surface obliquely with respect to the wafer surface, and the scattered light from the wafer is detected by light detection means arranged in a dark field. At that time, an analyzer (analyzer) is arranged in front of the light detection means so as to be crossed Nicols, and a change in the polarization state is detected. Also, a means for applying an ultrasonic wave to the inspection location of the wafer is provided, and the scattered light is detected between the case where the ultrasonic wave is not applied to the wafer and the case where the ultrasonic wave is applied to the same inspection location. The difference in the scattered intensity distribution is detected.

結晶内部の空洞欠陥の場合、ウエハに超音波を印加していない状態では、結晶内部の欠陥による散乱光は入射光の偏光方向を保存することが知られている。そのため、2次元光検出装置では前側にクロスニコルに配置されたアナライザーにより散乱光がほとんど透過してこない。ところが、ウエハに超音波を印加した状態では、2次元光検出装置で強い散乱光が生じ、この散乱光は偏光状態が変化するため、クロスニコルに配置したアナライザーを透過する。このように、超音波を印加しない状態と、印加した状態とで、検出されるウエハからの散乱光の強度が異なるが、これは超音波を印加した状態での散乱光の偏光状態が変化することによるものである。   In the case of a cavity defect inside the crystal, it is known that scattered light due to the defect inside the crystal preserves the polarization direction of the incident light when no ultrasonic wave is applied to the wafer. For this reason, in the two-dimensional photodetection device, the scattered light is hardly transmitted by the analyzer arranged in the crossed Nicols on the front side. However, in a state where ultrasonic waves are applied to the wafer, strong scattered light is generated in the two-dimensional photodetection device, and this scattered light changes its polarization state, so that it passes through an analyzer arranged in crossed Nicols. In this way, the intensity of scattered light from the detected wafer differs between the state in which no ultrasonic wave is applied and the state in which it is applied, but this changes the polarization state of the scattered light in the state in which the ultrasonic wave is applied. It is because.

ウエハに超音波を印加するかしないかにより散乱光の偏光状態が異なることについてさらに考えてみると、結晶内部の空洞欠陥(COP)では空洞とシリコンとの弾性率が大きく異なるため、超音波を印加することにより、この近辺で弾性歪みが生じる。結晶内部の空洞欠陥は、一般的に8面体の形状であり、空洞の角近傍では特に応力が集中し、このような局所的な空洞近辺の結晶構造における歪場により、散乱光に通常散乱で生じないような方向に偏光した散乱波が含まれることになる、というように結晶内部の空洞欠陥では、超音波の作用により、入射光に対して散乱光の偏光状態が変化するという光弾性効果が生じる。そのため、結晶内部の空洞欠陥による散乱光については、超音波を印加した状態でクロスニコルに配置したアナライザーを透過する散乱光の強度が高くなる。   Considering further that the polarization state of scattered light differs depending on whether or not ultrasonic waves are applied to the wafer, since the elastic modulus of the cavities and silicon differs greatly in the cavity defect (COP) inside the crystal, When applied, an elastic strain is generated in the vicinity. The cavity defect inside the crystal is generally octahedral, and stress is concentrated particularly near the corner of the cavity. Due to the strain field in the crystal structure near the local cavity, the scattered light is normally scattered by the scattered light. In the case of a cavity defect inside the crystal, the polarization state of the scattered light changes with respect to the incident light due to the action of ultrasonic waves. Occurs. Therefore, with respect to the scattered light due to the cavity defects inside the crystal, the intensity of the scattered light that passes through the analyzer disposed in crossed Nicol with the ultrasonic wave applied is increased.

これに対して、ウエハの表面の異物の場合には、内部の空洞欠陥とは異なり、散乱の際に偏光状態が変化することが知られている。しかし、表面の異物の場合、周囲が真空やガスであるため、超音波を印加した時の光弾性効果が弱く、超音波を印加したことによって偏光状態が特に変化することはない。   On the other hand, in the case of foreign matters on the surface of the wafer, it is known that the polarization state changes during scattering, unlike internal cavity defects. However, in the case of foreign matter on the surface, since the surroundings are vacuum or gas, the photoelastic effect when the ultrasonic wave is applied is weak, and the polarization state is not particularly changed by applying the ultrasonic wave.

このように、超音波を印加しない状態と超音波を印加した状態とで散乱光の強度の差がある閾値を超える程度に大きくなる場合、この散乱光は結晶内部の空洞欠陥によるものである。また、クロスニコルに配置したアナライザーを透過する散乱光の強度が超音波を印加しない時と印加した時とで特に変化しない場合、この散乱光は表面の異物か析出物によるものであると考えられる。   As described above, when the difference in intensity of the scattered light between the state where no ultrasonic wave is applied and the state where the ultrasonic wave is applied is large enough to exceed a certain threshold, the scattered light is due to a cavity defect inside the crystal. In addition, if the intensity of scattered light transmitted through an analyzer placed in crossed Nicols does not change between when the ultrasonic wave is not applied and when it is applied, this scattered light is considered to be due to surface foreign matter or precipitates. .

図1は、水晶(SiO)に印加する超音波の周波数を変えた時に、結晶内部の空洞欠陥と表面の析出物とについてポラライザーで偏光を与えられたレーザー光のウエハでの散乱光をクロスニコルに配置したアナライザーを介して検出された強度がどのように変化するかを示している。析出物による散乱光の強度は超音波の周波数によって大きく変化することはないが、内部の空洞欠陥による散乱光の強度は超音波の周波数が90kHz近くの値になると、高いピークを有する。 FIG. 1 shows a cross view of laser light scattered on a wafer of laser light polarized by a polarizer with respect to cavity defects inside the crystal and precipitates on the surface when the frequency of ultrasonic waves applied to quartz (SiO 2 ) is changed. It shows how the intensity detected via an analyzer located in Nicol changes. The intensity of the scattered light due to the precipitate does not change greatly depending on the frequency of the ultrasonic wave, but the intensity of the scattered light due to the internal cavity defect has a high peak when the frequency of the ultrasonic wave is close to 90 kHz.

本発明では、前述したような、ウエハに超音波を印加した際の光弾性効果により散乱光の偏光方向が変化するか否かを検出して、散乱光が結晶内部の空洞欠陥によるものであるか、表面の異物ないし析出物によるものであるかを判別するという手法を用いる。   In the present invention, as described above, whether or not the polarization direction of the scattered light changes due to the photoelastic effect when ultrasonic waves are applied to the wafer is detected, and the scattered light is due to a cavity defect inside the crystal. Or a method of discriminating whether it is due to foreign matter or precipitates on the surface.

ウエハ面にレーザー光を照射した時に欠陥がない箇所では散乱光は生ずることがなく、そのため暗視野に配置された2次元光検出手段では散乱光が検出されることない。欠陥がある個所では2次元光検出手段で散乱光が検出され、散乱光は例えば図2のように、黒の背景における散乱光による明るいスポットが偏在する画像として検出される。この画像内のスポットの輝度をそれぞれ測定して積分強度値を演算し、欠陥を特徴づける散乱光強度とする。それとともに、この散乱光強度が得られた、すなわち欠陥の存在する位置のデータを取得し、記憶手段に記憶する。   Scattered light is not generated at a position where there is no defect when the laser beam is irradiated on the wafer surface, and therefore the scattered light is not detected by the two-dimensional light detection means arranged in the dark field. Scattered light is detected by a two-dimensional light detection means at a place where there is a defect, and the scattered light is detected as an image in which bright spots due to scattered light on a black background are unevenly distributed as shown in FIG. The intensity of each spot in the image is measured and the integrated intensity value is calculated to obtain the scattered light intensity that characterizes the defect. At the same time, the scattered light intensity is obtained, that is, the data of the position where the defect exists is acquired and stored in the storage means.

このようにウエハの面にレーザーを照射して散乱光強度と欠陥の存在する位置のデータとを取得し、記憶手段に記憶する操作を、ウエハに超音波を印加していない状態とウエハに超音波を印加した状態とについてそれぞれ行う。その後に、ウエハにおける同じ位置における超音波を印加していない状態での散乱光強度と超音波を印加した時の散乱光強度とを比較してその差を求め、その差がある閾値を超えるか否かを判別する。この閾値としては、図1に示す超音波周波数−散乱強度の空洞欠陥のグラフでのピーク値に対して、例えば50%の値というように適宜設定しておく。このような閾値を超える場合、その位置では内部の空洞欠陥であると判別し、その閾値を超えない場合は、それ以外の欠陥であるとする。   In this way, the operation of storing the intensity of the scattered light and the position where the defect exists by irradiating the surface of the wafer with the laser and storing the data in the storage means is performed in a state where the ultrasonic wave is not applied to the wafer and the wafer. Each is performed for the state in which the sound wave is applied. After that, compare the scattered light intensity at the same position on the wafer with no ultrasonic wave applied and the scattered light intensity when an ultrasonic wave is applied to find the difference, and whether the difference exceeds a certain threshold Determine whether or not. The threshold value is appropriately set to, for example, a value of 50% with respect to the peak value in the ultrasonic frequency-scattering intensity cavity defect graph shown in FIG. When such a threshold value is exceeded, it is determined that there is an internal cavity defect at that position, and when the threshold value is not exceeded, it is assumed that the defect is other than that.

レーザーの波長により照射した時の表面からの侵入長に差があり、ウエハの表面からどの程度の深さまでを観察するかによってレーザーの波長を選択する。可視光レーザーの場合表面から数ミクロン程度であるのに対し、赤外光レーザーの場合ウエハ内部の全体に及ぶので、ウエハ内部の空洞欠陥の検出に適合する。また、デバイス製造工程中のウエハの場合、内部に金属パターン等が形成され、ウエハ内部に達する赤外光レーザーを照射した時に、内部の金属部から強い散乱が生じて、欠陥を検出することが難しくなるため、可視光レーザーによる表層の欠陥のみを検出対象とするのがよい。   There is a difference in penetration depth from the surface when irradiated by the wavelength of the laser, and the wavelength of the laser is selected depending on the depth of observation from the surface of the wafer. In the case of a visible light laser, it is about several microns from the surface, whereas in the case of an infrared light laser, it extends to the entire inside of the wafer, so that it is suitable for detection of cavity defects inside the wafer. In addition, in the case of a wafer during the device manufacturing process, a metal pattern or the like is formed inside, and when an infrared laser reaching the inside of the wafer is irradiated, strong scattering occurs from the internal metal part, and defects can be detected. Since it becomes difficult, it is preferable that only a surface layer defect caused by a visible light laser be detected.

被検査体としてのウエハの欠陥を検出する工程のフローを示すと図3のようになる。被検査体としては、ウエハ以外のものでも同様であり、ウエハに関しても、デバイス製造工程前のシリコンウエハの場合、製造工程に入って表面に酸化シリコン膜が塗布されたものや、パターンが形成された場合でもよい。照射するレーザーとしては、ウエハの表層の欠陥を検査する場合、可視光を用い、ウエハ内部の欠陥を検査する場合には赤外光を用いる。ウエハ内部に配線パターン等が形成されているものでは、ウエハ内部に浸透する赤外光レーザーを照射した場合、強い散乱光が生じて欠陥の検査が困難になるため、可視光のみで検査を行う。
また、図1が示す散乱積分強度のグラフは水晶(SiO)の場合について示しているが、被検査体の材質により、内部の空洞欠陥についてのピーク位置が異なることになり、被検査体に印加する超音波としては、その材質に対して内部の空洞欠陥により散乱光がピークを示すような周波数の超音波を被検査体に印加する必要がある。
FIG. 3 shows a flow of a process for detecting a defect of a wafer as an object to be inspected. The object to be inspected is the same as that other than the wafer. In the case of a silicon wafer before the device manufacturing process, a silicon oxide film coated on the surface or a pattern is formed in the manufacturing process. It may be the case. As the laser to be irradiated, visible light is used when inspecting defects on the surface layer of the wafer, and infrared light is used when inspecting defects inside the wafer. In the case where a wiring pattern or the like is formed inside the wafer, when an infrared laser penetrating the inside of the wafer is irradiated, strong scattered light is generated and it becomes difficult to inspect the defect. .
1 shows the case of quartz (SiO 2 ), the peak position of the internal cavity defect differs depending on the material of the object to be inspected. As the ultrasonic wave to be applied, it is necessary to apply an ultrasonic wave having a frequency at which the scattered light has a peak due to an internal cavity defect to the material to be inspected.

[欠陥検出装置]
本発明による被検査体としてのウエハの欠陥の検出を行うための装置の1つの形態を示した図4を参照して説明する。図4において、1は台部であり、ウエハWを載置するステージ2を駆動する駆動源3及び駆動機構を含む。ステージ2はウエハの下側の部分に孔2aが形成され、載置されたウエハWの下側に近接した位置になるように超音波発生装置4が設けられている。ステージ2は駆動源3により、図示しない駆動機構を介してウエハWを水平面内で2次元的に走査するように駆動される。
[Defect detection equipment]
A description will be given with reference to FIG. 4 showing one embodiment of an apparatus for detecting defects of a wafer as an object to be inspected according to the present invention. In FIG. 4, reference numeral 1 denotes a pedestal unit, which includes a drive source 3 and a drive mechanism for driving the stage 2 on which the wafer W is placed. In the stage 2, a hole 2 a is formed in the lower part of the wafer, and the ultrasonic generator 4 is provided so as to be close to the lower side of the placed wafer W. The stage 2 is driven by a driving source 3 so as to scan the wafer W two-dimensionally in a horizontal plane via a driving mechanism (not shown).

ウエハWの面の上方にレーザー装置5が配設され、レーザー装置5から出射されたレーザーLBは、前側に配置されたポラライザー(偏光子)6を介してウエハWの面を斜め方向に照射するようにしてある。ウエハWの面での散乱光SBを、暗視野に配置した2次元光検出手段としてのCCDカメラ7で、その前側にクロスニコルに配置されたアナライザー(検光子)8を介して撮像する。   The laser device 5 is disposed above the surface of the wafer W, and the laser LB emitted from the laser device 5 irradiates the surface of the wafer W in an oblique direction via a polarizer (polarizer) 6 disposed on the front side. It is like that. The scattered light SB on the surface of the wafer W is imaged by a CCD camera 7 as a two-dimensional light detection means arranged in a dark field through an analyzer (analyzer) 8 arranged in front of the cross Nicol.

駆動源3、超音波発生装置4、レーザー装置5、CCDカメラ7は、それぞれ制御部10により供給される制御信号を受けて動作制御される。CCDカメラ7で撮像された散乱光による画像データは画像取得部11に供給され、また、駆動源3に備えられたエンコーダ等によるウエハの位置を示すデータが画像取得部に供給され、レーザーを照射して散乱光を撮像した時点における画像データとウエハWの位置とが対応づけられる。12はこのように対応づけられた散乱光の画像データとウエハWの位置とのデータを記憶保持する記憶部であり、13は記憶部で保持された画像データから散乱光スポットの積分強度値を演算し、複数の画像データの間での散乱光スポットの積分強度値の差を求め、閾値より大きいか否かを判別する演算回路部である。14は演算回路部13による演算、判別の結果を表示する表示部である。   The drive source 3, the ultrasonic generator 4, the laser device 5, and the CCD camera 7 are controlled in response to control signals supplied from the control unit 10. Image data of scattered light picked up by the CCD camera 7 is supplied to the image acquisition unit 11, and data indicating the wafer position by an encoder or the like provided in the drive source 3 is supplied to the image acquisition unit, and laser irradiation is performed. Thus, the image data and the position of the wafer W when the scattered light is imaged are associated with each other. Reference numeral 12 denotes a storage unit that stores and holds the image data of the scattered light and the position of the wafer W that are associated with each other. Reference numeral 13 denotes an integrated intensity value of the scattered light spot from the image data held in the storage unit. An arithmetic circuit unit that calculates and determines a difference in the integrated intensity value of the scattered light spot among a plurality of image data, and determines whether or not the difference is larger than a threshold value. Reference numeral 14 denotes a display unit that displays the results of calculation and discrimination by the arithmetic circuit unit 13.

制御部10は駆動源3、超音波発生装置4、レーザー装置5、CCDカメラ7に制御信号を供給して、それらの動作を制御するとともに、駆動源3からのウエハの位置を示す信号、CCDカメラ7からの散乱光の画像信号を受け取る画像取得部11、記憶部12、演算回路部、表示部14の動作を全体的に制御する。これらは、ハードウエアとして構成してもよいが、汎用パーソナルコンピュータ及び画像データの処理を行うためのソフトウエアを用いて構成することもできる。   The control unit 10 supplies control signals to the drive source 3, the ultrasonic generator 4, the laser device 5, and the CCD camera 7 to control their operations, and signals indicating the position of the wafer from the drive source 3, CCD The operation of the image acquisition unit 11, the storage unit 12, the arithmetic circuit unit, and the display unit 14 that receive the image signal of scattered light from the camera 7 is controlled as a whole. These may be configured as hardware, but can also be configured using a general-purpose personal computer and software for processing image data.

図4において、レーザー装置5は1つだけ示してある。特にウエハの内部の空洞欠陥を対象に検査を行う場合、赤外線レーザー装置を用いればよいが、ウエハの表層の検査をも行う場合には、他に可視光レーザーを備えておき、選択的に用いられるようにする。また、ウエハを台部1上で駆動制御されるステージに載置した形態のものを示しているが、ウエハを固定しておいて、レーザー装置を移動することにより走査を行うようにすることもできる。この場合駆動源3及び駆動機構はレーザー装置の駆動部側に備えられることになる。   In FIG. 4, only one laser device 5 is shown. In particular, when inspecting for cavity defects inside the wafer, an infrared laser device may be used. However, when also inspecting the surface layer of the wafer, a visible light laser is additionally provided and selectively used. To be able to. In addition, although the wafer is mounted on a stage that is driven and controlled on the base unit 1, scanning may be performed by moving the laser device while the wafer is fixed. it can. In this case, the drive source 3 and the drive mechanism are provided on the drive unit side of the laser device.

本発明は、半導体ウエハを含む被検査体の欠陥の有無を検査する際に、表面の異物、析出物、内部の空洞欠陥を区別して検出し、被検査体の品質の評価、欠陥の除去のし方の判別のために利用することができる。   The present invention distinguishes and detects surface foreign matter, precipitates, and internal cavity defects when inspecting the presence or absence of defects in an inspection object including a semiconductor wafer, and evaluates the quality of the inspection object and removes defects. It can be used to determine how.

結晶に印加する超音波の周波数を変えた時に、結晶内部の空洞欠陥と析出物とについてポラライザーで偏光を与えられたレーザーの散乱光をクロスニコルに配置したアナライザーを介して検出された散乱光強度の変化を示すグラフである。Scattered light intensity detected through an analyzer in which the scattered light of the laser polarized by the polarizer was placed in crossed Nicols when the frequency of the ultrasonic wave applied to the crystal was changed. It is a graph which shows the change of. 2次元光検出手段により検出された被検査体による散乱光の状況を概略的に示す図である。It is a figure which shows roughly the condition of the scattered light by the to-be-inspected object detected by the two-dimensional light detection means. 本発明による欠陥を検出する工程を示すフロー図である。It is a flowchart which shows the process of detecting the defect by this invention. 本発明による欠陥を検査するための装置の一形態を示す図である。It is a figure which shows one form of the apparatus for test | inspecting the defect by this invention.

符号の説明Explanation of symbols

1 台部
2 ステージ
3 駆動源
4 超音波発生装置
5 レーザー装置
6 ポラライザー
7 CCDカメラ
8 アナライザー
10 制御部
11 画像取得部
12 記憶部
13 演算回路部
14 表示部
W ウエハ
LB レーザー
SB 散乱光
1 stand 2 stage 3 drive source 4 ultrasonic generator 5 laser device 6 polarizer 7 CCD camera 8 analyzer 10 control unit 11 image acquisition unit 12 storage unit 13 arithmetic circuit unit 14 display unit W wafer LB laser SB scattered light

Claims (4)

超音波を印加していない状態と、超音波を印加した状態とにおいて被検査体内に浸透し得る波長のレーザーをポラライザーにより偏光を与えた上で前記被検査体の面上の位置に照射しその散乱光の強度をクロスニコルに配置されたアナライザーを介して暗視野に設置された検出手段で検出することにより被検査体の欠陥を検出する方法であって、
前記被検査体に超音波を印加していない状態で前記被検査体の面上の位置において所定角度をなして斜め方向にレーザーを照射してその散乱光を検出し強度を求めることと、
前記被検査体に超音波を印加した状態で前記超音波を印加していない状態でレーザーを入射させたのと同じ前記被検査体の面上の位置において同じ所定角度をなして斜め方向にレーザーを照射してその散乱光を検出し強度を求めることと、
前記被検査体に超音波を印加していない状態で求められた散乱光の強度と前記被検査体に超音波を印加した状態で求められた散乱光の強度との差を求めて両方の散乱光の強度の差が所定の閾値を超える時に散乱光が被検査体内の空洞欠陥によるものであり、閾値を超えない時に他の種類の欠陥であると判別することと、
からなることを特徴とする欠陥を検出する方法。
In a state where no ultrasonic wave is applied and in a state where an ultrasonic wave is applied, a laser beam having a wavelength that can penetrate into the inspected body is polarized by a polarizer and irradiated to a position on the surface of the inspected object. A method for detecting a defect of an object to be inspected by detecting the intensity of scattered light with a detecting means installed in a dark field via an analyzer arranged in crossed Nicols,
Irradiating a laser in an oblique direction with a predetermined angle at a position on the surface of the object to be inspected without applying ultrasonic waves to the object to be inspected, and detecting the scattered light to obtain an intensity;
The laser is obliquely formed at the same predetermined angle at the same position on the surface of the object to be inspected as the laser is incident with the ultrasonic wave being applied to the object to be inspected and the ultrasonic wave not being applied. To detect the scattered light and obtain the intensity,
Both scatterings are obtained by calculating the difference between the intensity of scattered light obtained without applying ultrasonic waves to the object to be inspected and the intensity of scattered light obtained with ultrasonic waves applied to the object to be inspected. When the difference in light intensity exceeds a predetermined threshold, the scattered light is due to a cavity defect in the inspected body, and when it does not exceed the threshold, it is determined that it is another type of defect,
A method for detecting a defect characterized by comprising:
前記被検査体が半導体製造に用いられるシリコンウエハであり、赤外光を用いて内部の空洞欠陥の検出を行うことを特徴とする請求項1に記載の欠陥を検出する方法。   The method for detecting a defect according to claim 1, wherein the object to be inspected is a silicon wafer used for semiconductor manufacture, and an internal cavity defect is detected using infrared light. 被検査体の支持部と、前記被検査体に超音波を印加するための超音波発生装置と、前記支持部に支持された前記被検査体にポラライザーを介してレーザーを照射するレーザー装置と、前記被検査体と前記レーザー装置とを相対的に移動させるための駆動部と、前記被検査体に照射されたレーザーの散乱光をクロスニコルに配置されたアナライザーを介して受光するように暗視野に配設された散乱光検出手段と、該散乱光検出手段により受光された散乱光のデータから散乱光強度を求める演算処理を行う演算処理部と、制御部とを備えてなり、前記制御部は前記超音波を被検査体に超音波を印加しない状態と印加した状態とを切り換えるとともに、前記演算処理部において超音波を印加しない時の散乱光強度と超音波を印加した時の散乱光強度との差を求め、それによって散乱光が被検査体内部の空洞欠陥によるものであるか否かを判別するように制御を行うようにしたことを特徴とする欠陥を検出するための装置。   A support part of the object to be inspected, an ultrasonic generator for applying an ultrasonic wave to the object to be inspected, a laser apparatus for irradiating the object to be inspected supported by the support part via a polarizer, and A dark field so as to receive a drive unit for relatively moving the object to be inspected and the laser device, and the scattered light of the laser irradiated to the object to be inspected via an analyzer arranged in crossed Nicols. The control unit comprises: a scattered light detection unit disposed in the control unit; an arithmetic processing unit that performs a calculation process for obtaining scattered light intensity from scattered light data received by the scattered light detection unit; and a control unit. Switches between the state in which the ultrasonic wave is not applied to the object to be inspected and the state in which the ultrasonic wave is applied, and the scattered light intensity when the ultrasonic wave is not applied and the scattered light intensity when the ultrasonic wave is applied in the arithmetic processing unit Determining a difference, a device for the scattered light to detect a defect, characterized in that to perform the control so as to determine whether or not due to void defects of the test subject unit thereby. 前記レーザー装置は被検査体の内部の欠陥の検査を行うための赤外光レーザーと被検査体表層の検査を行うための可視光レーザーとを選択可能に備えたものであることを特徴とする請求項3に記載の欠陥を検出するための装置。   The laser apparatus includes an infrared laser for inspecting a defect inside the object to be inspected and a visible light laser for inspecting a surface layer of the object to be inspected. An apparatus for detecting a defect according to claim 3.
JP2006179208A 2006-06-29 2006-06-29 Method for detecting defects and apparatus therefor Expired - Fee Related JP4631002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006179208A JP4631002B2 (en) 2006-06-29 2006-06-29 Method for detecting defects and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006179208A JP4631002B2 (en) 2006-06-29 2006-06-29 Method for detecting defects and apparatus therefor

Publications (2)

Publication Number Publication Date
JP2008008740A true JP2008008740A (en) 2008-01-17
JP4631002B2 JP4631002B2 (en) 2011-02-16

Family

ID=39067085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006179208A Expired - Fee Related JP4631002B2 (en) 2006-06-29 2006-06-29 Method for detecting defects and apparatus therefor

Country Status (1)

Country Link
JP (1) JP4631002B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142305A1 (en) 2008-05-22 2009-11-26 独立行政法人産業技術総合研究所 Method for inspecting defects, and defect inspecting apparatus
WO2011062279A1 (en) * 2009-11-20 2011-05-26 独立行政法人産業技術総合研究所 Method of examining defects, wafer subjected to defect examination or semiconductor element manufactured using the wafer, quality control method for wafer or semiconductor element, and defect examining device
WO2011080244A2 (en) 2009-12-29 2011-07-07 Electrolux Home Products Corporation N.V. A heat pump system for a tumble dryer
CN102162795A (en) * 2010-02-23 2011-08-24 宝山钢铁股份有限公司 Method for comprehensive on-line detection of defects of band steel
CH705370A1 (en) * 2011-07-31 2013-01-31 Kulicke & Soffa Die Bonding Gmbh Method and apparatus for inspection of a semiconductor chip before assembly.
KR101510027B1 (en) * 2010-11-26 2015-04-07 가부시키가이샤 리코 Optical sensor and image forming apparatus
JP2016013272A (en) * 2014-07-02 2016-01-28 株式会社モリタ製作所 Biological imaging apparatus
JP2017120202A (en) * 2015-12-28 2017-07-06 国立研究開発法人産業技術総合研究所 Defect inspection method, and defect inspection device
WO2018008512A1 (en) * 2016-07-05 2018-01-11 キヤノンマシナリー株式会社 Defect detection device, defect detection method, wafer, semiconductor chip, semiconductor device, die bonder, bonding method, semiconductor manufacturing method, and semiconductor device manufacturing method
JP2018011048A (en) * 2016-07-05 2018-01-18 キヤノンマシナリー株式会社 Defect detector, defect detection method, wafer, semiconductor chip, semiconductor device, die bonder, bonding method, semiconductor manufacturing method, and semiconductor device manufacturing method
WO2018225664A1 (en) * 2017-06-07 2018-12-13 キヤノンマシナリー株式会社 Defect detection device, defect detection method, wafer, semiconductor chip, die bonder, semiconductor manufacturing method, and semiconductor device manufacturing method
JP2018205458A (en) * 2017-06-01 2018-12-27 凸版印刷株式会社 Defect inspection apparatus for euv blank and euv mask, defect inspection method, and manufacturing method for euv mask
CN109564172A (en) * 2016-07-05 2019-04-02 佳能机械株式会社 Defect detecting device, defect inspection method, chip, semiconductor chip, semiconductor device, bare die jointing machine, joint method, semiconductor making method and manufacturing method for semiconductor device
WO2020125745A1 (en) * 2018-12-20 2020-06-25 上海微电子装备(集团)股份有限公司 Object surface detection device and detection method
CN113693269A (en) * 2021-07-15 2021-11-26 红云红河烟草(集团)有限责任公司 Online cigarette comprehensive quality detection device
CN115219507A (en) * 2022-07-18 2022-10-21 兰州工业学院 Health monitoring method applied to bridge and tunnel structure maintenance
CN116913799A (en) * 2023-09-14 2023-10-20 苏州弘皓光电科技有限公司 Chip packaging defect detection method and system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312943A (en) * 1986-05-02 1988-01-20 パ−テイクル、メジユアリング、システムズ インコ−ポレ−テツド Method and device for analyzing surface
JPH01221850A (en) * 1988-02-29 1989-09-05 Shimadzu Corp Infrared scatter microscope
JPH04118540A (en) * 1990-09-10 1992-04-20 Nippon Telegr & Teleph Corp <Ntt> Defect detection method for optical parts and device therefor
WO1996028721A1 (en) * 1995-03-10 1996-09-19 Hitachi, Ltd. Inspection method, inspection apparatus and method of production of semiconductor device using them
JPH10339702A (en) * 1998-04-09 1998-12-22 Mitsui Mining & Smelting Co Ltd Defect observing device for semiconductor wafer or the like
JPH11166902A (en) * 1998-04-09 1999-06-22 Mitsui Mining & Smelting Co Ltd Defect observing device of semiconductor wafer and other
JP2000088742A (en) * 1998-09-17 2000-03-31 Aloka Co Ltd Light-measuring device
JP2001272340A (en) * 2000-03-27 2001-10-05 Nippon Steel Corp Crystal defect evaluation method and apparatus
JP2003227859A (en) * 2001-11-29 2003-08-15 Toppan Printing Co Ltd Circuit pattern detector and circuit pattern inspection method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312943A (en) * 1986-05-02 1988-01-20 パ−テイクル、メジユアリング、システムズ インコ−ポレ−テツド Method and device for analyzing surface
JPH01221850A (en) * 1988-02-29 1989-09-05 Shimadzu Corp Infrared scatter microscope
JPH04118540A (en) * 1990-09-10 1992-04-20 Nippon Telegr & Teleph Corp <Ntt> Defect detection method for optical parts and device therefor
WO1996028721A1 (en) * 1995-03-10 1996-09-19 Hitachi, Ltd. Inspection method, inspection apparatus and method of production of semiconductor device using them
JPH10339702A (en) * 1998-04-09 1998-12-22 Mitsui Mining & Smelting Co Ltd Defect observing device for semiconductor wafer or the like
JPH11166902A (en) * 1998-04-09 1999-06-22 Mitsui Mining & Smelting Co Ltd Defect observing device of semiconductor wafer and other
JP2000088742A (en) * 1998-09-17 2000-03-31 Aloka Co Ltd Light-measuring device
JP2001272340A (en) * 2000-03-27 2001-10-05 Nippon Steel Corp Crystal defect evaluation method and apparatus
JP2003227859A (en) * 2001-11-29 2003-08-15 Toppan Printing Co Ltd Circuit pattern detector and circuit pattern inspection method

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8599379B2 (en) 2008-05-22 2013-12-03 National Institute Of Advanced Industrial Science And Technology Method for inspecting defects and defect inspecting apparatus
JP2009281846A (en) * 2008-05-22 2009-12-03 National Institute Of Advanced Industrial & Technology Flaw inspecting method and flaw inspection device
WO2009142305A1 (en) 2008-05-22 2009-11-26 独立行政法人産業技術総合研究所 Method for inspecting defects, and defect inspecting apparatus
KR101240860B1 (en) * 2008-05-22 2013-03-07 도꾸리쯔교세이호진상교기쥬쯔소고겡뀨죠 Method for inspecting defects, and defect inspecting apparatus
EP2287594A4 (en) * 2008-05-22 2016-01-20 Nat Inst Of Advanced Ind Scien Method for inspecting defects, and defect inspecting apparatus
WO2011062279A1 (en) * 2009-11-20 2011-05-26 独立行政法人産業技術総合研究所 Method of examining defects, wafer subjected to defect examination or semiconductor element manufactured using the wafer, quality control method for wafer or semiconductor element, and defect examining device
JP5713264B2 (en) * 2009-11-20 2015-05-07 独立行政法人産業技術総合研究所 Defect inspection method, wafer or semiconductor element quality control method, and defect inspection apparatus
EP2503326A4 (en) * 2009-11-20 2015-04-15 Nat Inst Of Advanced Ind Scien Method of examining defects, wafer subjected to defect examination or semiconductor element manufactured using the wafer, quality control method for wafer or semiconductor element, and defect examining device
CN102648405A (en) * 2009-11-20 2012-08-22 独立行政法人产业技术综合研究所 Method of examining defects, wafer subjected to defect examination or semiconductor element manufactured using the wafer, quality control method for wafer or semiconductor element, and defect examining device
EP2503326A1 (en) * 2009-11-20 2012-09-26 National Institute of Advanced Industrial Science And Technology Method of examining defects, wafer subjected to defect examination or semiconductor element manufactured using the wafer, quality control method for wafer or semiconductor element, and defect examining device
JPWO2011062279A1 (en) * 2009-11-20 2013-04-11 独立行政法人産業技術総合研究所 Method for inspecting defects, wafer subjected to defect inspection or semiconductor element manufactured using the wafer, quality control method for wafer or semiconductor element, and defect inspection apparatus
KR101335051B1 (en) 2009-11-20 2013-11-29 도꾸리쯔교세이호진상교기쥬쯔소고겡뀨죠 Method of examining defects, wafer subjected to defect examination or semiconductor element manufactured using the wafer, quality control method for wafer or semiconductor element, and defect examining device
WO2011080244A2 (en) 2009-12-29 2011-07-07 Electrolux Home Products Corporation N.V. A heat pump system for a tumble dryer
CN102162795B (en) * 2010-02-23 2013-03-13 宝山钢铁股份有限公司 Method for comprehensive on-line detection of defects of band steel
CN102162795A (en) * 2010-02-23 2011-08-24 宝山钢铁股份有限公司 Method for comprehensive on-line detection of defects of band steel
US9267886B2 (en) 2010-11-26 2016-02-23 Ricoh Company, Ltd. Optical sensor and image forming apparatus
EP2643680A4 (en) * 2010-11-26 2016-07-13 Ricoh Co Ltd Optical sensor and image forming apparatus
US9513216B2 (en) 2010-11-26 2016-12-06 Ricoh Company, Ltd. Optical sensor and image forming apparatus
US9678006B2 (en) 2010-11-26 2017-06-13 Ricoh Company, Ltd. Optical sensor and image forming apparatus
KR101510027B1 (en) * 2010-11-26 2015-04-07 가부시키가이샤 리코 Optical sensor and image forming apparatus
CH705370A1 (en) * 2011-07-31 2013-01-31 Kulicke & Soffa Die Bonding Gmbh Method and apparatus for inspection of a semiconductor chip before assembly.
JP2016013272A (en) * 2014-07-02 2016-01-28 株式会社モリタ製作所 Biological imaging apparatus
JP2017120202A (en) * 2015-12-28 2017-07-06 国立研究開発法人産業技術総合研究所 Defect inspection method, and defect inspection device
TWI725208B (en) * 2016-07-05 2021-04-21 日商佳能機械股份有限公司 Defect inspection device, defect inspection method, wafer, semiconductor wafer, semiconductor device, die bonder, bonding method, semiconductor manufacturing method, and semiconductor device manufacturing method
WO2018008512A1 (en) * 2016-07-05 2018-01-11 キヤノンマシナリー株式会社 Defect detection device, defect detection method, wafer, semiconductor chip, semiconductor device, die bonder, bonding method, semiconductor manufacturing method, and semiconductor device manufacturing method
JP2018011048A (en) * 2016-07-05 2018-01-18 キヤノンマシナリー株式会社 Defect detector, defect detection method, wafer, semiconductor chip, semiconductor device, die bonder, bonding method, semiconductor manufacturing method, and semiconductor device manufacturing method
CN109564172B (en) * 2016-07-05 2021-08-31 佳能机械株式会社 Defect detecting device, defect detecting method, die bonder, semiconductor manufacturing method, and semiconductor device manufacturing method
CN109564172A (en) * 2016-07-05 2019-04-02 佳能机械株式会社 Defect detecting device, defect inspection method, chip, semiconductor chip, semiconductor device, bare die jointing machine, joint method, semiconductor making method and manufacturing method for semiconductor device
JP2018205458A (en) * 2017-06-01 2018-12-27 凸版印刷株式会社 Defect inspection apparatus for euv blank and euv mask, defect inspection method, and manufacturing method for euv mask
CN110741464A (en) * 2017-06-07 2020-01-31 佳能机械株式会社 Defect detecting device, defect detecting method, wafer, semiconductor chip, die bonder, semiconductor manufacturing method, and semiconductor device manufacturing method
CN110741464B (en) * 2017-06-07 2021-03-19 佳能机械株式会社 Defect detecting device, defect detecting method, die bonder, semiconductor manufacturing method, and semiconductor device manufacturing method
JPWO2018225664A1 (en) * 2017-06-07 2019-06-27 キヤノンマシナリー株式会社 Defect detection apparatus, defect detection method, wafer, semiconductor chip, die bonder, semiconductor manufacturing method, and semiconductor device manufacturing method
WO2018225664A1 (en) * 2017-06-07 2018-12-13 キヤノンマシナリー株式会社 Defect detection device, defect detection method, wafer, semiconductor chip, die bonder, semiconductor manufacturing method, and semiconductor device manufacturing method
WO2020125745A1 (en) * 2018-12-20 2020-06-25 上海微电子装备(集团)股份有限公司 Object surface detection device and detection method
CN113693269A (en) * 2021-07-15 2021-11-26 红云红河烟草(集团)有限责任公司 Online cigarette comprehensive quality detection device
CN115219507A (en) * 2022-07-18 2022-10-21 兰州工业学院 Health monitoring method applied to bridge and tunnel structure maintenance
CN115219507B (en) * 2022-07-18 2023-04-07 兰州工业学院 Health monitoring method applied to bridge and tunnel structure maintenance
CN116913799A (en) * 2023-09-14 2023-10-20 苏州弘皓光电科技有限公司 Chip packaging defect detection method and system
CN116913799B (en) * 2023-09-14 2023-11-28 苏州弘皓光电科技有限公司 Chip packaging defect detection method and system

Also Published As

Publication number Publication date
JP4631002B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
JP4631002B2 (en) Method for detecting defects and apparatus therefor
JP5007979B2 (en) Defect inspection method and defect inspection apparatus
JP2008218799A (en) Surface inspection method and surface inspection device
US7643139B2 (en) Method and apparatus for detecting defects
US6683683B2 (en) Defect inspection method and apparatus for silicon wafer
JP5097335B2 (en) Process variation monitoring system and method
JP5349742B2 (en) Surface inspection method and surface inspection apparatus
JP2005156305A (en) Evaluation method of internal defect
JP2009075078A (en) Edge sensor and defect inspection device
JP4459244B2 (en) Probe holder, flaw detection apparatus, and flaw detection method for flaw detection in a deck of a steel deck
JP2007085949A (en) Method and device for detecting texture change by ultrasonic wave
JP2008039429A (en) Device and method for nondestructive inspection on reinforced concrete structure by electromagnetic wave
JP2005091288A (en) Discrimination method for casting defect
JP6559601B2 (en) Detection apparatus and detection method
JP4594833B2 (en) Defect inspection equipment
JP3190157B2 (en) Crystal defect inspection method
JP2005274173A (en) Surface inspection method of contamination on surface of object to be inspected such as wafer substrate transparent glass for liquid crystal display or the like and surface inspection device
JP6618354B2 (en) Defect inspection method and defect inspection apparatus
JP2010019618A (en) Laser ultrasonic flaw detector
JP2000292366A (en) Defect detecting method by laser beam
JPH085569A (en) Particle measuring apparatus and particle inspection method
KR100634357B1 (en) Apparatus for inspecting a surface and the same method
JP7440312B2 (en) Inspection equipment and inspection method
JP2006112871A (en) Inspection method of semiconductor substrate, and its inspection device
JP2008216105A (en) Surface inspection method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101015

R150 Certificate of patent or registration of utility model

Ref document number: 4631002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees