JP2008008695A - Method for setting of tire test condition - Google Patents

Method for setting of tire test condition Download PDF

Info

Publication number
JP2008008695A
JP2008008695A JP2006177545A JP2006177545A JP2008008695A JP 2008008695 A JP2008008695 A JP 2008008695A JP 2006177545 A JP2006177545 A JP 2006177545A JP 2006177545 A JP2006177545 A JP 2006177545A JP 2008008695 A JP2008008695 A JP 2008008695A
Authority
JP
Japan
Prior art keywords
tire
test
physical property
actual vehicle
constituent member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006177545A
Other languages
Japanese (ja)
Other versions
JP4946207B2 (en
Inventor
Namio Isobe
波男 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2006177545A priority Critical patent/JP4946207B2/en
Publication of JP2008008695A publication Critical patent/JP2008008695A/en
Application granted granted Critical
Publication of JP4946207B2 publication Critical patent/JP4946207B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for setting of a tire test condition capable of determining whether or not tire performance satisfies a given level in a real car test by a laboratory test, not with a comparative evaluation between tires. <P>SOLUTION: A threshold for breakdown of a tire component is determined from a physical property of the broken tire component which is sampled from a broken tire in a real car test. A laboratory test is performed in a predetermined condition on a tire which has the same configuration with a tire for the real car test. When the tire for the laboratory test generates a breakdown in the same tire component with that for the real car test, and the physical property of the tire component shows the same level with the threshold, the predetermined condition is set as a laboratory test condition for the test tire. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、タイヤの試験条件を設定する方法に関し、更に詳しくは、タイヤ同士を比べる相対評価ではなく、実車試験においてタイヤ性能が所定のレベルを満たしているか否かをラボ試験で判定することができるタイヤ試験条件設定方法に関する。   The present invention relates to a method for setting test conditions for a tire, and more specifically, it is not a relative evaluation for comparing tires, but a lab test to determine whether or not a tire performance satisfies a predetermined level in an actual vehicle test. The present invention relates to a method for setting tire test conditions.

一般に、空気入りタイヤは、走行距離の増加に伴い、また経時劣化により疲労してタイヤ構成部材の物性が低下し、終には破壊に至る。このようなタイヤのラボ試験(実際にタイヤを車両に装着して行う試験(実車試験)ではなく、試験装置にタイヤを装着して行う試験)として、種々の破壊試験や疲労試験がある(例えば、非特許文献1参照)が、これらの試験はタイヤ同士を比べる相対評価であり、また試験条件の選び方によっては優劣が定め難く、甚だしい場合には相対比較の優劣が実車試験での優劣と逆転する場合もある。即ち、従来からある種々の破壊試験や疲労試験では、実車試験においてタイヤ性能が所定のレベルを満たしているか否かをラボ試験で確実に判定することができないという問題があった。
JIS D4230
In general, a pneumatic tire is fatigued due to an increase in travel distance and deterioration due to aging, and the physical properties of the tire constituent members are lowered, and eventually the tire is destroyed. There are various destructive tests and fatigue tests as such a lab test of a tire (a test that is performed by mounting a tire on a test apparatus, not a test that is actually performed by mounting a tire on a vehicle (actual vehicle test)) (for example, However, these tests are relative evaluations comparing tires, and it is difficult to determine superiority or inferiority depending on how the test conditions are selected. There is also a case. That is, in various conventional destructive tests and fatigue tests, there has been a problem that it is impossible to reliably determine whether or not the tire performance satisfies a predetermined level in the actual vehicle test.
JIS D4230

本発明の目的は、タイヤ同士を比べる相対評価ではなく、実車試験においてタイヤ性能が所定のレベルを満たしているか否かをラボ試験で確実に判定することが可能なタイヤ試験条件設定方法を提供することにある。   An object of the present invention is to provide a tire test condition setting method that can reliably determine whether or not a tire performance satisfies a predetermined level in an actual vehicle test, rather than a relative evaluation comparing tires. There is.

