JP2007524334A - 時間依存性信号からパワーを導出するための方法及び装置 - Google Patents
時間依存性信号からパワーを導出するための方法及び装置 Download PDFInfo
- Publication number
- JP2007524334A JP2007524334A JP2006517323A JP2006517323A JP2007524334A JP 2007524334 A JP2007524334 A JP 2007524334A JP 2006517323 A JP2006517323 A JP 2006517323A JP 2006517323 A JP2006517323 A JP 2006517323A JP 2007524334 A JP2007524334 A JP 2007524334A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- power
- signal
- signals
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000036962 time dependent Effects 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 15
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 239000000284 extract Substances 0.000 claims description 12
- 230000004044 response Effects 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 2
- 230000001186 cumulative effect Effects 0.000 claims 2
- 238000000605 extraction Methods 0.000 abstract description 4
- 230000003071 parasitic effect Effects 0.000 abstract description 2
- 238000002955 isolation Methods 0.000 description 21
- 238000004804 winding Methods 0.000 description 21
- 239000003990 capacitor Substances 0.000 description 18
- 238000010586 diagram Methods 0.000 description 11
- 238000004146 energy storage Methods 0.000 description 10
- 238000013461 design Methods 0.000 description 9
- 230000015556 catabolic process Effects 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 238000004891 communication Methods 0.000 description 7
- 230000001052 transient effect Effects 0.000 description 7
- 230000002441 reversible effect Effects 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000007667 floating Methods 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 3
- 230000001012 protector Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000013643 reference control Substances 0.000 description 1
- 238000009420 retrofitting Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/06—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/266—Arrangements to supply power to external peripherals either directly from the computer or under computer control, e.g. supply of power through the communication port, computer controlled power-strips
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
寄生的なパワーの抽出に基づく電源装置及び方法が、開示される。パワーは、装置に入ってくる、及び/又は、そこから出て行く信号から、抽出される。抽出されたパワーは、装置と関連したデバイス用のDC電圧に、変換される。抽出パワーの正の部分は、加法的に結合されて、第1の潜在的に時間依存する信号を生成し、抽出パワーの負の部分も、加法的に結合されて、第2の潜在的に時間依存する信号を生成する。2つの潜在的に時間依存する信号も加法的に結合され、所望の数のDC電圧及び振幅に、分割される。抽出パワーが、DC電圧を供給するのに不適切である場合、任意選択のDC電圧電源が、設けられる。
Description
本発明は、複数の信号からパワーを抽出し、抽出したパワーを1つ又は複数のDC電圧として負荷装置に供給するための装置及び方法に関する。
1つの源からパワーを得て1つ又は複数の使用のカテゴリに変換することは、知られている。例えば、米国特許第4,184,197号に、1つの源からパワーを得て、そのパワーを1つ又は複数のDC電圧に変換するDC/DCスイッチング変換器が、開示されている。しかし、これらの変換器は、2つ以上の源から同時に抽出されたパワーを処理する機能、又は、複数の源から供給された信号からパワーを抽出する機能を有していない。
多数の用途においては、容易に電源を利用できない負荷装置に、又は消費電力の節約のため動作パワーを得る代替方法が必要な負荷装置に、パワーを供給することが、望ましいことがある。例えば、導入済みの機器への改造用として設計された装置は、導入済みの機器の電源への接続が可能でないことがある。
代替の源からパワーを得て、負荷装置に動作パワーを供給することが可能な電源装置及び方法が、必要である。
(発明の概要)
本発明の装置の第1の実施形態では、パワー抽出器は、複数の潜在的に時間に依存する信号から電圧及び/又は電流(本明細書では、電圧/電流という)を抽出し、第1及び第2の電圧/電流信号を生成する。パワー変換回路は、第1及び第2の電圧/電流信号を負荷装置用の複数のDC電圧に変換する。
本発明の装置の第1の実施形態では、パワー抽出器は、複数の潜在的に時間に依存する信号から電圧及び/又は電流(本明細書では、電圧/電流という)を抽出し、第1及び第2の電圧/電流信号を生成する。パワー変換回路は、第1及び第2の電圧/電流信号を負荷装置用の複数のDC電圧に変換する。
本発明の装置の第1の実施形態の1つのバージョンでは、第1及び第2の電圧/電流信号は、潜在的に時間依存する信号の、それぞれ正及び負の状態になる部分に基づく。好ましいのは、正状態になる部分が、加法的な方法で結合されて、第1の電圧/電流信号を生成し、負状態になる部分が、加法的な方法で結合されて、第2の電圧/電流信号を生成することである。
本発明の第1の実施形態の前述のバージョンでは、パワー抽出器は、潜在的に時間依存する信号毎に、ダイオード・ネットワークを含むことが好ましい。ダイオード・ネットワークは、第1ラインと第2のラインとの間に並列で接続され、第1及び第2のラインは、それぞれ、第1及び第2の電圧/電流信号を伝達する。
本発明の装置の第1の実施形態の他のバージョンでは、パワー変換回路は、第1及び第2の電圧/電流信号を加法的な方法で結合して、複数のDC電圧を生成するトランス回路を含む。好ましいのは、パワー変換回路が、第1及び第2の電圧/電流信号を切り替えてトランスへ送るスイッチを含むことである。
本発明の装置の第1の実施形態の他のバージョンでは、複数の潜在的に時間依存する信号が、DC電圧を発生するには不適切なパワーを供給するとき、任意選択の電源は、所定の方法でパワー変換回路に結合される。
本発明の装置の第1の実施形態の他のバージョンでは、第1及び第2の電圧/電流信号の振幅は、潜在的に時間依存する信号の組み合わせに基づき、変化する。
本発明の装置の第1の実施形態の他のバージョンでは、帰還回路は、DC電圧の第1の電圧に応答して、エラー信号を生成する。エラー信号は、パワー変換回路によって使用され、第1のDC電圧を調節する。好ましくは、帰還回路は、出力キャパシタンスを有したエラー増幅器と、回路中でエラー増幅器と接続される安定化電圧源であって、パワー変換回路への出力キャパシタンスの影響を実質的に取り除く安定化電圧源と、を含む。好ましいのは、安定化電圧源から供給される安定した電圧が、第1及び第2の電圧/電流信号から得られることである。
エラー増幅器は、そのコレクタが回路中で安定化電圧源と接続されるトランジスタであって、そのエミッタがエラー信号をパワー変換回路へ供給するように接続されたトランジスタを含む。好ましいのは、トランジスタが、第1のDC電圧に応答するアクティブ装置によって制御された発光ダイオードに、光学的に結合されたフォトトランジスタであることである。
本発明の装置の第1の実施形態の前述の何れかのバージョンでは、装置は、それぞれが1つ又は複数の潜在的に時間依存する信号をもたらす第1及び第2のデバイスを任意選択で含むことができる。
本発明の装置の第2の実施形態では、複数の入力ステージ及び複数の出力ステージは、回路中でトランスと接続される。スイッチング回路は、入力ステージを切り替えて、トランス中で第1の電圧/電流信号と第2の電圧/電流信号とを組み合わせ、出力ステージ中で負荷装置用の複数のDC電圧を生成する。入力ステージは、複数の潜在的に時間依存する信号からパワーを抽出し、第1及び第2の電圧/電流信号を生成することが好ましい。
各潜在的に時間依存性の電圧が、非ゼロの振幅を有したとき、又は、1つ又は複数の(しかし全てではない)潜在的に時間依存性の電圧が、ゼロの振幅を有したとき、ともにDC電圧は、生成されることが好ましい。
本発明の装置の第2の実施形態の1つのバージョンでは、任意選択の入力ステージは、任意選択の入力電圧源を回路中でトランスに接続する。任意選択の入力ステージと、トランスと、出力ステージとが、協力してDC電圧を生成する。
本発明の方法は、複数の潜在的に時間依存する信号から第1及び第2の信号部分を抽出する。第1及び第2の信号部分を組み合わせて、第1及び第2の電圧/電流信号が、生成される。第1及び第2の電圧/電流信号は、トランスによって結合され、DC電圧が、生成される。
第1及び第2の信号部分は、正状態になる部分が、部分的に加法的な方法で組み合わされて第1の電圧/電流信号を生成し、負状態になる部分が、部分的に加法的な方法で組み合わされて第2の電圧/電流信号を生成するような、正状態及び負状態になる部分であることが好ましい。
本発明の方法の他の実施形態では、第1及び第2の電圧/電流信号の振幅は、潜在的に時間依存する信号の組み合わせに基づき、変化する。好ましいのは、各潜在的に時間依存する信号が、非ゼロの振幅を有したとき、又は、少なくとも1つの、しかし全てではない潜在的に時間依存する信号が、ゼロの振幅を有したとき、ともにDC電圧が、生成されることである。
なお、本発明の他の、及び更なる目的と、利点と、特徴とが、以下の明細書を添付図面とともに参照することによって理解されるはずである。図面中、同じ参照記号は、同じ構造の要素を示す。
図1を参照すると、通信システム20は、コンピュータ22と、モデム26及びネットワーク28によってメッセージを交換するために相互接続されたターミナル装置24と、を含む。負荷装置30は、モデム26とターミナル装置24との間に接続される。負荷装置30は、ターミナル装置24の出力信号とモデム26の出力信号とに基づき、動作する。
例えば、負荷装置30は、ターミナル装置24から外に向かう通信へのセキュリティ対策をエンコードし、モデム26から入ってくる通信からのセキュリティ対策をデコードする目的のために、ターミナル装置24を改造するセキュリティ装置とすることができる。負荷装置30は、本発明のパワー装置32から供給されるDC電圧によって、給電される。図1に30Bとして示す類似のセキュリティ対策装置、又はそのソフトウェア等価物が、コンピュータ22と関連することは、当業者に、明らかなはずである。別個の装置として、セキュリティ対策装置30Bは、コンピュータ22から利用できるパワー、又は、本発明のパワー装置32などのパワー装置から利用できるパワーによって、給電することができる。
パワー装置32は、パワー抽出器34と、パワー変換器36と、任意選択の外部電源38と、を含む。パワー抽出器34は、複数の信号ライン、即ち、モデム26の出力信号ライン40、42、44、及び46、並びに、ターミナル装置24の出力信号ライン48及び50と、相互接続される。モデム26の出力信号ライン40、42、44、及び46は、それぞれ、DSR、RI、CTS、及びDCDとして識別された潜在的に時間依存する信号を伝達する。ターミナル装置24の出力信号ライン48及び50は、それぞれ、DTR及びRTSとして識別された潜在的に時間依存する信号を伝達する。
パワー抽出器34は、潜在的に時間依存する信号DSR、RI、CTS、DCD、DTR、及びRTSから、パワー(電圧及び/又は電流)を抽出する。即ち、パワー抽出器34は、寄生物(parasite)と同様に、これらの信号から、パワーを採取する。パワー抽出器34は、第1及び第2の電圧/電流信号として、それぞれVpライン52及びVnライン54上に、抽出されたパワーを供給する。
パワー変換器36は、ライン52及び54上の第1及び第2の電圧/電流信号を、複数の供給ライン56、58、及び60を介して負荷装置30へ供給される複数のDC電圧に変換する。重要なことは、パワー装置32と、モデム26と、負荷装置30と、ターミナル装置24とが、図1に示す例えば回路グラウンド61のような共通の基準電位を共有していることである。
潜在的に時間依存する信号DSR、RI、CTS、DCD、DTR、及びRTSから抽出されたパワーが、負荷装置30に給電するには不適切であるとき、又は、パワー抽出プロセスが、通信システム20の性能に大いに影響を与える場合、外部電源38は、パワーを供給する。この目的のため、外部電源装置38は、AC又はDCパワーを、ライン37及び39のペアを介して、パワー抽出器34に供給する。
通信システム20が、パワー装置32を使用して負荷装置30に給電することができ、パワー装置32を使用して他のシステム中の負荷装置に給電することができるシステムの実施例であることは、当業者に明らかなはずである。パワー抽出器34は、ターミナル装置24の2つの信号及びモデム26の4つの信号からパワーを抽出するが、より多く又はより少なく信号を使用することができるかどうかは、利用できる信号の数及び負荷装置30の必要パワーに基づくことも、当業者に明らかなはずである。3つの供給ラインが、3つのDC電圧用に示してあるが、供給ライン及びDC電圧がより多く又はより少なく可能であるかどうかは、特定の負荷装置30の必要パワーに基づくことも当業者に明らかなはずである。
通信システム20には、各潜在的に時間依存する信号DSR、RI、CTS、DCD、DTR、及びRTSが、最小値(例えば3.5ボルト)に等しい又はそれより大きい振幅を有した正又は負の電圧として、供給される。電圧の極性(正又は負)は、論理真(TRUE)又は論理偽(FALSE)の状態を表す。潜在的に時間依存する信号から引き出すことができる電流量は、限定され、より多くの電流が引き出されると、電圧が低下する。この相互作用は、通常、所与の装置源(例えばターミナル装置24)からの、電圧が同じ極性である潜在的に時間依存する信号全てに及ぶ。潜在的に時間依存する信号の電圧極性は、ターミナル装置24及びモデム26に関与する通常の初期化及びメッセージ交換通信によって、時間とともに変化する。
本発明のパワー装置32は、所与の電圧極性を有した所与の源(例えばターミナル装置24)からの電流全ての停止を含む、潜在的に時間依存する信号DSR、RI、CTS、DCD、DTR、及びRTSに、反応する。実行可能なとき、パワー装置32は、負荷装置30によって必要とされるパワーを抽出し、そのように抽出することが可能でないときはこれを検出する。
更に、パワー抽出器34は、ターミナル装置24及びモデム26の何れか又はその両方から、パワーを抽出する。例えば、入ってくる又は出て行くメッセージがないとき、ターミナル装置24又はモデム26は、何れもどのような潜在的に時間依存する信号も生成しない。しかし、ターミナル装置24又はモデム26の何れかが、そのインターフェース機能に給電している限り、パワーは、時間に依存しない形でなおもたらされており、DC電圧は、依然として負荷装置30に供給される。通常、信号DSR及びDTRの極性は、システム初期化中だけ変化し、その後、通常のシステム動作中、信号DSR及びDTRの振幅は、変化することがある又は不変のままである。モデム26が、入ってくるメッセージを受け取り、それを送った場合、信号RI及びDCDの極性は、潜在的に時間に応じて変化することがあり、一方信号DSR、DTR、RTS、及びCTSの極性は、時間で変化しない。信号の何れか又は全ての振幅は、時間で変化することがある。パワー抽出器34は、その極性が潜在的に時間で変化することがある信号RI及びDCD、並びに、その極性が通常時間で変化しない信号DSR、DTR、RTS、及びCTSの両方から、パワーを抽出して、DC電圧を負荷装置30に供給する。他方では、出て行くメッセージだけが、アクティブであるとき、時間不変であり潜在的に時間で変化する、RI、DCD、RTS、及びCTSの役割は、反転する。
図2を参照すると、パワー抽出器34は、潜在的に時間依存する信号DSR、RI、CTS、DCD、DTR、及びRTSから、パワーを抽出し、第1及び第2の電圧/電流信号としてそれぞれVpライン52及びVnライン54上に、抽出されたパワーを与える。パワー抽出器34は、潜在的に時間依存する信号DTR、RTS、DSR、RI、CTS、及びDCDをそれぞれ受け取り、Vpライン52とVnライン54との間に並列で接続された複数のダイオード・ネットワーク62−1、62−2、62−3、62−4、62−5、及び62−6を含む。
パワー抽出器34は、追加のダイオード・ネットワーク62−7及び62−8も含み、それらのネットワークは、共通のグラウンド電位61を共有した又は浮いたグラウンドを有した適切な電圧範囲の外部電源38からライン37及び39を介してパワーを受け取るように、接続されている。
必要な制御信号とともに、パワー変換器36の絶縁された一次巻き線を介して代替の電源を提供する代替の方法は、電源設計技術の当業者に明らかなはずである。外部電圧源の電圧範囲及びグラウンド電位において、その外部電圧源を使用することが可能になる場合、本発明の方法は、より複雑でなく自動的スイッチングのため、好ましい。
パワー抽出器34は、回路グラウンドに接続された追加のダイオード・ネットワーク62−9も含み、それは、他の電源が、全てVpライン52及びVnライン54用の限界電圧を達成させていないとき、その限界電圧を確立する。
各ダイオード・ネットワークが実質的に同様なので、ダイオード・ネットワーク62−1及び62−9だけを、詳細に述べる。ダイオード・ネットワーク62−1は、Vpライン52とVnライン54との間に直列で接続された上側ダイオード64−1及び下側ダイオード66−1を含む。潜在的に時間依存する信号DTRが、上側ダイオード64−1と下側ダイオード66−1との接合点で受け取られる。ダイオード・ネットワーク62−9は、Vpライン52とVnライン54との間に直列で接続された上側ダイオード64−9及び下側ダイオード66−9を含む。共通のグラウンドが、上側ダイオード64−9と下側ダイオード66−9との接合点へ連結される。
ダイオード・ネットワーク62−1から62−6まで、及び62−9の動作を考えると、ダイオードは、信号DTR、RTS、DSR、RI、CTS、DCD及び回路グラウンドから、瞬間的な最大及び最小電圧を抽出し、それらの最大及び最小電圧と同じであるような信号の電流を加算する。信号源の性質は、信号源への負荷電流が増加する時に、その信号電圧の振幅が低下するので、最大/最小の電圧/電流を組み合わせて加算する機能は、電流の抽出が増加するにつれて、極端な場合、同じ極性のすべての入力が、Vpライン52及びVnライン54の適切な1つの方に電流を与えるまで、寄与する電圧源の数を増加させる。
例えば、ターミナル装置24からの信号DTR及びRTSがそれぞれ+5.4ボルト及び−5.2ボルトであり、また、モデム26からの信号DSR、DCD、RI及びCTSがそれぞれ+5.7ボルト、+5.7ボルト、−5.4ボルト及び−5.4ボルトであり、さらに、ネットワーク62−1から62−6のダイオードのそれぞれの順方向ダイオード電圧低下が0.6ボルトであるとき、Vpライン52及びVnライン54における無負荷電圧は、それぞれ、+5.1ボルト及び−4.8ボルトであり、信号DSR、DCD、RI、及びCTSによって、それぞれVpライン52にはダイオード64−3及び64−4から、Vnライン54にはダイオード66−5及び66−6から、供給される。V+及びV−ラインへの負荷が増加するにつれて、モデム26から供給される電圧は、通常、低下する。DSR及びDCDに基づき供給される正の電圧が、DTRの電圧に達したとき、信号DTRは、Vpライン52に電流を与え始める。同様に、RI及びCTSに基づき供給される負の電圧が、RTSの電圧と一致したとき、信号CTSは、Vnライン54に電流を与え始める。
全ての非ゼロ信号は、同じ極性であり得る。説明の目的のための例として、信号RIは、所与のタイプのシステム中で使用することができず、そのケースでは、それは、接続されず、浮かしたままにしておくことがある。そのようなシステムが、同時に送信し受信することが可能な場合であって、両方が起きているとき、通常、他の信号DTR、CTS、DSR、RTS、及びDCDは、全て同じ高い極性を有する。このケースでは、Vpライン52は、これらの信号によって与えられる高い方の電圧によって駆動され、ダイオード64−1、64−2、64−3、64−5、64−6の全てが、導通状態であり、ダイオード66−1、66−2、66−3、66−5、66−6の全てが、遮断される。ここで、ダイオード66−9は、グラウンドより1つの順方向ダイオード電圧低下だけ高い、+0.4ボルトとして、Vnライン54上の電圧を確立する。この状況では、Vp及びVnは、ともに正であり、Vpは、より大きい正である。
外部電源38が、ライン37及び39に接続された場合であって、接続された電源が、ダイオード64−1、64−2、66−1、及び66−2の順方向ダイオード電圧低下の後で、Vpライン52及びVnライン54上に普通なら供給される電圧より大きい電圧を提供するとき、ダイオード・ネットワーク62−7及び62−8は、アクティブになり、Vpライン52及びVnライン54に電流を与える。外部電源38が、共通グラウンドを基準にする、又は、浮かしたグラウンド基準を有さなければならない理由は、ここで、明らかになる。同様に、電源外部38から供給される最大振幅電圧は、適切な順方向ダイオード電圧低下の後で、Vpライン52及びVnライン54上に、供給される。
Vpライン52及びVnライン54上の最大振幅電圧は、パワー抽出器34中のダイオード全ての逆方向ブレークダウン電圧定格に必要になる最低電圧を決定する。ダイオード64−9及び66−9の逆方向ブレークダウン電圧は、それぞれ、Vpライン52及びVnライン54に対する最大電圧より大きくなければならない。パワー抽出器34の他のダイオード全ての逆方向ブレークダウン電圧は、それらが直接接続されるVpライン52又はVnライン54のどちらかの最大振幅電圧と、プラス、ダイオードの反対側端末端部が直接接続される入力信号端子において供給され得る、前記Vpライン52又はVnライン54への反対極性の電圧の最大振幅との合計より、大きくなければならない。
説明の目的のための例として、信号DTR、RTS、DSR、RI、CTS、及びDCDにおいて供給される何れかの連続電圧の最大振幅が、15Vである場合であって、外部電源38は、DC電圧が振幅で6V〜24Vの範囲内、又はACrms電圧が24V±15%とすることができ、その全ては、容易に利用できる外部電源である場合、ネットワーク62−9のダイオードは、25V又はそれより大きい逆方向ブレークダウン電圧が必要であり、また、ネットワーク62−1から62−6のダイオードは、40V又はそれより大きい逆方向ブレークダウン電圧が必要であり、さらに、ネットワーク62−7及び62−8のダイオードは、60V又はそれより大きい逆方向ブレークダウン電圧が必要である。そのようなダイオードの対応する順方向電圧低下は、従って、それぞれ、これら3つのクラスのダイオード・ネットワークについて、0.4V、0.6V及び1.0Vでもよい。
図3を参照すると、パワー変換器36は、入力エネルギー貯蔵部70と、スイッチング・ネットワーク80と、絶縁変換器100と、出力エネルギー貯蔵部150と、過電圧保護器140と、帰還ネットワーク160と、を含む。入力エネルギー貯蔵部70と、スイッチング・ネットワーク80と、絶縁変換器100とが、Vpライン52及びVnライン54に接続される。
入力エネルギー貯蔵部70は、複数の目的を果たす。それは、信号DTR、RTS、DSR、RI、CTS、及びDCDの極性の速い変化によって引き起こされたVpライン52及びVnライン54上の電圧中の鋭い過渡状態を取り除く。それは、電源設計技術に精通した当業者に知られているように、AC入力を従来通り円滑にする。更に、それは、スイッチング・ネットワーク80及び絶縁変換器100によって反射されて入力部に戻ったエネルギーを、電源設計技術に精通した当業者によく知られているように全て再捕捉する。
図4を参照すると、入力エネルギー貯蔵部70は、回路グラウンドとVpライン52及びVnライン54との間に、それぞれ接続されたコンデンサ72及び74を含む。コンデンサ72及び74は、エネルギーがパワー抽出器34によって伝達されたとき、それぞれVpライン52及びVnライン54のためのエネルギー貯蔵装置として働き、スイッチング・ネットワーク80及び絶縁変換器100から戻されることがあるスイッチング・エネルギー全てを再捕捉するようにも働く。
再び図3を参照すると、スイッチング・ネットワーク80は、ライン82上でスイッチング信号を絶縁変換器100へ供給する。絶縁変換器100は、ライン82上のスイッチング信号に応答して、Vpライン52及びVnライン54上の時間依存性信号を、ライン102、104、及び106上の複数のDC出力電圧に変換する。出力エネルギー貯蔵ネットワーク150が、電荷(エネルギー)を貯蔵する一方、過電圧保護器140が、各ライン102、104、及び106上のDC電圧に対して過電圧を保護する。
帰還ネットワーク160は、スイッチング・ネットワーク80及び絶縁変換器100を制御して、ライン102、104、及び106の少なくとも1つ上のDC出力電圧を調節するように動作する。説明の目的のための例として、ライン104上のDC電圧を、調節されるものとして示し説明する。帰還ネットワーク80は、基準電圧に対するライン104上のDC電圧の変動に応答して、ライン162上にエラー信号ESを発生する。エラー信号ESは、ライン82上のスイッチング信号のタイミングと、Vpライン52及びVnライン54から絶縁変換器100へ結合されるエネルギーと、を制御する。ライン104上のDC出力電圧が、所望の値から変動したとき、エラー信号ESは、スイッチング・ネットワーク80を制御して、ライン104上のDC電圧を所望の値に修正するように、変化することにもなる。
図5を参照すると、スイッチング・ネットワーク80は、Vin及びGND端子がそれぞれVpライン52及びVnライン54に接続されたパルス幅変調(PWM)制御器84を含む。PWM制御器84は、制御帰還端子FBが帰還ライン162に接続され、パワー・スイッチング端子SW+及びSW−が、それぞれ、ライン82及びVnライン54に接続され、SW−は、極めて小さな抵抗98を介して接続されて過電流を保護する。
PWM制御器84は、ライン52及び54上のゆっくりと時間に依存する信号を交互に2つの異なる経路を通して送出し、次いでそれによって絶縁変換器100のトランスの一次巻き線を、まず一方向に、次いで、交代する方向で通して、電流を流す。導通経路のそのような速い変化によって、PWM制御器84は、ライン52及び54の準DC信号を、絶縁変換器100を通って流れるAC(交流)信号に変換する。このAC信号は、トランスによって結合することができ、それによって絶縁変換器の入力及び出力の電圧特性間で絶縁される。DCからACへのそのような局部的な変換の基本原理は、電源設計の技術に精通した当業者に、全てよく知られている。
PWM制御器84が2つの経路間で交番を起こす実際の手段は、次の通りである。PWM制御器84は、CLK端子で速く交互に切り替わるクロック信号を、発生する又は受け取る。クロック信号は、通常、50kHz〜5MHzの範囲の周波数を有するが、それより高い又は低いことがあり得る。PWM制御器84の動作は、この周期的なクロック信号のフェーズ(phase)に結合される。
PWM制御器84は、端子FBで、帰還電圧ESも受け取る。PWM制御器84は、帰還信号ESを内部又は外部で発生された基準電圧と比較し、後者は、通常、0.85V〜2.8Vの範囲内である。端子FBにおける電圧が、基準電圧より低いとき、PWM制御器84は、入力クロックの各サイクルの部分中に、端子SW+とSW−との間で低抵抗の導通経路をイネーブルにする。クロック・サイクルのそのような導通フェーズの期間は、端子FBで供給された帰還電圧と基準電圧との間の電圧差の関数であり、従って、2つの電圧の値が互いに接近するにつれて、導通フェーズの期間が、ゼロに減少する。
実際の回路が、短いが非ゼロのスイッチング時間を有するので、ちょうど述べたようなものなどの幾つかのPWM制御器は、意思決定及びフェーズ期間計算に使用される実際のクロック周波数を変化させる。例えば、幾つかのPWM制御器では、導通フェーズの期間が、入力周波数の周期の10%より低く低下したとき、又は90%より高く増加したとき、実効クロック周波数は、5のファクタだけ低下する。実効周波数の低下によって、制御器は、理想的なPWM制御器の0%及び100%デューティ・サイクル限度に、より密に接近することが可能になる。
本発明の設計では、PWM制御器84の端子SW+は、絶縁変換器82の信号PSに接続される一方、PWM制御器の端子SW−は、V−ライン54に、直接又は抵抗98を介して、接続される。好ましい実施形態では、抵抗98は、PWM制御器84を流れる最大電流を限定するように、抵抗値が小さい。
PWM制御器84は、現在又は今後知られる適切な任意のPWM制御器でもよい。好ましいのは、PWM制御器84は、米国カリフォルニア州サンタクララ(Santa Clara)のNational Semiconductor Corporation製のモデルLM2578Aスイッチング・レギュレータである。例として、図5に及び以下の段落で、PWM制御器84として詳しく述べるのは、この特定のタイプの制御器である。
コンデンサ92は、PWM制御器84のGND端子とCLK端子との間に接続される。コンデンサ92の値は、前記制御器の動作の所望の周波数(例えば100KHz)を確立するように選択される。補償コンデンサ90は、FB端子とCLK端子との間に接続され、同期動作を容易にする。
スイッチ端子SW+は、ライン82を介して変換器100に接続される一方、スイッチ端子SW−は、抵抗98を介してVnライン54に接続される。このモデルのPWM制御器は、別の電流制限入力端子CLを有する。ここに示す動作モードでは、CL端子における電圧とGND端子における電圧との差が、所定の値を超えたとき、端子SW+と端子SW−との間の導通状態は、抑制される。抵抗97及び98は、この電流値を確立する。コンデンサ96は、PWM制御器84のスイッチング動作と絶縁変換器100のインダクタンス及びキャパシタンスとの間の相互作用によって引き起こされた過渡状態を抑制するために使用される時定数を確立する。
図6Aを参照すると、本発明の絶縁変換器100の第1の実施形態が、変換器100Aとして示してある。変換器100Aは、トランス110を含み、トランス110は、一次巻き線112と、3つの直列に接続された巻き線部分116A、116B及び116Cを有したタップ付の二次巻き線116と、を有する。二次巻き線部分116B及び116Cの接合点は、回路グラウンドに接続される。タップ付きの二次巻き線116が、代替で、3つの直列に接続された二次巻き線とすることができることは、当業者に、明らかなはずである。
直列接続のインダクタ122及びコンデンサ124は、Vpライン52を、一次巻き線112の、点を付けた末端部に接続する。一次巻き線112の点がない末端部は、Vnライン54に接続される。インダクタ122とコンデンサ124との接合点は、ライン82に接続される。バイポーラの過渡電圧抑制デバイス126が、Vpライン52とVnライン54との間に接続されて、トランス110の漏れインダクタンスによって生じる高電圧の過渡スパイクを抑制する。バイポーラの過渡電圧抑制デバイス126は、例えば、600Wの軸過渡電圧抑制器、米国イリノイ州Des PlainesのLittelfuse製の部品番号P6KE36CAでもよい。
二次巻き線部分116A、116B及び116Cは、それぞれ、出力ステージ128−1、出力ステージ128−2及び出力ステージ128−3に接続される。出力ステージ128−1、128−2及び128−3は、それぞれ、出力ライン102、104及び106に接続される。出力ステージ128−1、128−2及び128−3は、実質的に同一であり、同一の参照番号を持つ同一のタイプの構成要素を有し、同一の参照番号のサフィックス番号は、出力ステージ128−1に関しては1、出力ステージ128−2に関しては2、出力ステージ128−3に関しては3である。出力ステージ128−1だけを、以下に述べる出力ステージ128−2又は128−3の相違点とともに、詳細に述べる。
出力ステージ128−1は、コンデンサ130−1と、インダクタ132−1と、ダイオード134−1と、を含む。コンデンサ130−1及びインダクタ132−1は、二次巻き線部分116Aの点のない末端部及び出力ライン102に直列で接続される。ダイオード134−1は、回路グラウンドとコンデンサ130−1及びインダクタ132−1の接合点との間に接続される。
出力ステージ128−3は、コンデンサ130−3が、二次巻き線部分116Cの点付きの末端部に接続され、ダイオード134−3が、ダイオード134−1の極性とは反対の極性を有する点で、異なる。これらの相違点は、出力ライン106上に負のDC電圧を生成するために、必要である。
好ましい実施形態では、米国特許第4,184,197号に教示されているように、インダクタ132−1、132−2、及び132−3は、インダクタ122と磁気透磁性の材料の共通コア136を共有する。その特許は、参照により、特にその図13が、本明細書に組み込まれる。インダクタの他の結合が、上記に言及した特許に開示されているように、共通コア上で絶縁反転器100Aのインダクタ全てを結合することを含め、可能である。スイッチング・ネットワーク100Aの動作は、上記に言及した特許に述べられた動作と、その図12及び13に重点を置き、同一である。
変換器100Aは、1つの設計で、トランスを使用せずに、電圧をアップ・コンバート及びダウン・コンバートともに実施する能力を有する。この機能の結果として、それは、他のタイプの電源設計が及ぼすより少ない電圧ストレスしか、その構成要素に引き起こさない傾向がある。
図6Bを参照すると、絶縁変換器100の第2の実施形態が、変換器100Bとして示してある。変換器100Bは、変換器100A中の構成要素と同一であり、それと同じ参照番号を有する幾つかの構成要素を含む。
Vpライン52は、一次巻き線112の点が付いた末端部に接続される。一次巻き線112の点のない末端部は、スイッチング信号ライン82に接続される。直列に接続されたコンデンサ117及び抵抗118が、一次巻き線112の両端間に接続されて、共振動作を容易にし、スイッチング過渡状態及びトランス110の漏れインダクタンスによって生じた過剰エネルギーの大部分を回収する。バイポーラの過渡電圧抑制デバイス126は、Vpライン52とVnライン54の間に接続されて、トランス110の漏れインダクタンスによって生じた高電圧の過渡スパイクを抑制する。
出力ステージ128−1、128−2、及び128−3は、二次巻き線部分116A、116B、及び116Cをそれぞれ出力ライン102、104、及び106に接続するダイオード138−1、138−2、及び138−3を含む。ダイオード138−1及び138−2は、二次巻き線部分116A及び116Bの点がない末端部に接続されて、ライン102及び104上に正のDC電圧を生成するような極性を有する。ダイオード138−3は、二次巻き線部分116Cの点が付いた末端部に接続されて、ライン106上に負のDC電圧を生成するように配向される。
変換器100Bは、いわゆるフライバック・トポロジとして一般的に知られたタイプのスイッチング・レギュレータの変換器設計である。その理由は、実際のエネルギー伝達が、主にPWM制御器の導通サイクルの非導通「フライバック」フェーズ中に、トランスを渡って行われるからである。本発明によれば、フライバック・トポロジは、変換器100Aのトポロジより高い電圧ストレスをその構成要素に及ぼし、また、それが動作することができる前に、VpラインとVnラインの間により高い入力電圧差を必要とする。しかし、それは、必要な構成要素がより少なく、特に、ここで記述している1入力3出力の応用には変換器100Aのトポロジの誘導巻き線の数の半分より少ないという利点がある。
インダクタの末端部に点を付けていることは、単に共通のフラックス経路に対して巻き線を配置するための約束ごとなので、変換器100A又は変換器100B何れでも点を各インダクタの他方の末端部に移動することが、変換器のインダクタ上の点全てを同時にそのように変更した場合、できることは、明らかである。
図7を参照すると、帰還ネットワーク160は、光絶縁エラー増幅器164を含み、光絶縁エラー増幅器164は、(1)フォトトランジスタ166に光で接続された発光ダイオード(LED)168を有したオプトアイソレータと、(2)正確なプログラム可能なシャント基準170と、を含む。フォトトランジスタ166は、そのコレクタが安定化電圧源172に接続される一方、そのエミッタが帰還ライン162に、及び電流制限抵抗88を介してVnライン52に、接続される。この目的で、光絶縁エラー増幅器164は、米国メイン州サウス・ポートランド(South Portland, Maine)のFairchild Semiconductor Corp.製のFairchild FOD2741Cなどの集積化された部品でもよい。それは、電源設計の技術に精通した当業者によく知られているように、シャント基準などのLED168の電流を制御する手段とは絶縁されたオプトアイソレータから構成することもできる。
安定化電圧源172は、Vpライン52及びVnライン54によって、直接又は電圧低下用抵抗ネットワークを介して、給電されることが好ましい。その目的は、ライン162及びPWM制御器84からフォトトランジスタ166の固有の大きなキャパシタンスの影響を除去するために、基準Vnライン54に対して安定した電圧基準をフォトトランジスタ166に提供することである。この目的のために、電圧源172は、これまでNational Semiconductor Corp.と言われた会社製のNational LP2951などの低電圧、低電流電圧レギュレータでもよい。
消費電力を最小にし、それを制限するような大きさに作られた電流制限直列抵抗174を介して、LED168のアノードが、出力ライン102などの適切な電圧源に接続される。任意選択のシャント・コンデンサ176を使用して、高周波の電圧過渡状態を抑制する。プログラム可能なシャント基準170の制御電極は、直列抵抗178とシャント抵抗179とから構成された抵抗デバイダ・ネットワークを介して、出力ライン104に接続される。任意選択のシャント・コンデンサ180を使用して、高周波の電圧過渡状態を抑制する。抵抗182及びコンデンサ184は、制御ノードとプログラム可能なシャント基準170の補償帰還ノードとの間で直列に接続されて、低周波がフィルタされたエラー補償帰還は、シャント基準に供給される。
動作の際、帰還ネットワーク160は、抵抗178及び179から構成された正確な抵抗デバイダを使用して、ノード177で、出力ライン104上の電圧の所定の割合である電圧を発生する。プログラム可能なシャント基準170は、固定の所定電圧(例えばFairchild FOD2741C用の2.5Vと、ノード171に存在する電圧からわずかに低下した、LED168のカソード出力であって、ゼロ電流のときでさえ、せいぜいLED168の電圧源の電圧、このケースでは出力102であり、その電圧と、の小さい方の電圧である内部電圧を発生する。
LED168は、そのカソードにおける電圧が、プログラム可能なシャント基準170の所定の基準電圧より高くなるまで、発光を開始しない。従って、この実施例では、LED168は、そのカソードでの電圧が2.5Vになるまで、発光を開始しない。シャント基準への帰還によって、シャント基準170を介して、LED168からの電流が、制御される。その帰還電圧が、プログラム可能なシャント基準170の内部で発生された電圧より低い場合、シャント基準170は、電流を導通し、LED168が発光する。その電圧が、内部で発生された電圧より高いとき、LED168は、暗い状態のままである。このようにして、シャント基準170及びLED168は、プログラム可能なシャント基準170によるノード177における電圧とその内部電圧との比較結果を、フローティング・ゲートのフォトトランジスタ166へLED168内のギャップを渡る光子に、共同で変換する。フォトトランジスタ166は、それが単位時間当たり受け取る光子の数に応じて、多かれ少なかれ電流を導通する。これによって、次いで抵抗88両端間での電圧低下が変化し、それによってライン162上でスイッチング・ネットワーク80(図3に示す)へ供給される帰還電圧ESが、変調される。
実際の動作の際、シャント基準170及びLED168は、非線形であるが連続的な、フォトトランジスタ166を流れる電流の関数を、シャント基準の内部で発生された電圧とノード177における電圧の差の関数としてもたらすように、働く。この関数の連続性によって、2つの電圧が収束するにつれて、帰還ネットワーク160の微調整が、もたらされる。
図8Aを参照すると、出力エネルギー貯蔵ネットワーク150は、出力ライン102、104、及び106毎に、それぞれ出力ラインと回路グラウンドの間に接続された、それぞれコンデンサ142−1、142−2、及び142−3を含む。例えば、コンデンサ142−1は、出力ライン102と回路グラウンドとの間に並列に接続され、出力ライン102上の負荷の速い過渡状態のために、及び、絶縁変換器100の動作の各サイクルでの様々なフェーズ中にパワー伝達を円滑にするために、エネルギーを貯蔵する。
図8Bを参照すると、過電圧ネットワーク140は、出力ライン102、104、及び106毎に、それぞれ出力ラインと回路グラウンドとの間に接続された、それぞれ保護用ツェナー・ダイオード146−1、146−2、及び146−3を含む。例えば、ダイオード146−1は、出力ライン102と回路グラウンドとの間に並列で接続される。ツェナー・ダイオード146−1は、そのよく理解されたアバランシェ降伏メカニズムによって過電圧を保護する。アバランシェ降伏は、ダイオードの構造によって決まるおおよその電圧で起こる。
このようにして、本発明は、その好ましい形態を具体的に言及して述べてきたが、様々な変更及び修正が、特許請求の範囲で定義された本発明の精神及び範囲を逸脱せず、その中で実施することができることは、明らかなはずである。
Claims (30)
- 負荷装置にパワーを供給するための装置であって、
複数の潜在的に時間依存する信号から電圧/電流を抽出し、第1及び第2の電圧/電流信号を生成するパワー抽出器と、
前記第1及び第2の電圧/電流信号を、前記負荷装置に供給される複数のDC電圧に変換するためのパワー変換回路と、
を含む装置。 - 請求項1に記載の装置であって、前記パワー抽出器は、前記潜在的に時間依存する信号の正状態及び負状態になる部分に基づき、それぞれ前記第1及び第2の電圧/電流信号を生成する、装置。
- 請求項2に記載の装置であって、前記正状態になる部分は、前記第1の電圧/電流信号を生成するために、加法的に結合され、前記負状態になる部分は、前記第2の電圧/電流信号を生成するために、加法的に結合される、装置。
- 請求項3に記載の装置であって、前記第1及び第2の電圧/電流信号の振幅は、それぞれ限定される、装置。
- 請求項1に記載の装置であって、前記パワー抽出器は、前記潜在的に時間依存する信号毎に、ダイオード・ネットワークを含む、装置。
- 請求項5に記載の装置であって、前記ダイオード・ネットワークは、前記第1及び第2の電圧/電流信号をそれぞれ伝達する第1ラインと第2のラインとの間に並列で接続される、装置。
- 請求項2に記載の装置であって、前記第1及び第2の電圧/電流信号は、共通の基準電位を有する、装置。
- 請求項1に記載の装置であって、前記パワー変換回路は、前記電圧/電流信号を加法的に結合して前記DC電圧に変換するトランス回路を更に含む、装置。
- 請求項8に記載の装置であって、前記パワー変換回路は、前記第1及び第2の電圧/電流信号を同時に切り替えて前記トランス回路に伝達するスイッチを含む、装置。
- 請求項1に記載の装置であって、
別個の電源と、
前記複数の潜在的に時間依存する信号が、前記複数のDC電圧を発生するには不適切なパワーをもたらすときに、前記別個の電源を前記パワー変換回路に結合するための手段と、
を更に含む装置。 - 請求項10に記載の装置であって、
前記結合するための手段は、ダイオード・ペアのアレイを含み、それぞれが、対応する入力信号に半ブリッジとして接続され、
追加のダイオード・ペアは、共通グラウンドに半ブリッジとして接続される、装置。 - 請求項1に記載の装置であって、
前記潜在的に時間依存する信号の少なくとも1つを供給する第1の装置を、
更に含む装置。 - 請求項12に記載の装置であって、
前記潜在的に時間依存する信号の少なくとももう1つを供給する第2の装置を、
更に含む装置。 - 請求項13に記載の装置であって、前記負荷装置は、前記複数の信号ラインを介して、前記第1及び第2の装置と相互接続される、装置。
- 請求項1に記載の装置であって、前記第1及び第2の電圧/電流信号の振幅は、前記潜在的に時間依存する信号の組み合わせに基づき、変化する、装置。
- 請求項1に記載の装置であって、前記第1の電圧/電流信号は、前記第2の電圧/電流信号より正の方に大きい、装置。
- 請求項1に記載の装置であって、
前記DC電圧の第1の電圧に反応して、エラー信号を生成する帰還回路を、
更に含み、
前記パワー変換回路は、前記エラー信号に応答して前記第1のDC電圧を調節する、装置。 - 請求項17に記載の装置であって、前記帰還回路は、
出力キャパシタンスを有したエラー増幅器と、
回路中で前記エラー増幅器に接続された、前記パワー変換回路への前記出力キャパシタンスの影響を実質的に排除する、安定した電圧源と、
を含む、装置。 - 請求項18に記載の装置であって、前記安定した電圧源は、安定電圧を前記エラー増幅器に供給し、前記安定電圧は、前記第1及び第2の電圧/電流信号から導出される、装置。
- 請求項19に記載の装置であって、前記エラー増幅器は、トランジスタを含み、前記トランジスタのコレクタは、回路中で前記安定電圧源に接続され、前記トランジスタのエミッタは、前記エラー信号を前記パワー変換回路へ供給するように接続される、装置。
- 請求項20に記載の装置であって、前記トランジスタは、前記第1のDC電圧に反応するアクティブ装置によって制御された発光ダイオードに、光で結合されたフォトトランジスタである、装置。
- 負荷装置にパワーを供給するための装置であって、
回路中でトランスに接続された複数の入力ステージ及び複数の出力ステージと、
前記入力ステージを切り替えて第1の電圧/電流信号と第2の電圧/電流信号とを前記トランス中で結合し、それによって、複数のDC電圧が、前記負荷装置のために前記出力ステージ中で生成される、スイッチング回路と、
を含む装置。 - 請求項22に記載の装置であって、
前記入力ステージは、複数の潜在的に時間依存する信号からパワーを抽出して、前記第1の電圧/電流信号及び前記第2の電圧/電流信号を生成し、
前記潜在的に時間依存性の電圧が、それぞれ非ゼロの振幅を有したとき、又は、幾つかの、しかし全てではない前記潜在的に時間依存性の電圧が、ゼロの振幅を有したとき、前記複数のDC電圧は、供給される、装置。 - 請求項22に記載の装置であって、
任意選択の入力電圧源を回路中で前記トランスに接続するための任意選択の入力ステージを、
更に含み、
前記任意選択の入力ステージと、前記トランスと、前記出力ステージとは、共同して前記複数のDC電圧を生成する、装置。 - 請求項22に記載の装置であって、前記DC電圧の少なくとも1つは、正であり、前記DC電圧の少なくとも1つは、負である、装置。
- 負荷装置にパワーを供給するための方法であって、
第1及び第2の信号部分を複数の潜在的に時間依存する信号から抽出するステップと、
前記第1及び第2の信号部分を結合して第1及び第2の電圧/電流信号を生成するステップと、
前記第1及び第2の電圧/電流信号を、前記負荷装置に供給される複数のDC電圧に変換するステップと、
を含む方法。 - 請求項26に記載の方法であって、前記第1及び第2の信号部分は、それぞれ正及び負状態になる部分である、方法。
- 請求項27に記載の方法であって、前記正状態になる部分は、累積的な方法で結合されて、前記第1の電圧/電流信号を生成し、前記負状態になる部分は、累積的な方法で結合されて、前記第2の電圧/電流信号を生成する、方法。
- 請求項26に記載の方法であって、前記潜在的に時間依存する信号がそれぞれ非ゼロの振幅を有したとき、又は、前記潜在的に時間依存する信号の少なくとも1つが、しかし全てではなくゼロの振幅を有したとき、前記DC電圧は、供給される、方法。
- 請求項26に記載の方法であって、前記第1及び第2の電圧/電流信号の振幅及び極性は、前記潜在的に時間依存する信号の組み合わせに基づき、変化する、方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/463,686 US7291938B2 (en) | 2003-06-17 | 2003-06-17 | Power supply apparatus and method based on parasitic power extraction |
PCT/US2004/019244 WO2004114104A1 (en) | 2003-06-17 | 2004-06-17 | Method and apparatus for deriving power from time-varying signals |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007524334A true JP2007524334A (ja) | 2007-08-23 |
Family
ID=33517129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006517323A Withdrawn JP2007524334A (ja) | 2003-06-17 | 2004-06-17 | 時間依存性信号からパワーを導出するための方法及び装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US7291938B2 (ja) |
EP (1) | EP1634147A1 (ja) |
JP (1) | JP2007524334A (ja) |
CN (1) | CN100483301C (ja) |
WO (1) | WO2004114104A1 (ja) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080186337A1 (en) * | 2005-10-06 | 2008-08-07 | Mvm Technologies Inc. | Printer Cartridge Having A Parasitic Power Circuit |
US20080170342A1 (en) * | 2007-01-11 | 2008-07-17 | Denso Corporation | Multistage series circuit system |
US7911084B2 (en) * | 2007-07-10 | 2011-03-22 | Aldis Corporation | Parasitic power supply for traffic control systems |
US8650411B2 (en) * | 2008-09-07 | 2014-02-11 | Schweitzer Engineering Laboratories Inc. | Energy management for an electronic device |
CN102236073A (zh) * | 2010-04-29 | 2011-11-09 | 鸿富锦精密工业(深圳)有限公司 | 测试治具及利用该测试治具控制计算机电源开关的方法 |
US9991709B2 (en) | 2011-11-04 | 2018-06-05 | Kohler Co. | Adding and shedding loads using load levels to determine timing |
US9386529B2 (en) | 2012-09-06 | 2016-07-05 | Schweitzer Engineering Laboratories, Inc. | Power management in a network of stationary battery powered control, automation, monitoring and protection devices |
US10459025B1 (en) | 2018-04-04 | 2019-10-29 | Schweitzer Engineering Laboratories, Inc. | System to reduce start-up times in line-mounted fault detectors |
US11397198B2 (en) | 2019-08-23 | 2022-07-26 | Schweitzer Engineering Laboratories, Inc. | Wireless current sensor |
US11105834B2 (en) | 2019-09-19 | 2021-08-31 | Schweitzer Engineering Laboratories, Inc. | Line-powered current measurement device |
US11973566B2 (en) * | 2020-10-09 | 2024-04-30 | Schweitzer Engineering Laboratories, Inc. | Wireless radio repeater for electric power distribution system |
US11460493B2 (en) * | 2020-12-23 | 2022-10-04 | Honeywell International Inc. | Electric energy meter with on-board power quality analytics |
EP4369857A4 (en) * | 2021-07-23 | 2024-09-04 | Sz Zuvi Tech Co Ltd | POWER SUPPLY CIRCUIT STRUCTURE, DRYING DEVICE, POWER SUPPLY KIT AND POWER SUPPLY METHOD |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3974397A (en) * | 1975-04-01 | 1976-08-10 | S & C Electric Company | Multi-phase rectifier system |
CH607467A5 (ja) * | 1975-12-03 | 1978-12-29 | Zellweger Uster Ag | |
US4184197A (en) * | 1977-09-28 | 1980-01-15 | California Institute Of Technology | DC-to-DC switching converter |
US4208594A (en) * | 1978-04-03 | 1980-06-17 | Honeywell Inc. | Power monitor for use in starting and stopping a digital electronic system |
US4344124A (en) * | 1979-03-22 | 1982-08-10 | Motorola, Inc. | Start-up timer for a switching power supply |
US4257087A (en) * | 1979-04-02 | 1981-03-17 | California Institute Of Technology | DC-to-DC switching converter with zero input and output current ripple and integrated magnetics circuits |
US4274133A (en) * | 1979-06-20 | 1981-06-16 | California Institute Of Technology | DC-to-DC Converter having reduced ripple without need for adjustments |
US4677646B1 (en) * | 1982-02-26 | 1995-05-09 | Saskatchewan Economic Dev Corp | Dataset powered by control and data signals from data terminal |
US4884287A (en) * | 1988-04-01 | 1989-11-28 | Ncr Corporation | Converter device for interconnecting systems having different communication standards |
JPH03248612A (ja) * | 1990-02-27 | 1991-11-06 | Toshiba Corp | 高周波電力増幅器 |
JPH04299070A (ja) * | 1991-03-26 | 1992-10-22 | Hitachi Ltd | スイッチングレギュレータ |
US5442539A (en) | 1992-10-02 | 1995-08-15 | California Institute Of Technology | CuK DC-to-DC switching converter with input current shaping for unity power factor operation |
US5442534A (en) * | 1993-02-23 | 1995-08-15 | California Institute Of Technology | Isolated multiple output Cuk converter with primary input voltage regulation feedback loop decoupled from secondary load regulation loops |
US5570276A (en) * | 1993-11-15 | 1996-10-29 | Optimun Power Conversion, Inc. | Switching converter with open-loop input voltage regulation on primary side and closed-loop load regulation on secondary side |
US5550985A (en) * | 1994-05-02 | 1996-08-27 | Hewlett-Packard Company | Special purpose computer for demonstrating peripheral devices such as printers in which power is withdrawn from the port connection of the peripheral device |
JPH10510135A (ja) * | 1994-11-28 | 1998-09-29 | アナロジック コーポレーション | 医療用画像作成システムのためのups |
US5642267A (en) * | 1996-01-16 | 1997-06-24 | California Institute Of Technology | Single-stage, unity power factor switching converter with voltage bidirectional switch and fast output regulation |
US5790005A (en) * | 1996-06-24 | 1998-08-04 | Optimum Power Conversion, Inc. | Low profile coupled inductors and integrated magnetics |
US5790394A (en) * | 1996-12-17 | 1998-08-04 | Ncr Corportion | Dual AC power supply input module |
US5903139A (en) * | 1997-01-27 | 1999-05-11 | Honeywell Inc. | Power stealing solid state switch for supplying operating power to an electronic control device |
KR100229043B1 (ko) * | 1997-06-19 | 1999-11-01 | 윤종용 | Ac/dc겸용 전원공급회로 |
US5952733A (en) * | 1997-12-05 | 1999-09-14 | Intel Corporation | Power distribution system for electronic devices |
US6115468A (en) * | 1998-03-26 | 2000-09-05 | Cisco Technology, Inc. | Power feed for Ethernet telephones via Ethernet link |
NL1009546C2 (nl) * | 1998-07-02 | 2000-01-10 | Gotronic | Werkwijze en inrichting voor het voeden van een op een computer aangesloten randapparaat. |
US6141763A (en) * | 1998-09-01 | 2000-10-31 | Hewlett-Packard Company | Self-powered network access point |
DE19935755C2 (de) * | 1999-07-27 | 2002-04-11 | Siemens Ag | Funkeinrichtung mit Energieextraktionseinrichtung |
US6535983B1 (en) * | 1999-11-08 | 2003-03-18 | 3Com Corporation | System and method for signaling and detecting request for power over ethernet |
US6400579B2 (en) * | 2000-03-24 | 2002-06-04 | Slobodan Cuk | Lossless switching DC to DC converter with DC transformer |
US6304460B1 (en) * | 2000-05-05 | 2001-10-16 | Slobodan Cuk | Switching DC-to-DC converter utilizing a soft switching technique |
US6462962B1 (en) * | 2000-09-08 | 2002-10-08 | Slobodan Cuk | Lossless switching DC-to-DC converter |
US6388896B1 (en) * | 2001-03-22 | 2002-05-14 | Slobodan Cuk | Lossless switching converter with DC transformer |
US6677687B2 (en) * | 2001-10-23 | 2004-01-13 | Sun Microsystems, Inc. | System for distributing power in CPCI computer architecture |
US6657418B2 (en) * | 2001-11-13 | 2003-12-02 | Honeywell International Inc. | Parasitic power supply system for supplying operating power to a control device |
TW538586B (en) * | 2002-05-27 | 2003-06-21 | Richtek Technology Corp | Two-step ripple-free multi-phase converter and the converting method thereof |
US7154381B2 (en) * | 2003-05-23 | 2006-12-26 | Sonos, Inc. | System and method for operating a sensed power device over data wiring |
US6995658B2 (en) * | 2003-06-11 | 2006-02-07 | The Boeing Company | Digital communication over 28VDC power line |
-
2003
- 2003-06-17 US US10/463,686 patent/US7291938B2/en not_active Expired - Fee Related
-
2004
- 2004-06-17 CN CNB2004800231814A patent/CN100483301C/zh not_active Expired - Fee Related
- 2004-06-17 JP JP2006517323A patent/JP2007524334A/ja not_active Withdrawn
- 2004-06-17 WO PCT/US2004/019244 patent/WO2004114104A1/en active Application Filing
- 2004-06-17 EP EP20040776668 patent/EP1634147A1/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
US7291938B2 (en) | 2007-11-06 |
CN1836198A (zh) | 2006-09-20 |
EP1634147A1 (en) | 2006-03-15 |
US20040256915A1 (en) | 2004-12-23 |
WO2004114104A1 (en) | 2004-12-29 |
CN100483301C (zh) | 2009-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4735072B2 (ja) | スイッチング電源装置 | |
US10910954B1 (en) | Power saving technique in detach condition for USB-power delivery with integrated synchronous recitifier controller | |
JP6959081B2 (ja) | ジッタ周波数を使用した傾斜期間変調を伴うスイッチング電力変換装置の制御装置 | |
KR101803538B1 (ko) | 전력 공급 장치 및 그 구동 방법 | |
JP2008533960A (ja) | スイッチトモード電力変換装置及びその動作方法 | |
TW201340561A (zh) | 用於定電壓控制和定電流控制的系統和方法 | |
US8416597B2 (en) | Control device for rectifiers of switching converters | |
JP2007524334A (ja) | 時間依存性信号からパワーを導出するための方法及び装置 | |
JP3706852B2 (ja) | スイッチング電源装置 | |
US9866136B2 (en) | Isolated power supply with input voltage monitor | |
EP2003768A2 (en) | Synchronous rectifier circuit and multi-output power supply device using the same | |
JP2009284667A (ja) | 電源装置、および、その制御方法ならびに半導体装置 | |
KR101903231B1 (ko) | 압전 에너지 하베스팅을 위한 고효율 정류기 | |
JP2020162326A (ja) | スイッチング電源装置 | |
WO2010125751A1 (ja) | スイッチング電源装置 | |
JP6570623B2 (ja) | 絶縁型コンバータにおけるコンスタント・オン・タイム(cot)制御 | |
US20190386574A1 (en) | Power supply and power supply unit | |
JP6602373B2 (ja) | 絶縁型コンバータにおけるコンスタント・オン・タイム(cot)制御 | |
US7019986B2 (en) | Power conversion apparatus and dead time generator | |
JP3826804B2 (ja) | 2重化電源システム | |
JPH1189113A (ja) | 無停電電源装置 | |
JP6530486B2 (ja) | 絶縁型コンバータにおけるコンスタント・オン・タイム(cot)制御 | |
CN114915190A (zh) | 电源控制装置及反激式转换器 | |
JP2004519190A (ja) | スイッチング電源 | |
JP6570202B2 (ja) | 絶縁型コンバータにおけるコンスタント・オン・タイム(cot)制御 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070523 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070523 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20081029 |