上記目的を達成する本発明のタイヤ試験条件設定方法は、実車試験により破壊したタイヤからサンプリングした破壊されたタイヤ構成部材の物性値から該タイヤ構成部材の破壊の閾値を決定し、前記実車試験のタイヤと同じ構成のタイヤに対して予め設定した条件でラボ試験を実施し、該ラボ試験のタイヤが実車試験と同じタイヤ構成部材に破壊が発生し、該タイヤ構成部材の物性値が前記閾値と同じレベルを示す場合に、前記予め設定した条件を前記タイヤと比較したい試験タイヤのラボ試験条件とすることを特徴とする。   The tire test condition setting method of the present invention that achieves the above object is to determine a failure threshold value of the tire component member from a physical property value of the destroyed tire component sampled from a tire destroyed by an actual vehicle test, and A lab test is performed on a tire having the same configuration as the tire under a preset condition, the tire of the lab test breaks down in the same tire constituent member as the actual vehicle test, and the physical property value of the tire constituent member is the threshold value. When the same level is exhibited, the preset condition is set as a laboratory test condition of a test tire to be compared with the tire.

上述した本発明によれば、上記のようにして得られたラボ試験条件を採用することで、ラボ試験が終了する前に試験タイヤのタイヤ構成部材に破壊が発生すれば、この試験タイヤは実車試験のタイヤ(タイヤ構成部材が所定のレベルを満たしているタイヤ)より劣る、即ち、実車試験でタイヤ性能(タイヤ構成部材)が所定のレベルを満たしていないタイヤであることがわかる。他方、ラボ試験が終了しても試験タイヤのタイヤ構成部材に破壊が発生していなければ、この試験タイヤは実車試験のタイヤより優れている、即ち、実車試験でタイヤ性能(タイヤ構成部材)が所定のレベルを満たしているタイヤであることがわかる。   According to the above-described present invention, by adopting the lab test conditions obtained as described above, if the tire constituent member of the test tire is broken before the lab test is completed, the test tire is an actual vehicle. It can be seen that the tire is inferior to the test tire (the tire in which the tire constituent member satisfies the predetermined level), that is, the tire performance (the tire constituent member) does not satisfy the predetermined level in the actual vehicle test. On the other hand, if no damage has occurred in the tire component of the test tire even after the laboratory test is completed, this test tire is superior to the tire of the actual vehicle test, that is, the tire performance (tire component) in the actual vehicle test is excellent. It can be seen that the tire satisfies the predetermined level.

従って、単にタイヤ同士を比べる相対評価ではなく、実車試験でタイヤ性能(タイヤ構成部材)が所定のレベルを満たしているか否かをラボ試験で確実に判定することが可能になる。   Therefore, it is possible to reliably determine whether or not the tire performance (tire constituent member) satisfies a predetermined level in the actual vehicle test, rather than the relative evaluation of simply comparing the tires.

空気入りタイヤに実車走行時に加わる熱や機械的エネルギーなどの履歴と全く同じ履歴をラボ試験で与えることは不可能である。しかしながら、一般に、空気入りタイヤは、図1に示すように、空気入りタイヤを構成するベルト層やカーカス層などのタイヤ構成部材の物性が履歴の増加(走行距離の増加や経時)に伴い低下し、ある物性値(閾値)より低くなると破壊に至る。   It is impossible to give a history that is exactly the same as the history of heat and mechanical energy applied to the pneumatic tire during running of the vehicle in the laboratory test. However, in general, as shown in FIG. 1, in a pneumatic tire, the physical properties of tire constituent members such as a belt layer and a carcass layer constituting the pneumatic tire are lowered with an increase in history (increase in travel distance and time). When it becomes lower than a certain physical property value (threshold value), destruction occurs.

また、空気入りタイヤは、図2に示すように、入力(タイヤに対する機械的エネルギー)が大きいと、タイヤ構成部材の物性の低下が早く進み、破壊が早く起きるが、入力が小さいと、タイヤ構成部材の物性の低下が遅く進むため、破壊の発生が遅れ、寿命が長くなる。その破壊が発生する際のタイヤ構成部材の物性値は、実車試験では同じレベルにあり、タイヤに対する入力の大小に関係なく、タイヤ構成部材の物性値がある物性値(閾値)より小さくなると破壊する。   In addition, as shown in FIG. 2, when the input (mechanical energy to the tire) is large, the pneumatic tire is rapidly deteriorated in the physical properties of the tire constituent member, and breakage occurs quickly. Since the deterioration of the physical properties of the member progresses slowly, the occurrence of destruction is delayed and the life is prolonged. The physical property value of the tire constituent member when the destruction occurs is at the same level in the actual vehicle test, and the tire constituent member is destroyed when the physical property value of the tire constituent member becomes smaller than a certain physical property value (threshold) regardless of the input to the tire. .

また、タイヤ構成部材の物性は、一部の例外を除いて、温度変化により物性値が変化する。従って、タイヤ構成部材が破壊した時の物性値は、その破壊が発生した時の温度領域で測定することが重要である。   In addition, with respect to the physical properties of tire constituent members, the physical property values change with temperature changes, with some exceptions. Therefore, it is important to measure the physical property value when the tire constituent member is destroyed in the temperature range when the destruction occurs.

本発明のタイヤ試験条件設定方法は、上述した知見に基づき成されたものであり、以下、本発明の実施の形態について添付の図面を参照しながら詳細に説明する。   The tire test condition setting method of the present invention has been made based on the above-described knowledge, and hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

本発明のタイヤ試験条件設定方法は、図3に示すように、同じ構成のタイヤ(多ければ多いほどよい)において、タイヤが破壊するまで実車試験を実施する(ステップ1)。同じ個所(タイヤ構成部材)が破壊したタイヤから、その破壊したタイヤ構成部材をサンプリングし、その物性値を測定する(ステップ2)。その際に、試験条件以外の要因で物性が低下するのを回避するため、破壊直後のタイヤから壊れたタイヤ構成部材をサンプリングして測定するのがよい。   In the tire test condition setting method of the present invention, as shown in FIG. 3, an actual vehicle test is performed until the tire breaks in a tire having the same configuration (the more the better) (step 1). From the tire destroyed at the same location (tire constituent member), the destroyed tire constituent member is sampled and its physical property value is measured (step 2). At that time, in order to avoid deterioration in physical properties due to factors other than the test conditions, it is preferable to sample and measure tire constituent members that have broken from the tire immediately after breaking.

サンプリングしたタイヤ構成部材の物性値を測定する場合、実車走行時にタイヤ構成部材が破壊した温度領域(例えば、100℃前後で破壊した場合には、100℃±10℃)、好ましくは実車走行時にタイヤ構成部材が破壊した温度と同じ温度(サンプリングしたタイヤ構成部材を実車走行時に破壊が発生した温度となるように加熱した状態)で測定するのが、実際の使用条件下での物性値となるためよい。しかしながら、物性値が温度の高低に比例して変動するものであれば、室温で測定(サンプリングしたタイヤ構成部材を室温にした状態で測定)される物性値であってもよい。   When measuring physical property values of sampled tire constituent members, the temperature range in which the tire constituent members are destroyed during running of the actual vehicle (for example, 100 ° C. ± 10 ° C. when broken at around 100 ° C.), preferably tires during running of the actual vehicle Measuring at the same temperature as the temperature at which the structural member broke (when the sampled tire structural member is heated to the temperature at which it broke during actual vehicle driving) is a physical property value under actual use conditions. Good. However, if the physical property value varies in proportion to the temperature, it may be a physical property value measured at room temperature (measured with the sampled tire constituent member at room temperature).

タイヤ構成部材の物性値としては、例えば、実車試験でベルト層が破壊(ベルトエッジセパレーションが発生)した場合には、ベルト層の物性値としてベルト層間の剥離力を挙げることができる。また、実車試験でカーカス層が破壊(カーカスコードが破断)した場合には、破断したカーカスコードの強力を物性値として挙げることができる。   As a physical property value of a tire constituent member, for example, when a belt layer is broken (belt edge separation occurs) in an actual vehicle test, a peel force between belt layers can be given as a physical property value of the belt layer. Further, when the carcass layer breaks (carcass cord breaks) in an actual vehicle test, the strength of the broken carcass cord can be cited as a physical property value.

次いで、測定して得られた物性値から、上記タイヤ構成部材の破壊の閾値を決定する(ステップ3)。例えば、複数のタイヤにおいて物性値を得た場合にはその平均をそのままタイヤ構成部材の破壊の閾値とすることができる。   Next, the destruction threshold value of the tire constituent member is determined from the measured physical property values (step 3). For example, when the physical property values are obtained for a plurality of tires, the average can be used as the threshold value for destruction of the tire constituent members.

次いで、実車試験のタイヤと同じ構成のタイヤに対して、予め設定した条件でラボ試験を実施する(ステップ4)。例えば、実車試験でベルト層が破壊(ベルトエッジセパレーションが発生)したタイヤの場合には、ラボ試験として室内ドラム試験を実施する。実車試験でカーカス層が破壊(カーカスコード破断が発生)したタイヤの場合にも室内ドラム試験を実施することができる。   Next, a lab test is performed on a tire having the same configuration as that of the actual vehicle test tire under preset conditions (step 4). For example, in the case of a tire in which a belt layer is broken (belt edge separation occurs) in an actual vehicle test, an indoor drum test is performed as a laboratory test. The indoor drum test can also be performed in the case of a tire in which the carcass layer is broken (carcass cord breakage) in the actual vehicle test.

予め設定した条件としては、ベルト層の破壊試験を室内ドラム試験で行う場合には、例えば、試験タイヤを酸化劣化させた後、一定の荷重を負荷し、ドラム回転速度を次第に上げながら、タイヤが破壊するまで試験を続行するように設定する。   As a pre-set condition, when a belt layer destructive test is performed by an indoor drum test, for example, after the test tire is oxidatively deteriorated, a constant load is applied and the tire rotates while gradually increasing the drum rotation speed. Set the test to continue until destroyed.

試験終了後、タイヤの破壊した個所が実車試験と同じタイヤ構成部材であるか否か確認する(ステップ5)。実車試験と同じタイヤ構成部材が破壊しない場合には、設定条件を変えて試験を実施する(ステップ6)。実車試験と同じタイヤ構成部材が破壊するまで設定条件を変更し、試験を行う。   After the test is completed, it is confirmed whether or not the location where the tire is destroyed is the same tire component as in the actual vehicle test (step 5). If the same tire constituent member as that in the actual vehicle test does not break, the test is carried out by changing the setting conditions (step 6). The test is performed by changing the setting conditions until the same tire component as in the actual vehicle test is destroyed.

実車試験と同じタイヤ構成部材が破壊した場合には、破壊したタイヤ構成部材の物性値を測定する(ステップ7)。例えば、ベルト層に破壊が発生した場合には、そのベルト層の物性値としてベルト層間の剥離力を測定する。この物性値の測定は、上記実車試験でサンプリングしたタイヤ構成部材の物性値を測定する場合と同じ条件で測定する。即ち、サンプリングしたタイヤ構成部材の物性値を実車走行時にタイヤ構成部材が破壊した温度領域の1点(例えば、95℃)で測定した場合には、これと同じ条件(95℃)で測定する。また、サンプリングしたタイヤ構成部材の物性値をタイヤ構成部材が破壊した時の温度(例えば、100℃)で測定した場合には、ラボ試験で破壊したタイヤ構成部材を同じ条件(100℃)で測定する。また、サンプリングしたタイヤ構成部材の物性値を室温で測定している場合には、同様に室温で測定する。   When the same tire constituent member as that in the actual vehicle test is destroyed, the physical property value of the destroyed tire constituent member is measured (step 7). For example, when the belt layer is broken, the peeling force between the belt layers is measured as the physical property value of the belt layer. The measurement of the physical property value is performed under the same conditions as those for measuring the physical property value of the tire constituent member sampled in the actual vehicle test. That is, when the physical property value of the sampled tire constituent member is measured at one point (for example, 95 ° C.) in the temperature region where the tire constituent member is destroyed during actual vehicle travel, measurement is performed under the same condition (95 ° C.). Moreover, when the physical property value of the sampled tire constituent member is measured at the temperature when the tire constituent member is destroyed (for example, 100 ° C.), the tire constituent member destroyed in the laboratory test is measured under the same condition (100 ° C.). To do. Moreover, when the physical property value of the sampled tire constituent member is measured at room temperature, the measurement is similarly performed at room temperature.

破壊したタイヤ構成部材の物性値を測定した後、その物性値が上記閾値と同じレベルにあるか否か判定する(ステップ8)。このステップは、ラボ試験を実施したタイヤが実車試験のタイヤと同じレベルにあることを確認するためのものである。この物性値が上記閾値と同じレベルを示す場合に、上記した予め設定した条件を上記実車試験したタイヤと比較したい試験タイヤのラボ試験条件とする(ステップ9)。測定した物性値が上記閾値と同じレベルにない場合には、実車試験のタイヤと同じ構成の別のタイヤでステップ4から以降を行う。   After measuring the physical property value of the destroyed tire component, it is determined whether or not the physical property value is at the same level as the threshold value (step 8). This step is to confirm that the tire subjected to the laboratory test is at the same level as the tire of the actual vehicle test. When the physical property value shows the same level as the threshold value, the above-described preset condition is set as a laboratory test condition of a test tire to be compared with the tire subjected to the actual vehicle test (Step 9). If the measured physical property value is not at the same level as the threshold value, the steps from step 4 are performed on another tire having the same configuration as the tire of the actual vehicle test.

このようにして得られたラボ試験条件でラボ試験を試験タイヤに実施した場合、そのラボ試験が終了する前に試験タイヤのタイヤ構成部材(実車試験したタイヤと同じタイヤ構成部材)に破壊が発生すれば、この試験タイヤは、実車試験のタイヤ(タイヤ構成部材が所定のレベルを満たしているタイヤ)より劣る、即ち、実車試験でタイヤ性能(タイヤ構成部材)が所定のレベルに達していないタイヤであることがわかる。他方、ラボ試験が終了しても試験タイヤのタイヤ構成部材に破壊が発生していない場合には、この試験タイヤは、実車試験のタイヤより優れている、即ち、実車試験でタイヤ性能(タイヤ構成部材)が所定のレベルに達しているタイヤであることがわかる。   When a lab test is performed on a test tire under the lab test conditions obtained in this way, the tire component of the test tire (the same tire component as the actual tire tested) is destroyed before the lab test is completed. In this case, the test tire is inferior to the tire in the actual vehicle test (the tire in which the tire constituent member satisfies the predetermined level), that is, the tire performance (tire constituent member) in the actual vehicle test has not reached the predetermined level. It can be seen that it is. On the other hand, if the tire component of the test tire does not break even after the laboratory test is completed, the test tire is superior to the tire of the actual vehicle test, that is, the tire performance (tire configuration in the actual vehicle test). It can be seen that the member is a tire that has reached a predetermined level.

従って、得られたラボ試験条件を採用して試験することで、単にタイヤ同士を比べる相対評価ではなく、実車試験でタイヤ性能(タイヤ構成部材)が所定のレベルを満たしているか否かをラボ試験で確実に判定することが可能になる。   Therefore, by adopting and testing the obtained laboratory test conditions, it is not a relative evaluation that simply compares tires, but a laboratory test to determine whether the tire performance (tire component) satisfies a predetermined level in the actual vehicle test. This makes it possible to make a reliable determination.

本発明において、タイヤのラボ試験とは、実際にタイヤを車両に装着して行う試験(実車試験)ではなく、試験装置にタイヤを装着して行う試験である。このようなラボ試験としては、上記した室内ドラム試験に限定されず、屋外で試験装置にタイヤを取り付けて行う室外試験であってもよい。なお、ここで言う室内ドラム試験とは、例えば、JISに規定されるドラム試験装置を用いて行う試験である。   In the present invention, the lab test of a tire is not a test (actual vehicle test) performed by actually mounting a tire on a vehicle, but a test performed by mounting a tire on a test apparatus. Such a laboratory test is not limited to the indoor drum test described above, and may be an outdoor test performed by attaching a tire to a test apparatus outdoors. The indoor drum test referred to here is, for example, a test performed using a drum test apparatus defined in JIS.

本発明は、上記実施形態では、タイヤを用いるラボ試験の試験条件を設定する方法について説明したが、タイヤ構成部材自体(サンプル)を用いて行うラボ試験における試験条件を設定する方法についても適用することが可能である。   In the above-described embodiment, the present invention has been described with respect to a method for setting test conditions for a lab test using a tire. However, the present invention is also applicable to a method for setting test conditions in a lab test performed using a tire constituent member itself (sample). It is possible.

なお、本発明のタイヤ試験条件設定方法でいうタイヤは、乗用車用空気入りタイヤ、重荷重用空気入りタイヤなど、試験を行うことができる空気入りタイヤであればいずれのタイヤであってもよい。   The tire referred to in the tire test condition setting method of the present invention may be any tire that can be tested, such as a pneumatic tire for passenger cars and a pneumatic tire for heavy loads.

タイヤサイズを280/650R18で共通にし、実車試験によりベルト層にエッジセパレーションが発生したタイヤA(日本で2年保管した後実車試験を実施)の室温でのベルト層間剥離力と破壊した温度領域(100℃)でのベルト層間剥離力、及び高温高湿下(タイの倉庫に保管)で1年保管したタイヤB、1年半保管したタイヤC、2年保管したタイヤDに対して、下記の条件で室内ドラム試験を行い、室温及び破壊した温度領域(100℃)のベルト層間剥離力を測定した結果を表1に示す。
室内ドラム試験
各試験タイヤを空気圧200kPaにして室内ドラム試験機に取り付け、負荷荷重を4kN、雰囲気温度25℃の条件下で、時速を0〜200km/hまで急速に上昇させた後、時速200km/hから20分毎に時速を20kmずつ最高で300km/hになるまで増加させる。
The tire size is the same for 280 / 650R18, and the belt delamination force at room temperature and the fractured temperature range of tire A (the actual vehicle test was carried out after being stored in Japan for 2 years) where edge separation occurred in the belt layer by the actual vehicle test ( 100 degrees Celsius), and tire B stored for one year under high temperature and high humidity (stored in a warehouse in Thailand), tire C stored for one and a half years, and tire D stored for two years Table 1 shows the results of performing an indoor drum test under the conditions and measuring the belt delamination force at room temperature and in the destroyed temperature range (100 ° C.).
Indoor drum test Each test tire was set to an air pressure of 200 kPa and attached to an indoor drum tester. Under a load of 4 kPa and an ambient temperature of 25 ° C., the speed was rapidly increased from 0 to 200 km / h, and then 200 km / hr. Every 20 minutes from h, the speed is increased by 20 km to a maximum of 300 km / h.

Figure 2008008695
Figure 2008008695

表1から、室内ドラム試験のタイヤCにおいて、破壊した温度領域で測定したベルト層間剥離力(物性値)が、実車試験のタイヤAのそれと同じレベルにあり、従って、ベルトエッジセパレーションの試験では、タイヤCで採用したタイヤ試験条件に設定することができる。他方、室温で測定したベルト層間剥離力(物性値)は、破壊した温度領域で測定したベルト層間剥離力に対して比例した関係にないので採用することができず、破壊した温度領域を測定時に使用するのがよいことがわかる。   From Table 1, in the drum C of the indoor drum test, the belt delamination force (physical property value) measured in the fractured temperature region is at the same level as that of the tire A of the actual vehicle test. Therefore, in the belt edge separation test, The tire test conditions employed for the tire C can be set. On the other hand, the belt delamination force (physical property value) measured at room temperature cannot be used because it is not proportional to the belt delamination force measured in the destroyed temperature region. It turns out that it is good to use.

タイヤサイズを235/45R17で共通にし、実車試験(サーキット走行)によりカーカスコード破断が発生したタイヤEの室温でのカーカスコード強力と破壊した温度領域(100℃)でのカーカスコード強力、及び室内ドラム試験により破壊試験(カーカスコード破断)を実施したタイヤF,Gの室温及び破壊した温度領域(100℃)でのカーカスコード強力を測定した結果を表2に示す。   The tire size is common to 235 / 45R17, and the carcass cord strength at the room temperature and the carcass cord strength in the destroyed temperature range (100 ° C) of the tire E in which the carcass cord breakage occurred in the actual vehicle test (circuit running), and the indoor drum Table 2 shows the results of measuring the carcass cord strength at the room temperature and the fractured temperature range (100 ° C.) of the tires F and G subjected to the fracture test (carcass cord fracture) by the test.

Figure 2008008695
Figure 2008008695

表2から、室内ドラム試験でカーカスコード破断が発生したタイヤGは、室温で測定したカーカスコード強力と破壊した温度領域で測定したカーカスコード強力が実質的に比例して変動しており、室温で測定される物性値を採用してもよいことがわかる。   From Table 2, the tire G in which the carcass cord breakage occurred in the indoor drum test showed that the carcass cord strength measured at room temperature and the carcass cord strength measured in the destroyed temperature range fluctuated substantially proportionally at room temperature. It can be seen that measured physical property values may be employed.

タイヤ構成部材の物性と履歴の関係を示すグラフ図である。It is a graph which shows the relationship between the physical property of a tire structural member, and a log | history. タイヤ構成部材の物性と入力との関係を説明するグラフ図である。It is a graph explaining the relationship between the physical property of a tire structural member, and an input. 本発明のタイヤ試験条件設定方法の一実施形態を示すフロー図である。It is a flowchart which shows one Embodiment of the tire test condition setting method of this invention.

Claims (5)

実車試験により破壊したタイヤからサンプリングした破壊されたタイヤ構成部材の物性値から該タイヤ構成部材の破壊の閾値を決定し、前記実車試験のタイヤと同じ構成のタイヤに対して予め設定した条件でラボ試験を実施し、該ラボ試験のタイヤが実車試験と同じタイヤ構成部材に破壊が発生し、該タイヤ構成部材の物性値が前記閾値と同じレベルを示す場合に、前記予め設定した条件を前記タイヤと比較したい試験タイヤのラボ試験条件とするタイヤ試験条件設定方法。   The threshold value of the destruction of the tire constituent member is determined from the physical property value of the destroyed tire constituent member sampled from the tire destroyed by the actual vehicle test, and the lab is set in advance for the tire having the same configuration as the tire of the actual vehicle test. When the test is performed and the tire of the laboratory test is broken in the same tire constituent member as the actual vehicle test, and the physical property value of the tire constituent member shows the same level as the threshold value, the preset condition is the tire The tire test condition setting method used as the laboratory test condition of the test tire to be compared with. 前記実車試験及びラボ試験において破壊したタイヤ構成部材の物性値が、実車走行時にタイヤ構成部材が破壊した温度領域で測定された物性値である請求項1に記載のタイヤ試験条件設定方法。   2. The tire test condition setting method according to claim 1, wherein the physical property value of the tire constituent member destroyed in the actual vehicle test and the laboratory test is a physical property value measured in a temperature region in which the tire constituent member is destroyed during actual vehicle travel. 前記実車試験及びラボ試験において破壊したタイヤ構成部材の物性値が、実車走行時にタイヤ構成部材が破壊した温度で測定された物性値である請求項2に記載のタイヤ試験条件設定方法。   The tire test condition setting method according to claim 2, wherein the physical property value of the tire constituent member destroyed in the actual vehicle test and the laboratory test is a physical property value measured at a temperature at which the tire constituent member is destroyed during actual vehicle travel. 前記実車試験及びラボ試験において破壊したタイヤ構成部材の物性値が、室温で測定された物性値である請求項1に記載のタイヤ試験条件設定方法。   The tire test condition setting method according to claim 1, wherein a physical property value of the tire constituent member destroyed in the actual vehicle test and the laboratory test is a physical property value measured at room temperature. 前記ラボ試験が室内ドラム試験である請求項1乃至4のいずれかに記載のタイヤ試験条件設定方法。   The tire test condition setting method according to claim 1, wherein the laboratory test is an indoor drum test.
JP2006177545A 2006-06-28 2006-06-28 Tire test condition setting method Expired - Fee Related JP4946207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006177545A JP4946207B2 (en) 2006-06-28 2006-06-28 Tire test condition setting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006177545A JP4946207B2 (en) 2006-06-28 2006-06-28 Tire test condition setting method

Publications (2)

Publication Number Publication Date
JP2008008695A true JP2008008695A (en) 2008-01-17
JP4946207B2 JP4946207B2 (en) 2012-06-06

Family

ID=39067047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006177545A Expired - Fee Related JP4946207B2 (en) 2006-06-28 2006-06-28 Tire test condition setting method

Country Status (1)

Country Link
JP (1) JP4946207B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055581A (en) * 2013-09-13 2015-03-23 住友ゴム工業株式会社 Tire durability testing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170054A (en) * 1985-01-23 1986-07-31 Mitsubishi Electric Corp Clip lead
JP2003240681A (en) * 2002-02-20 2003-08-27 Bridgestone Corp Tire grounding characteristic evaluating method
JP2004037286A (en) * 2002-07-04 2004-02-05 Yokohama Rubber Co Ltd:The Indoor tire durability testing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170054A (en) * 1985-01-23 1986-07-31 Mitsubishi Electric Corp Clip lead
JP2003240681A (en) * 2002-02-20 2003-08-27 Bridgestone Corp Tire grounding characteristic evaluating method
JP2004037286A (en) * 2002-07-04 2004-02-05 Yokohama Rubber Co Ltd:The Indoor tire durability testing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055581A (en) * 2013-09-13 2015-03-23 住友ゴム工業株式会社 Tire durability testing method

Also Published As

Publication number Publication date
JP4946207B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
US20170011504A1 (en) Method and device for detecting defects in a pressing test of a touch screen
JP2006053144A (en) Method of monitoring absence of structural defect in easily deteriorated component, and monitor therefor
HRP20210666T1 (en) Air conditioner, and shutdown control method and device for compressor thereof
JP2007047172A (en) Failure detection method of ambient temperature sensor of automobile
US20180217026A1 (en) Methods and systems for estimating residual useful life of a rolling element bearing
JP2009133631A (en) Durability test method of tire drum
JP4946207B2 (en) Tire test condition setting method
CN105203941B (en) The method of inspection of wafer sort special pattern and probe card defect
JP2014185851A (en) Tire durability testing apparatus
US20140213706A1 (en) Unvulcanized rubber composition for calendaring and method for manufacturing topping rubber using the same
JP5836904B2 (en) Insulation material degradation diagnosis method and apparatus
JP4710500B2 (en) Tire durability test method
JP6852452B2 (en) Tire surface crack evaluation method
JP4687344B2 (en) Tire durability test method
JP6819151B2 (en) Method of estimating the remaining life of laminated structures
JP6121295B2 (en) Tire durability test method
CN110198849B (en) Tyre sidewall for heavy civil engineering vehicle
JP2017187404A (en) Distortion predicting method for rubber
KR102277817B1 (en) Tire test machine
JP2010032427A (en) Fatigue testing method of rubber
Paulus et al. Effect of resonant frequency shifting on time to failure of a cantilevered beam under vibration
Vavro et al. The experimental measurement of the tyre casing defects for the freight vehicles at the dynamic loading
Azari et al. Improvement of the Test Method for Determining Moisture Damage Resistance
JP2006194660A (en) Evaluation method for exothermic durability of rubber
KR102593576B1 (en) Method for verifying fan quality

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees